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Preface
For one who attempts to unravel the story, the
problems are as perplexing as a mass of hemp
with a thousand loose ends.
Dream of the Red Chamber, Tsao Hsueh-Chin.

Algebraic groups are groups defined by polynomials. Those that we shall be concerned
with in this book can all be realized as groups of matrices. For example, the group of
matrices of determinant 1 is an algebraic group, as is the orthogonal group of a symmetric
bilinear form. The classification of algebraic groups and the elucidation of their structure
were among the great achievements of twentieth century mathematics (Borel, Chevalley,
Tits and others, building on the work of the pioneers on Lie groups). Algebraic groups are
used in most branches of mathematics, and since the famous work of Hermann Weyl in
the 1920s they have also played a vital role in quantum mechanics and other branches of
physics (usually as Lie groups).

The goal of the present work is to provide a modern exposition of the basic theory of
algebraic groups. It has been clear for fifty years, that in the definition of an algebraic
group, the coordinate ring should be allowed to have nilpotent elements,1 but the standard
expositions2 do not allow this.3 What we call an affine algebraic group is usually called an
affine group scheme of finite type. In recent years, the tannakian duality4 between algebraic
groups and their categories of representations has come to play a role in the theory of alge-
braic groups similar to that of Pontryagin duality in the theory of locally compact abelian
groups. We incorporate this point of view.

Let k be a field. Our approach to affine group schemes is eclectic.5 There are three
main ways viewing affine group schemes over k:

˘ as representable functors from the category of k-algebras to groups;
˘ as commutative Hopf algebras over k;
˘ as groups in the category of schemes over k.

All three points of view are important: the first is the most elementary and natural; the sec-
ond leads to natural generalizations, for example, affine group schemes in a tensor category
and quantum groups; and the third allows one to apply algebraic geometry and to realize

1See, for example, Cartier 1962. Without nilpotents the centre of SLp in characteristic p is visible only
through its Lie algebra. Moreover, the standard isomorphism theorems fail (IX, 4.6), and so the intuition
provided by group theory is unavailable. While it is true that in characteristic zero all algebraic groups are
reduced, this is a theorem that can only be stated when nilpotents are allowed.

2The only exceptions I know of are Demazure and Gabriel 1970, Waterhouse 1979, and SGA 3.
3Worse, much of the expository literature is based, in spirit if not in fact, on the algebraic geometry of

Weil’s Foundations (Weil 1962). Thus an algebraic group over k is defined to be an algebraic group over some
large algebraically closed field together with a k-structure. This leads to a terminology in conflict with that of
modern algebraic geometry, in which, for example, the kernel of a homomorphism of algebraic groups over a
field k need not be an algebraic group over k. Moreover, it prevents the theory of split reductive groups being
developed intrinsically over the base field.

When Borel first introduced algebraic geometry into the study of algebraic groups in the 1950s, Weil’s
foundations were they only ones available to him. When he wrote his influential book Borel 1969, he persisted
in using Weil’s approach to algebraic geometry, and subsequent authors have followed him.

4Strictly, this should be called the “duality of Tannaka, Krein, Milman, Hochschild, Grothendieck, Saave-
dra Rivano, Deligne, et al.,” but “tannakian duality” is shorter. In his Récoltes et Semailles, 1985-86, 18.3.2,
Grothendieck argues that “Galois-Poincaré” would be more appropriate than “Tannaka” .

5Eclectic: Designating, of, or belonging to a class of ancient philosophers who selected from various
schools of thought such doctrines as pleased them. (OED).
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affine group schemes as examples of groups in the category of all schemes. We emphasize
the first point of view, but make use of all three. We also use a fourth: affine group schemes
are the Tannaka duals of certain tensor categories.

TERMINOLOGY

For readers familiar with the old terminology, as used for example in Borel 1969, 1991,
we point out some differences with our terminology, which is based on that of modern
(post-1960) algebraic geometry.

˘ We allow our rings to have nilpotents, i.e., we don’t require that our algebraic groups
be reduced.

˘ For an algebraic group G over k and an extension field K, G.K/ denotes the points
of G with coordinates in K and GK denotes the algebraic group over K obtained
from G by extension of the base field.

˘ We do not identify an algebraic group G with its k-points G.k/, even when the
ground field k is algebraically closed. Thus, a subgroup of an algebraic group G is
an algebraic subgroup, not an abstract subgroup of G.k/.

˘ An algebraic group G over a field k is intrinsically an object over k, and not an
object over some algebraically closed field together with a k-structure. Thus, for
example, a homomorphism of algebraic groups over k is truly a homomorphism over
k, and not over some large algebraically closed field. In particular, the kernel of such
a homomorphism is an algebraic subgroup over k. Also, we say that an algebraic
group over k is simple, split, etc. when it simple, split, etc. as an algebraic group
over k, not over some large algebraically closed field. When we want to say that G
is simple over k and remains simple over all fields containing k, we say that G is
geometrically (or absolutely) simple.

Beyond its greater simplicity and its consistency with the terminology of modern algebraic
geometry, there is another reason for replacing the old terminology with the new: for the
study of group schemes over bases other than fields there is no old terminology.

Notations; terminology

We use the standard (Bourbaki) notations: N D f0;1;2; : : :g; Z D ring of integers; Q D
field of rational numbers; RD field of real numbers; CD field of complex numbers; Fp D
Z=pZD field with p elements, p a prime number. For integers m and n, mjn means that
m divides n, i.e., n 2mZ. Throughout the notes, p is a prime number, i.e., p D 2;3;5; : : :.

Throughout k is the ground ring (always commutative, and often a field), and R always
denotes a commutative k-algebra. Unadorned tensor products are over k. Notations from
commutative algebra are as in my primer CA (see below). When k is a field, ksep denotes a
separable algebraic closure of k and kal an algebraic closure of k. The dual Homk-lin.V;k/

of a k-module V is denoted by V _. The transpose of a matrix M is denoted by M t .
We use the terms “morphism of functors” and “natural transformation of functors” inter-

changeably. For functors F and F 0 from the same category, we say that “a homomorphism
F.X/! F 0.X/ is natural in X” when we have a family of such maps, indexed by the
objects X of the category, forming a natural transformation F ! F 0. For a natural trans-
formation ˛WF ! F 0, we often write ˛X for the morphism ˛.X/WF.X/! F 0.X/. When
its action on morphisms is obvious, we usually describe a functor F by giving its action

8



X  F.X/ on objects. Categories are required to be locally small (i.e., the morphisms
between any two objects form a set), except for the category A_ of functors A! Set. A
diagram A! B ⇒ C is said to be exact if the first arrow is the equalizer of the pair of
arrows; in particular, this means that A!B is a monomorphism (cf. EGA I, Chap. 0, 1.4).

Here is a list of categories:

Category Objects Page
Algk commutative k-algebras
A_ functors A! Set
Comod.C / finite-dimensional comodules over C p. 118
Grp (abstract) groups
Rep.G/ finite-dimensional representations of G p. 112
Rep.g/ finite-dimensional representations of g
Set sets
Veck finite-dimensional vector spaces over k

Throughout the work, we often abbreviate names. In the following table, we list the
shortened name and the page on which we begin using it.

Shortened name Full name Page
algebraic group affine algebraic group p. 28
algebraic monoid affine algebraic monoid p. 28
bialgebra commutative bi-algebra p. 37
Hopf algebra commutative Hopf algebra p. 37
group scheme affine group scheme p. 75
algebraic group scheme affine algebraic group scheme p. 75
group variety affine group variety p. 75
subgroup affine subgroup p. 109
representation linear representation p. 113

When working with schemes of finite type over a field, we typically ignore the nonclosed
points. In other words, we work with max specs rather than prime specs, and “point” means
“closed point”.

We use the following conventions:
X � Y X is a subset of Y (not necessarily proper);
X

def
D Y X is defined to be Y , or equals Y by definition;

X � Y X is isomorphic to Y ;
X ' Y X and Y are canonically isomorphic (or there is a given or unique isomorphism);

Passages designed to prevent the reader from falling into a possibly fatal error are sig-
nalled by putting the symbolA in the margin.

ASIDES may be skipped; NOTES should be skipped (they are mainly reminders to the
author). There is some repetition which will be removed in later versions.
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Prerequisites

Although the theory of algebraic groups is part of algebraic geometry, most people who use
it are not algebraic geometers, and so I have made a major effort to keep the prerequisites
to a minimum. The reader needs to know the algebra usually taught in first-year graduate
courses (and in some advanced undergraduate courses), plus the basic commutative algebra
to be found in my primer CA. Familiarity with the terminology of algebraic geometry, either
varieties or schemes, will be helpful.

References

In addition to the references listed at the end (and in footnotes), I shall refer to the following
of my notes (available on my website):

CA A Primer of Commutative Algebra (v2.22, 2011).
GT Group Theory (v3.11, 2011).
FT Fields and Galois Theory (v4.22, 2011).
AG Algebraic Geometry (v5.22, 2012).
CFT Class Field Theory (v4.01, 2011).

The links to CA, GT, FT, and AG in the pdf file will work if the files are placed in the same
directory.
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Introductory overview

Loosely speaking, an algebraic group over a field k is a group defined by polynomials.
Before giving the precise definition in Chapter I, we look at some examples of algebraic
groups.

Consider the group SLn.k/ of n�n matrices of determinant 1 with entries in a field k.
The determinant of a matrix .aij / is a polynomial in the entries aij of the matrix, namely,

det.aij /D
X

�2Sn
sign.�/ �a1�.1/ � � �an�.n/ (Sn D symmetric group),

and so SLn.k/ is the subset ofMn.k/D k
n2 defined by the polynomial condition det.aij /D

1. The entries of the product of two matrices are polynomials in the entries of the two
matrices, namely,

.aij /.bij /D .cij / with cij D ai1b1j C�� �Cainbnj ;

and Cramer’s rule realizes the entries of the inverse of a matrix with determinant 1 as poly-
nomials in the entries of the matrix,6 and so SLn.k/ is an algebraic group (called the special
linear group). The group GLn.k/ of n�n matrices with nonzero determinant is also an
algebraic group (called the general linear group) because its elements can be identified
with the n2C 1-tuples ..aij /1�i;j�n;d / such that det.aij / �d D 1. More generally, for a
finite-dimensional vector space V , we define GL.V / (resp. SL.V /) to be the group of au-
tomorphisms of V (resp. automorphisms with determinant 1). These are again algebraic
groups.

In order to simplify the statements, we assume for the remainder
of this section that k is a field of characteristic zero.

The building blocks

We describe the five types of algebraic groups from which all others can be constructed
by successive extensions: the finite algebraic groups, the abelian varieties, the semisimple
algebraic groups, the tori, and the unipotent groups.

FINITE ALGEBRAIC GROUPS

Every finite group can be realized as an algebraic group, and even as an algebraic subgroup
of some GLn.k/. Let � be a permutation of f1; : : : ;ng and let I.�/ be the matrix obtained
from the identity matrix by using � to permute the rows. For any n�nmatrix A, the matrix
I.�/A is obtained from A by using � to permute the rows. In particular, if � and � 0 are two
permutations, then I.�/I.� 0/D I.�� 0/. Thus, the matrices I.�/ realize Sn as a subgroup

6Alternatively, according to the Cayley-Hamilton theorem, an n�n matrix A satisfies a polynomial equa-
tion

XnCa1X
n�1
C�� �Can�1XCan D 0

with an D .�1/n det.A/, and so

A � .An�1Ca1A
n�2
C�� �Can�1I /D .�1/

nC1 det.A/ �I:

If det.A/¤ 0, then
.�1/nC1.An�1Ca1A

n�2
C�� �Can�1I /=det.A/

is an inverse for A.
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of GLn. Since every finite group is a subgroup of some Sn, this shows that every finite
group can be realized as a subgroup of GLn, which is automatically defined by polynomial
conditions. Therefore the theory of algebraic groups includes the theory of finite groups.
The algebraic groups defined in this way by finite groups are called constant finite algebraic
groups.

More generally, to give an étale finite algebraic group over a field is the same as giving
a finite group together with a continuous action of Gal.kal=k/ — all finite algebraic groups
in characteristic zero are of this type.

An algebraic group is connected if has no nontrivial finite quotient group.

ABELIAN VARIETIES

Abelian varieties are connected algebraic groups that are projective when considered as
algebraic varieties. An abelian variety of dimension 1 is an elliptic curve, which can be
described by a homogeneous equation

Y 2Z DX3CbXZ2C cZ3:

Therefore, the theory of algebraic groups includes the theory of abelian varieties. We shall
ignore this aspect of the theory. In fact, we shall study only algebraic groups that are affine
when considered as algebraic varieties. These are exactly the algebraic groups that can be
realized as a closed subgroup of some GLn, and, for this reason, are often called linear
algebraic groups.

SEMISIMPLE ALGEBRAIC GROUPS

A connected affine algebraic group G is simple if it is not commutative and has no normal
algebraic subgroups other than 1 and G, and it is almost-simple7 if its centre Z is finite and
G=Z is simple. For example, SLn is almost-simple for n > 1 because its centre

Z D

( 
� 0

:::
0 �

! ˇ̌̌̌
ˇ �n D 1

)

is finite, and the quotient PSLn D SLn =Z is simple.
An isogeny of connected algebraic groups is a surjective homomorphism G!H with

finite kernel. Two connected algebraic groups H1 and H2 are isogenous if there exist
isogenies

H1 G!H2:

This is an equivalence relations. When k is algebraically closed, every almost-simple alge-
braic group is isogenous to exactly one algebraic group on the following list:

An .n� 1/; the special linear group SLnC1I
Bn .n� 2/; the special orthogonal group SO2nC1 consisting of all 2nC1�2nC1matrices

A such that At �AD I and det.A/D 1;
Cn .n� 3/; the symplectic group Sp2n consisting of all invertible 2n�2nmatrices A such

that At �J �AD J where J D
�
0 I
�I 0

�
;

Dn .n� 4/; the special orthogonal group SO2n;

7Other authors say “quasi-simple” or “simple”.
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E6;E7;E8;F4;G2 the five exceptional groups.

We say that an algebraic groupG is an almost-direct product of its algebraic subgroups
G1; : : : ;Gr if the map

.g1; : : : ;gr/ 7! g1 � � �gr WG1� � � ��Gr !G

is an isogeny. In particular, this means that each Gi is a normal subgroup of G and that the
Gi commute with each other. For example,

G D SL2�SL2 =N; N D f.I;I /; .�I;�I /g (1)

is the almost-direct product of SL2 and SL2, but it is not a direct product of two almost-
simple algebraic groups.

A connected algebraic group is semisimple if it is an almost-direct product of almost-
simple subgroups. For example, the group G in (1) is semisimple.

GROUPS OF MULTIPLICATIVE TYPE; ALGEBRAIC TORI

An affine algebraic subgroup T of GL.V / is said to be of multiplicative type if, over kal,
there exists a basis of V relative to which T is contained in the group Dn of all diagonal
matrices 0BBBBB@

� 0 � � � 0 0

0 � � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � � 0

0 0 � � � 0 �

1CCCCCA :
In particular, the elements of an algebraic torus are semisimple endomorphisms of V . A
torus is a connected algebraic group of multiplicative type.

UNIPOTENT GROUPS

An affine algebraic subgroup G of GL.V / is unipotent if there exists a basis of V relative
to which G is contained in the group Un of all n�n matrices of the form0BBBBB@

1 � � � � � �

0 1 � � � � �

:::
:::
: : :

:::
:::

0 0 � � � 1 �

0 0 � � � 0 1

1CCCCCA : (2)

In particular, the elements of a unipotent group are unipotent endomorphisms of V .

Extensions

We now look at some algebraic groups that are nontrivial extensions of groups of the above
types.
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SOLVABLE GROUPS

An affine algebraic group G is solvable if there exists a sequence of affine algebraic sub-
groups

G DG0 � �� � �Gi � �� � �Gn D 1

such that each GiC1 is normal in Gi and Gi=GiC1 is commutative. For example, the group
Un is solvable, and the group Tn of upper triangular n�n matrices is solvable because it
contains Un as a normal subgroup with quotient isomorphic to Dn. When k is algebraically
closed, a connected subgroup G of GL.V / is solvable if and only if there exists a basis of
V relative to which G is contained in Tn (Lie-Kolchin theorem XVI, 4.7).

REDUCTIVE GROUPS

A connected affine algebraic group is reductive if it has no connected normal unipotent
subgroup other than 1. According to the table below, such groups are the extensions of
semisimple groups by tori. For example, GLn is reductive because it is an extension of the
simple group PGLn by the torus Gm,

1!Gm! GLn! PGLn! 1:

Here Gm D GL1 and the first map identifies it with the group of nonzero scalar matrices in
GLn.

NONCONNECTED GROUPS

We give some examples of naturally occurring nonconnected algebraic groups.

The orthogonal group. For an integer n� 1, let On denote the group of n�nmatrices A
such that AtAD I . Then det.A/2D det.At /det.A/D 1, and so det.A/ 2 f˙1g. The matrix
diag.�1;1; : : :/ lies in On and has determinant �1, and so On is not connected: it contains

SOn
def
D Ker

�
On

det
�! f˙1g

�
as a normal algebraic subgroup of index 2 with quotient the

constant finite group f˙1g.

The monomial matrices. Let M be the group of monomial matrices, i.e., those with
exactly one nonzero element in each row and each column. This group contains both the
algebraic subgroup Dn and the algebraic subgroup Sn of permutation matrices. Moreover,
for any diagonal matrix diag.a1; : : : ;an/;

I.�/ �diag.a1; : : : ;an/ �I.�/�1 D diag.a�.1/; : : : ;a�.n//. (3)

As M D Dn �Sn, this shows that Dn is normal in M . Clearly D\Sn D 1, and so M is the
semi-direct product

M D Dno� Sn

where � WSn! Aut.Dn/ sends � to the automorphism in (3).
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Summary

Recall that we are assuming that the base field k has characteristic zero. Every algebraic
group has a composition series whose quotients are respectively a finite group, an abelian
variety, a semisimple group, a torus, and a unipotent group. More precisely:

(a) An algebraic group G contains a unique normal connected algebraic subgroup Gı

such that G=Gı is a finite étale algebraic group (see XIII, 3.7).
(b) A connected algebraic group G contains a largest8 normal connected affine algebraic

subgroup N ; the quotient G=N is an abelian variety (Barsotti, Chevalley, Rosen-
licht).9

(c) A connected affine algebraic group G contains a largest normal connected solvable
algebraic subgroup N (see XVII, �1); the quotient G=N semisimple.

(d) A connected solvable affine algebraic group G contains a largest connected normal
unipotent subgroup N ; the quotient G=N is a torus (see XVII, 1.2; XVI, 5.1).

In the following tables, the group at left has a subnormal series whose quotients are the
groups at right.

General algebraic group Affine algebraic group Reductive algebraic groups
general �

j finite étale

connected �

j abelian variety

connected affine �

j semisimple

solvable �

j torus

unipotent �

j unipotent

f1g �

affine �

j finite étale

connected �

j semisimple

solvable �

j torus

unipotent �

j unipotent

f1g �

reductive �

j semisimple

torus �

j torus

f1g �

When k is perfect of characteristic p ¤ 0 and G is smooth, the same statements hold.
However, when k is not perfect the situation becomes more complicated. For example, the
algebraic subgroup N in (b) need not be smooth even when G is, and its formation need
not commute with extension of the base field. Similarly, a connected affine algebraic group
G without a normal connected unipotent subgroup may acquire such a subgroup after an
extension of the base field — in this case, the group G is said to be pseudo-reductive (not
reductive).

Exercises

EXERCISE 0.1 Let f .X;Y / 2 RŒX;Y �. Show that if f .x;ex/D 0 for all x 2 R, then f is
zero (as an element of RŒX;Y �). Hence the subset f.x;ex/ j x 2Rg of R2 is not the zero-set
of a family of polynomials.

8“largest” = “unique maximal”
9The theorem is proved in Barsotti 1955b, Rosenlicht 1956, and Chevalley 1960. Rosenlicht (ibid.) credits

Chevalley with an earlier proof. A modern exposition can be found in Conrad 2002.
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EXERCISE 0.2 Let T be a commutative subgroup of GL.V / consisting of diagonalizable
endomorphisms. Show that there exists a basis for V relative to which T � Dn.

EXERCISE 0.3 Let � be a positive definite bilinear form on a real vector space V , and let
SO.�/ be the algebraic subgroup of SL.V / of maps ˛ such that �.˛x;˛y/D �.x;y/ for all
x;y 2 V . Show that every element of SO.�/ is semisimple (but SO.�/ is not diagonalizable
because it is not commutative).

EXERCISE 0.4 Let k be a field of characteristic zero. Show that every element of GLn.k/
of finite order is semisimple. (Hence the group of permutation matrices in GLn.k/ consists
of semisimple elements, but it is not diagonalizable because it is not commutative).
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CHAPTER I
Definition of an affine group

What is an affine algebraic group? For example, what is SLn? We know what SLn.R/ is
for any commutative ring R, namely, it is the group of n�n matrices with entries in R and
determinant 1. Moreover, we know that a homomorphism R!R0 of rings defines a homo-
morphism of groups SLn.R/! SLn.R0/. So what is SLn without the “.R/”? Obviously, it
is a functor from the category of rings to groups. Essentially, this is our definition together
with the requirement that the functor be “defined by polynomials”.

Throughout this chapter, k is a commutative ring.

1 Motivating discussion

We first explain how a set of polynomials defines a functor. Let S be a subset of kŒX1; : : : ;Xn�.
For any k-algebra R, the zero-set of S in Rn is

S.R/D f.a1; : : : ;an/ 2R
n
j f .a1; : : : ;an/D 0 for all f 2 Sg:

A homomorphism of k-algebras R! R0 defines a map S.R/! S.R0/, and these maps
make R S.R/ into a functor from the category of k-algebras to the category of sets.

This suggests that we define an affine algebraic group over k to be a functor Algk!Grp
that is isomorphic (as a functor to sets) to the functor defined by a finite set of polynomials
in a finite number of symbols. For example, R SLn.R/ satisfies this condition because
it is isomorphic to the functor defined by the polynomial det.Xij /�1 where

det.Xij /D
X

�2Sn
sign.�/ �X1�.1/ � � �Xn�.n/ 2 kŒX11;X12; : : : ;Xnn�: (4)

The condition that a functor is defined by polynomials is very restrictive.
Let S be a subset of kŒX1; : : : ;Xn�. The ideal a generated by S consists of the finite

sums X
gifi ; gi 2 kŒX1; : : : ;Xn�; fi 2 S:

Clearly S and a have the same zero-sets for every k-algebra R. Let AD kŒX1; : : : ;Xn�=a.
A homomorphism A! R is determined by the images ai of the Xi , and the n-tuples
.a1; : : : ;an/ that arise from homomorphisms are exactly those in the zero-set of a. Therefore
the functor R  a.R/ sending a k-algebra R to the zero-set of a in Rn is canonically
isomorphic to the functor

R Homk-alg.A;R/:

17



18 I. Definition of an affine group

Since the k-algebras that can be expressed in the form kŒX1; : : : ;Xn�=a are exactly the
finitely generated k-algebras, we conclude that the functors Algk!Set defined by some set
of polynomials in a finite number of symbols are exactly the functors R Homk-alg.A;R/

defined by some finitely generated k-algebra A; moreover, the functor can be defined by a
finite set of polynomials if and only if the k-algebra is finitely presented.1

This suggests that we define an affine algebraic group over k to be a functor Algk!Grp
that is isomorphic (as a functor to sets) to the functor R Homk-alg.A;R/ defined by a
finitely presented k-algebra A. Before making this more precise, we review some category
theory.

2 Some category theory

Let A be a category. An object A of A defines a functor

hAWA! Set by
�
hA.R/D Hom.A;R/; R 2 ob.A/;
hA.f /.g/D f ıg; f WR!R0; g 2 hA.R/D Hom.A;R/:

A morphism ˛WA0! A of objects defines a map f 7! f ı˛WhA.R/! hA
0

.R/ which is
natural in R (i.e., it is a natural transformation of functors hA! hA

0

): Thus A hA is a
contravariant functor A! A_. Symbolically, hA D Hom.A;�/:

The Yoneda lemma

Let F WA! Set be a functor from A to the category of sets, and let A be an object of A. The
Yoneda lemma says that to give a natural transformation hA! F is the same as giving an
element of F.A/. Certainly, a natural transformation T WhA! F defines an element

aT D TA.idA/

of F.A/. Conversely, an element a of F.A/ defines a map

hA.R/! F.R/; f 7! F.f /.a/;

for each R in A. The map is natural in R, and so this family of maps is a natural transfor-
mation

TaWh
A
! F; .Ta/R.f /D F.f /.a/:

2.1 (YONEDA LEMMA) The maps T 7! aT and a 7! Ta are inverse bijections

Nat.hA;F /' F.A/ (5)

This bijection is natural in both A and F (i.e., it is an isomorphism of bifunctors).

