
LINEAR ALGEBRAIC GROUPS: LECTURE 7

JOHN SIMANYI

1. Parabolic Subgroups and Flag Varieties

So far, we’ve been studying Klein geometry, in particular projective geometry with symmetry group GL(n).
Here, the figures - points, lines, planes etc. - were various vector subspaces of kn. However, it’s actually
important to consider fancier figures, assembled out of our basic figures. For example, we could consider a
point on a line, or a point on a plane, or even a point on a line in a plane!

These figures are called flags, and the term probably stems from the fact that a typical flag on a flagpole
can be considered as a point, on a line, in a plane.

A point,

on a line,

in a plane.

We want to determine the space of flags of a particular type, and this will turn out to be a homogeneous
space for some H ✓ GL(n), which will be called a parabolic subgroup.

Definition. Let the flag variety F (n1, n2, . . . , n`, n), where n1 < n2 < · · · < n` < n are natural
numbers, be the set of all flags of the form

Vn1 ✓ Vn2 ✓ · · · ✓ Vn` ✓ kn,

where Vni is a linear subspace of kn having dimension ni for each i.

Example 1. F (j, n) = {j-dimensional subspaces of kn} = Gr(n, j), a Grassmannian.

Example 2. F (1, 2, 3) consists of all V1 ✓ V2 ✓ k3, where dimV1 = 1 and dimV2 = 2. In projective
geometry, this is just p 2 ` ✓ kP 2, where p is a point and ` is a line.

Example 3. A complete flag is something of the form

Fn := F (1, 2, . . . , n� 1, n).

This has elements of the form
V1 ✓ V2 ✓ · · · ✓ Vn�1 ✓ kn,
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Having shown a few examples, let’s now show

Theorem. The flag variety F (n1, n2, . . . , n`, n) is a homogeneous space for GL(n), where g 2 GL(n)
acts on the flag by

Vn1 ✓ Vn2 ✓ · · · ✓ Vn` ✓ kn 7! gVn1 ✓ gVn2 ✓ · · · ✓ gVn` ✓ gkn = kn.

Proof. We need to show GL(n) acts transitively on our flag. Let

Vn1 ✓ Vn2 ✓ · · · ✓ Vn` ✓ kn, V 0
n1

✓ V 0
n2

✓ · · · ✓ V 0
n`

✓ kn 2 F (n1, n2, . . . , n`, n).

Choose a basis {ei}ni=1 for kn, such that {ei}
nj

i=1 2 Vnj for all j, so each collection {ei}
nj

i=1 forms a basis

for each Vnj . In a similar manner, choose a basis {e0i}
n
i=1 for kn, such that {e0i}

nj

i=1 2 V 0
nj

for all j, so each

collection {e0i}
nj

i=1 forms a basis for each V 0
nj
. Through linear algebra, we know there exists a unique linear

transformation such that gei = e0i for all i, so gVj = V 0
j for all j, as desired. ⇤

As a homogeneous space, we know there exists a (parabolic) subgroup P (n1, n2, . . . , n`, n) ✓ GL(n) that
fixes our “favorite flag” of this type, and by the basic Klein geometry theorem,

F (n1, n2, . . . , n`, n) ⇠= GL(n)/P (n1, n2, . . . , n`, n).

Example 4. The complete flag F (1, 2, 3) ⇠= GL(3)/P (1, 2, 3), where P (1, 2, 3) fixes our favorite flag, V1 ✓
V2 ✓ k3, which can be written as

h(x1, 0, 0)i ✓ h(x1, x2, 0)i ✓ k3.

From last lecture, the subgroup that fixes V1 is

P3,1 =

8
<

:

0

@
A A A
0 A A
0 A A

1

A 2 GL(3)

9
=

; .

Similarly, the subgroup that fixes V2 is

P3,2 =

8
<

:

0

@
A A A
A A A
0 0 A

1

A 2 GL(3)

9
=

; .

The group that fixes both is then

P (1, 2, 3) = P3,1 \ P3,2 =

8
<

:

0

@
A A A
0 A A
0 0 A

1

A 2 GL(3)

9
=

; ,

which are the invertible upper triangular matrices.

Example 5. Consider instead P (1, 3, 4). Choosing our favorite subspace approach, so that V1 = h(x1, 0, 0, 0)i
and V3 = h(x1, x2, x3, 0)i , we have that

P4,1 =

8
>><

>>:

0

BB@

A A A A
0 A A A
0 A A A
0 A A A

1

CCA 2 GL(4)

9
>>=

>>;

fixes V1 and

P4,3 =

8
>><

>>:

0

BB@

A A A A
A A A A
A A A A
0 0 0 A

1

CCA 2 GL(4)

9
>>=

>>;
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fixes V3. Thus, the subgroup that fixes the flag is the intersection,

P (1, 3, 4) = P4,1 \ P4,3 =

8
>><

>>:

0

BB@

A A A A
0 A A A
0 A A A
0 0 0 A

1

CCA 2 GL(4)

9
>>=

>>;
.

