LINEAR ALGEBRAIC GROUPS: LECTURE 6

JOHN SIMANYI

1. GRASSMANNIANS OVER FINITE FIELDS

As seen in the Fano plane, finite fields create geometries that are quite different from our more common R
or C based geometries. These tend to be connected to ‘g-deformed’ versions of integers, factorials, binomial

coeflicients and other quantities familiar from combinatorics.

Theorem. OQuver the field Iy,

To prove this, we require a few lemmas.

Lemma 1 (¢-Pascal Lemma). For any q # 0, ( Zl ) is the only function of 0 < j < n such that:

0 (3),~(2),

Proof. (Of Lemma 1) It is clear that rules (1) and (2) uniquely determine a function, just as the usual Pascal
triangle built on n-choose-j does.

Recall that
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It is clear that ( 1; ) obeys requirement (1). To show it obeys requirement (2), we simply compute. We

q
have
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As mentioned in the proof, this leads to an analog of Pascal’s triangle called the g-Pascal triangle:
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Numerically, we can picture the diagonals as acting almost like the usual Pascal triangle - we add two on
one row to find the value centered between them on the row below.. However, the ¢-Pascal triangle includes
multiplying by a power of ¢ on the left diagonals, based on its position in the triangle.
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Here’s the triangle built to the fourth layer:
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In this case, the value ( ;1 ) is the first that doesn’t look like a g-integer, or something of the form

q
lg=1+q+¢* - +q" "

To prove our main theorem, we require one more lemma.

Lemma 2 (Grassmannian-Pascal Lemma over Fy). Let Fy be a finite field. Then
(1) |Gr(n,0)| = |Gr(n,n)| =1,
(2) IGr(n,j)l = |Gr(n—1,j)|+¢"?|Gr(n —1,j — 1)|.

Proof. (Of Lemma 2) (1) is clear, as there is only one zero-dimensional or n-dimensional subspace in k™ for
any field k. For (2), let j be given, and choose any (n — 1)-dimensional subspace in k™. Let’s call it k"1,
and use the natural embedding coordinates

Evt = {(z1,29,...,2,_1,0) € K"}.
Suppose L € Gr(n, 7). There are two choices: either L C k"~ or it is not.
If LC k"1 then L € Gr(n—1,7). If L € k"', then it has exactly one basis element not in k"1, so

dim(k"~'NL)=j—1.

In a projective sense, we can write

L = (LOk"™ ') 4+ ((x1, 22, ..., 2n1,1)),

where the generating vector is unique up to adding vectors in L N k" ~'. By dimensionality arguments, we
have that

n—1

knfl q nfj.

LNkr-t

In the field F,;, a subspace of dimension n — j has ¢" 7 elements.

Together, there are |Gr(n — 1, 7)| possibilities that lie in k"', and ¢"~7|Gr(n — 1,j — 1)| that do not. The
sum in the lemma follows. (]

Finally, the theorem follows from the two lemmas.
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2. PAascAL’s TRIANGLE AND BRUHAT CELLS

The previous section focused on finite fields. However, there is a version of Grassmannian-Pascal lemma
that applies to arbitrary fields:

Theorem. Let k be any field, and j,n any natural numbers with 1 < j < n. Then there exists a bijection
of sets

Gr(n,j) =2 Gr(n—1,j) +k" 7 x Gr(n—1,j —1).
Here + means disjoint union, and X is Cartesian product.

The proof is identical to the Grassmannian-Pascal lemma! This result can be used to decompose any
Grassmannian into a disjoint union of copies of k*, which are called Bruhat cells for the Grassmannian.

Example 3. Recall that
Gr(n,0) = Gr(n,n) = kY
and consider Gr(4,2). We can decompose this as
Gr(4,2) = Gr(3,2) + k* x Gr(3,1)

= Gr(2,2)+kxGr(2,1) + k* x (Gr(2,1) + k* x Gr(2,0))

= K4k x(Gr(1,1) +k x Gr(1,0)) 4+ k? x (Gr(1,1) + k x Gr(1,0) + k? x Gr(2,0))

= KO+ kx (K" +kxE + K x (k° +k x °+ K% x k)

KO+ b+ + kK 4+

Written this way, we can see ¢-Pascal’s triangle showing up. Each cell arises from a unique downward path
from the tip of the triangle to the particular ¢-binomial coefficient. Reflecting a bit on this, we have

Theorem. The number of Bruhat cells in Gr(n,j) is the number of distinct paths from the vertexr of
the g-Pascal triangle to the point (n,j). The number of such paths is the ordinary binomial coefficient

(5)

Note that steps to the right and down don’t multiply (they are x1 arrows), while those to the left and down
do multiply (by ¢*, for a particular 7). Here are all six distinct paths for Gr(4,2) :

(0,0):1

(4,2):1+q+++@+¢*
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If you compare this to the earlier picture of the ¢-Pascal triangle, you can see how each power of ¢ arises in
that triangle. If we reflect on the proof of the Grassmannian-Pascal lemma, the idea becomes clear. Suppose
we take an j-dimensional subspace L C k™. As we consider the intersections LNE°, LNEk', LNEK2,..., we
see that at each stage either the dimension stays the same or increases by one. We can keep track of this
using a path from the top of the g-Pascal triangle down to its (n,j) entry. Each time the dimension stays
the same there is no choice involved, and we go right and down, and. Each time the dimension increases by
one, there is a choice of how L N k* could be extended to a subspace of k'T! having one extra dimension,
and we go left and down. If we count all choices we make on this trip, we get the cardinality of the Bruhat
cell containing L. This is ¢¢, where d is the dimension of that Bruhat cell.

As an exercise, prove that the dimension d can computed in the following easy way. Each Bruhat cell in
Gr(n, j) corresponds to a path from the top of Pascal’s triangle to the (n, j) entry. To compute the dimension
d of this cell, take the rectangle formed with vertices (n,j), (4,7), (n—7,0) and (0,0), and count the squares
to the left of the path. Here are a few examples from the decomposition of Gr(5,3) to show the process:

RS



	1. Grassmannians over Finite Fields
	2. Pascal's Triangle and Bruhat Cells