1Recall (CA 3.11) that a k-algebra A is finitely presented if it is isomorphic to the quotient of a polynomial
algebra kŒX1; : : : ;Xn� by a finitely generated ideal. The Hilbert basis theorem (CA 3.6) says that, when k is
noetherian, every finitely generated k-algebra is finitely presented.
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PROOF. Let T be a natural transformation hA! F . To say that T is a natural transforma-
tion means that a morphism f WA!R defines a commutative diagram

hA.A/ hA.R/

F.A/ F.R/

hA.f /

TA TR

F.f /

idA f

aT F.f /.aT /; TR.f /:

The commutativity of the diagram implies that

F.f /.aT /D TR.f /:

Therefore TaT D T . On the other hand, for a 2 F.A/,

.Ta/A.idA/D F.idA/.a/D a;

and so aTa D a. We have shown that the maps are inverse bijections, and the proof of the
naturality is left as an (easy) exercise for the reader. 2

2.2 When we take F D hB in the lemma, we find that

Nat.hA;hB/' Hom.B;A/:

In other words, the contravariant functor A hAWA! A_ is fully faithful. In particular, a
diagram in A commutes if and only if its image under the functor A hA commutes in A_.

2.3 There is a contravariant version of the Yoneda lemma. For an object A of A, let hA be
the contravariant functor

R Hom.R;A/WA! Set:

For every contravariant functor F WA! Set, the map

T 7! TA.idA/WNat.hA;F /! F.A/

is a bijection, natural in both A and F (apply 2.1 to A
opp

). In particular, for any objects A;B
of A,

Nat.hA;hB/' Hom.A;B/:

Representable functors

2.4 A functor F WA! Set is said to be representable if it is isomorphic to hA for some
object A. A pair .A;a/, a 2 F.A/, is said to represent F if TaWhA! F is an isomorphism.
Note that, if F is representable, say F � hA, then the choice of an isomorphism T WhA!F

determines an element aT 2 F.A/ such that .A;aT / represents F , and so we sometimes
say that .A;T / represents F . The Yoneda lemma says that A hA is a contravariant
equivalence from A onto the category of representable functors A! Set.

2.5 Let F1 and F2 be functors A! Set. In general, the natural transformations F1! F2
will form a proper class (not a set), but the Yoneda lemma shows that Hom.F1;F2/ is a set
when F1 is representable.

Similarly, a contravariant functor is said to be representable if it is isomorphic to hA for
some object A.



20 I. Definition of an affine group

Groups and monoids in categories

Throughout this subsection, C is a category with finite products. In particular, there exists
a final object � (the empty product) and canonical isomorphisms

S ��
'
�! S

'
 � ��S

for every object S of C. For example, the category Set has finite products — every one-
element set is a final object.

Recall that a monoid is a set G together with an associative binary operation mWG �
G! G and a neutral element e. A homomorphism .G;m;e/! .G0;m0; e0/ of monoids is
a map 'WG!G0 such that ' ımDmı .'�'/ and '.e/D e0.

DEFINITION 2.6 A monoid in C is a triple .G;m;e/ consisting of an object G and mor-
phisms mWG�G!G and eW� !G satisfying the two conditions:

(a) (associativity) the following diagram commutes

G�G�G

G�G

G�G

G

id�m

m� id

m

m

(6)

(b) (existence of an identity) both of the composites below are the identity map

G ' ��G
e�id
�!G�G

m
�!G

G 'G��
id�e
�!G�G

m
�!G:

For example, a monoid in Set is just a monoid in the usual sense.
Recall that a group is a set G together with an associative binary operation mWG �

G! G for which there exist a neutral element and inverses. The neutral element and the
inverses are then unique — for example, the neutral element e is the only element such
that e2 D e. A homomorphism .G;m/! .G0;m0/ of groups is a map 'WG!G0 such that
' ımDmı .'�'/; it is automatic that '.e/D e0.

DEFINITION 2.7 A group in C is a pair .G;m/ consisting of an object G of C and a mor-
phism mWG�G!G such that there exist morphisms eW�!G and invWG!G for which
.G;m;e/ is a monoid and the diagram

G
.inv;id/
����! G�G

.id;inv/
 ���� G??y ??ym ??y

�
e

����! G
e

 ���� �:

(7)

commutes. Here .inv; id/ denotes the morphism whose projections on the factors are inv
and id.
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When they exist, the morphisms e and inv are unique.

2.8 A morphism mWG �G ! G defines a natural transformation hmWhG�G ! hG . As
hG�G ' hG �hG , we can regard hm as a natural transformation hG �hG ! hG . Because
the functor G hG is fully faithful (Yoneda lemma 2.3), we see that .G;m/ is a group in
C if and only if .hG ;hm/ is a group in the category of contravariant functors C! Set.

We make this more explicit.

2.9 For objects G and S in C, let G.S/ D Hom.S;G/ D hG.S/. By definition, �.S/ is
a one-element set. A pair .G;m/ is a group in C if and only if, for every S in C, the map
m.S/WG.S/�G.S/!G.S/ is a group structure on G.S/. Similarly a triple .M;m;e/ is a
monoid in C if and only if, for every S in C, the mapm.S/WM.S/�M.S/!M.S/ makes
M.S/ into a monoid with neutral element the image of e.S/W�.S/!M.S/.

2.10 We shall be particularly interested in this when C is the category of representable
functors A! Set, where A is a category with finite coproducts. Then C has finite products,
and a pair .G;m/ is a group in C if and only if, for every R in A, m.R/WG.R/�G.R/!
G.R/ is a group structure on G.R/ (because R hRWAopp! C is essentially surjective).
Similarly, a triple .M;m;e/ is a monoid in C if and only if, for every R in A, the map
m.R/WM.R/�M.R/!M.R/makesM.R/ into a monoid with neutral element the image
of e.R/W�.R/!M.R/.

3 Affine groups

Recall (CA �8) that the tensor product of two k-algebras A1 and A2 is their direct sum
(coproduct) in the category Algk . Explicitly, if f1WA1!R and f2WA2!R are homomor-
phisms of k-algebras, then there is a unique homomorphism .f1;f2/WA1˝A2! R such
that .f1;f2/.a1˝1/D f1.a1/ and .f1;f2/.1˝a2/D f2.a2/ for all a1 2A1 and a2 2A2:

A1 A1˝A2 A2

R.

f1 f2.f1;f2/ (8)

In other words,
hA1˝A2 ' hA1 �hA2 : (9)

It follows that the category of representable functors Algk! Set has finite products.

DEFINITION 3.1 An affine group over k is a representable functorGWAlgk! Set together
with a natural transformation mWG�G!G such that, for all k-algebras R,

m.R/WG.R/�G.R/!G.R/

is a group structure on G.R/. If G is represented by a finitely presented k-algebra, then it
is called an affine algebraic group. A homomorphism G!H of affine groups over k is a
natural transformation preserving the group structures.
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Thus, a homomorphism G!H of affine groups is a family of homomorphisms

˛.R/WG.R/!H.R/

of groups, indexed by the k-algebras R, such that, for every homomorphism �WR! R0 of
k-algebras, the diagram

G.R/
˛.R/
����! H.R/??yG.�/ ??yH.�/

G.R0/
˛.R0/
����! H.R0/

commutes.
To give an affine group over k amounts to giving a functor R .G.R/;m.R// from

k-algebras to groups satisfying the following condition: there exists a k-algebra A and
“universal” element a 2G.A/ such that the maps

f 7! f .a/WHom.A;R/!G.R/

are bijections for all R.

Remarks

3.2 The Yoneda lemma shows that if G and H are affine groups over k, then Hom.G;H/
is a set (see 2.5). Therefore, the affine groups over k form a locally small category, with the
affine algebraic groups as a full subcategory.

3.3 The pair .A;a/ representing G is uniquely determined up to a unique isomorphism by
G. Any such A is called the coordinate ring of A, and is denoted O.G/, and a 2 G.A/
is called the universal element. We shall see below that there is a even canonical choice
for it. It is often convenient to regard the coordinate ring .A;a/ of an affine group G as a
k-algebra A together with an isomorphism ˛WhA!G of functors (cf. 2.4).

3.4 In the language of �2, a pair .G;m/ is an affine group over k if and only if .G;m/ is a
group in the category of representable functors Algk! Set (see 2.10).

3.5 Let .G;m/ be an affine group over k. Because m is a natural transformation, the map
G.R/! G.R0/ defined by a homomorphism of k-algebras R! R0 is a group homomor-
phism. Therefore, .G;m/ defines a functor Algk ! Grp. Conversely, a functor GWAlgk !
Grp whose underlying set-valued functor is representable defines an affine group.

NOTES It is possible to write down a set of necessary and sufficient conditions in order for a functor
Affk ! Grp to be representable, i.e., to be an affine group. The conditions can be verified for the
automorphism functors of some algebraic varieties. See Matsumura and Oort 1967. Sometime I’ll
add a discussion of when the automorphism functor of an affine algebraic group over a field k is
itself an affine algebraic group. See Hochschild and Mostow 1969 in the case that k is algebraically
closed of characteristic zero.
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Examples

3.6 Let Ga be the functor sending a k-algebra R to itself considered as an additive group,
i.e., Ga.R/ D .R;C/. For each element r of a k-algebra R there is a unique k-algebra
homomorphism kŒX�!R sending X to r . Therefore Ga is represented by .kŒX�;X/, and
so Ga is an affine algebraic group with coordinate ring O.Ga/ D kŒX�. It is called the
additive group.

3.7 Let GLn be the functor sending a k-algebra R to the group of invertible n�nmatrices
with entries in R, and let

AD
kŒX11;X12; : : : ;Xnn;Y �

.det.Xij / �Y �1/
D kŒx11;x12; : : : ;xnn;y�.

The matrix x D .xij /1�i;j�n with entries in A is invertible because the equation det.xij / �
y D 1 implies that det.xij / 2A�. For each invertible matrix C D .cij /1�i;j�n with entries
in a k-algebra R, there is a unique homomorphism A!R sending x to C . Therefore GLn
is an affine algebraic group with coordinate ring O.GLn/D A.

The canonical coordinate ring of an affine group

Let A1 be the functor sending a k-algebra R to its underlying set,

A1WAlgk! Set; .R;�;C;1/ R:

Let GWAlgk! Grp be a group-valued functor, and let G0 D .forget/ıG be the underlying
set-valued functor. Define A to be the set of natural transformations from G0 to A1,

AD Nat.G0;A1/:

Thus an element f of A is a family of maps of sets

fRWG0.R/!R; R a k-algebra,

such that, for every homomorphism of k-algebras �WR!R0, the diagram

G0.R/
fR
����! R??yG0.�/ ??y�

G0.R
0/

fR0
����! R0

commutes. For f;f 0 2 A and g 2G0.R/, define

.f ˙f 0/R.g/D fR.g/˙f
0
R.g/

.ff 0/R.g/D fR.g/f
0
R.g/:

With these operations, A becomes a commutative ring, and even a k-algebra because each
c 2 k defines a natural transformation

cRWG0.R/!R; cR.g/D c for all g 2G0.R/:

An element g 2G0.R/ defines a homomorphism f 7! fR.g/WA!R of k-algebras. In this
way, we get a natural transformation ˛WG0! hA of set-valued functors.
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PROPOSITION 3.8 The functor G is an affine group if and only if ˛ is an isomorphism (in
which case it is an affine algebraic group if and only if A is finitely generated).

PROOF. If ˛ is an isomorphism, then certainly G0 is representable (and so G is an affine
group). Conversely, suppose that G0 D hB . Then

A
def
D Nat.G0;A1/D Nat.hB ;A1/

Yoneda
' A1.B/D B .

Thus A ' B as abelian groups, and one checks directly that this is an isomorphism of k-
algebras and that ˛WhB ! hA is the natural transformation defined by the isomorphism.
Therefore ˛ is an isomorphism. This proves the statement (and the parenthetical statement
is obvious). 2

Thus, for an affine group .G;m/, O.G/ def
DHom.G;A1/ is a (canonical) coordinate ring.

Affine groups and algebras with a comultiplication

A comultiplication on a k-algebra A is a k-algebra homomorphism �WA! A˝A. Let �
be a comultiplication on the k-algebra A. For every k-algebra R, the map,

f1;f2 7! f1 �f2
def
D .f1;f2/ı�Wh

A.R/�hA.R/! hA.R/, (10)

is a binary operation on hA.R/, which is natural in R. If this is a group structure for every
R, then hA together with this multiplication is an affine group.

Conversely, let GWAlgk ! Set be a representable functor, and let mWG �G! G be a
natural transformation. Let .A;a/ represent G, so that TaWhA 'G. Then

G�G ' hA�hA
.9)
' hA˝A,

and m corresponds (by the Yoneda lemma) to a comultiplication �WA! A˝A. Clearly,
.G;m/ is an affine group if and only if the map (10) defined by � is a group structure for
all R.

SUMMARY 3.9 It is essentially the same2 to give

(a) an affine group .G;m/ over k, or
(b) a functor GWAlgk!Grp such that the underlying set-valued functor is representable,

or
(c) a k-algebra A together with a comultiplication �WA!A˝A such that the map (10)

defined by � is a group structure on hA.R/ for all R,

We discussed the equivalence of (a) and (b) in (3.5). To pass from (a) to (c), take A to
be Hom.A1;G/ endowed with the comultiplication �WA! A˝A corresponding (by the
Yoneda lemma) to m. To pass from (c) to (a), take G to be hA endowed with the multipli-
cation mWG�G!G defined by �.

2More precisely, there are canonical equivalences of categories.



3. Affine groups 25

EXAMPLE 3.10 Let M be a group, written multiplicatively. The free k-module with basis
M becomes a k-algebra with the multiplication�P

mamm
��P

n bnn
�
D
P
m;nambnmn;

called the group algebra of M over k. Assume that M is commutative, so that kŒM� is a
commutative k-algebra, and let �WkŒM�! kŒM�˝kŒM� be the comultiplication with

�.m/Dm˝m .m 2M/:

Then hkŒM�.R/ ' Homgroup.M;R
�/, and � defines on hkŒM�.R/ its natural group struc-

ture:
.f1 �f2/.m/D f1.m/ �f2.m/:

Therefore .A;�/ defines an affine group.

Remarks

3.11 Let �WA! A˝A be a homomorphism of k-algebras. In (II, 5.1) we shall see that
.A;�/ satisfies (3.9c) if and only if there exist homomorphisms �WA! k and S WA! A

such that certain diagrams commute. In particular, this will give a finite definition of “affine
group” that does not require quantifying over all k-algebras R.

3.12 Let G be an affine algebraic group, and � be the comultiplication on its group ring
O.G/. Then

O.G/� kŒX1; : : : ;Xm�=.f1; : : : ;fn/

for some m and some polynomials f1; : : : ;fn. The functor hO.G/WAlgk ! Grp is that de-
fined by the set of polynomials ff1; : : : ;fng. The tensor product

kŒX1; : : : ;Xn�˝kŒX1; : : : ;Xn�

is a polynomial ring in the 2n symbolsX1˝1; : : : ;Xn˝1;1˝X1; : : : ;1˝Xn. Therefore�,
and hence the multiplication on the groups hO.G/.R/, is also be described by polynomials,
namely, by any set of representatives for the polynomials �.X1/; : : : ;�.Xm/.

3.13 Let G be an affine group, and let A be its coordinate ring. When we regard A as
Hom.G;A1/, an element f 2 A is a family of maps fRWG.R/! R (of sets) natural in R.
On the other hand, when we regard A as a k-algebra representing G, an element g 2G.R/
is a homomorphism of k-algebras gWA! R. The two points of views are related by the
equation

fR.g/D g.f /; f 2 A; g 2G.R/: (11)

Moreover,
.�f /R.g1;g2/D fR.g1 �g2/: (12)

According to the Yoneda lemma, a homomorphism uWG!H defines a homomorphism of
k-algebras u\WO.H/!O.G/. Explicitly,

.u\f /R.g/D fR.uRg/; f 2O.H/; g 2G.R/: (13)
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4 Affine monoids

An affine monoid over k is a representable functor M WAlgk ! Set together with natural
transformations mWM �M !M and eW� !M such that, for all k-algebras R, the triple
.M.R/;m.R/;e.R// is a monoid. Equivalently, it is a functorM from Algk to the category
of monoids such that the underlying set-valued functor is representable. IfM is represented
by a finitely presented k-algebra, then it is called an affine algebraic monoid.

To give an affine monoid amounts to giving a k-algebra A together with homomor-
phisms �WA! A˝A and �WA! k such that, for each k-algebra R, � makes hA.R/ into
a monoid with identity element A

�
�! k �!R (cf. 3.9).

EXAMPLE 4.1 For a k-module V , let EndV be the functor

R .EndR-lin.R˝k V /;ı/:

When V is finitely generated and projective, EndV is represented as a functor to sets by
Sym.V ˝k V _/, and so it is an algebraic monoid (apply IV, 1.6, below). When V is free,
the choice of a basis e1; : : : ; en for V , defines an isomorphism of EndV with the functor

R .Mn.R/;�/ (multiplicative monoid of n�n matrices),

which is represented by the polynomial ring kŒX11;X12; : : : ;Xnn�.

For a monoid M , the set M� of elements in M with inverses is a group (the largest
subgroup of M ).

PROPOSITION 4.2 For any affine monoid M over k, the functor R M.R/� is an affine
group M� over k; when M is algebraic, so also is M�.

PROOF. For an abstract monoid M , let M1 D f.a;b/ 2M �M j ab D 1g; then

M� ' f..a;b/; .a0;b0// 2M1�M1 j aD b
0
g:

This shows that M� can be constructed from M by using only fibred products:

M1 ����! f1g??y ??y
M �M

.a;b/7!ab
������! M

M� ����! M1??y ??y.a;b/ 7!b
M1

.a;b/ 7!a
������! M:

It follows that, for an affine monoid M , the functor R M.R/� can be obtained from M

by forming fibre products, which shows that it is representable (see V, �2 below). 2

EXAMPLE 4.3 Let B be an associative k-algebra B with identity (not necessarily commu-
tative), and consider the functor sending a k-algebraR toR˝B regarded as a multiplicative
monoid. When B is free of finite rank n as a k-module, the choice of a basis for B iden-
tifies it (as a functor to sets) with R 7! Rn, which is represented by kŒX1; : : : ;Xn�, and so
the functor is an affine algebraic monoid. More generally, the functor is an affine algebraic
monoid whenever B is finitely generated and projective as a k-module (see IV, 3.2, below).
In this case, we let GBm denote the corresponding affine algebraic group

R 7! .R˝B/�:

If B DMn.k/, then GBm D GLn.
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5 Affine supergroups

The subject of supersymmetry was introduced by the physicists in the 1970s as part of their
search for a unified theory of physics consistent with quantum theory and general relativity.
Roughly speaking, it is the study of Z=2Z-graded versions of some of the usual objects
of mathematics. We explain briefly how it leads to the notion of an affine “supergroup”.
Throughout this subsection, k is a field of characteristic zero.

A superalgebra over a field k is a Z=2Z-graded associative algebra R over k. In other
words, R is an associative k-algebra equipped with a decomposition R D R0˚R1 (as a
k-vector space) such that k � R0 and RiRj � RiCj (i;j 2 Z=2Z). An element a of R is
said to be even, and have parity p.a/D 0, if it lies in R0; it is odd, and has parity p.a/D 1,
if it lies in R1. The homogeneous elements of R are those that are either even or odd. A
homomorphism of super k-algebras is a homomorphism of k-algebras preserving the parity
of homogeneous elements.

A super k-algebra R is said to be commutative if baD .�1/p.a/p.b/ab for all a;b 2R.
Thus even elements commute with all elements, but for odd elements a;b,

abCbaD 0.

The commutative super k-algebra kŒX1; : : : ;Xm;Y1; : : : ;Yn� in the even symbolsXi and the
odd symbols Yi is defined to be the quotient of the k-algebra of noncommuting polynomials
in X1; : : : ;Yn by the relations

XiXi 0 DXi 0Xi ; XiYj D YjXi ; YjYj 0 D�Yj 0Yj ; 1� i; i 0 �m; 1� j;j 0 � n:

When nD 0, this is the polynomial ring in the commuting symbols X1; : : : ;Xm, and when
mD 0, it is the exterior algebra of the vector space with basis fY1; : : : ;Yng provided 2¤ 0
in k.

A functor from the category of commutative super k-algebras to groups is an affine
supergroup if it is representable (as a functor to sets) by a commutative super k-algebra.
For example, for m;n 2 N, let GLmjn be the functor

R 
˚�
A B
C D

�ˇ̌
A 2 GLm.R0/; B 2Mm;n.R1/; C 2Mn;m.R1/; D 2 GLn.R0/

	
:

It is known that such a matrix
�
A B
C D

�
is invertible (Varadarajan 2004, 3.6.1), and so GLmjn is

a functor to groups. It is an affine supergroup because it is represented by the commutative
super k-algebra obtained from the commutative super k-algebra

kŒX11;X12; : : : ;XmCn;mCn;Y;Z�

in the even symbols

Y; Z; Xij .1� i;j �m; mC1� i;j �mCn/

and the odd symbols
Xij .remaining pairs .i;j /)

by setting

Y � .det.Xij /1�i;j�m D 1;

Z �det.Xij /mC1�i:j�mCn D 1:
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6 Terminology

From now on “algebraic group” will mean “affine algebraic group” and “algebraic monoid”
will mean “affine algebraic monoid”.

7 Exercises

EXERCISE I-1 Show that there is no algebraic group G over k such that G.R/ has two
elements for every k-algebra R.



CHAPTER II
Affine Groups and Hopf Algebras

Un principe général: tout calcul relatif aux
cogèbres est trivial et incompréhensible.

Serre 1993, p. 39.

In this chapter, we study the extra structure that the coordinate ring of an affine group
G acquires from the group structure on G. Throughout k is a commutative ring.

1 Algebras

Recall that an associative algebra over k with identity is a k-module A together with a pair
of k-linear maps1

mWA˝A! A eWk! A

satisfying the two conditions:

(a) (associativity) the following diagram commutes

A˝A˝A

A˝A

A˝A

A

id˝m

m˝ id

m

m

(14)

(b) (existence of an identity) both of the composites below are the identity map

A' k˝A
e˝id
�! A˝A

m
�! A

A' A˝k
id˝e
�! A˝A

m
�! A:

On reversing the directions of the arrows, we obtain the notion of a coalgebra.

1Warning: I sometimes also use “e” for the neutral element of G.R/ (a homomorphism O.G/!R).

29
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2 Coalgebras

DEFINITION 2.1 A co-associative coalgebra over k with co-identity (henceforth, a coal-
gebra over k) is a k-module C together with a pair of k-linear maps

�WC ! C ˝C �WC ! k

satisfying the two conditions:

(a) (co-associativity) the following diagram commutes

C

C ˝C

C ˝C

C

�

�

id˝�

�˝ id

(15)

(b) (co-identity) both of the composites below are the identity map

C
�
�! C ˝C

id˝�
�! C ˝k ' C

C
�
�! C ˝C

�˝id
�! k˝C ' C:

A homomorphism of coalgebras over k is a k-linear map f WC !D such that the following
diagrams commute

C ˝C
f˝f
����! D˝Dx??�C x??�D

C
f

����! D

C
f

����! D??y�C ??y�D
k k

(16)

i.e., such that (
.f ˝f /ı�C D�D ıf

�D ıf D �C .

2.2 Let .C;�;�/ be a coalgebra over k. A k-submoduleD of C is called a sub-coalgebra
if�.D/�D˝D. Then .D;�jD;�jD/ is a coalgebra (obvious), and the inclusionD ,!C

is a coalgebra homomorphism.

When A and B are k-algebras, A˝B becomes a k-algebra with the multiplication

.a˝b/ � .a0˝b0/D aa0˝bb0.

A similar statement is true for coalgebras.

2.3 Let .C;�C ; �C / and .D;�D; �D/ be coalgebras over k. Then C ˝D becomes a
coalgebra when �C˝D is defined to be the composite

C ˝D
�C˝�D
������! C ˝C ˝D˝D

C˝t˝D
' C ˝D˝C ˝D
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(t is the transposition map c˝d 7! d ˝ c) and �C˝D is defined to be the composite

C ˝D
�C˝�D
�����! k˝k ' k.

In particular, .C ˝C;�C˝C ; �C˝C / is a coalgebra over k.

3 The duality of algebras and coalgebras

Recall that V _ denotes the dual of a k-module V . If V and W are k-modules, then the
formula

.f ˝g/.v˝w/D f .v/˝g.w/; f 2 V _, g 2W _, v 2 V , w 2W;

defines a linear map
V _˝W _! .V ˝W /_ (17)

which is always injective, and is an isomorphism when at least one of V or W is finitely
generated and projective (CA 10.8).

Let .C;�;�/ be a co-associative coalgebra over k with a co-identity. Then C_ becomes
an associative algebra over k with the multiplication

C_˝C_
(17)
,! .C ˝C/_

�_

�! C_

and the identity

k ' k_
�_

�! C_:

Let .A;m;e/ be an associative algebra over k with an identity such that A is finitely
generated and projective as a k-module. Then A_ becomes a co-associative coalgebra over
k with the co-multiplication

A_
m_

�! .A˝A/_
(17)
' A_˝A_

and the co-identity

k ' k_
�_

�! A_:

These statements are proved by applying the functor _ to one of the diagrams (14) or
(15).