These examples lead to a natural generalization.

Theorem. The parabolic subgroups of GL(n) are of the form

P (n1, n2, . . . , n`, n) =
\̀

i=1

Pn,ni .

As a question, why are they called parabolic? I’m not really sure, but there must have been a reason
originally. Stack Exchange has a short question and answer available, but none of the commentary is
necessarily enlightening.

Example 6. This time, we can look at P (2, 4, 5). Again choosing our favorite subpaces (the natural embed-
ding coordinates), we find

P5,2 =

8
>>>><

>>>>:

0

BBBB@

A A A A A
A A A A A
0 0 A A A
0 0 A A A
0 0 A A A

1

CCCCA
2 GL(5)

9
>>>>=

>>>>;

fixes V2 and

P5,4 =

8
>>>><

>>>>:

0

BBBB@

A A A A A
A A A A A
A A A A A
A A A A A
0 0 0 0 A

1

CCCCA
2 GL(5)

9
>>>>=

>>>>;

fixes V4. Thus, the subgroup that fixes the flag is

P (2, 4, 5) = P5,2 \ P5,4 =

8
>>>><

>>>>:

0

BBBB@

A A A A A
A A A A A
0 0 A A A
0 0 A A A
0 0 0 0 A

1

CCCCA
2 GL(5)

9
>>>>=

>>>>;

.

2. Dimensionality and Finite Fields

Through the basic Klein geometry theorem, we know that

dim (F (n1, n2, . . . , n`, n)) = dim (GL(n))� dim (P (n1, n2, . . . , n`, n)) .

This means that the dimension of the flag variety can be found by counting the number of zeros in the matrix
form of the associated parabolic subgroup, as we already saw in the case of maximal parabolic subgroups.

In the case of finite fields, we can also work out the cardinality of F (n1, n2, . . . , n`, n) over Fq.

http://mathoverflow.net/questions/24960/why-are-parabolic-subgroups-called-parabolic-subgroups
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Example 7. Recall that Fn = F (1, 2, . . . , n� 1, n) is called the complete flag variety. Then

Fn
⇠= GL(n)/B(n),

where B(n) is the Borel subgroup defined as

B(n) =

n�1\

i=1

Pn,i = {upper triangular matrices in GL(n)} .

For example,

B(5) =

4\

i=1

P5,i =

8
>>>><

>>>>:

0

BBBB@

A A A A A
0 A A A A
0 0 A A A
0 0 0 A A
0 0 0 0 A

1

CCCCA
2 GL(5)

9
>>>>=

>>>>;

,

which cannot have zeros along the diagonal (as they are in GL(5), and therefore invertible).

We worked with familiar ideas of points, lines, planes etc. in order to build complete flags. It turns
out complete flags and Borel subgroups tell us all about the Geometry. However, we were working with
the primary group GL(n). If we instead work within O(n), or the symplectic group, Sp(n), or any other
potential symmetry group, the Borel subgroups will be di↵erent. For our work in finite fields with GL(n),
however, we have a very nice result.

Theorem. Over the finite field Fq, |Fn| = [n]q!.

Example 8. If n = 3, then F3 = F (1, 2, 3) = {p 2 ` 2 kP 2}, a projective point in a projective line. When
we choose k = F2, we again have the Fano plane. In this ambient space, a flag looks like a point in a line,
such as

or

Now, the Fano plane has 7 points, each of which lie on exactly 3 lines. Through the beautiful duality, there
are also 7 lines, each of which is incident with exactly 3 points. Either way, there are exactly 3 · 7 = 21 flags,
so

|F3| = 21.

If we were to instead apply the theorem, we would have that

|F3| = [3]2!

= [1]2 · [2]2 · [3]2
= 1 · (1 + 2) · (1 + 2 + 22)

= 21.

Proof. In order to choose a complete flag V1 ✓ V2 ✓ · · · ✓ Vn�1 ✓ kn, we first choose a 1-dimensional
subspace V1 which is a point in kPn�1. If k = Fq, we know that

|kPn�1| = [n]q = 1 + · · ·+ qn�1 =
qn � 1

q � 1
.
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We then choose a 2-dimensional subspace V2 with V1 ✓ V2, which is equivalent to choosing a 1-dimensional
subspace (or line) in

kn/V1
⇠= kn�1,

so we are really picking a point in kPn�2. As discussed previously, there are [n � 1]q ways to do this.
Continuing inductively, we arrive at our desired result. ⇤

We again have a strange, happy coincidence. If we were to let q = 1 , relating to the nonexistent “field with
one element” , then [n]q! = n!. This means when we set q = 1, counting the number of flags means counting
the number of possible nested subsets,

S1 ✓ S2 ✓ · · · ✓ Sn�1 ✓ n,

where n is a set with n elements, and Si is a subset containing i elements.

A set theoretic complete flag on n = 6 elements
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