EXAMPLE 3.1 Let X be a set, and let C be the free k-module with basis X . The k-linear
maps

�WC ! C ˝C; �.x/D x˝x; x 2X;

�WC ! k; �.x/D 1; x 2X;

endow C with the structure of coalgebra over k, because, for an element x of the basis X ,

.id˝�/.�.x//D x˝ .x˝x/D .x˝x/˝x D .�˝ id/.�.x//,

.�˝ id/.�.x//D 1˝x;

.id˝�/.�.x//D x˝1:

The dual algebra C_ can be identified with the k-module of maps X ! k endowed with
the k-algebra structure

m.f;g/.x/D f .x/g.x/

e.c/.x/D cx:
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4 Bi-algebras

DEFINITION 4.1 A bi-algebra over k is a k-module with compatible structures of an asso-
ciative algebra with identity and of a co-associative coalgebra with co-identity. In detail, a
bi-algebra over k is a quintuple .A;m;e;�;�/ where

(a) .A;m;e/ is an associative algebra over k with identity e;
(b) .A;�;�/ is a co-associative coalgebra over k with co-identity �;
(c) �WA! A˝A is a homomorphism of algebras;
(d) �WA! k is a homomorphism of algebras.

A homomorphism of bi-algebras .A;m; : : :/! .A0;m0; : : :/ is a k-linear map A! A0 that
is both a homomorphism of k-algebras and a homomorphism of k-coalgebras.

The next proposition shows that the notion of a bi-algebra is self dual.

PROPOSITION 4.2 For a quintuple .A;m;e;�;�/ satisfying (a) and (b) of (4.1), the fol-
lowing conditions are equivalent:

(a) � and � are algebra homomorphisms;
(b) m and e are coalgebra homomorphisms.

PROOF Consider the diagrams:

A˝A A A˝A

A˝A˝A˝A A˝A˝A˝A

m

�˝�

�

A˝ t˝A

m˝m

A˝A A A˝A A

k˝k k k˝k k

� m

e˝e e �˝� �

' '

A

k k

e

id

�

The first and second diagrams commute if and only if � is an algebra homomorphism, and
the third and fourth diagrams commute if and only if � is an algebra homomorphism. On the
other hand, the first and third diagrams commute if and only if m is a coalgebra homomor-
phism, and the second and fourth commute if and only if e is a coalgebra homomorphism.
Therefore, each of (a) and (b) is equivalent to the commutativity of all four diagrams. 2

DEFINITION 4.3 A bi-algebra is said to be commutative, finitely generated, finitely pre-
sented, etc., if its underlying algebra is this property.

Note that these notions are not self dual.

DEFINITION 4.4 An inversion (or antipodal map2) for a bi-algebra A is a k-linear map
S WA! A such that

2Usually shortened to “antipode”.
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(a) the diagram

A
mı.S˝id/
 ������ A˝A

mı.id˝S/
�������! Ax??e x??� x??e

k
�

 ���� A
�

����! k

(18)

commutes, i.e.,

mı .S˝ id/ı�D e ı � Dmı .id˝S/ı�. (19)

and
(b) S.ab/D S.b/S.a/ for all a;b 2 A and S.1/D 1.

When A is commutative, (b) just means that S is a k-algebra homomorphism, and so an
inversion of A is a k-algebra homomorphism such that (19) holds.

ASIDE 4.5 In fact, condition (a) implies condition (b) (Dăscălescu et al. 2001, 4.2.6). Since condi-
tion (a) is obviously self-dual, the notion of a Hopf algebra is self-dual. In particular, if .A;m;e;�;�/
is a bi-algebra with inversion S and A is finitely generated and projective as a k-module, then
.A_;�_; �_;m_; e_/ is a bi-algebra with inversion S_.

EXAMPLE 4.6 Let X be a monoid, and let kŒX� be the free k-module with basis X . The
k-linear maps

mWkŒX�˝kŒX�! kŒX�; m.x˝x0/D xx0; x;x0 2X;

eWk! kŒX�; e.c/D c1X ; c 2 k;

endow kŒX� with the structure of a k-algebra (the monoid algebra of X over k). When
combined with the coalgebra structure in (3.1), this makes kŒX� into a bi-algebra over
k (i.e., � and � are k-algebra homomorphisms). If X is commutative, then kŒX� is a
commutative bi-algebra. If X is a group, then the map

S WA! A; .Sf /.x/D f .x�1/; x 2X;

is an inversion, because, for x in the basis X ,

.mı .S˝ id//.x˝x/D 1D .mı .id˝S//.x˝x/:

PROPOSITION 4.7 Let A and A0 be bi-algebras over k. If A and A0 admit inversions S and
S 0, then, for any homomorphism f WA! A0,

f ıS D S 0 ıf:

In particular, a bi-algebra admits at most one inversion.

PROOF. For commutative bi-algebras, which is the only case of interest to us, we shall
prove this statement in (5.2) below. The general case is proved in Dăscălescu et al. 2001,
4.2.5. 2

DEFINITION 4.8 A bi-algebra over k that admits an inversion is called a Hopf algebra over
k. A homomorphism of Hopf algebras is a homomorphism of bi-algebras.
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For example, the group algebra kŒX� of a group X is a Hopf algebra (see 4.6).
A sub-bi-algebra B of a Hopf algebraA is a Hopf algebra if and only if it is stable under

the (unique) inversion of A, in which case it is called a Hopf subalgebra.
The reader encountering bi-algebras for the first time should do Exercise II-1 below

before continuing.

EXAMPLE 4.9 It is possible to define coalgebras, bialgebras, and Hopf algebras in any
category with a good notion of a tensor product (see later). For example, let SVeck be the
category of Z=2Z-graded vector spaces over k (category of super vector spaces). Given two
super vector spaces V;W , let V y̋W denote V ˝W with its natural Z=2Z-gradation. Let
V be a purely odd super vector space (i.e., V D V1). Then the exterior algebra

V
V on V

equipped with its natural Z=2Z-gradation is a superalgebra, i.e., an algebra in SVeck . The
map

�WV !
�^

V
�
˝

�^
V
�
; v 7! v˝1˝1˝v;

extends to an algebra homomorphism

�W
^
V !

�^
V
�
y̋

�^
V
�

.

With the obvious co-identity �, .
V
V;�;�/ is a Hopf algebra in SVeck (see mo84161,

MTS).

ASIDE 4.10 To give a k-bi-algebra that is finitely generated and projective as a k-module is the
same as giving a pair of k-algebras A and B , both finitely generated and projective as k-modules,
together with a nondegenerate k-bilinear pairing

h ; iWB �A! k

satisfying compatibility conditions that we leave to the reader to explicate.

5 Affine groups and Hopf algebras

Recall that a commutative bi-algebra over k is a commutative k-algebra A equipped with a
coalgebra structure .�;�/ such that � and � are k-algebra homomorphisms.

THEOREM 5.1 (a) Let A be a k-algebra, and let�WA!A˝A and �WA! k be homomor-
phisms. LetM D hA, and letmWM �M !M and eW�!M be the natural transformations
defined by� and � (here � is the trivial affine monoid represented by k).The triple .M;m;e/
is an affine monoid if and only if .A;�;�/ is a bi-algebra over k.

(b) Let A be a k-algebra, and let �WA!A˝A be a homomorphism. Let G D hA, and
let mWG�G!G be the natural transformation defined by �. The pair .G;m/ is an affine
group if and only if there exists a homomorphism �WA! k such that .A;�;�/ is a Hopf
algebra.

PROOF. (a) The natural transformations m and e define a monoid structure on M.R/ for
each k-algebra R if and only if the following diagrams commute:

M �M �M M �M

M �M M

idM �m

m� idM m

m

��M M �M M ��

M

e� idM

' m

idM �e

'
(20)
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The functor A hA sends tensor products to products ((9), p. 9), and is fully faithful (I,
19). Therefore these diagrams commute if and only if the diagrams (15) commute.

(b) An affine monoid M is an affine group if and only if there exists a natural transfor-
mation invWM !M such that

M
.inv;id/
����! M �M

.id;inv/
 ���� M??y ??ym ??y

�
e

����! M
e

 ���� �

(21)

commutes. Here .id; inv/ denotes the morphism whose composites with the projection maps
are id and inv. Such a natural transformation corresponds to a k-algebra homomorphism
S WA! A such that (18) commutes, i.e., to an inversion for A. 2

Thus, as promised in (I, 3.11), we have shown that a pair .A;�/ is an corresponds to
an affine group if and only if there exist homomorphisms � and S making certain diagrams
commute.

PROPOSITION 5.2 Let A and A0 be commutative Hopf algebras over k. A k-algebra ho-
momorphism f WA! A0 is a homomorphism of Hopf algebras if

.f ˝f /ı�D�0 ıf ; (22)

moreover, then f ıS D S 0 ıf for any inversions S for A and S 0 for A0.

PROOF. According to (5.1b), G D .hA;h�/ and G0 D .hA
0

;h�
0

/ are affine groups. A k-
algebra homomorphism f WA! A0 defines a morphism of functors hf WG ! G0. If (22)
holds, then this morphism sends products to products, and so is a morphism of group-
valued functors. Therefore f is a homomorphism of Hopf algebras. As hf commutes with
the operation g 7! g�1, we have f ıS D S 0 ıf . 2

COROLLARY 5.3 For any commutative k-algebra A and homomorphism �WA! A˝A,
there exists at most one pair .�;S/ such that .A;m;e;�;�/ is a Hopf algebra and S is an
inversion.

PROOF. Apply (5.2) to the identity map. 2

COROLLARY 5.4 The forgetful functor .A;�;�/ .A;�/ is an isomorphism from the
category of commutative Hopf algebras over k to the category of pairs .A;�/ such that
(10), p.24, is a group structure on hA.R/ for all k-algebras R.

PROOF. It follows from (5.1b) and (5.3) that the functor is bijective on objects, and it is
obviously bijective on morphisms. 2

EXAMPLE 5.5 Let G be the functor sending a k-algebra R to R�R�R with the (non-
commutative) group structure

.x;y;z/ � .x0;y0;z0/D .xCx0;yCy0;zCz0Cxy0/:
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This is an algebraic group because it is representable by kŒX;Y;Z�. The map

.x;y;z/ 7!

0@1 x z

0 1 y

0 0 1

1A
is an injective homomorphism from G into GL3. As the functor R  R �R �R also
has an obvious commutative group structure (componentwise addition), this shows that the
k-algebra kŒX;Y;Z� has more than one Hopf algebra structure.

6 Abstract restatement

A commutative bi-algebra is just a monoid in Algopp
k

(compare the definitions (I, 2.6, and
2.1).

A commutative Hopf algebra is just a group in Algopp
k

(compare the diagrams (7), p.20,
and (18), p.33).

By definition, an affine monoid (resp. group) is a monoid (resp. group) in the category
of representable functors on Algk . Because the functor A hA is an equivalence from
Algopp

k
to the category of representable functors on Algk (Yoneda lemma I, 2.2), it induces

an equivalence from the category of commutative bi-algebras (resp. Hopf algebras) to the
category of affine monoids (resp. groups).

7 Commutative affine groups

A monoid or group G commutes if the diagram at left commutes, an algebra A commutes
if middle diagram commutes, and a coalgebra or bi-algebra C is co-commutative if the
diagram at right commutes:

G�G G�G

G

t

m m

A˝A A˝A

A

t

m m

C ˝C C ˝C

C

t

� � (23)

In each diagram, t is the transposition map .x;y/ 7! .y;x/ or x˝y 7! y˝x.
On comparing the first and third diagrams and applying the Yoneda lemma, we see

that an affine monoid or group is commutative if and only if its coordinate ring is co-
commutative.

8 Quantum groups

Until the mid-1980s, the only Hopf algebras seriously studied were either commutative
or co-commutative. Then Drinfeld and Jimbo independently discovered noncommutative
Hopf algebras in the work of physicists, and Drinfeld called them quantum groups. There is,
at present, no definition of “quantum group”, only examples. Despite the name, a quantum
group does not define a functor from the category of noncommutative k-algebras to groups.

One interesting aspect of quantum groups is that, while semisimple algebraic groups
can’t be deformed (they are determined up to isomorphism by a discrete set of invariants),
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their Hopf algebras can be. For q 2 k�, define Aq to be the free associative (noncommuta-
tive) k-algebra on the symbols a;b;c;d modulo the relations

baD qab; bc D cb; caD qac; dc D qcd;

db D qbd; daD ad C .q�q�1/bc; ad D q�1bc D 1:

This becomes a Hopf algebra with � defined by

�

�
a b

c d

�
D

�
a b

c d

�
˝

�
a b

c d

�
, i.e.,

8̂̂<̂
:̂
�.a/ D a˝aCb˝ c

�.b/ D a˝bCb˝d

�.c/ D c˝aCd ˝ c

�.d/ D c˝bCd ˝d

;

and with suitable maps � and S . When q D 1, Aq becomes O.SL2/, and so the Aq can
be regarded as a one-dimensional family of quantum groups that specializes to SL2 when
q! 1. The algebra Aq is usually referred to as the Hopf algebra of SLq.2/:

For bi-algebras that are neither commutative nor cocommutative, many statements in
this chapter become more difficult to prove, or even false. For example, while it is still true
that a bi-algebra admits at most one inversion, the composite of an inversion with itself need
not be the identity map (Dăscălescu et al. 2001, 4.27).

9 Terminology

From now on, “bialgebra” will mean “commutative bi-algebra” and “Hopf algebra” will
mean “commutative bi-algebra that admits an inversion (antipode)” (necessarily unique).
Thus, the notion of a bialgebra is not self dual.3

10 Exercises

To avoid possible problems, in the exercises assume k to be a field.

EXERCISE II-1 For a set X , let R.X/ be the k-algebra of maps X ! k. For a second set
Y , let R.X/˝R.Y / act on X �Y by the rule (f ˝g/.x;y/D f .x/g.y/.

(a) Show that the map R.X/˝R.Y /! R.X � Y / just defined is injective. (Hint:
choose a basis fi for R.X/ as a k-vector space, and consider an element

P
fi ˝gi .)

(b) Let � be a group and define maps

�WR.� /!R.� �� /; .�f /.g;g0/D f .gg0/

�WR.� /! k; �f D f .1/

S WR.� /!R.� /; .Sf /.g/D f .g�1/:

Show that if � maps R.� / into the subring R.� /˝R.� / of R.� �� /, then �, �, and S
define on R.� / the structure of a Hopf algebra.

(c) If � is finite, show that � always maps R.� / into R.� /˝R.� /.

3In the literature, there are different definitions for “Hopf algebra”. Bourbaki and his school (Dieudonné,
Serre, . . . ) use “cogèbre” and “bigèbre” for “co-algebra” and “bi-algebra”.
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EXERCISE II-2 We continue the notations of the last exercise. Let � be an arbitrary group.
From a homomorphism �W� ! GLn.k/, we obtain a family of functions g 7! �.g/i;j ,
1� i;j � n, on G. Let R0.� / be the k-subspace of R.� / spanned by the functions arising
in this way for varying n. (The elements of R0.� / are called the representative functions
on � .)

(a) Show that R0.� / is a k-subalgebra of R.� /.
(b) Show that � maps R0.� / into R0.� /˝R0.� /.
(c) Deduce that �, �, and S define on R0.� / the structure of a Hopf algebra.

(Cf. Abe 1980, Chapter 2, �2; Cartier 2007, 3.1.1.)

EXERCISE II-3 Let A be a Hopf algebra. Prove the following statements by interpreting
them as statements about affine groups.

(a) S ıS D idA.
(b) �ıS D t ıS˝S ı� where t .a˝b/D b˝a:
(c) � ıS D �:
(d) The map a˝b 7! .a˝1/�.b/WA˝A! A˝A is a homomorphism of k-algebras.

Hints: .a�1/�1 D e; .ab/�1 D b�1a�1; e�1 D e.

EXERCISE II-4 Verify directly that O.Ga/ and O.GLn/ satisfy the axioms to be a Hopf
algebra.

EXERCISE II-5 A subspace V of a k-coalgebra C is a coideal if�C .V /� V ˝CCC˝V
and �C .V /D 0.

(a) Show that the kernel of any homomorphism of coalgebras is a coideal and its image
is a sub-coalgebra.

(b) Let V be a coideal in a k-coalgebra C . Show that the quotient vector space C=V
has a unique k-coalgebra structure for which C ! C=V is a homomorphism. Show
that any homomorphism of k-coalgebras C ! D whose kernel contains V factors
uniquely through C ! C=V .

(c) Deduce that every homomorphism f WC !D of coalgebras induces an isomorphism
of k-coalgebras

C=Ker.f /! Im.f /.

Hint: show that if f WV ! V 0 and gWW !W 0 are homomorphisms of k-vector spaces, then

Ker.f ˝g/D Ker.f /˝W CV ˝Ker.g/:

EXERCISE II-6 (cf. Sweedler 1969, 4.3.1). A k-subspace a of a k-bialgebra A is a bi-ideal
if it is both an ideal and a co-ideal. When A admits an inversion S , a bi-ideal a is a Hopf
ideal if S.a/� a. In other words, an ideal a� A is a bi-ideal if

�.a/� a˝ACA˝a and

�.a/D 0;

and it is a Hopf ideal if, in addition,

S.a/� a:
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(a) Show that the kernel of any homomorphism of bialgebras (resp. Hopf algebras) is a
bi-ideal (resp. Hopf ideal), and that its image is a bialgebra (resp. Hopf algebra).

(b) Let a be a bi-ideal in a k-bialgebra A. Show that the quotient vector space A=a has
a unique k-bialgebra structure for which A! A=a is a homomorphism. Show that
any homomorphism of k-bialgebrasA!B whose kernel contains a factors uniquely
throughA!A=a. Show that an inversion onA induces an inversion onA=a provided
that a is a Hopf ideal.

(c) Deduce that every homomorphism f WA! B of bialgebras (resp. Hopf algebras)
induces an isomorphism of bialgebras (resp. Hopf algebras),

A=Ker.f /! Im.f /:

In this exercise it is not necessary to assume that A is commutative, although it becomes
simpler you do, because then it is possible to exploit the relation to affine groups in (5.1).





CHAPTER III
Affine Groups and Group Schemes

By definition, affine groups are groups in the category of representable functors Algk!Set,
which, by the Yoneda lemma, is equivalent to the opposite of Algk . In this chapter we
provide a geometric interpretation of Algopp

k
as the category of affine schemes over k. In

this way, we realize affine groups as group schemes.
The purpose of this chapter is only to introduce the reader to the language of schemes

— we make no serious use of scheme theory in this work. Throughout, k is a ring.

1 The spectrum of a ring

Let A be commutative ring, and let V be the set of prime ideals in A. For an ideal a in A,
let

V.a/D fp 2 V j p� ag.

Clearly,
a� b H) V.a/� V.b/:

LEMMA 1.1 There are the following equalities:

(a) V.0/D V ; V.A/D ;;
(b) V.ab/D V.a\b/D V.a/[V.b/;
(c) for a family .ai /i2I of ideals, V.

P
i2I ai /D

T
i2I V.ai /.

PROOF. The first statement is obvious. For (b) note that

ab� a\b� a;b H) V.ab/� V.a\b/� V.a/[V.b/:

For the reverse inclusions, observe that if p … V.a/[V.b/, then there exist an f 2 ar p
and a g 2 brp; but then fg 2 abrp, and so p … V.ab/. For (c), recall that, by definition,P
i2I ai consists of all finite sums of the form

P
fi , fi 2 ai . Thus (c) is obvious. 2

The lemma shows that the sets V.a/ satisfy the axioms to be the closed sets for a topol-
ogy on V . This is called the Zariski topology. The set V endowed with the Zariski topology
is the (prime) spectrum spec.A/ of A.

For f 2 A, the set
D.f /D fp 2 V j f … pg

41
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is open in V , because it is the complement of V..f //. The sets of this form are called the
principal open subsets of V .

For any set S of generators of an ideal a,

V rV.a/D
[

f 2S
D.f /

and so the basic open subsets form a base for the topology on V .
By definition, a prime ideal contains a product of elements if and only if it contains one

of the elements. Therefore,

D.f1 � � �fn/DD.f1/\� � �\D.fn/, f1; : : : ;fn 2 A;

and so a finite intersection of basic open subsets is again a basic open subset.
Let 'WA! B be a homomorphism of commutative rings. For any prime ideal p in

B , the ideal '�1.p/ is prime because A='�1.p/ is a subring of the integral domain B=p.
Therefore ' defines a map

spec.'/WspecB! specA; p 7! '�1.p/;

which is continuous because the inverse image of D.f / is D.'.f //. In this way, spec
becomes a contravariant functor from the category of commutative rings to topological
spaces.

A topological space V is said to be noetherian if every ascending chain of open subsets
U1 � U2 � �� � in V eventually becomes constant; equivalently, if every descending chain
of closed subsets eventually becomes constant. A topological space is irreducible if it is
nonempty and not the union of two proper closed subsets. Every noetherian topological
space V can be expressed as the union of a finite collection I of irreducible closed subsets,

V D
[
fW jW 2 I gI

among such collections I there is only one that is irredundant in the sense that there are no
inclusions among its elements (CA 12.10). The elements of this I are called the irreducible
components of V .

Let A be a ring, and let V D spec.A/. For a closed subset W of V , let

I.W /D
\
fp j p 2W g:

Then IV.a/ D
T
fp j p � ag, which is the radical of a (CA 2.4). On the other hand,

VI.W / D W , and so the map a 7! V.a/ defines a one-to-one correspondence between
the radical ideals in A and the closed subsets of V . Therefore, when A is noetherian, de-
scending chains of closed subsets eventually become constant, and spec.A/ is noetherian.
Under the one-to-one correspondence between radical ideals and closed subsets, prime ide-
als correspond to irreducible closed subsets, and maximal ideals to points:

radical ideals $ closed subsets

prime ideals $ irreducible closed subsets

maximal ideals $ one-point sets:

The nilradical N of A is the smallest radical ideal, and so it corresponds to the whole space
spec.A/. Therefore spec.A/ is irreducible if and only if N is prime.
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2 Schemes

Let A be a commutative ring, and let V D specA. We wish to define a sheaf of rings OV
on V such that OV .D.f // D Af for all basic open subsets D.f /. However, this isn’t
quite possible because we may have D.f /DD.f 0/ with f ¤ f 0, and while Af and Af 0
are canonically isomorphic, they are not equal, and so the best we can hope for is that
OV .D.f //' Af .

Let B be the set of principal open subsets. Because B is closed under the formation of
finite intersections, it makes sense to speak of a sheaf on B — it is a contravariant functor
F on B satisfying the sheaf condition: for every coveringDD

S
i2I Di of a principal open

subset D by principal open subsets Di , the sequence

F.D/!
Y

i2I
F.Di /⇒

Y
.i;j /2I�I

F.Di \Dj / (24)

is exact.1

For a principal open subset D of V , we define OV .D/ to be S�1D A where SD is the
multiplicative subset Ar

S
p2D p of A. If D D D.f /, then SD is the smallest saturated

multiplicative subset of A containing f , and so OV .D/ ' Af (see CA 6.12). If D �
D0, then SD � SD0 , and so there is a canonical “restriction” homomorphism OV .D/!
OV .D0/. It is not difficult to show that these restriction maps make D  OV .D/ into a
functor on B satisfying the sheaf condition (24).

For an open subset U of V , let I D fD 2 B j D � U g, and define OV .U / by the
exactness of

OV .U /!
Y

D2I
OV .D/⇒

Y
.D;D0/2I�I

OV .D\D0/: (25)

Clearly, U  OV .U / is a functor on the open subsets of V , and it is not difficult to check
that it is a sheaf. The k-algebra OV .U / is unchanged when the set I in (25) is replaced by
another subset of B covering U . In particular, if U DD.f /, then

OV .U /'OV .D.f //' Af :

The stalk of OV at a point p 2 V is

Op
def
D lim
�!U3p

OV .U /D lim
�!f …p

OV .D.f //' lim
�!f …p

Af ' Ap

(for the last isomorphism, see CA 7.3). In particular, the stalks of OV are local rings.
Thus from A we get a locally ringed space Spec.A/ D .spec.A/;OspecA/. We often

write V or .V;O/ for .V;OV /, and we call OV .V / the coordinate ring of V . The reader
should think of an affine scheme as being a topological space V together with the structure
provided by the ring O.V /.

DEFINITION 2.1 An affine scheme .V;OV / is a ringed space isomorphic to Spec.A/ for
some commutative ring A. A scheme is a ringed space that admits an open covering by
affine schemes. A morphism of affine schemes is a morphism of locally ringed spaces, i.e.,
a morphism of ringed spaces such that the maps of the stalks are local homomorphisms of
local rings.

1Recall that this means that the first arrow is the equalizer of the pair of arrows. The upper arrow of the
pair is defined by the inclusions Di \Dj ,!Di and the lower by Di \Dj ,!Dj .
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A homomorphism A! B defines a morphism SpecB! SpecA of affine schemes.

PROPOSITION 2.2 The functor Spec is a contravariant equivalence from the category of
commutative rings to the category of affine schemes, with quasi-inverse .V;O/ O.V /.

PROOF. Omitted (but straightforward). 2

In other words, Spec is an equivalence from Algopp
Z to the category of affine schemes.

Schemes over k

When “ring” is replaced by “k-algebra” in the above, we arrive at the notion of a k-scheme.
To give a k-scheme is the same as giving a scheme V together with a morphism V ! Speck.
For this reason, k-schemes are also called schemes over k.

Let V be a scheme over k. For a k-algebra R, we let

V.R/D Hom.Spec.R/;V /:

Thus V defines a functor Algk! Set.

PROPOSITION 2.3 For a k-scheme V , let zV be the functor R V.R/WAlgk ! Set. Then
V  zV is fully faithful.

PROOF. tba (easy). 2

Therefore, to give a k-scheme is essentially the same as giving a functor Algk ! Set
representable by a k-scheme.

Recall that a morphism uWA! B in a category A is a monomorphism if f 7! u ı

f WHom.T;B/! Hom.T;A/ is injective for all objects T of A. A morphism V ! W of
k-schemes is a monomorphism if and only if V.R/!W.R/ is injective for all k-algebras
R.

NOTES The above is only a sketch. A more detailed account can be found, for example, in Mumford
1966, II �1.

3 Affine groups as affine group schemes

Finite products exist in the category of schemes over k. For example,

Spec.A1˝A2/D Spec.A1/�Spec.A2/:

A group in the category of schemes over k is called a group scheme over k. When the
underlying scheme is affine, it is called an affine group scheme over k. Because the affine
schemes form a full subcategory of the category of all schemes, to give an affine group
scheme over k is the same as giving a group in the category of affine schemes over k.

A group scheme .G;m/ over k defines a functor

zGWAlgk! Set; R G.R/;
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and a natural transformation
zmW zG� zG! zG:

The pair . zG; zm/ is an affine group if and only if G is affine. Conversely, from an affine
group .G;m/ over k, we get a commutative Hopf algebra .O.G/;�/, and hence an affine
group scheme .Spec.O.G//;Spec.�//. These functors are quasi-inverse, and hence define
equivalences of categories.

ASIDE 3.1 Let .G;m/ be a group scheme over a scheme S , and consider the commutative diagram

G
pr1
 ����� G�S G

pr1�m
 ����� G�S G??y pr2

??y m

??y
S  ����� G G

The first square is cartesian, and so if G is flat, smooth, . . . over S , then pr2 is a flat, smooth, . . .
morphism. The morphism pr1�m is an isomorphism of schemes because it is a bijection of functors
(obviously). Therefore both horizontal maps in the second square are isomorphisms, and so if pr2 is
flat, smooth, . . . , then m is flat, smooth, . . . .

4 Summary

In the table below, the functors in the top row are fully faithful, and define equivalences of
the categories in the second and third rows.

Func.Algk;Set/
hA  A
 �������� Algopp

k

A Spec.A/
��������! Sch=knRepresentable

functors

o
� Algopp

k
� fAffine schemesg

fAffine groupsg � fGroups in Algopp
k
g �

nAffine group
schemes

o
Affine group: pair .G;m/ with G a representable functor Algk! Set and mWG�G! G

a natural transformation satisfying the equivalent conditions:

(a) for all k-algebras R, the map m.R/WG.R/�G.R/! G.R/ is a group structure on
the set G.R/;

(b) there exist natural transformations eW� ! G and invWG ! G (necessarily unique)
satisfying the conditions of I, 2.7.

(c) the pair .G;m/ arises from a functor Algk! Grp.

Group in Algopp
k

: pair .A;�/ with A a k-algebra and �WA! A˝A a homomorphism
satisfying the equivalent conditions:

(a) for all k-algebras R, the map

f1;f2 7! .f1;f2/ı�Wh
A.R/�hA.R/! hA.R/

is a group structure on the set hA.R/;
(b) .A;�/ is a commutative Hopf algebra over k, i.e., there exist k-algebra homomor-

phisms �WA! k and S WA! A (necessarily unique) satisfying the conditions of II,
2.1, 4.8.
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Affine group scheme: pair .G;m/ with G an affine scheme over k and mWG �G! G a
morphism satisfying the equivalent conditions:

(a) for all k-algebras R, the map m.R/WG.R/�G.R/! G.R/ is a group structure on
the set G.R/;

(b) there exist there exist morphisms eW� ! G and invWG ! G (necessarily unique)
satisfying the conditions of I, 2.7;

(c) for all k-schemes S , the mapm.S/WG.S/�G.S/!G.S/ is a group structure on the
set G.S/.



CHAPTER IV
Examples

Recall (I, 3.5) that to give an affine group amounts to giving a functor GWAlgk! Grp such
that the underlying set-valued functor G0 is representable. An element f of the coordinate
ring O.G/ of G is a family of functions fRWG.R/!R of sets, indexed by the k-algebras,
compatible with homomorphisms of k-algebras (I, 3.13). An element f1˝f2 of O.G/˝
O.G/ defines a function .f1˝f2/RWG.R/�G.R/!R by the rule:

.f1˝f2/R.a;b/D .f1/R.a/ � .f2/R.b/: (26)

For f 2O.G/, �.f / is the unique element of O.G/˝O.G/ such that

.�f /R.a;b/D fR.ab/; for all R and all a;b 2G.R/; (27)

and �f is the element f .1G/ of k,

�f D f .1G/; (28)

moreover, Sf is the unique element of O.G/ such that

.Sf /R.a/D fR.a
�1/; for all R and all a 2G.R/: (29)

Throughout this section, k is a ring.

1 Examples of affine groups

1.1 Let Ga be the functor sending a k-algebra R to itself considered as an additive group,
i.e., Ga.R/D .R;C/. Then

Ga.R/' Homk-alg.kŒX�;R/;

and so Ga is an affine algebraic group, called the additive group.
In more detail, O.Ga/D kŒX� with f .X/ 2 kŒX� acting as a 7! f .a/ on Ga.R/D R.

The ring kŒX�˝kŒX� is a polynomial ring in X1 DX˝1 and X2 D 1˝X ,

kŒX�˝kŒX�' kŒX1;X2�;

and soGa�Ga has coordinate ring kŒX1;X2�withF.X1;X2/2 kŒX1;X2� acting as .a;b/ 7!
F.a;b/ on G.R/�G.R/. According to (27)

.�f /R.a;b/D fR.aCb/;
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48 IV. Examples

and so
.�f /.X1;X2/D f .X1CX2/; f 2O.Ga/D kŒX�:

In other words, � is the homomorphism of k-algebras kŒX�! kŒX�˝kŒX� sending X to
X˝1C1˝X . Moreover, �f is the constant function,

�f D f .0/ (constant term of f /;

and .Sf /R.a/D fR.�a/, so that

.Sf /.X/D f .�X/:

1.2 Let Gm be the functor R R� (multiplicative group). Each a 2 R� has a unique
inverse, and so

Gm.R/' f.a;b/ 2R2 j ab D 1g ' Homk-alg.kŒX;Y �=.XY �1/;R/:

ThereforeGm is an affine algebraic group, called the multiplicative group. Let k.X/ be the
field of fractions of kŒX�, and let kŒX;X�1� be the subalgebra of k.X/ of polynomials in
X and X�1. The homomorphism

kŒX;Y �! kŒX;X�1�; X 7!X; Y 7!X�1

defines an isomorphism kŒX;Y �=.XY �1/' kŒX;X�1�, and so

Gm.R/' Homk-alg.kŒX;X
�1�;R/:

Thus O.Gm/D kŒX;X�1� with f 2 kŒX;X�1� acting as a 7! f .a;a�1/ onGm.R/DR�.
The comultiplication � is the homomorphism of k-algebras kŒX;X�1�! kŒX;X�1�˝

kŒX;X�1� sendingX toX˝X , � is the homomorphism kŒX;X�1�! k sending f .X;X�1/
to f .1;1/, and S is the homomorphism kŒX;X�1�! kŒX;X�1� interchangingX andX�1.

1.3 Let G be the functor such that G.R/D f1g for all k-algebras R. Then

G.R/' Homk-alg.k;R/;

and so G is an affine algebraic group, called the trivial algebraic group, often denoted �.
More generally, let G be a finite group, and let A be the set of maps G ! k with its

natural k-algebra structure. Then A is a product of copies of k indexed by the elements of
G. More precisely, let e� be the function that is 1 on � and 0 on the remaining elements of
G. The e� ’s form a complete system of orthogonal idempotents for A:

e2� D e� ; e�e� D 0 for � ¤ �;
P
e� D 1.

The maps

�.e�/D
X

�;� with ��D�

e� ˝ e� ; �.e� /D

�
1 if � D 1
0 otherwise

; S.e� /D e��1 :

define a bi-algebra structure on A with inversion S (cf. II, 4.6). Let .G/k be the associated
algebraic group, so that

.G/k .R/D Homk-alg.A;R/:
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If R has no idempotents other than 0 or 1, then a k-algebra homomorphism A! R must
send one e� to 1 and the remainder to 0. Therefore, .G/k .R/ ' G, and one checks that
the group structure provided by the maps �;�;S is the original one. For this reason, .G/k
is called the constant algebraic group defined by G, even though for k-algebras R with
nontrivial idempotents, .G/k .R/ may be bigger than G.

1.4 For an integer n� 1,
�n.R/D fr 2R j r

n
D 1g

is a multiplicative group, and R �n.R/ is a functor. Moreover,

�n.R/' Homk-alg.kŒX�=.X
n
�1/;R/;

and so �n is an affine algebraic group with O.�n/D kŒX�=.Xn�1/.

1.5 In characteristic p ¤ 0, the binomial theorem takes the form .aC b/p D ap C bp.
Therefore, for any k-algebra R over a ring k such that pk D 0,

˛p.R/D fr 2R j r
p
D 0g

is a group under addition, and R ˛p.R/ is a functor to groups. Moreover,

˛p.R/' Homk-alg.kŒT �=.T
p/;R/;

and so ˛p is an affine algebraic group with O.˛p/D kŒT �=.T p/.

1.6 For any k-module V , the functor of k-algebras1

Da.V /WR Homk-lin.V;R/ (additive group) (30)

is represented by the symmetric algebra Sym.V / of V :

Homk-alg.Sym.V /;R/' Homk-lin.V;R/, R a k-algebra,

(see CA �8). ThereforeDa.V / is an affine group over k (and even an affine algebraic group
when V is finitely presented).

In contrast, it is known that the functor

VaWR R˝V (additive group)

is not representable unless V is finitely generated and projective.2 Recall that the finitely
generated projective k-modules are exactly the direct summands of free k-modules of finite
rank (CA �10), and that, for such a module,

Homk-lin.V
_;R/'R˝V

(CA 10.8). Therefore, when V is finitely generated and projective, Va is an affine algebraic
group with coordinate ring Sym.V _/.
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When k is not a field, the functor Wa defined by a submodule W of V need not be a
subfunctor of Va.

AWhen V is finitely generated and projective, the canonical maps

EndR-lin.R˝V / R˝Endk-lin.V /!R˝ .V _˝V /,

are isomorphisms,3 and so

R EndR-lin.R˝V / (additive group)

is an algebraic group with coordinate ring Sym.V ˝V _/.
When V is free and finitely generated, the choice of a basis e1; : : : ; en for V defines iso-

morphisms EndR-lin.R˝V /'Mn.R/ and Sym.V ˝V _/' kŒX11;X12; : : : ;Xnn� (poly-
nomial algebra in the n2 symbols .Xij /1�i;j�n). For f 2 kŒX11;X12; : : : ;Xnn� and a D
.aij / 2Mn.R/,

fR.a/D f .a11;a12; : : : ;ann/.

1.7 For n�n matrices M and N with entries in a k-algebra R,

det.MN/D det.M/ �det.N / (31)

and
adj.M/ �M D det.M/ �I DM � adj.M/ (Cramer’s rule) (32)

where I denotes the identity matrix and

adj.M/D
�
.�1/iCj detMj i

�
2Mn.R/

with Mij the matrix obtained from M by deleting the i th row and the j th column. These
formulas can be proved by the same argument as for R a field, or by applying the principle
of permanence of identities (Artin 1991, 12.3). Therefore, there is a functor SLn sending a
k-algebra R to the group of n�n matrices of determinant 1 with entries in R. Moreover,

SLn.R/' Homk-alg

�
kŒX11;X12; : : : ;Xnn�

.det.Xij /�1/
;R

�
;

where det.Xij / is the polynomial (4), and so SLn is an affine algebraic group with O.SLn/D
kŒX11;X12;:::;Xnn�
.det.Xij /�1/

. It is called the special linear group. For f 2 O.SLn/ and a D .aij / 2
SLn.R/,

fR.a/D f .a11; : : : ;ann/:

1Notations suggested by those in DG II, �1, 2.1. In SGA 3, I, 4.6.1, Da.V / is denoted V.V / and Va is
denoted W.V /.

2This is stated without proof in EGA I (1971) 9.4.10: “on peut montrer en effet que le foncteur T 7!
� .T;E.T // ... n’est représentable que si E est localement libre de rang fini”. Nitsure (2002, 2004) proves
the following statement: let V be a finitely generated module over a noetherian ring k; then Va and GLV are
representable (if and) only if V is projective.

3When V is free of finite rank, this is obvious, and it follows easily for a direct summand of such a module.
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1.8 Similar arguments show that the n� n matrices with entries in a k-algebra R and
with determinant a unit in R form a group GLn.R/, and that R GLn.R/ is a functor.
Moreover,

GLn.R/' Homk-alg

�
kŒX11;X12; : : : ;Xnn;Y �

.det.Xij /Y �1/
;R

�
;

and so GLn is an affine algebraic group with coordinate ring4 kŒX11;X12;:::;Xnn;Y �
.det.Xij /Y�1/

. It is
called the general linear group.

For f 2O.GLn/ and aD .aij / 2 GLn.R/,

fR.aij /D f .a11; : : : ;ann;det.aij /�1/:

Alternatively, let A be the k-algebra in 2n2 symbols, X11;X12; : : : ;Xnn;Y11; : : : ;Ynn mod-
ulo the ideal generated by the n2 entries of the matrix .Xij /.Yij /�I . Then

Homk-alg.A;R/D f.A;B/ j A;B 2Mn.R/; AB D I g:

The map .A;B/ 7! A projects this bijectively onto fA 2Mn.R/ j A is invertibleg (because
a right inverse of a square matrix is unique if it exists, and is also a left inverse). Therefore
A'O.GLn/. For G D GLn,

O.G/D
kŒX11;X12; : : : ;Xnn;Y �

.Y det.Xij /�1/
D kŒx11; : : : ;xnn;y�

and(
�xik D

P
jD1;:::;n

xij ˝xjk

�y D y˝y

8<:
�.xi i / D 1

�.xij / D 0, i ¤ j
�.y/ D 1

�
S.xij / D yaj i
S.y/ D det.xij /

where aj i is the cofactor of xj i in the matrix .xj i /. Symbolically, we can write the formulas
for � and � as

�.x/D .x/˝ .x/

�.x/D I

where .x/ is the matrix with ij th entry xij . We check the formula for �.xik/:

.�xik/R
�
.aij /; .bij /

�
D .xik/R

�
.aij /.bij /

�
definition (27)

D
P
j aij bjk as .xkl/R ..cij //D ckl

D .
P
jD1;:::;nxij ˝xjk/R

�
.aij /; .bij /

�
as claimed.

1.9 Let C be an invertible n�n matrix with entries in k, and let

G.R/D fT 2 GLn.R/ j T t �C �T D C g.

4In other words, O.GLn/ is the ring of fractions of kŒX11;X12; : : : ;Xnn� for the multiplicative subset
generated by det.Xij /,

O.GLn/D kŒX11;X12; : : : ;Xnn�det.Xij /:

See CA, 6.2.
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If C D .cij /, then G.R/ consists of the matrices .tij / (automatically invertible) such thatX
j;k

tj icjktkl D cil ; i; l D 1; : : : ;n;

and so
G.R/' Homk-alg.A;R/

with A equal to the quotient of kŒX11;X12; : : : ;Xnn;Y � by the ideal generated by the poly-
nomials X

j;k

Xj icjkXkl � cil ; i; l D 1; : : : ;n:

Therefore G is an affine algebraic group. When C D I , it is the orthogonal group On, and
when C D

�
0 I
�I 0

�
, it is the symplectic group Spn.

1.10 There are abstract versions of the last groups. Let V be a finitely generated projective
k–module, let � be a nondegenerate symmetric bilinear form V �V ! k, and let  be a
nondegenerate alternating form V �V ! k. Then there are affine algebraic groups with

SLV .R/D fR-linear automorphisms of R˝k V with determinant 1g,

GLV .R/D fR-linear automorphisms of R˝k V g,

O.�/.R/D f˛ 2 GLV .R/ j �.˛v;˛w/D �.v;w/ for all v;w 2R˝k V g;

Sp. /.R/D f˛ 2 GLV .R/ j  .˛v;˛w/D  .v;w/ for all v;w 2R˝k V g.

When V is free, the choice of a basis for V defines an isomorphism of each of these functors
with one of those in (1.7), (1.8), or (1.9), which shows that they are affine algebraic groups
in this case. For the general case, use (3.2).

1.11 Let k be a field, and let K be a separable k-algebra of degree 2. This means that
there is a unique k-automorphism a 7! xa ofK such that aD xa if and only if a 2 k, and that
either

(a) K is a separable field extension of k of degree 2 and a 7! xa is the nontrivial element
of the Galois group, or

(b) K D k�k and .a;b/D .b;a/:

For an n�n matrix AD .aij / with entries in K, define xA to be .aij / and A� to be the
transpose of xA. Then there is an algebraic group G over k such that

G.k/D fA 2Mn.K/ j A
�AD I g:

More precisely, for a k-algebra R, define a˝ r D xa˝ r for a˝ r 2K˝k R, and, with the
obvious notation, let

G.R/D fA 2Mn.K˝kR/ j A
�AD I g:

Note that A�AD I implies det.A/det.A/D 1. In particular, det.A/ is a unit, and so G.R/
is a group.

In case (b),
G.R/D f.A;B/ 2Mn.R/ j AB D I g
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and so .A;B/ 7! A is an isomorphism of G with GLn.
In case (a), let e 2 K r k. Then e satisfies a quadratic polynomial with coefficients

in k. Assuming char.k/ ¤ 2, we can “complete the square” and choose e so that e2 2 k
and xe D �e. A matrix with entries in K˝k R can be written in the form AC eB with
A;B 2Mn.R/. It lies in G.R/ if and only if

.At � eB t /.AC eB/D I

i.e., if and only if

At �A� e2B t �B D I; and

At �B �B t �AD 0:

Evidently, G is represented by a quotient of kŒ: : : ;Xij ; : : :�˝k kŒ: : : ;Yij ; : : :�.
In the classical case k D R and K D C. Then G.R/ is the set of matrices in Mn.C/ of

the form AC iB , A;B 2Mn.R/, such that

At �ACB t �B D I; and

At �B �B t �AD 0:

1.12 There exists an affine algebraic group G, called the group of monomial matrices,
such that, when R has no nontrivial idempotents, G.R/ is the group of invertible matrices
in Mn.R/ having exactly one nonzero element in each row and column. For each � 2 Sn
(symmetric group), let

A� DO.GLn/=.Xij j j ¤ �.i//

and let O.G/D
Q
�2Sn

A� . Then

A� ' kŒX1�.1/; : : : ;Xn�.n/;Y �=.sign.�/ �X1�.1/ � � �Xn�.n/Y �1/;

and so
G.R/'

G
�

Homk-alg.A� ;R/' Homk-alg.O.G/;R/:

1.13 Let k D k1�� � ��kn, and write 1D e1C�� �Cen. Then fe1; : : : ; eng is a complete set
of orthogonal idempotents in k. For any k-algebra R,

RDR1� � � ��Rn

where Ri is the k-algebra Rei ' ki ˝kR. To give an affine group G over k is the same as
giving an affine group Gi over each ki . If G$ .Gi /1�i�n, then

G.R/D
Y

i
Gi .Ri / (33)

for all k-algebras R.
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2 Examples of homomorphisms

2.1 The determinant defines a homomorphism of algebraic groups

detWGLn!Gm:

2.2 The homomorphisms

R! SL2.R/; a 7!

�
1 a

0 1

�
;

define a homomorphism of algebraic groups Ga! SL2.

2.3 Add example of the (relative) Frobenius map. [LetG be an affine algebraic group over
a field k of characteristic p¤ 0. The kernel of the relative Frobenius map FG=k WG!G.p/

is a finite connected affine group. It has the same Lie algebra as G, and in particular it is
noncommutative if the Lie algebra is nonabelian, e.g. for G DGLn, n � 2. If G is regular
(e.g. smooth over k) then FG=k is faithfully flat. See mo84936.]

3 Appendix: A representability criterion

We prove that a functor is representable if it is representable “locally”.

THEOREM 3.1 Let F WAlgk! Set be a functor. If F is representable, then, for every faith-
fully flat homomorphism R!R0 of k-algebras, the sequence

F.R/! F.R0/⇒ F.R0˝RR
0/

is exact (i.e., the first arrow maps F.R/ bijectively onto the set on which the pair of arrows
coincide). Conversely, if there exists a faithfully flat homomorphism k! k0 such that

(a) F jAlgk0 is representable, and
(b) for all k-algebras R, the following sequence is exact

F.R/! F.Rk0/⇒ F.Rk0˝Rk0/;

then F is representable.

PROOF. Suppose that F is representable, say F D hA. For every faithfully flat homomor-
phism of rings R!R0, the sequence

R!R0⇒R0˝RR
0

is exact (CA 9.6). From this it follows that

Homk-alg.A;R/! Homk-alg.A;R
0/⇒ Homk-alg.A;R

0
˝RR

0/

is exact.
Conversely, let k! k0 be a faithfully flat map such that the restriction F 0 of F to k0-

algebras is represented by a k0-algebra A0. Because F 0 comes from a functor over k, it is
equipped with a descent datum, which defines a descent datum on A0 (Yoneda lemma), and
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descent theory shows that A0, together with this descent datum, arises from a k-algebra A;
in particular, A0 D k0˝A (Waterhouse 1979, Chapter 17). On comparing the following
exact sequences for F and hA, we see that A represents F :

F.R/ ! F 0.Rk0/ ⇒ F 0.Rk0˝RRk0/

#� #�

hA.R/ ! hA
0

.Rk0/ ⇒ hA
0

.Rk0˝RRk0/. 2

EXAMPLE 3.2 Let f1; : : : ;fr be elements of k such that .f1; : : : ;fr/D k. Then k!
Q
kfi

is faithfully flat because the condition means that no maximal ideal of k contains all fi . Let
F be a functor of k-algebras, and let Fi D F jAlgkfi . Then F is representable if

(a) each functor Fi is representable, and
(b) for each k-algebra R, the sequence

F.R/!
Y

i
F.Rfi /⇒

Y
i;j
F.Rfi ˝RRfj /

is exact.

Note that Rfi ˝RRfj 'Rfifj .

ASIDE 3.3 A functor F WAlgk ! Set defines a presheaf on spec.R/ for each k-algebra R. We say
that F is a sheaf for the Zariski topology if this presheaf is a sheaf for every R. Then (3.2) can be
expressed more naturally as: a functor F that is a sheaf for the Zariski topology is representable
if it is locally representable for the Zariski topology on spec.k/. A similar statement holds with
“Zariski” replaced by “étale”.





CHAPTER V
Some Basic Constructions

Throughout this chapter, k is a commutative ring.

1 Products of affine groups

Let G1 and G2 be affine groups over k. The functor

R G1.R/�G2.R/

is an affine group G1�G2 over k with coordinate ring

O.G1�G2/DO.G1/˝O.G2/; (34)

because, for any k-algebras A, A2, R,

Homk-alg.A1˝k A2;R/' Homk-alg.A1;R/�Homk-alg.A2;R/ (35)

(see (8), p. 21).
More generally, let .Gi /i2I be a (possibly infinite) family of affine groups over k in-

dexed by a set I , and let G be the functor

R 
Y

i2I
Gi .R/:

Then G is an affine group with coordinate ring
N
i2I O.Gi / (in the infinite case, apply

Bourbaki A, III, �5, Prop. 8). Moreover, G together with the projection maps is the product
of the Gi in the category of affine groups. If I is finite and each Gi is an algebraic group,
then

Q
i2I Gi is an algebraic group.

The trivial group is a final object in the category of affine groups over k, and so all
products exist in this category (and all finite products exist in the subcategory of algebraic
groups).

2 Fibred products of affine groups

Let G1, G2, and H be functors from the category of k-algebras to sets, and let

G1!H  G2 (36)

57
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be natural transformations. We define the fibred product functor G1 �H G2 to be the
functor

R G1.R/�H.R/G2.R/:

Obviously G1�H G2 is the fibred product of G1 and G2 over H in Alg_
k

.
Let B be a k-algebra, and let A1 and A2 be B-algebras. For any k-algebra R and

choice of a k-algebra homomorphism B!R (i.e., of a B-algebra structure on R), there is
a canonical isomorphism

HomB-alg.A1˝B A2;R/' HomB-alg.A1;R/�HomB-alg.A2;R/:

On taking the union over the different k-algebra homomorphisms B!R, we find that

Homk-alg.A1˝B A2;R/' Homk-alg.A1;R/�Homk-alg.B;R/Homk-alg.A2;R/: (37)

It follows that, if the functors G1, G2, andH in (36) are represented by k-algebras A1, A2,
and B , then the functor G1�H G2 is represented by the k-algebra A1˝B A2.

If the natural transformations G1 ! H  G2 are homomorphisms of affine groups,
then G1�H G2 is a group-valued functor, and the above remark shows that it is an affine
group with coordinate ring

O.G1�H G2/DO.G1/˝O.H/O.G2/. (38)

It is called the fibred product of G1 and G2 over H .
The fibred product of two homomorphisms ˛;ˇWG!H is the equalizer of ˛ and ˇ in

the category of affine groups over k

Eq.˛;ˇ/DG�˛;H;ˇ G:

Let �
e
�!H be the unique homomorphism from the trivial group toH . For any homomor-

phism ˛WG!H; the equalizer of ˛ and e is the kernel of ˛ in the category of affine groups
over k;

Ker.˛/D Eq.˛;e/DG�H �.

Note that

O.Eq.˛;ˇ//DO.G/˝O.H/O.G/ (39)

O.Ker.˛//DO.G/˝O.H/ k (40)

and that

Eq.˛;ˇ/.R/D Eq.˛.R/;ˇ.R//

Ker.˛/.R/D Ker.˛.R//

for all k-algebras R.

3 Limits of affine groups

Recall (MacLane 1971, III 4, p.68) that, for a functor F WI ! C from a small category I to
a category C, there is the notion of an inverse limit of F (also called a projective limit, or
just limit). This generalizes the notions of a limit over a directed set and of a product.
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THEOREM 3.1 Let F be a functor from a small category I to the category of affine groups
over k; then the functor

R lim
 �

F.R/ (41)

is an affine group, and it is the inverse limit of F in the category of affine groups.

PROOF. Denote the functor (41) by F
 �

; thus F
 �
.R/ is the inverse limit of the functor i  

Fi .R/ from I to the category of (abstract) groups. It is easy to see that F
 �
D lim
 �

F in the
category of functors from k-algebras to groups, and it will follow that F

 �
is the inverse limit

in the category of affine groups once we show that it is an affine group. But F
 �

is equal to
the equalizer of two homomorphismsY

i2ob.I /
Fi ⇒

Y
u2arr.I /

Ftarget.u/ (42)

(MacLane 1971, V 2 Theorem 2, p.109). Both products are affine groups, and we saw in
(V, �2) that equalizers exist in the category of affine groups. 2

In particular, inverse limits of algebraic groups exist as affine groups. Later (VIII, 8.1)
we shall see that every affine group arises in this way.

THEOREM 3.2 Let F be a functor from a finite category I to the category of algebraic
groups over k; then the functor

R lim
 �

Fi .R/ (43)

is an algebraic group, and it is the inverse limit of F in the category of algebraic groups.

PROOF. Both products in (42) are algebraic groups. 2

Direct limits, even finite direct limits, are more difficult. For example, the sum of
two groups is their free product, but when G1 and G2 are algebraic groups, the functor
R G1.R/�G2.R/ will generally be far from being an algebraic group. Moreover, the
functor R lim

�!I
Fi .R/ need not be a sheaf. Roughly speaking, when the direct limit of a

system of affine groups exists, it can be constructed by forming the naive direct limit in the
category of functors, and then forming the associated sheaf (see VII, 11).

4 Extension of the base ring (extension of scalars)

Let k0 be a k-algebra. A k0-algebra R can be regarded as a k-algebra through k! k0!R,
and so a functor G of k-algebras “restricts” to a functor

Gk0 WR G.R/

of k0-algebras. If G is an affine group, then Gk0 is an affine group with coordinate ring
O.Gk0/DO.G/k0 because, for all k0-algebras R,

Homk0-alg.k
0
˝O.G/;R/' Homk-alg.O.G/;R/

(in (8), p. 21, take A1 D k0, A2 DO.G/, and f1 equal to the given k0-algebra structure on
R). The affine group Gk0 is said to have been obtained from G by extension of the base
ring or by extension of scalars. IfG is an algebraic group, so also isGk0 . ClearlyG Gk0

is a functor.
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EXAMPLE 4.1 Let V be a k-module and let W be a k0-module. A k-linear map V !W 0

extends uniquely to a k0-linear map Vk0 !W :

Homk-lin.V;W /' Homk0-lin.Vk0 ;W /:

On applying this remark with W a k0-algebra R, we see that

Da.V /k0 'Da.Vk0/:

Similarly, if V is finitely generated and projective, then

.Va/k0 ' .Vk0/a:

EXAMPLE 4.2 Let G be the unitary group defined by a separable k-algebra K of degree
2 (see IV, 1.11). For any field extension k! k0, Gk0 is the unitary group defined by the
k0-algebra K˝k k0, and so, for example, Gkal ' GLn.

5 Restriction of the base ring (Weil restriction of scalars)

Let k0 be a k-algebra. For an affine k0-group G, we let .G/k0=k denote the functor

R G.k0˝kR/WAlgk! Grp:

PROPOSITION 5.1 Assume that k0 is finitely generated and projective as a k-module. For
all affine k0-groups G, the functor .G/k0=k is an affine k-group; moreover, for all affine
k-groups H and affine k0-groups G, there are canonical isomorphisms

Homk.H;.G/k0=k/' Homk0.Hk0 ;G/;

natural in both H and G.

In other words,G .G/k0=k is a functor from affine k0-groups to affine k-groups which
is right adjoint to the functor “extension of the base ring” k! k0.

The affine group .G/k0=k is said to have been obtained from G by (Weil) restriction of
scalars (or by restriction of the base ring), and .G/k0=k is called the Weil restriction of G.
The functor G .G/k0=k is denoted by Resk0=k or ˘k0=k .

Before proving the proposition, we list some of the properties of Resk0=k that follow
directly from its definition.

Properties of the restriction of scalars functor

Throughout this subsection, k0 is finitely generated and projective as a k-module.

5.2 Because it is a right adjoint, Resk0=k preserves inverse limits MacLane 1971, V, �5).
In particular, it takes products to products, fibred products to fibred products, equalizers to
equalizers, and kernels to kernels. This can also be checked directly from its definition.

5.3 Let G be an affine group over k0. There is a homomorphism

i WG! .Resk0=kG/k0

of affine groups over k0 such that, for all k0-algebrasR, i.R/ is the mapG.R/!G.k0˝R/

defined by a 7! 1˝aWR! k0˝R. The homomorphism i is injective (obviously), and has
the following universal property:
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every homomorphismG!Hk0 fromG to the extension of scalars of a k-group
H factors uniquely through i .

This simply restates the fact that Resk0=k is a right adjoint to extension of scalars (MacLane
1971, IV, 1, Theorem 1).

5.4 For any homomorphisms k ! k0 ! k00 of rings such that k0 (resp. k00) is finitely
generated and projective over k (resp. k0),

Resk0=k ıResk00=k0 ' Resk00=k .

Indeed, for any affine group G over k00 and k-algebra R,��
Resk0=k ıResk00=k0

�
.G/

�
.R/D

�
Resk0=k.Resk00=k0G/

�
.R/

D .Resk00=k0G//.k
0
˝kR/

DG.k00˝k0 k
0
˝kR/

'G.k00˝kR/

D
�
Resk00=kG

�
.R/

because k00˝k0 k0˝kR' k00˝kR. Alternatively, observe that Resk0=k ıResk00=k0 is right
adjoint to H  Hk00 .

5.5 For any k-algebra K and any affine group G over k0,�
Resk0=kG

�
K
' Resk0˝kK=K.GK/I (44)

in other words, Weil restriction commutes with extension of scalars. Indeed, for aK-algebra
R, �

Resk0=kG
�
K
.R/D

�
Resk0=kG

�
.R/

DG.k0˝kR/

'G.k0˝kK˝K R/

D Resk0˝kK=K.GK/.R/

because k0˝kR' k0˝kK˝K R.

5.6 Let k0 be a product of k-algebras, k0 D k1� � � � �kn, with each ki finitely generated
and projective as a k-module. Recall (IV, 1.13) that to give an affine group G over k0 is the
same as giving an affine group Gi over each ki . In this case,

.G/k0=k ' .G1/k1=k � � � �� .Gn/kn=k . (45)

Indeed, for any k-algebra R,

.G/k0=k.R/DG.k
0
˝R/

DG1.k1˝R/� � � ��Gn.kn˝R/ .by (33), p.53)

D .G1/k1=k .R/� � � �� .Gn/kn=k .R/

D
�
.G1/k1=k � � � �� .Gn/kn=k

�
.R/:
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5.7 Let k0 be a finite separable field extension of a field k, and let K be a field containing
all k-conjugates of k0, i.e., such that jHomk.k0;K/j D Œk0Wk�. Then�

Resk0=kG
�
K
'

Y
˛Wk0!K

˛G

where ˛G is the affine group overK obtained by extension of scalars with respect to ˛Wk0!
K. Indeed �

Resk0=kG
�
K

(44)
' Resk0˝K=KGK

(45)
'

Y
˛Wk0!K

G˛

because k0˝K 'KHomk.k0;K/.

5.8 Let k0 D kŒ"� where "2 D 0. For any algebraic group G over k0, there is an exact
sequence

0! Va! .G/k0=k!G! 0

where V is the tangent space to G at 1, i.e., V D Ker.G.kŒ"�/! G.k//. This is proved in
XI, 6.3, below.

5.9 We saw in (5.7) that, when k0 is a separable field extension of k, .G/k0=k becomes
isomorphic to a product of copies of G over some field containing k0. This is far from true
when k0=k is an inseparable field extension. For example, let k be a nonperfect field of
characteristic 2, so that there exists a nonsquare a in k, and let k0 D kŒ

p
a�. Then

k0˝k k
0
' k0Œ"�; "D a˝1�1˝a; "2 D 0:

According to (5.5), �
Resk0=kG

�
k0
' Resk0Œ"�=k0Gk0 ;

which is an extension of Gk0 by a vector group (5.8).

Proof of Proposition 5.1

We first explain the existence of a right adjoint for functors to sets.
From a functor F WAlgk!Set we obtain a functor Fk0 WAlgk0!Set by setting Fk0.R/D

F.R/:On the other hand, from a functorF 0WAlgk0!Set we obtain a functor .F 0/k0=k WAlgk!
Set by setting .F 0/k0=k.R/D F 0.k0˝R/. Let ' be a natural transformation 'WFk0 ! F 0.
The homomorphisms

F.R/
F.r 7!1˝r/
��������! F.k0˝R/

'.k0˝R/
������! F 0.k0˝R/

def
D .F 0/k0=k.R/

are natural in the k-algebra R, and so their composite is a natural transformation F !
.F 0/k0=k . Thus, we have a morphism

Hom.Fk0 ;F
0/! Hom.F;.F 0/k0=k/: (46)

This has an obvious inverse. Given F ! .F 0/k0=k , we need a map Fk0 ! F 0. Let R be a
k0-algebra, and let R0 be R regarded as a k-algebra. The given k-algebra map k0!R and
the identity map R0! R define a map k0˝k R0! R (of k0-algebras). Hence we have a
map

F.R0/! F 0.k0˝kR0/! F 0.R/;
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and F.R0/D Fk0.R/. Thus (46) is a bijection.
We have shown that the extension of scalars functor F  Fk0 has a right adjoint F 0 

.F 0/k0=k:
Hom.Fk0 ;F

0/' Hom.F;.F 0/k0=k/: (47)

LEMMA 5.10 Assume that k0 is finitely generated and projective as a k-module. IfF WAlgk0!
Set is represented by a k-algebra (resp. a finitely presented k-algebra), then so also is
.F /k0=k .

PROOF. We prove this first in the case that k0 is free as a k-module, say,

k0 D ke1˚�� �˚ked ; ei 2 k
0:

Consider first the case that F D An, so that F.R/D Rn for all k0-algebras R. For any
k-algebra R,

R0
def
D k0˝R'Re1˚�� �˚Red ;

and so there is a bijection

.ai /1�i�n 7! .bij / 1�i�n
1�j�d

WR0n!Rnd

which sends .ai / to the family .bij / defined by the equations

ai D
Pd
jD1 bij ej ; i D 1; : : : ;n. (48)

The bijection is natural in R, and shows that .F /k0=k � And (the isomorphism depends
only on the choice of the basis e1; : : : ; ed ).

Now suppose that F is the subfunctor of An defined by a polynomial f .X1; : : : ;Xn/ 2
k0ŒX1; : : : ;Xn�. On substituting

Xi D
Pd
jD1Yij ej

into f , we obtain a polynomial g.Y11;Y12; : : : ;Ynd / with the property that

f .a1; : : : ;an/D 0 ” g.b11;b12; : : : ;bnd /D 0

when the a’s and b’s are related by (48). The polynomial g has coefficients in k0, but we
can write it (uniquely) as a sum

g D g1e1C�� �Cgded ; gi 2 kŒY11;Y12; : : : ;Ynd �:

Clearly,

g.b11;b12; : : : ;bnd /D 0 ” gi .b11;b12; : : : ;bnd /D 0 for i D 1; : : : ;d ,

and so .F /k0=k is isomorphic to the subfunctor ofAnd defined by the polynomials g1; : : : ;gd .
This argument extends in an obvious way to the case that F is the subfunctor of An

defined by a finite set of polynomials, and even to the case that it is a subfunctor of an
infinite dimensional affine space defined by infinitely many polynomials.

We deduce the general case from the free case by applying IV, Theorem 3.1, in the
form of (3.2). According to (CA 10.4), there exist elements f1; : : : ;fr of k such that
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.f1; : : : ;fr/ D k and k0
fi

is a free kfi -module for each i . Therefore
�
.F /k0=k

�
kfi

is

representable for each i . For any faithfully flat homomorphism R! R0 of k-algebras,
Rk0 !R0

k0
is a faithfully flat homomorphism of k0-algebras (CA 9.7), and so

F.Rk0/! F.R0k0/⇒ F.R0k0˝Rk0 R
0
k0/

is exact. But this equals

.F /k0=k.R/! .F /k0=k.R
0/⇒ .F /k0=k.R

0
˝RR

0/;

and so .F /k0=k satisfies the condition (b) of IV, 3.2. 2

IfG is a functor Algk0!Grp, then .G/k0=k is a functor Algk!Grp. The lemma shows
that if G is an affine group or an affine algebraic group, then so also is .G/k0=k , and (47)
shows that the functor G0 .G0/k0=k is right adjoint to the functor “extension of scalars”.

ASIDE 5.11 Let k0 be free as a k-module, with basis .ei /i2I (not necessarily finite), and let F 2
Alg_k0 be the functor represented by AD kŒXj �j2J =a. Let F 0 D hkŒXj �j2J (affine space with coor-
dinates indexed by J ). Then .F 0/k0=k is represented by kŒY.i;j /�.i;j /2I�J (affine space with coordi-
nates indexed by I �J ), and so .F /k0=k is represented by a quotient of kŒY.i;j /�.i;j /2I�J (see 6.6
below).

6 Transporters

Recall that an action of a monoid G on a set X is a map

.g;x/ 7! gxWG�X !X

such that

(a) .g1g2/x D g1.g2x/ for all g1;g2 2G, x 2X , and
(b) ex D x for all x 2X (here e is the identity element of G).

Now let G be an affine monoid over k, and let X be a functor from the category of k-
algebras to sets, i.e., an object of Alg_

k
. An action of G on X is a natural transformation

G �X ! X such that G.R/�X.R/! X.R/ is an action of the monoid G.R/ on the set
X.R/ for all k-algebras R. Let Z and Y be subfunctors of X . The transporter TG.Y;Z/
of Y into Z is the functor

R fg 2G.R/ j gY �Zg;

where the condition gY � Z means that gY.R0/ � Z.R0/ for all R-algebras R0, i.e., that
gY �Z as functors on the category of R-algebras.

In the remainder of this section, we shall define the notion of a closed subfunctor, and
prove the following result.

THEOREM 6.1 Let G �X ! X be an action of an affine monoid G on a functor X , and
let Z and Y be subfunctors of X such that Z is closed in X . If Y is representable by a
k-algebra that is free as a k-module, then TG.Y;Z/ is represented by a quotient of O.G/.
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Closed subfunctors

A subfunctorZ of a functor Y from Algk to Set is said to be closed if, for every k-algebraA
and natural transformation hA! Y , the fibred productZ�Y hA is represented by a quotient
of A. The Yoneda lemma identifies a natural transformation hA! Y with an element ˛ of
Y.A/, and, for all k-algebras R,�

Z�Y h
A
�
.R/D f'WA!R j '.˛/ 2Z.A/g:

Thus, Z is closed in Y if and only if, for every k-algebra A and ˛ 2 Y.A/, the functor of
k-algebras

R f'WA!R j '.˛/ 2Z.A/g

is represented by a quotient of A, i.e., there exists an ideal a � A such that, for all homo-
morphism 'WA!R,

Y.'/.˛/ 2Z.R/ ” '.a/D 0:

EXAMPLE 6.2 Let Z be a subfunctor of Y D hB for some k-algebra B . For the identity
map hB! Y , the functorZ�Y hB DZ. Therefore, ifZ is closed in hB , then it represented
by a quotient ofB . Conversely, letZ � hB be the subfunctor represented by a quotientB=b
of B , so that

Z.R/D f'WB!R j '.b/D 0g:

For any ˛WB! A, the functor Z�hB h
A is

R f'WA!R j ' ı˛ 2Z.R/g;

which is represented by A=˛.b/. Therefore Z is closed.

EXAMPLE 6.3 Let Y be the functor An D .R Rn/. A subfunctor of An is closed if and
if it is defined by a finite set of polynomials in kŒX1; : : : ;Xn� in the sense of I, �1. This is
the special case B D kŒX1; : : : ;Xn� of Example 6.2.

EXAMPLE 6.4 If Y is the functor of k-algebras defined by a scheme Y 0 (III, 2), then the
closed subfunctors of Y are exactly those defined by closed subschemes of Y 0. When Y 0 is
affine, this is a restatement of (6.2), and the general case follows easily.

LEMMA 6.5 Let B be a k-algebra that is free as a k-module, and let A be a k-algebra. For
every ideal b in B˝A, there exists an ideal a in A such that, for an ideal a0 in A,

a0 � a ” B˝a0 � b:

PROOF. Choose a basis .ei /i2I for B as k-vector space. Each element b of B˝A can be
expressed uniquely as b D

P
i2I ei ˝ai , ai 2 A, and we let a be the ideal in A generated

by the coordinates ai of the elements b 2 b. Clearly B ˝ a � b, and so if a0 � a, then
B˝a0 � b. Conversely, if B˝a0 � b then the coordinates of all elements of b lie in a0, and
so a0 � a. 2

For a k-algebra B and functor X WAlgB ! Set, we let X� denote the functor R  
X.B˝R/WAlgk!R (cf. �5).
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LEMMA 6.6 Let B be a k-algebra that is free as a k-module, and let Z and X be functors
AlgB ! Set. If Z be a closed subfunctor of X , then Z� is a closed subfunctor of X�.

PROOF. Let A be a k-algebra, and ˛ 2 X�.A/. To prove that Z� is closed in X� we have
to show that there exists an ideal a � A such that, for every homomorphism 'WA! R of
k-algebras,

X�.'/.˛/ 2Z�.R/ ” '.a/D 0;

i.e.,
X.B˝'/.˛/ 2Z.B˝R/ ” '.a/D 0:

BecauseZ is closed inX , there exists an ideal b in B˝A such that, for the homomorphism
B˝'WB˝A! B˝R,

X.B˝'/.˛/ 2Z.B˝R/ ” .B˝'/.b/D 0: (49)

According to (6.5), there exists an ideal a in A such that

a� a0 ” b� B˝a0 (a0 an ideal in A). (50)

On taking a0 D Ker', we see that

a� Ker.'/ ” b� B˝Ker.'/D Ker.B˝'/:

Combined with (49), this shows that a has the required property. 2

LEMMA 6.7 If Z is a closed subfunctor of X , then, for every natural transformation T !
X , Z�X T is a closed subfunctor of T .

PROOF. Let hA! T be a natural transformation. Then Z �X T �T hA ' Z �X hA, and
so .Z�X T /�T hA is represented by a quotient of A. 2

LEMMA 6.8 LetZ and Y be subfunctors of a functorX , and letG�X!X be an action of
an affine monoid G on X . Assume that Y D hB , and for a k-algebra R, let yR 2 Y.R˝B/
be the homomorphism b 7! 1˝bWB!R˝B . Then

TG.Y;Z/.R/D fg 2G.R/ j gyR 2Z.R˝B/g:

Hence
TG.Y;Z/DG�X� Z�;

where G!X� is the natural transformation g 7! gyRWG.R/!X.R˝B/.

PROOF. Certainly, LHS � RHS. For the reverse inclusion, let R0 be an R-algebra, and let
˛ 2 Y.R0/D Hom.B;R0/. Then yR maps to ˛ under the map Y.R˝B/! Y.R0/ defined
by R!R0 and B

˛
�!R0, and so

gyR 2Z.R˝B/ H) g˛ 2Z.R0/: 2



7. Galois descent of affine groups 67

Proof of Theorem 6.1

We may suppose that Y D hB . Lemma 6.8 allows us to write

TG.Y;Z/DG�X� Z�:

Lemma 6.6 shows that Z� is a closed subfunctor of X�, and so it follows from (6.7) that
TG.Y;Z/ is a closed subfunctor of G. This means that it is represented by a quotient of
O.G/ (see 6.2).

A modest generalization

We say that a k-algebra A is locally free if there exist exist elements f1; : : : ;fr of k such
that .f1; : : : ;fr/ D k and Afi is a free kfi -module for each i . For example, a k-algebra
is locally free if it is projective and finitely generated as a k-module (CA 10.4, and all
k-algebras are (locally) free when k is a field.

THEOREM 6.9 Let G �X ! X be an action of an affine monoid G on a functor X , and
let Z and Y be subfunctors of X . If Y is representable by a locally free k-algebra and Z is
closed in X , then TG.Y;Z/ is a closed subfunctor of G (hence represented by a quotient of
O.G/).

PROOF. Apply IV, 3.2. 2

ASIDE 6.10 A little more generally: let G be a monoid in Alg_k acting on an X in Alg_k , and let Y
and Z be subfunctors of X . If Y is representable by a locally free k-scheme (i.e., admits a covering
by affines Ui such that O.Ui / is a free k-module) and Z is a closed subfunctor of X , then TG.Y;Z/
is a closed subfunctor of G. See also DG I, �2, 7.7, p. 65, and II, �2, 3.6, p. 165.

7 Galois descent of affine groups

In this section, k is a field. Let ˝ be a Galois extension of the field k, and let � D
Gal.˝=k/. When˝ is an infinite extension of k, we endow � with the Krull topology. By
an action of � on an ˝-vector space V we mean a homomorphism � ! Autk.V / such
that each � 2 � acts � -linearly, i.e., such that

�.cv/D �.c/ ��.v/ for all � 2 � , c 2˝, and v 2 V .

We say that the action is continuous if every element of V is fixed by an open subgroup of
� , i.e., if

V D
[

� 0
V �

0

(union over the open subgroups � 0 of � ).

PROPOSITION 7.1 For any ˝-vector space V equipped with a continuous action of � , the
map P

i ci ˝vi 7!
P
i civi W˝˝k V

� ! V

is an isomorphism.

PROOF. See AG, 16.15 (the proof is quite elementary). 2
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For any vector space V over k, the group � acts continuously on ˝˝V according to
rule:

�.c˝v/D �c˝v for all � 2 � , c 2˝, and v 2 V:

PROPOSITION 7.2 The functor V  ˝˝k V from vector spaces over k to vector spaces
over ˝ equipped with a continuous action of � is an equivalence of categories.

PROOF. When we choose bases for V and V 0, then Homk-lin.V;V
0/ and Hom˝-lin.˝˝

V;˝˝V 0/ become identified with with certain sets of matrices, and the fully faithfulness
of the functor follows from the fact that ˝� D k. That the functor is essentially surjective
follows from (7.1). 2

Let G be an affine group over ˝. By a continuous action of � on G we mean a
continuous action of � on O.G/ preserving � and the k-algebra structure on A; thus

�.f �f 0/ D �f ��f 0

�1 D 1

.�˝�/.�.f // D �.�f /

9=; for all � 2 � , f;f 0 2 A:

PROPOSITION 7.3 The functor G  G˝ from affine groups over k to affine groups over
˝ equipped with a continuous action of � is an equivalence of categories.

PROOF. Proposition 7.2 shows that it is an equivalence of categories on the Hopf algebras.2

EXAMPLE 7.4 Let k0 be a finite separable field extension of k, and let ˝ be a Galois
extension of k containing all conjugates of k0. Let G be the affine group over k0 defined by
a k-algebra A and a comultiplication � (see I, 3.9), and let G� be the affine group over k0

corresponding to the pair

.A�;��/D
Y

� Wk0!˝
.�A;��/

where � runs over the k-homomorphisms k0!˝. There is an obvious continuous action
of Gal.˝=k/ on .A�;��/, and the corresponding affine group over k is .G/k0=k . This is
essentially the original construction of .G/k0=k in Weil 1960, 1.3.

8 The Greenberg functor

Let A be a local artinian ring with residue field k. For example, A could be the ring Wm.k/
of Witt vectors of length m. A general A is a Wm.k/-module for some m. For an affine
group G over A, consider the functor G.G/:

R G.A˝Wm.k/Wm.R//WAlgk! Grp:

Then G.G/ is an affine group over k. See Greenberg 1961, 1963.



9. Exercises 69

9 Exercises

EXERCISE 9.1 Let k0 be a finite separable extension of a field k. Let A1 be the functor
Algk ! Set sending R to R, and let Ui , i 2 k, be the subfunctor of A1 such that Ui .R/D
fa 2 R j a ¤ ig. Show that A1 D U0 [U1 but ˘k0=kA1 ¤

�
˘k0=kU0

�
[
�
˘k0=kU1

�
if

k0 ¤ k.

EXERCISE 9.2 Let k0=k be a finite field extension. Let ˛WGk0 !H be a homomorphism
of algebraic groups over k0, and let ˇWG!˘k0=kH be the corresponding homomorphism
over k. Show that Ker.ˇ/ is the unique affine subgroup of G such that Ker.ˇ/k0 D Ker.˛/.





CHAPTER VI
Affine groups over fields

Throughout this chapter, k is a field. When k is a field, the affine scheme attached to an
affine algebraic group can be regarded as a variety over k (perhaps with nilpotents in the
structure sheaf). This gives us a geometric interpretation of the algebraic group, to which
we can apply algebraic geometry.

1 Affine k-algebras

An affine k-algebra is a finitely generated k-algebra A such that kal˝k A is reduced. If
A is affine, then K˝k A is reduced for all fields K containing k; in particular, A itself
is reduced (CA 18.3). When k is perfect, every reduced finitely generated k-algebra is an
affine k-algebra (CA 18.1). The tensor product of two affine k-algebras is again an affine
k-algebra (CA 18.4):

2 Schemes algebraic over a field

Let k be a field, and let V be an affine k-scheme. When OV .V / is a finitely generated
k-algebra (resp. an affine k-algebra), V is called an affine algebraic scheme over k (resp.
an affine algebraic variety over k).

For schemes algebraic over a field it is convenient to ignore the nonclosed points and
work only with the closed points. What makes this possible is that, for any homomorphism
'WA! B of algebras finitely generated over a field, Zariski’s lemma shows that the pre-
image of a maximal ideal in B is a maximal ideal in A.1

For a finitely generated k-algebra A, define spm.A/ to be the set of maximal ideals in
A endowed with the topology for which the closed sets are those of the form

V.a/
def
D fm maximal jm� ag; a an ideal in A:

The inclusion map spm.A/ ,! spec.A/ identifies spm.A/ with the set of closed points of
spec.A/, and the map S 7! S\spm.A/ is a bijection from the open (resp. closed) subsets of

1Recall (CA 11.1) that Zariski’s lemma says that if a field K that is finitely generated as an algebra over a
subfield k, then it is finitely generated as a vector space over k. Let 'WA! B be a homomorphism of finitely
generated k-algebras. For any maximal ideal m in B , B=m is a field, which Zariski’s lemma shows to be finite
over k. Therefore the image A='�1.m/ of A in B=m is finite over k. As it is an integral domain, this implies
that it is a field, and so '�1.m/ is a maximal ideal.

71
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spec.A/ onto the open (resp. closed) subsets of spm.A/. As noted, Zariski’s lemma shows
that spm is a contravariant functor from the category of finitely generated k-algebras to
topological spaces. On V D spm.A/ there is a sheaf OV such that OV .D.f //'Af for all
f 2A. It can be defined the same way as for spec.A/, or as the restriction to spm.A/ of the
sheaf on spec.A/. When working with affine algebraic schemes (or varieties), implicitly we
use max specs. In other words, all points are closed.

When k is algebraically closed, the definition of an affine algebraic variety over k that
we arrive at is essentially the same as that in AG, Chapter 3 — see the next example.

EXAMPLE 2.1 Let k be an algebraically closed field, and endow kn with the topology for
which the closed sets are the zero-sets of families of polynomials. Let V be a closed subset
of kn, let a be the set of polynomials that are zero on V , and let

kŒV �D kŒX1; : : : ;Xn�=aD kŒx1; : : : ;xn�:

A pair of elements g;h 2 kŒV � with h¤ 0 defines a function

P 7! g.P /
h.P /
WD.h/! k

on the open subset D.h/ of V where h is nonzero. A function f WU ! k on an open subset
U of V is said to be regular if it is of this form in a neighbourhood of each point of U . Let
O.U / be the set of regular functions on U . Then U  O.U / is a sheaf of k-algebras on V ,
and .V;O/ is an affine algebraic scheme over k with O.V /D kŒV �. See AG 3.4 — the map

.a1; : : : ;an/ 7! .x1�a1; : : : ;xn�an/WV ! spm.kŒV �/

is a bijection because of the Nullstellensatz. When V D kn, the scheme .V;O/ is affine
n-space An.

EXAMPLE 2.2 Let k be an algebraically closed field. The affine algebraic scheme

Spm.kŒX;Y �=.Y //

can be identified with the scheme attached to the closed subset Y D 0 of k�k in (2.1). Now
consider

Spm.kŒX;Y �=.Y 2//:

This has the same underlying topological space as before (namely, the x-axis in k�k), but
it should now be thought of as having multiplicity 2, or as being a line thickened in another
dimension.

2.3 Let K be a field containing k. An affine algebraic scheme V over k defines an affine
algebraic scheme VK over K with O.VK/DK˝kO.V /.

2.4 An affine algebraic scheme V over a field k is said to be reduced if O.V / is reduced,
and it is said to be geometrically reduced if Vkal is reduced. Thus V is geometrically
reduced if and only if O.V / is an affine k-algebra, and so a “geometrically reduced affine
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algebraic scheme” is another name for an “affine algebraic variety”. Let N be the nilradical
of O.V /. Then

V is reduced ” ND 0I

V is irreducible ” N is prime;

V is reduced and irreducible ” O.V / is an integral domain.

The first statement follows from the definitions, the second statement has already been noted
(III, �1), and the third statement follows from the first two.

2.5 Recall (CA 3.12) that the height ht.p/ of a prime ideal p in a noetherian ring A is the
greatest length d of a chain of distinct prime ideals

p� p1 � �� � � pd ,

and that the Krull dimension of A is

supfht.m/ jm 2 spm.A/g.

2.6 The dimension of an affine algebraic scheme V is the Krull dimension of O.V / —
this is finite (CA 13.11). When V is irreducible, the nilradical N of O.V / is prime, and
so O.V /=N is an integral domain. In this case, the dimension of V is the transcendence
degree over k of the field of fractions of O.V /=N, and every maximal chain of distinct
prime ideals in O.V / has length dimV (CA 13.8). Therefore, every maximal chain of
distinct irreducible closed subsets of V has length dimV . For example, the dimension of
An is the transcendence degree of k.X1; : : : ;Xn/ over k, which is n.

3 Algebraic groups as groups in the category of affine algebraic
schemes

Finite products exist in the category of affine algebraic schemes over k. For example, the
product of the affine algebraic schemes V andW is Spec.O.V /˝O.W //, and �D Spm.k/
is a final object. Therefore monoid objects and group objects are defined. A monoid (resp.
group) in the category of affine algebraic schemes over k is called an affine algebraic
monoid scheme (resp. affine algebraic group scheme) over k.

As the tensor product of two affine k-algebras is again affine (�1), the category of affine
algebraic varieties also has products. A monoid object (resp. group object) in the category
of affine algebraic varieties is called an affine monoid variety (resp. affine group variety).

An affine algebraic scheme V defines a functor

R V.R/
def
D Homk-alg.O.V /;R/; (51)

from k-algebras to sets. For example, An.R/ ' Rn for all k-algebras R. Let V 0 be the
functor defined by V . It follows from (III, 2.2) and the Yoneda lemma that V  V 0 is
an equivalence from the category of algebraic schemes over k to the category of functors
from k-algebras to sets representable by finitely generated k-algebras. Group structures
on V correspond to factorizations of V 0 through the category of groups. Thus V  V 0 is
an equivalence from the category of affine algebraic group schemes over k to the category
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of functors Algk ! Grp representable by finitely generated k-algebras, with quasi-inverse
G Spm.O.G//.

The functor V  O.V / is an equivalence from the category of algebraic schemes over
k to the category of finitely generated k-algebras (cf. III, 2.2). Group structures on V
correspond to Hopf algebra structures on O.V /. Thus V  O.V / is a contravariant equiv-
alence from the category of affine algebraic group schemes over k to the category of finitely
generated Hopf algebras over k.

PROPOSITION 3.1 Let k be a field. The functor .V;m/ .V 0;m0/ is an equivalence from
the category of affine algebraic group schemes over k to the category of affine algebraic
groups over k, with quasi-inverse G SpmO.G/.

There is a similar statement with “group” replaced by “monoid”.
For an affine algebraic group G, we let jGj, denote the corresponding affine group

scheme; thus jGj D Spm.O.G//. The dimension of an algebraic group G is defined to
be the Krull dimension of O.G/. When O.G/ is an integral domain, this is equal to the
transcendence degree of O.G/ over k (CA 13.8).

Is the set jGj a group?

Not usually. The problem is that the functor spm does not send sums to products. For
example, when k1 and k2 are finite field extensions of k, the set spm.k1˝k k2/ may have
several points2 whereas spm.k1/� spm.k2/ has only one. For an algebraic group G, there
is a canonical map jG�Gj ! jGj� jGj, but the map

jG�Gj ! jGj

defined by m need not factor through it.
However, jGj is a group when k is algebraically closed. Then the Nullstellensatz shows

that jGj ' G.k/, and so jGj inherits a group structure from G.k/. To put it another way,
for finitely generated algebras A1 and A2 over an algebraically closed field k;

spm.A1˝A2/' spm.A1/� spm.A2/ (52)

(as sets, not as topological spaces3), and so the forgetful functor .V;O/ V sending an
affine algebraic scheme over k to its underlying set preserves finite products, and hence also
monoid objects and group objects.

2For example, if k1=k is separable, then

k1 D kŒa�' kŒX�=.f /

for a suitable element a and its minimum polynomial f . Let f D f1 � � �fr be the factorization of f into its
irreducible factors in k2 (they are distinct because k1=k is separable). Now

k1˝k k2 ' k2ŒX�=.f1 � � �fr /'
Yr

iD1
k2ŒX�=.fi /

by the Chinese remainder theorem. Therefore spm.k1˝k k2/ has r points.
3When regarded as a functor to topological spaces, .V;O/ V does not preserve finite products: the

topology on V �W is not the product topology. For an affine algebraic group G, the map mW jGj� jGj ! jGj
is not usually continuous relative to the product topology, and so jGj is not a topological group for the Zariski
topology.
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Assume k is perfect, and let � D Gal.kal=k/. Then jGj ' � nG.kal/ and G.k/ '
G.kal/� . In other words, jGj can be identified with the set of � -orbits in G.kal/ and
G.k/ with the set of � -orbits consisting of a single point. While the latter inherits a group
structure from G.k/, the former need not.

The situation is worse with spec. For example, (52) fails for spec even when k is
algebraically closed.

4 Terminology

From now on “group scheme” and “algebraic group scheme” will mean “affine group
scheme” and “affine algebraic group scheme”; similarly for “group variety”, “monoid
variety”, “monoid scheme” and “algebraic monoid scheme”.

5 Homogeneity

Let G be an algebraic group over a field k. An element a of G.k/ defines an element of
G.R/ for each k-algebra R, which we denote aR (or just a). Let e denote the identity
element of G.k/.

PROPOSITION 5.1 For each a 2G.k/, the natural map

LaWG.R/!G.R/; g 7! aRg;

is an isomorphism of set-valued functors. Moreover,

Le D idG and La ıLb D Lab; all a;b 2G.k/:

Here e is the neutral element in G.k/.

PROOF. The second statement is obvious, and the first follows from it, because the equali-
ties

La ıLa�1 D Le D idG

show that La is an isomorphism. 2

The homomorphism O.G/! O.G/ defined by La is the composite of the homomor-
phisms

O.G/ �
�!O.G/˝O.G/

a˝O.G/
������! k˝O.G/'O.G/. (53)

For a 2G.k/, we let ma denote the kernel of aWO.G/! k; thus

ma D ff 2O.G/ j fk.a/D 0g

(see the notations I, 3.13). Then O.G/=ma ' k, and so ma is a maximal ideal in O.G/.
Note that O.G/ma is the ring of fractions obtained from O.G/ by inverting the elements of
the multiplicative set ff 2O.G/ j fk.a/¤ 0g:

PROPOSITION 5.2 For each a 2G.k/, O.G/ma 'O.G/me :
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PROOF. The isomorphism `aWO.G/!O.G/ corresponding (by the Yoneda lemma) to La
is defined by `a.f /R.g/ D fR.aRg/, all g 2 G.R/. Therefore, `�1a me D ma, and so `a
extends to an isomorphism O.G/ma!O.G/me (because of the universal property of rings
of fractions; CA 6.1). 2

COROLLARY 5.3 When k is algebraically closed, the local rings O.G/m at maximal ideals
m of O.G/ are all isomorphic.

PROOF. When k is algebraically closed, the Nullstellensatz (CA 11.6) shows that all max-
imal ideals in O.G/ are of the form ma for some a 2G.k/. 2

A
5.4 The corollary fails when k is not algebraically closed. For example, for the algebraic

group �3 over Q,

O.�3/D
kŒX�

.X3�1/
'

kŒX�

.X �1/
�

kŒX�

.X2CXC1/
'Q�QŒ

p
�3�;

and so the local rings are Q and QŒ
p
�3�.

6 Reduced algebraic groups

An algebraic group G is reduced if jGj is reduced, i.e., if O.G/ has no nilpotents.

PROPOSITION 6.1 Let G be a reduced algebraic group over a field k. If G.K/D f1g for
some algebraically closed field K containing k, then G is the trivial algebraic group, i.e.,
O.G/D k.

PROOF. Every maximal ideal of O.G/ arises as the kernel of a homomorphism O.G/!
K (Nullstellensatz, CA 11.5), and so O.G/ has only one maximal ideal m. As O.G/ is
reduced, the intersection of its maximal ideals is zero (CA 11.8), and so mD 0. Therefore
O.G/ is a field. It contains k, and the identity element inG is a homomorphism O.G/! k,
and so O.G/D k. 2

A
6.2 The proposition is false for nonreduced groups. For example, ˛p.K/D f1g for every

field K containing k, but ˛p is not the trivial group.

For a k-algebra A, we let Ared denote the quotient of A by its nilradical. Thus Ared is a
reduced k-algebra, and the quotient map A! Ared is universal for homomorphisms from
A to reduced k-algebras.

PROPOSITION 6.3 Let G be an algebraic group over a field k. If the comultiplication
map � factors through O.G/red, then there is a unique Hopf algebra structure on O.G/red
such that O.G/! O.G/red is a homomorphism of Hopf algebras. Let Gred ! G be the
corresponding homomorphism of algebraic groups. Every homomorphismH !G withH
a reduced algebraic group factors uniquely through Gred!G.
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PROOF. Let .�;�;S/ be the Hopf algebra structure on O.G/, and consider the composites

O.G/ �
�!O.G/˝O.G/!O.G/red˝O.G/red

O.G/ �
�! k

O.G/ S
�!O.G/!O.G/red:

The lower two maps obviously factor through O.G/red, and if the top map O.G/!O.G/red˝

O.G/red factors through O.G/red then the maps define a Hopf algebra structure on O.G/red,
which is the unique Hopf algebra structure for which the quotient map O.G/!O.G/red is
a homomorphism. The rest of the statement is obvious. 2

The algebraic group Gred is called the reduced algebraic group associated with or at-
tached to G.

6.4 If k is perfect, then � always factors through O.G/red — the k-algebra O.G/red is an
affine k-algebra (�1), and so O.G/red˝O.G/red is also an affine k-algebra; in particular, it
is reduced.

A6.5 When k is not perfect, a Hopf algebra structure on A need not pass to the quotient
Ared For example, let k be a nonperfect field of characteristic p, so that there exists an
a 2 krkp, and let G be the algebraic group

R G.R/D fx 2R j xp
2

D axpg:

Then

O.G/D kŒX�=.Xp2 �aXp/

O.G/red D kŒX�=.X.X
p.p�1/

�a//:

Then O.G/red˝k
al is not reduced but its localization at the ideal .x/ is reduced; therefore

Gred is not an algebraic group. See also Exercise XIII-7 below and SGA 3, VIA, 1.3.2.

7 Smooth algebraic schemes

We review some definitions and results in commutative algebra.

7.1 Let m be a maximal ideal of a noetherian ring A, and let n D mAm be the maximal
ideal of the local ring Am; for all natural numbers r � s, the map

aCms 7! aCnsWmr=ms! nr=ns

is an isomorphism (CA 6.7).

7.2 Let A be a local noetherian ring with maximal ideal m and residue field k. Then
m=m2 is a k-vector space of dimension equal to the minimum number of generators of
m (Nakayama’s lemma, CA 3.9). Moreover, ht.m/ � dimk.m=m2/ (CA 16.5), and when
equality holds A is said to be regular. Every regular noetherian local ring is an integral
domain (CA 17.3).
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7.3 A point m of an affine algebraic scheme V is said to be regular if the local ring O.V /m
is regular, and V is said to be regular if all of its closed points are regular.4 A regular affine
algebraic scheme is reduced. To see this, let f be a nilpotent element of O.V /; as f maps
to zero in O.V /m, sf D 0 for some s 2O.V /rm; therefore the annihilator of f is an ideal
O.V / not contained in any maximal ideal, and so it equals O.V /.

7.4 An affine algebraic scheme V over k is said to be smooth if Vkal is regular. If V is
smooth, then VK is regular for all fields K containing k; in particular, V itself is regular
(CA 18.14). If V is smooth, then it follows from (7.3) that O.V / is an affine k-algebra,
and so V is an algebraic variety. Every affine algebraic variety contains a regular point (CA
18.15).

8 Smooth algebraic groups

An algebraic group G is said to be smooth if jGj is smooth, and it is connected if jGj is
connected (as a topological space).

PROPOSITION 8.1 LetH be an algebraic subgroup of an algebraic groupG. Then dimH �
dimG, and dimH < dimG if G is smooth and connected and H ¤G.

PROOF. Because O.H/ is a quotient of O.G/, dim.O.H//� dim.O.G//. If G is smooth
and connected, then O.G/ is an integral domain; if H ¤ G, then dimH < dimG by (CA
13.3). 2

PROPOSITION 8.2 An algebraic group G over an algebraically closed field k is smooth if
and only if O.G/me is regular, where me D Ker.�WO.G/! k/.

PROOF. If O.G/m is regular for mDme, then O.G/m is regular for all m by homogeneity
(5.2). Hence G is smooth. 2

PROPOSITION 8.3 (a) An algebraic group G is smooth if and only if jGj is geometrically
reduced (i.e., an algebraic variety).

(b) An algebraic group G over a perfect field is smooth if and only if jGj is reduced.

PROOF. (a) If G is smooth, then jGj is an algebraic variety by (7.4). For the converse, we
have to show that Gkal is regular. According to (7.4), Gkal has a regular point, and so, by
homogeneity (5.2), all of its points are regular.

(b) When k is perfect, a finitely generated k-algebra A is reduced if and only if kal˝A

is reduced (see CA 18.1). Thus (b) follows from (a). 2

COROLLARY 8.4 An algebraic group G over an algebraically closed field k is smooth if
every nilpotent element of O.G/ is contained in m2e .

4This then implies that local ring at every (not necessarily closed) point is regular (for a noetherian ring A,
if Am is regular for all maximal ideals, then Ap is regular for all prime ideals (CA 17.5a).



9. Algebraic groups in characteristic zero are smooth (Cartier’s theorem) 79

PROOF. Let xG be the reduced algebraic group attached to G (see 6.3), and let xe be the
neutral element of xG.k/. By definition, O. xG/ D O.G/=N where N is the nilradical of
O.G/. Every prime ideal of O.G/ contains N, and so the prime ideals of O.G/ and O. xG/
are in natural one-to-one correspondence. Therefore me and mxe have the same height, and
so

dimO. xG/mxe D dimO.G/me
(Krull dimensions). The hypothesis on O.G/ implies that

me=m
2
e !mxe=m

2
xe

is an isomorphism of k-vector spaces. Because j xGj is a reduced, xG is smooth (8.3); in
particular, O. xG/mxe is regular, and so

dimk.mxe=m
2
xe/D dimO. xG/mxe .

Therefore
dimk.me=m

2
e/D dimO.G/me ;

and so O.G/me is regular. This implies that G is smooth (8.2). 2

A
8.5 A reduced algebraic group over a nonperfect field need not be smooth. For example,

let k be such a field, so that char.k/D p ¤ 0 and there exists an element a of k that is not
a pth power. Then the subgroup G of Ga �Ga defined by Y p D aXp is reduced but not
smooth. Indeed,

O.G/D kŒX;Y �=.Y p�aXp/;
which is an integral domain because Y p�aXp is irreducible in kŒX;Y �, but

O.Gkal/D kalŒX;Y �=.Y p�aXp/D kalŒx;y�

contains the nilpotent element y � a
1
p x. The reduced subgroup .Gkal/red of Gkal is the

subgroup of Ga �Ga is defined by Y D a
1
pX , which is not defined over k (as a subgroup

of Ga�Ga).
Note that G is the kernel of .x;y/ 7! yp�axpWGa�Ga

˛
�!Ga. Therefore, although

Ker.˛kal/ is (of course) defined over k, Ker.˛kal/red is not.

9 Algebraic groups in characteristic zero are smooth (Cartier’s
theorem)

We first prove two lemmas.

LEMMA 9.1 Let V and V 0 be vector spaces over a field,5 and let W be a subspace of V .
For x 2 V , y 2 V 0,

x˝y 2W ˝V 0 ” x 2W or y D 0:

PROOF. The element x˝y lies in W ˝V 0 if and only if its image in V ˝V 0=W ˝V 0 is
zero. But

V ˝V 0=W ˝V 0 ' .V=W /˝V 0;

and the image xx˝y of x˝y in .V=W /˝V 0 is zero if and only if xx D 0 or y D 0. 2

5It suffices to require V and V 0 to be modules over a ring with V 0 faithfully flat.
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LEMMA 9.2 Let .A;�;�/ be a Hopf algebra over k, and let I D Ker.�/.

(a) As a k-vector space, AD k˚I .
(b) For any a 2 I ,

�.a/D a˝1C1˝a mod I ˝I .

PROOF. (a) The maps k �! A
�
�! k are k-linear, and compose to the identity. Therefore

AD k˚I and a 2 A decomposes as aD �.a/C .a� �.a// 2 k˚I .
(b) Using condition (b) of II, 2.1, we find that, for a 2 I ,

.id˝�/.�.a/�a˝1�1˝a/D a�a�0D 0

.�˝ id/.�.a/�a˝1�1˝a/D a�0�aD 0:

Hence

�.a/�a˝1�1˝a 2 Ker.id˝�/\Ker.�˝ id/

D A˝I \I ˝A

D I ˝I: 2

THEOREM 9.3 (CARTIER 1962) Every algebraic group over a field of characteristic zero
is smooth.

PROOF. We may replace k with its algebraic closure. Thus, let G be an algebraic group
over an algebraically closed field k of characteristic zero, and letADO.G/. Let mDme D
Ker.�/. Let a be a nilpotent element of A; according to (8.4), it suffices to show that a lies
in m2.

If a maps to zero in Am, then it maps to zero in Am=.mAm/
2, and therefore in A=m2 by

(7.1), and so a 2 m2. Thus, we may suppose that there exists an n � 2 such that an D 0 in
Am but an�1 ¤ 0 in Am. Now san D 0 in A for some s … m. On replacing a with sa, we
find that an D 0 in A but an�1 ¤ 0 in Am.

Now a 2m (because A=mD k has no nilpotents), and so (see 9.2)

�.a/D a˝1C1˝aCy with y 2m˝km.

Because � is a homomorphism of k-algebras,

0D�.an/D .�a/n D .a˝1C1˝aCy/n. (54)

When expanded, the right hand side becomes a sum of terms

an˝1; n.an�1˝1/ � .1˝aCy/; .a˝1/h.1˝a/iyj .hC iCj D n, iCj � 2/:

As an D 0 and the terms with iCj � 2 lie in A˝m2, equation (54) shows that

nan�1˝aCn.an�1˝1/y 2 A˝m2,

and so
nan�1˝a 2 an�1m˝ACA˝m2 (inside A˝k A).
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In the quotient A˝
�
A=m2

�
this becomes

nan�1˝xa 2 an�1m˝A=m2 (inside A˝A=m2). (55)

Note that an�1 … an�1m, because if an�1 D an�1m with m 2 m, then .1�m/an�1 D 0
and, as 1�m is a unit in Am, this would imply an�1 D 0 in Am, which is a contradiction.
Moreover n is a unit in A because it is a nonzero element of k. We conclude that nan�1 …
an�1m, and so (see 9.1) xaD 0. In other words, a 2m2, as required. 2

COROLLARY 9.4 LetG be an algebraic group over a field of characteristic zero. IfG.K/D
f1g for some algebraically closed field K, then G is the trivial algebraic group.

PROOF. According to the theorem, G is reduced, and so we can apply Proposition 6.1. 2

ASIDE 9.5 Let k be an arbitrary commutative ring. A functor F WAlgk! Set is said to be formally
smooth if, for any k-algebra A and nilpotent ideal n in A, the map F.A/! F.A=n/ is surjective.
A k-scheme X is smooth over k if it is locally of finite presentation and the functor A X.A/

def
D

Homk.SpecA;X/ is formally smooth. There is the following criterion (SGA1, II):

a finitely presented morphism is smooth if it is flat and its geometric fibres are nonsin-
gular algebraic varieties.

Therefore, when the ring k contains a field of characteristic zero, Cartier’s theorem (9.3) shows that
every flat affine group scheme of finite presentation over k is smooth.

ASIDE 9.6 In the language of SGA 3, Theorem 9.3 says that every affine algebraic group scheme
over a field of characteristic zero is smooth. More generally, every group scheme (not necessarily
affine) over a field of characteristic zero is geometrically reduced (extension by Perrin of Cartier’s
theorem; SGA 3, VIA, 6.9).

10 Smoothness in characteristic p ¤ 0

THEOREM 10.1 An algebraic groupG over an algebraically closed field k of characteristic
p ¤ 0 is smooth if O.G/ has the following property:

a 2O.G/; ap D 0 H) aD 0: (56)

PROOF. Let a be a nilpotent element of O.G/. As in the proof of Theorem 9.3, we may
suppose that an D 0 in O.G/ but an�1 ¤ 0 in O.G/me . If pjn, then .a

n
p /p D 0, and so

a
n
p D 0, which is a contradiction. Therefore n is nonzero in k, and the argument in the

proof of Theorem 9.3 shows that a 2m2e . 2

COROLLARY 10.2 For all r � 1, the image of a 7! ap
r

WO.G/! O.G/ is a Hopf subal-
gebra of O.G/, and for all sufficiently large r , it is a reduced Hopf algebra.

PROOF. Let k be a field of characteristic p ¤ 0. For a k-algebra R, we let fR denote the
homomorphism a 7! apWR! R. When R D k, we omit the subscript. We let fR denote

the ring R regarded as a k-algebra by means of the map k
f
�! k �! R. Let G be an
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algebraic group over k, and let G.p/ be the functor R G.fR/. This is represented by
k˝f;kO.G/ (tensor product of O.G/ with k relative to the map f Wk! k),

R

O.G/ k˝f;kO.G/

k k;
f

and so it is again an algebraic group. The k-algebra homomorphism fRWR ! fR de-
fines a homomorphism G.R/! G.p/.R/, which is natural in R, and so arises from a
homomorphism F WG!G.p/ of algebraic groups. This homomorphism corresponds to the
homomorphism of Hopf algebras

c˝a 7! capWO.G.p//!O.G/:

When k is perfect, this has image O.G/p, which is therefore a Hopf subalgebra of O.G/
(Exercise II-6). On repeating this argument with f and F replaced by f r and F r , we find
that O.G/pr is a Hopf subalgebra of O.G/.

Concerning the second part of the statement, because the nilradical N of O.G/ is
finitely generated, there exists an exponent n such that an D 0 for all a 2 N. Let r be
such that pr � n; then ap

r

D 0 for all a 2N. With this r , O.G/pr satisfies (56). As it is a
Hopf algebra, it is reduced. 2

NOTES The first part of (10.2) only requires that k be perfect (probably the same is true of the
remaining statements).

11 Appendix: The faithful flatness of Hopf algebras

In this section, we prove the following very important technical result.

THEOREM 11.1 For any Hopf algebras A� B over a field k, B is faithfully flat over A.

Let k0 be a field containing k. The homomorphism A! k0˝A is faithfully flat, and
so it suffices to show that k0˝B is faithfully flat over k0˝A (CA 9.4). This allows us to
assume that k is algebraically closed.

The homomorphism A ! B corresponds to a homomorphism 'WH ! G of affine
groups over k with O.H/D B and O.G/D A:

O.H/  � O.G/
H

'
�! G

B  � A:

We regard H and G as algebraic group schemes, i.e., we write H and G for jH j and jGj.
Because k is algebraically closed, the underlying set of H (resp. G) can be identified with
H.k/ (resp. G.k/), which is a group (see �3)
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Case that A is reduced and A and B are finitely generated.

We begin with a remark. Let V be an algebraic scheme over an algebraically closed field.
Then V is a finite union V D V1[ � � � [Vr of its irreducible components (III, 1). Assume
that V is homogeneous, i.e., for any pair .a;b/ of points of V , there exists an isomorphism
V ! V sending a to b. As some point of V lies on a single component, all do, and so V
is a disjoint union of the Vi . As every Vi is closed, they are also open, and they are the
connected components of V . When Vi is reduced, the ring O.Vi / is an integral domain.

Hence H and G are disjoint unions of their connected components, say H D
F
i2I Hi

and G D
F
j2J Gj . Because G is reduced, each ring O.Gi / is an integral domain, and

O.G/D
Q
j2J O.Gj /. Each connected component Hi of H is mapped by ' into a con-

nected component Gj.i/ of G. The map i 7! j.i/WI ! J is surjective, because otherwise
O.G/!O.H/ would not be injective (if j0 were not in the image, then an f 2O.G/ such
that f jGj D 0 for j ¤ j0 would have f ı' D 0).

Let H ı (resp. Gı) be the connected component of H (resp. G) containing the identity
element. ThenH ı maps intoGı. Because O.Gı/ is an integral domain, the generic flatness
theorem (CA 9.12; CA 16.9) shows that there exists a c 2H ı such that O.H/mc is faithfully
flat over O.G/m'.c/ . Homogeneity, more precisely, the commutative diagrams

H
Lb
����! H O.H/me

'
 ���� O.H/mb??y ??y x?? x??

G
L'.b/
����! G O.G/me

'
 ���� O.G/m'.b/

(see �5), now implies that O.H/mb is faithfully flat over O.G/m'.b/ for all b 2H . Hence
O.H/ is flat over O.G/ (CA 9.9), and it remains to show that 'WH ! G is surjective as a
map of sets (CA 9.10c). According to (CA 12.14), '.H/ contains a nonempty open subset
U of Gı. For any g 2 Gı, the sets U�1 and Ug�1 have nonempty intersection (because
Gı is irreducible). This means that there exist u;v 2 U such that u�1 D vg�1, and so
g D uv 2 U . Thus '.H/� Gı, and it follows that the translates of Gı by points in '.H/
cover G (because I maps onto J ).

Case that the augmentation ideal of A is nilpotent

We begin with a remark. Let H ! G be a homomorphism of abstract groups with kernel
N . Then the map

.h;n/ 7! .hn;h/WH �N !H �GH (57)

is a bijection — this just says that two elements of H with the same image in G differ by
an element of the kernel. Similarly, for a homomorphism 'WH !G of affine groups, there
is an isomorphism

H �N !H �GH (58)

that becomes the map (57) for each k-algebra R. Because of the correspondence between
affine groups and Hopf algebras, this implies that, for any homomorphism A! B of Hopf
algebras, there is a canonical isomorphism of left B-modules

B˝AB! B˝k .B=IAB/ (59)

where IA is the augmentation ideal Ker.A
�
�! k) of A.
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Let I D IA, and assume that I is nilpotent, say In D 0. Choose a family .ej /j2J of
elements in B whose image in B=IB is a k-basis and consider the map

.aj /j2J 7!
P
j aj ej WA

.J /! B (60)

where A.J / is a direct sum of copies of A indexed by J . We shall show that (60) is an
isomorphism (hence B is even free as an A-module).

Let C be the cokernel of (60). A diagram chase in

A.J / ����! B ����! C ����! 0??y ??y
.A=I /.J /

onto
����! B=IB

shows that every element of C is the image of an element of B mapping to zero in B=IB ,
i.e., lying in IB . Hence C D IC , and so C D IC D I 2C D �� � D InC D 0. Hence
A.J /! B is surjective.

For the injectivity, consider the diagrams

A.J /
onto
����! B??y ??y

M ����! B.J /
onto
����! B˝AB

k.J /
'
����! B=IB??y ??y

.B=IB/.J /
'
����! .B=IB/˝k .B=IB/

in which the lower arrows are obtained from the upper arrows by tensoring on the left with
B and B=IB respectively, and M is the kernel. If b 2 B.J / maps to zero in B ˝A B ,
then it maps to zero in B=IB˝k B=IB , which implies that it maps to zero in .B=IB/.J /.
Therefore M is contained in .IB/.J / D I �B.J /.

Recall (59) that
B˝AB ' B˝k B=IB

as left B-modules. As B=IB is free as a k-module (k is a field), B˝k B=IB is free as
a left B-module, and so B˝AB is free (hence projective) as a left B-module. Therefore
B.J / is a direct sum of B-submodules,

B.J / DM ˚N .

We know that
M � I �B.J / D IM ˚IN;

and soM � IM . HenceM � IM � I 2M D �� � D 0. We have shown thatB.J /!B˝AB

is injective, and this implies that A.J /! B is injective because A.J / � B.J /.

Case that A and B are finitely generated

We begin with a remark. For any diagram of abstract groups

H??yˇ
M ����! G ����! G0;
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with M the kernel of G!G0, the map

.m;h/ 7! .m �ˇ.h/;h/WM �H !G�G0H

is an isomorphism. This implies a similar statement for affine groups:

M �H 'G�G0H: (61)

After Theorem 9.3, we may suppose that k has characteristic p ¤ 0. According to
(10.2), there exists an n such that O.G/pn is a reduced Hopf subalgebra of O.G/. Let G0

be the algebraic group such that O.G0/DO.G/pn , and consider the diagrams

N ����! H ����! G0 O.N /  ���� O.H/
faithfully
 �����

flat
O.G0/??y ??y 


 x?? x??injective





M ����! G ����! G0 O.M/  ���� O.G/  ���� O.G0/

where N andM are the kernels of the homomorphismsH !G0 and G!G0 respectively.
Because O.G0/ is reduced, the homomorphism O.G0/! O.H/ is faithfully flat, and so
O.G/!O.H/ remains injective after it has been tensored with O.H/:

O.G/˝O.G0/O.H/ O.H/˝O.G0/O.H/

O.M/˝O.H/ O.N /˝O.H/:

injective

(61) ' (59) '

Because k!O.H/ is faithfully flat (k is a field), the injectivity of the dotted arrow implies
that O.M/! O.N / is injective, and hence it is faithfully flat (because the augmentation
ideal of O.M/ is nilpotent). Now the dotted arrow’s being faithfully flat, implies that the
top arrow is faithfully flat, which, because O.G0/! O.H/ is faithfully flat, implies that
O.G/!O.H/ is faithfully flat (CA 9.4).

General case

We show in (VIII, 8.3) below that A and B are directed unions of finitely generated Hopf
subalgebras Ai and Bi such that Ai � Bi . As Bi is flat as an Ai -module for all i , B is flat
as an A-module (CA 9.13). For the faithful flatness, we use the criterion (CA 9.10b):

A! B is faithfully flat” for all maximal ideals m� A, mB ¤ B .

Let m be a maximal ideal in A. If 1 2 mB , then 1 D
P
mj bj for some mj 2 m and

bj 2 B . For some i , Ai will contain all the mj s and Bi will contain all the bj s, and so
1 2 .m\Ai /Bi . But m\Ai ¤ Ai (it doesn’t contain 1), and so this contradicts the faithful
flatness of Bi over Ai . Hence mB ¤ B , and B is faithfully flat over A.

COROLLARY 11.2 Let A�B be Hopf algebras with B an integral domain, and letK �L
be the fields of fractions of A and B . Then B \K D A; in particular, AD B if K D L.

PROOF. Because B is faithfully flat over A, cB\AD cA for all c 2A. If a;c are elements
of A such that a=c 2 B , then a 2 cB \AD cA, and so a=c 2 A. 2
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ASIDE 11.3 Some statements have easy geometric proofs for smooth algebraic groups. In extend-
ing the proof to all algebraic groups, one often has to make a choice between a nonelementary
(sometimes difficult) proof using algebraic geometry, and an elementary but uninformative proof
using Hopf algebras. In general, we sketch the easy geometric proof for smooth algebraic groups,
and give the elementary Hopf algebra proof in detail.

ASIDE 11.4 In most of the literature, for example, Borel 1991, Humphreys 1975, and Springer
1998, “algebraic group” means “smooth algebraic group” in our sense. Our approach is similar to
that in Demazure and Gabriel 1970 and Waterhouse 1979.

The important Theorem 9.3 was announced in a footnote to Cartier 1962; the direct proof pre-
sented here follows Oort 1966.

Takeuchi 1972 proves Theorem 11.1 entirely in the context of Hopf algebras, for Hopf algebras
that are either commutative or cocommutative, and he states that “it is an open problem whether
the restriction of commutativity or cocommutativity can be removed”. The proof of the theorem
presented here follows Waterhouse 1979, Chapter 14.

ASIDE 11.5 In SGA 3, VIA, 5.4.1, p.326, it is proved that a homomorphism uWH !G of algebraic

groups over a field factors into H
p
�!H=N

i
�! G with p\WO.H=N/!O.H/ faithfully flat and

i a closed immersion. If u\WO.G/! O.H/ is injective, then i is an isomorphism, and so u\ is
faithfully flat (see SGA 3, VIB , 11.14, p.426). Thus, in SGA 3, Theorem 11.1 is essentially part of
the theorem on the existence of quotients by a normal subgroup.



CHAPTER VII
Group Theory: Subgroups and

Quotient Groups.

In this chapter and in Chapter IX, we extend the basic theory of abstract groups to affine
groups. Throughout, k is a ring.

1 A criterion to be an isomorphism

PROPOSITION 1.1 A homomorphism of affine groups uWH !G is an isomorphism if and
only if

(a) the map u.R/WH.R/!G.R/ is injective for all k-algebras R, and
(b) the homomorphism u\WO.G/!O.H/ is faithfully flat.

When k is a field, (b) can be replaced with:

(b0) the homomorphism u\WO.G/!O.H/ is injective.

PROOF. The conditions (a) and (b) are obviously necessary. For the sufficiency, note that
the maps

H �GH ⇒H
u
�!G

give rise to homomorphisms of Hopf algebras

O.G/ u\

�!O.H/⇒O.H/˝O.G/˝.H/:

Condition (a) implies that the two projection maps H �G H ⇒ H are equal, and so the
homomorphisms

x 7! x˝1

x 7! 1˝x

�
WO.H/!O.H/˝O.G/O.H/ (62)

are equal. But condition (b) implies that the subset of O.H/ on which these homomor-
phisms is u\.O.G// (see CA 9.6). Therefore u\ is surjective, and so it is an isomorphism
(faithfully flat homomorphisms are injective). When k is a field, condition (b0) implies (b)
(see VI, 11.1). 2

87
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2 Injective homomorphisms

DEFINITION 2.1 Let uWH !G be a homomorphism of affine groups over k.

(a) We say that u is a monomorphism if u.R/WH.R/! G.R/ is injective for all k-
algebras R.

(b) We say that u injective if the map the map u\WO.G/! O.H/ is surjective. An
embedding is an injective homomorphism.

In other words, u is a monomorphism if the map jujW jH j ! jGj of affine k-schemes
is a monomorphism, and it is injective (a closed immersion) if jujW jH j ! jGj is a closed
immersion.

PROPOSITION 2.2 If uWH ! G is injective, then it is a monomorphism. The converse is
true when k is a field.

PROOF. If u\WO.G/! O.H/ is surjective, then any two homomorphisms O.H/! R

that become equal when composed with u\ must already be equal, and so H.R/! G.R/

is injective.
Now suppose that k is a field and that u.R/ is injective for all R. The homomorphism

u\ factors into homomorphisms of Hopf algebras

O.G/� u\.O.G// ,!O.H/:

Let H 0 be the affine group whose Hopf algebra is u�.O.G//. Then u factors into

H !H 0!G;

and the injectivity of u.R/ implies that H.R/!H 0.R/ is injective for all k-algebras R.
Because O.H 0/! O.H/ is injective, Proposition 1.1 shows that the map H !H 0 is an
isomorphism, and so u�.O.G//DO.H/. 2

PROPOSITION 2.3 Let uWH ! G be a homomorphism of affine groups. If u is injective,
then uk0 WHk0 ! Gk0 is injective for every k-algebra k0. Conversely, if uk0 is injective for
some faithfully flat k-algebra k0, then u is injective.

PROOF. Let k0 be a k-algebra. IfA!B is faithfully flat, then k0˝A! k0˝B is faithfully
flat, and the converse is true if k! k0 is faithfully flat. 2

ASIDE 2.4 What we call a monomorphism (resp. an injection) is called a monomorphism (resp. a
closed immersion) in SGA 3. For homomorphisms of group schemes (affine or not), it is a subtle
problem to determine under what conditions monomorphisms are necessarily closed immersions
(see SGA 3 VIII, 7, for a discussion of the problem). Certainly, there are examples of monomor-
phisms that are not closed immersions.
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3 Affine subgroups

DEFINITION 3.1 An affine subgroup (resp. normal affine subgroup) of an affine group G
is a closed subfunctor H of G such that H.R/ is a subgroup (resp. normal subgroup) of
G.R/ for all R.

In other words, a subfunctor H of an affine group G is an affine subgroup of G if

˘ H.R/ is a subgroup of G.R/ for all k-algebras R; and
˘ H is representable by a quotient of O.G/ (cf. V, 6.2).

An affine subgroup H of an affine algebraic group G is an algebraic group, because
O.H/ is a quotient of the finitely presented k-algebra O.G/.

PROPOSITION 3.2 The affine subgroups of an affine group G are in natural one-to-one
correspondence with the Hopf ideals on O.G/.

PROOF. For an affine subgroup H of G,

I.H/D ff 2O.G/ j fR.h/D 1 for all h 2H.R/ and all Rg

is a Hopf ideal in G (it is the kernel of O.G/!O.H/; see Exercise II-6). Conversely, if a
is a Hopf ideal in G, then the functor

R fg 2G.R/ j fR.g/D 0 for all f 2 ag

is an affine subgroup G.a/ of O.G/ (it is represented by O.G/=a). The maps H 7! I.H/

and a 7!G.a/ are inverse. 2

COROLLARY 3.3 When k is noetherian, the affine subgroups of an algebraic affine group
satisfy the descending chain condition (every descending chain of affine subgroups eventu-
ally becomes constant).

PROOF. The ring O.G/ is noetherian (Hilbert basis theorem, CA 3.6), and so the ideals in
O.G/ satisfy the ascending chain condition. 2

PROPOSITION 3.4 For any affine subgroupH of an affine algebraic groupG, the algebraic
scheme jH j is closed in jGj.

PROOF. If a is the kernel of O.G/!O.H/, then jH j is the subspace V.a/ def
D fm jm� ag

of jGj : 2

PROPOSITION 3.5 For any family .Hj /j2J of affine subgroups of an affine group G, the
functor

R 
\

j2J
Hj .R/ (intersection inside G.R/)

is an affine subgroup
T
j2J Hj of G, with coordinate ring O.G/=I where I is the ideal

generated by the ideals I.Hj /.
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PROOF. We have

Hj .R/D fg 2G.R/ j fR.g/D 0 for all f 2 I.Hj /g:

Therefore,

H.R/D fg 2G.R/ j fR.g/D 0 for all f 2
[
I.Hj /g

D Hom.O.G/=I;R/: 2

EXAMPLE 3.6 The intersection of the affine subgroups SLn and Gm (scalar matrices) of
GLn is �n (matrices diag.c; : : : ; c/ with cn D 1).

DEFINITION 3.7 An affine subgroup H of algebraic group G is said to be characteristic
if, for all k-algebras R and all automorphisms u of GR, u.HR/ D HR (cf. DG II, �1,
3.9). When k is a field and the condition holds only when R is a field, we say that H is
characteristic in the weak sense.

Both conditions are stronger than requiring that u.H/DH for all automorphisms ofG
(see XVI, 2.7).

A 3.8 In the realm of not necessarily affine group schemes over a field, there can exist non-
affine (necessarily nonclosed) subgroup schemes of an affine algebraic group. For example,
the constant subgroup scheme .Z/k of Ga over Q is neither closed nor affine. Worse, the
(truly) constant subfunctor R Z � R of Ga is not representable. Over an algebraically
closed field k consider the discrete (nonaffine) group scheme with underlying set k; the
obvious map k!Ga of nonaffine group schemes is a homomorphism, and it is both mono
and epi, but it is not an isomorphism.

4 Kernels of homomorphisms

The kernel of a homomorphism uWH !G of affine groups is the functor

R N.R/
def
D Ker.u.R/WH.R/!G.R//.

Let �WO.G/! k be the identity element ofG.k/. Then an element hWO.H/!R ofH.R/
lies in N.R/ if and only if its composite with u\WO.G/!O.H/ factors through �:

O.H/ O.G/

R k:

h

u\

�

Let IG be the kernel of �WO.G/! k (this is called the augmentation ideal), and let
IG �O.H/ denote the ideal generated by its image in O.H/. Then the elements of N.R/
correspond to the homomorphisms O.H/!R that are zero on IG �O.H/, i.e.,

N.R/D Homk-alg.O.H/=IGO.H/;R/:

We have proved:
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PROPOSITION 4.1 For any homomorphism H ! G of affine groups, there is an affine
subgroup N of H (called the kernel of the homomorphism) such that

N.R/D Ker.H.R/!G.R//

for all R; its coordinate ring is O.H/=IGO.H/.

Alternatively, note that the kernel of u is the fibred product ofH !G �, and so it is
an algebraic group with coordinate ring

O.H/˝O.G/ .O.G/=IG/'O.H/=IGO.H/

(see V, �2).

EXAMPLE 4.2 Consider the map g 7! gnWGm ! Gm. This corresponds to the map on
Hopf algebras Y 7!XnWkŒY;Y �1�! kŒX;X�1� because

Xn.g/D gn D Y.gn/

(cf. (13), p.25). The map �WkŒY;Y �1�! k sends f .Y / to f .1/, and so the augmentation
ideal for Gm is .Y �1/. Thus, the kernel has coordinate ring

kŒX;X�1�=.Xn�1/' kŒX�=.Xn�1/:

In other words, the kernel is the algebraic group �n, as we would expect.

EXAMPLE 4.3 Let N be the kernel of the determinant map detWGLn! Gm. This corre-
sponds to the map on Hopf algebras

X 7! det.Xij /WkŒX;X�1�! kŒ: : : ;Xij ; : : : ;det.Xij /�1�

because
det.Xij /.aij /D det.aij /DX.det.aij //:

As we just noted, the augmentation ideal for Gm is .X �1/, and so

O.N /D
kŒ: : : ;Xij ; : : : ;det.Xij /�1�

.det.Xij /�1/
'
kŒ: : : ;Xij ; : : :�

.det.Xij /�1/
:

In other words, the kernel of det is the algebraic group SLn, as we would expect.

PROPOSITION 4.4 If a homomorphism of affine groups is injective, then its kernel if trivial.
The converse is true when k is a field.

PROOF. The kernel of uWH !G is trivial if and only if u.R/ is injective for all R. There-
fore the proposition is a restatement of Proposition 2.2. 2

COROLLARY 4.5 When k is a field of characteristic zero, a homomorphism of affine groups
G!H is injective if and only if G.kal/!H.kal/ is injective.

PROOF. When k is a field of characteristic zero, an affine group N is trivial if N.kal/D 1

(VI, 9.4). 2
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NOTES Need to discuss whether trivial kernel implies injective over rings k. Consider H ! G

injective as a map of functors, corresponding to A! B . Can assume A! B injective, and want
to prove that H.R/D G.R/. Have H.R/ � G.R/. Given P 2 G.R/, want P 2H.R/. Certainly
P 2 H.R˝B/, which implies that P 2 H.R/ if R! R˝A B is injective. But why should it?
Really seem to need that A! B is flat. Give examples. Actually, should look at this from the point
of view of schemes: a morphism X ! Y with trivial fibres.

A
4.6 Proposition 4.5 is false for fields k of characteristic p ¤ 0. For example, the ho-

momorphism x 7! xpWGa ! Ga has kernel ˛p, and so it is not injective, but the map
x 7! xpWGa.R/!Ga.R/ is injective for every reduced k-algebra R.

REMARK 4.7 LetA be an object of some category A. A morphism uWS!A is a monomor-
phism if f 7! uıf WHom.T;S/!Hom.T;A/ is injective for all objects T . Two monomor-
phisms uWS!A and u0WS 0!A are said to be equivalent if each factors through the other.
This is an equivalence relation on the monomorphisms with target A, and an equivalence
class of monomorphisms is called a subobject of A.

Let k be a field. A homomorphism of affine groups over k is a injective if and only if
it is a monomorphism in the category of affine groups over k. To see this, let uWH !G be
a homomorphism of affine groups. If u is injective and the homomorphisms ˇ;
 WH 0!H

agree when composed with u, then (1.1a) with RDO.H 0/ shows that ˇ D 
 . Suppose, on
the other hand, that u is not injective, so that its kernel N is nontrivial. Then the homomor-
phisms n 7! 1, n 7! nWN ! N are distinct, but they agree when composed with u, and so
u is not a monomorphism.

Let G be an affine group. Two monomorphisms uWH ! G and uWH 0! G are equiv-
alent if and only if Im.uR/D Im.u0R/ for all k-algebras R. It follows that, in each equiva-
lence class of monomorphisms with targetG, there is exactly one withH an affine subgroup
of G and with u the inclusion map.

ASIDE 4.8 In any category, the equalizer of a pair of morphisms is a monomorphism. A monomor-
phism that arises in this way is said to be regular. In Grp, every monomorphism is regular (see,
for example, van Oosten, Basic Category Theory, Exercise 42, p.21). For example, the centralizer
of an element a of a group A (which is not a normal subgroup in general) is the equalizer of the
homomorphisms x 7! x, x 7! axa�1WA! A. Is it true that every monomorphism in the category
of affine (or algebraic) groups is regular?

5 Dense subgroups

Throughout this subsection, k is a field.
LetG be an algebraic group over k. By definition, a point a 2G.k/ is a homomorphism

O.G/! k, whose kernel we denote ma (a maximal ideal in O.G/). As we discussed VI,
�3, the map a 7! maWG.k/! jGj is injective with image the set of maximal ideals m of
O.G/ such that O.G/=mD k. We endow G.k/ with the subspace topology.

PROPOSITION 5.1 Let G be an algebraic group over a field k, and let � be a subgroup
of G.k/. There exists an affine subgroup H of G such that H.k/ D � if and only if �
is closed, in which case there exists a unique smallest H with this property. When k is
algebraically closed, every smooth affine subgroup of G arises in this way.



5. Dense subgroups 93

PROOF. If � D H.k/ for an affine subgroup H of G, then � D jH j \G.k/, which is
closed by (3.4). Conversely, let � be a closed subgroup of G.k/. Each f 2O.G/ defines
a function � ! k, and, for x;y 2 � , .�f /.x;y/D f .x �y/ (see (12), p. 25). Therefore,
when we let R.� / denote the k-algebra of maps � ! k and define �� WR.� /�R.� /!
R.� �� / as in Exercise II-1, we obtain a commutative diagram

O.G/
�G
����! O.G/˝O.G/??y ??y

R.� /
��
����! R.� �� /;

which shows that �� maps into R.� /˝R.� /, and so .R.� /;�� / is a Hopf algebra
(ibid.). Because � is closed, it is the zero set of the ideal

a
def
D Ker.O.G/!R.� //;

which is a Hopf ideal because .O.G/;�G/! .R.� /;�� / is a homomorphism of Hopf
algebras (II, 5.2). The affine subgroupH ofG with O.H/DO.G/=a�R.� / hasH.k/D
� . Clearly, it is the smallest subgroup of G with this property. When k is algebraically
closed and H is a smooth subgroup of G, then the group attached to � D H.k/ is H
itself. 2

REMARK 5.2 For any subgroup � of G.k/, the closure x� of � in G.k/� jGj is a closed
subgroup of G.k/.1 The smallest affine subgroup H of G such that H.k/ D x� is often
called the “Zariski closure” of � in G.

REMARK 5.3 When k is not algebraically closed, not every smooth algebraic subgroup of
G arises from a closed subgroup of G.k/. Consider, for example, the algebraic subgroup
�n �Gm over Q. If n is odd, then �n.Q/D f1g, and the algebraic group attached to f1g is
the trivial group.

REMARK 5.4 It is obvious from its definition that R.� / has no nonzero nilpotents. There-
fore the affine subgroup attached to a closed subgroup � of G.k/ is reduced, and hence
smooth if k is perfect. In particular, no nonsmooth subgroup arises in this way.

DEFINITION 5.5 LetG be an algebraic group over a field k, and let k0 be a field containing
k. We say that a subgroup � of G.k0/ is dense in G if the only affine subgroup H of G
such that H.k0/� � is G itself.

5.6 The map � 7!H in (5.1) sets up a one-to-one correspondence between the subgroups
� of G.k/ such that � D x� and the affine subgroups H of G such that H.k/ is dense in
H . If H.k/ is dense in H , then H is reduced, hence smooth when k is perfect (see 5.4).
When k is algebraically closed, the affine subgroups H of G such that H.k/ is dense in H
are exactly the smooth affine subgroups.

1It is a general fact that the closure of a subgroup � of a topological group is a subgroup. To see this, note
that for a fixed c 2 � , the maps x! cx and x 7! x�1 are continuous, and hence are homeomorphisms because
they have inverses of the same form. For c 2 � , we have � c D � , and so x� c D x� . As c is arbitrary, this says
that x� �� D x� . For d 2 x� , d� � x� , and so d x� � x� . We have shown that x� � x� � x� . Because x 7! x�1 is a
homeomorphism, it maps x� onto .� �1/�. Therefore x� �1 D .� �1/� D x� .
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5.7 If � �G.k0/ is dense in G, then, for any field k00 � k0, � �G.k00/ is dense in G.

5.8 It follows from the proof of (5.1) that G.k/ is dense in G if and only if

f 2O.G/, f .P /D 0 for all P 2G.k/ H) f D 0: (63)

In other words, G.k/ is dense in G if and only if no nonzero element of O.G/maps to zero
under all homomorphisms of k-algebras O.G/! k:\

uWO.G/!k

Ker.u/D 0:

5.9 For an affine algebraic variety V over a field k, any f 2 O.V / such that f .P / D 0
for all V.kal/ is zero (Nullstellensatz; CA 11.5); better, any f 2O.V / such that f .P /D 0
for all P 2 V.ksep/ is zero (AG 11.15). Therefore, if G is smooth, then G.ksep/ (a fortiori,
G.kal/) is dense in G.

5.10 If G.k/ is finite, for example, if the field k is finite, and dimG > 0, then G.k/ is
never dense in G.

PROPOSITION 5.11 If k is infinite, then G.k/ is dense in G when G DGa, GLn, or SLn.

PROOF. We use the criterion (5.8). Because k is infinite, no nonzero polynomial in kŒX1; : : : ;Xn�
can vanish on all of kn (FT, proof of 5.18). This implies that no nonzero polynomial f can
vanish on a set of the form

D.h/
def
D fa 2 kn j h.a/¤ 0g; h¤ 0;

because otherwise hf would vanish on kn. As

GLn.k/D fa 2 kn
2

j det.a/¤ 0g;

this proves the proposition for GLn.
The proposition is obvious for Ga, and it can be proved for SLn by realizing O.SLn/

as a subalgebra of O.GLn/. Specifically, the natural bijection

A;r 7! A �diag.r;1; : : : ;1/WSLn.R/�Gm.R/! GLn.R/

(of set-valued functors) defines an isomorphism of k-algebras

O.GLn/'O.SLn/˝O.Gm/;

and the algebra on the right contains O.SLn/. Hence\
uWO.SLn/!k

Ker.u/�
\

uWO.GLn/!k

Ker.u/D 0:
2
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PROPOSITION 5.12 Let G be an algebraic group over a perfect field k, and let � D
Gal.kal=k/. Then � acts on G.kal/, and H $ H.kal/ is a one-to-one correspondence
between the smooth affine subgroups of G and the closed subgroups of G.kal/ stable under
� .

PROOF. Combine (5.1) with (V, 7.3). (More directly, both correspond to radical Hopf
ideals a in the kal-bialgebra kal˝O.G/ stable under the action of � ; see AG 16.7, 16.8).2

ASIDE 5.13 Let k be an infinite field. We say that a finitely generated k-algebra has “enough maps
to k” if

T
uWA!kKer.u/D 0 (intersection over k-algebra homomorphisms A! k). We saw in the

proof of (5.11) that kŒX1; : : : ;Xn�h has enough maps to k for any h¤ 0. Obviously, any subalgebra
of an algebra having enough maps to k also has enough maps to k. In particular, any subalgebra
of kŒX1; : : : ;Xn�h has enough maps to k. A connected affine variety V is said to unirational if
O.V / can be realized as a subalgebra kŒX1; : : : ;Xn�h in such a way that the extension of the fields
of fractions is finite. Geometrically, this means that there is a finite map from an open subvariety
of An onto an open subvariety of V . Clearly, if V is unirational, then O.V / has enough maps to
k. Therefore, if a connected algebraic group G is unirational, then G.k/ is dense in G. So which
algebraic groups are unirational? In SGA 3, XIV 6.11 we find:

One knows (Rosenlicht) examples of forms of Ga over a nonperfect field, which have
only finitely many rational points, and therefore a fortiori are not unirational. More-
over Chevalley has given an example of a torus over a field of characteristic zero which
is not a rational variety. On the other hand, it follows from the Chevalley’s theory of
semisimple groups that over an algebraically closed field, every smooth connected
affine algebraic group is a rational variety.

Borel 1991, 18.2, proves that a smooth connected algebraic groupG is unirational if k is perfect or if
G is reductive. For a nonunirational nonconnected algebraic group, Rosenlicht gives the example of
the group of matrices

�
a b
�b a

�
over R with a2Cb2 D˙1. For a nonunirational connected algebraic

group, Rosenlicht gives the example of the subgroup ofGa�Ga defined by Y p�Y D tXp over the
field k D k0.t/ (t transcendental). On the other hand, if kŒ

p
a;
p
b� has degree 4 over k, then the

norm torus2 associated with this extension is a three-dimensional torus that is not a rational variety.
Proofs of these statements will be given in a future version of the notes.

ASIDE 5.14 When k is finite, only the finite affine subgroups of G arise as the Zariski closure of a
subgroup of G.k/ (see 5.10). Nori (1987) has found a more useful way of defining the “closure” of
a subgroup � of GLn.Fp/. Let X D fx 2 � j xp D 1g, and let � C be the subgroup of � generated
by X (it is normal). For each x 2X , we get a one-parameter affine subgroup

t 7! xt D exp.t logx/WA1! GLn;

where

exp.z/D
Xp�1

iD0

zi

i Š
and log.z/D�

Xp�1

iD1

.1�z/i

i
.

Let G be the smallest algebraic subgroup of GLn containing these subgroups for x 2X . Nori shows
that if p is greater than some constant depending only on n, then � CDG.Fp/C. IfG is semisimple
and simply connected, then G.Fp/C DG.Fp/, and so � C is realized as the group of rational points
of the connected algebraic group G. The map � 7!G sets up a one-to-one correspondence between
the subgroups � of GLn.Fp/ such that � D � C and the affine subgroups of GLnFp generated by
one-parameter subgroups t 7! exp.ty/ defined by elements y 2Mn.Fp/ with yp D 0.

2Let T D .Gm/kŒpa;
p
b�=k

. The norm map defines a homomorphism T !Gm, and the norm torus is the
kernel of this homomorphism.
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ASIDE 5.15 (mo56192) Rosenlicht’s subgroup Y p �Y D tXp of Ga �Ga (p ¤ 2) and the sub-
group Y p D tXp ofGa�Ga are examples of algebraic groupsG over k such thatG.k/ is not dense
in G (the first is smooth; the second is reduced but not smooth).

A smooth, connected unipotent group is said to be k-split if there is a filtration by k-subgroups
for which the successive quotients are isomorphic to Ga. The examples in the above paragraph
are non-split unipotent groups. Any smooth connected k-split unipotent group U is even a rational
variety (in fact, k-isomorphic as a variety to An), and so it is clear that U.k/ is Zariski dense in U
when is infinite. More generally, let G be a smooth connected affine algebraic group over k and
assume that the unipotent radical of Gkal is defined and split over k (both of these conditions can
fail). Then as a k-variety, G is just the product of its reductive quotient .G=RuG/ and its unipotent
radical (result of Rosenlicht). In particular, isG is unirational, and if k is infinite, thenG.k/ is dense
in G (George McNinch)

A necessary condition when k is imperfect: if G.k/ is dense in G, then Gred is a smooth alge-
braic group over k. Proof: the regular locus of Gred is open and non-empty, so contains a rational
point. This point is then smooth. By translation, Gred is smooth at origin, hence smooth everywhere.
This implies that it is an algebraic group because it is geometrically reduced (Qing Liu).

ASIDE 5.16 Let k be a commutative ring. Waterhouse 1979, 1.2, p. 5 defines an affine group
scheme to be a representable functor from k-algebras to groups. He defines an affine group scheme
to be algebraic if its representing algebra is finitely generated (ibid. 3.3, p. 24) . Now assume that
k is a field. He defines an algebraic matrix group over k to be a Zariski-closed subgroup of SLn.k/
for some n (ibid., 4.2, p. 29), and he defines an affine algebraic group to be a closed subset of kn

some n with a group law on it for which the multiplication and inverse are polynomial maps (ibid.
4.2, p. 29). Algebraic matrix groups and affine algebraic groups define (essentially the same) affine
group schemes.

Waterhouse 1979 This work

affine group scheme affine group

affine algebraic group scheme affine algebraic group (or just algebraic group)

algebraic matrix group affine subgroup G of GLn;k such that G.k/ is dense in G

affine algebraic group algebraic group G such that G.k/ is dense in G.

We shall sometimes use algebraic matrix group to mean an affine subgroup G of GLn;k
such that G.k/ is dense in G.

ASIDE 5.17 Before Borel introduced algebraic geometry into the theory of algebraic groups in a
more systematic way, Chevalley defined algebraic groups to be closed subsets of kn endowed with a
group structure defined by polynomial maps. In other words, he studied affine algebraic groups and
algebraic matrix groups in the above sense. Hence, effectively he studied reduced algebraic groups
G with the property that G.k/ is dense in G.

Hochschild adopts a similar approach (Hochschild 1971a, 1981). In our language, he defines an
affine algebraic group over a field k to be a pair .G;A/ where A is a finitely generated Hopf algebra
over k and G is a dense subgroup of the affine group defined by A (ibid. p.21, p.10).

ASIDE 5.18 In the literature one finds statements:

When k is perfect, any algebraic subgroup of GLn defined by polynomials with coef-
ficients in k is automatically defined over k (e.g., Borel 1991, Humphreys 1975).

What is meant is the following:

When k is perfect, any smooth algebraic subgroupG of GLn;kal such the subsetG.kal/

of GLn.kal/ is defined by polynomials with coefficients in k arises from a smooth
algebraic subgroup of GLn;k .
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From our perspective, the condition on G.kal/ (always) implies that G arises from a reduced alge-
braic subgroup of GLn;k , which is smooth if k is perfect.

6 Normalizers; centralizers; centres

For a subgroup H of an abstract group G, we let NG.H/ (resp. CG.H/) denote the nor-
malizer (resp. centralizer) of H in G, and we let ZG denote the centre of G.

In this section, we extend these notions to an affine subgroup H of an affine group G.
We say that an affine group G is locally free if O.G/ is a locally free k-algebra (see p. 67).
When k is a field, all affine groups are (locally) free.

For g 2G.R/, let gH be the functor of R-algebras

R0 g �H.R0/ �g�1 (subset of G.R0/):

Define N to be the functor of k-algebras

R fg 2G.R/ j gH DH g:

Thus, for any k-algebra R,

N.R/D fg 2G.R/ j g �H.R0/ �g�1 DH.R0/ for all R-algebras R0g

DG.R/\
\

R0
NG.R0/.H.R

0//:

PROPOSITION 6.1 If H is locally free, then the functor N is an affine subgroup of G.

PROOF. Clearly N.R/ is a subgroup of G.R/, and so it remains to show that N is repre-
sentable by a quotient of O.G/. Clearly

g �H.R0/ �g�1 DH.R0/ ” g �H.R0/ �g�1 �H.R0/ and g�1 �H.R0/ �g �H.R0/;

and so, when we let G act on itself by conjugation,

N D TG.H;H/\TG.H;H/
�1

(notations as in V, �6). Theorem 6.9, of Chapter V, shows that TG.H;H/ is representable,
and it follows from (3.5) that N is representable by a quotient of O.G/. 2

ASIDE 6.2 In fact NG.H/ D TG.H;H/ if H is finitely presented, because then every injective
map HR!HR is bijective (Ax, James, Injective endomorphisms of varieties and schemes. Pacific
J. Math. 31 1969 1–7).

The affine subgroup N of G is called the normalizer NG.H/ of H in G. Clearly a
subgroup H of G is normal if and only if NG.H/DG.

It is obvious from its definition that the formation of NG.H/ commutes with extension
of scalars: for every k-algebra k0,

NG.H/k0 'NGk0 .Hk0/:

PROPOSITION 6.3 Assume that k is a field. If H is an affine subgroup of an algebraic
group G, and H.k0/ is dense in H for some field k0 containing k, then

NG.H/.k/DG.k/\NG.k0/.H.k
0//:
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PROOF. Let g 2 G.k/\NG.k0/.H.k0//. Because g 2 G.k/, gH is an algebraic subgroup
of G, and so gH \H is an algebraic subgroup of H . Because g 2NG.k0/.H.k0//,�

gH
�
.k0/DH.k0/;

and so .gH \H/.k0/DH.k0/. As H.k0/ is dense in H , this implies that gH \H DH ,
and so gH DH . 2

COROLLARY 6.4 Assume that k is a field. LetH be a smooth affine subgroup of a smooth
algebraic group G. If H.ksep/ is normal in G.ksep/, then H is normal in G.

PROOF. BecauseH is smooth,H.ksep/ is dense inH , and so (6.3) shows thatNG.H/.ksep/D

G.ksep/, and so NG.H/DG. 2

A
6.5 The corollary is false without the smoothness assumptions, even with kal for ksep. For

example, let H be the subgroup of SL2 in characteristic p ¤ 0 such that

H.R/D

��
1 a

0 1

�ˇ̌̌̌
paD 0

�
(so H ' ˛p). Then H.kal/D 1, but H is not normal in SL2.

PROPOSITION 6.6 Assume that k is a field. Let H be an affine subgroup of an algebraic
groupG. Let ig denote the inner automorphism ofG defined by g 2G.k/; ifG.k/ is dense
in G and ig.H/DH for all g 2G.k/, then H is normal in G.

PROOF. Let N DNG.H/�G. If ig.H/DH , then g 2N.k/. The hypotheses imply that
G.k/�N.k/, and so N DG. 2

Let H be an affine subgroup of an affine group G, and let N be the normalizer of H .
Each n 2N.R/ defines a natural transformation in

h 7! nhn�1WH.R0/!H.R0/

of H regarded as a functor from the category of R-algebras to sets, and we define C to be
the functor of k-algebras

R fn 2N.R/ j in D idH g:

Thus,
C.R/DG.R/\

\
R0
CG.R0/.H.R

0//:

PROPOSITION 6.7 If H is locally free, then the functor C is an affine subgroup of G.

PROOF. We have to show that C is representable. Let G act on G�G by

g.g1;g2/D .g1;gg2g
�1/; g;g1;g2 2G.R/;

and embed H diagonally in G�G,

H !G�G; h 7! .h;h/ for h 2H.R/:

Then
C D TG�G.H;H/;

which is a closed subfunctor of G (V, 6.1). 2
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The affine subgroup C of G is called the centralizer CG.H/ of H in G. It is obvious
from its definition that the formation of CG.H/ commutes with extension of the base field:
for every k-algebra k0,

CG.H/k0 ' CGk0 .Hk0/:

PROPOSITION 6.8 Assume that k is a field. If H is an affine subgroup of an algebraic
group G, and H.k0/ is dense in H for some field k0 � k, then

CG.H/.k/DG.k/\CG.k0/.H.k
0//:

PROOF. Let n 2 G.k/\CG.k0/.H.k0//. According to (6.3), n 2 NG.H/.k/. The maps
in and idH coincide on an affine subgroup of H , which contains H.k0/, and so equals H .
Therefore n 2 CG.H/.k/. 2

COROLLARY 6.9 Assume that k is a field. LetH be a smooth affine subgroup of a smooth
algebraic group G. If H.ksep/ is central in G.ksep/, then H is central in G.

PROOF. BecauseH is smooth,H.ksep/ is dense inH , and so (6.8) shows thatCG.H/.ksep/D

G.ksep/, and so CG.H/DG. 2

The centre ZG of an affine group G is defined to be CG.G/. If G is locally free, then
it is an affine subgroup of G. If k is a field, G is algebraic, and G.k0/ is dense in G, then

ZG.k/DG.k/\Z.G.k0//:

Let Aut.G/ be the functor
R Aut.GR/:

The action of G on itself by inner automorphisms defines a homomorphism of functors
G! Aut.G/, whose kernel is the functor ZG.

A
6.10 Even when G and H are smooth, CG.H/ need not be smooth. For example, it is

possible for CG.H/ to be nontrivial without CG.H/.k0/ being nontrivial for any field k0

containing k. To see this, let G be the functor

R R�R�

with the multiplication .a;u/.b;v/ D .aC bup;uv/; here 0 ¤ p D char.k/: This is an
algebraic group because, as a functor to sets, it is isomorphic to Ga �Gm. For a pair
.a;u/ 2 R�R�, .a;u/.b;v/D .b;v/.a;u/ for all .b;v/ if and only if up D 1. Therefore,
the centre of G is �p, and so ZG.k0/D 1 for all fields k0 containing k. Another example
is provided by SLp over a field of characteristic p. The centre of SLp is �p, which is not
smooth.

EXAMPLE 6.11 For a k-algebra R, the usual argument shows that the centre of GLn.R/ is
the group of nonzero diagonal matrices. Therefore

Z.GLn/DGm (embedded diagonally).

More abstractly, for any finite-dimensional vector space V ,

Z.GLV /DGm (a 2Gm.R/ acts on VR as v 7! av).
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EXAMPLE 6.12 Let G D GLn over a field k. For an integer N , let HN be the subfunctor

R HN .R/D fdiag.a1; : : : ;an/ 2 GLn.R/ j aN1 D �� � D a
N
n D 1g.

of G. Then HN ' .�N /n, and so it is an affine subgroup of G. For N sufficiently large

CG.HN /D Dn

(group of diagonal matrices) (see (XIV, 6.4)). We consider two cases.

(a) k DQ and N odd. Then HN .k/D f1g, and

CG.k/.HN .k//D GLn.k/¤ Dn.k/D CG.HN /.k/:

(b) k is algebraic closed of characteristic p¤ 0 andN is a power of p. ThenHN .k/D 1
and

CG.k/.HN .k//D GLn.k/¤ Dn.k/D CG.HN /.k/:

An affine subgroup H of an affine group G is said to normalize (resp. centralize) an
affine subgroup N of G if H.R/ normalizes (resp. centralizes) N.R/ for all k-algebras R;
equivalently, if H �NG.N / (resp. H � CG.N /).

7 Quotient groups; surjective homomorphisms

What does it mean for a homomorphism of algebraic groups G!Q to be surjective? One
might guess that it means that G.R/!Q.R/ is surjective for all R, but this condition is
too stringent. For example, it would say that x 7! xnWGm ! Gm is not surjective even
though x 7! xnWGm.k/!Gm.k/ is surjective whenever k is algebraically closed. In fact,
Gm

n
�!Gm is surjective according to the following definition.

DEFINITION 7.1 A homomorphism G!Q of affine groups is said to be surjective (and
Q is called a quotient of G) if the homomorphism O.Q/!O.G/ is faithfully flat.

A surjective homomorphism is also called a quotient map.

PROPOSITION 7.2 Let uWH !G be a homomorphism of affine groups. If u is surjective,
then so also is uk0 WHk0 ! Gk0 for every k-algebra k0. Conversely, if uk0 is surjective for
one faithfully flat k-algebra k0, then u is surjective.

PROOF. Because k! k0 is faithfully flat, the map O.G/!O.H/ is faithfully flat if and
only if k0˝kO.G/! k0˝kO.H/ is faithfully flat (see CA �9). 2

PROPOSITION 7.3 A homomorphism of affine groups that is both injective and surjective
is an isomorphism.

PROOF. A faithfully flat map is injective (CA 9.6). Therefore, the map on coordinate rings
is both surjective and injective, and hence is an isomorphism. 2

THEOREM 7.4 Let k be a field. The following conditions on a homomorphismG!Q are
equivalent:
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(a) G!Q is surjective, i.e., O.Q/!O.G/ is faithfully flat;
(b) O.Q/!O.G/ is injective;
(c) for every k-algebra R and q 2Q.R/, there exists a faithfully flat R-algebra R0 and a

g 2G.R0/ mapping to the image of q in Q.R0/:

G.R0/ Q.R0/ 9g �

G.R/ Q.R/ q:

PROOF. (a))(c): Let q 2Q.R/. Regard q as a homomorphism O.Q/!R, and form the
tensor product R0 DO.G/˝O.Q/R:

O.G/ O.Q/

R0 DO.G/˝O.Q/R R

faithfully flat

qq0g D 1˝q (64)

ThenR0 is a faithfully flatR-algebra because O.G/ is a faithfully flat O.H/-algebra (apply
CA 9.7). The commutativity of the square in (64) means that g 2G.R0/ maps to the image
q0 of q in Q.R0/.

(c))(b): Consider the “universal” element idO.Q/ 2Q.O.Q//. IfG!Q is surjective,
there exists a g 2 G.R0/ with R0 faithfully flat over O.Q/ such that g and idO.Q/ map to
the same element of Q.R0/, i.e., such that the diagram

O.G/ O.Q/

R0 O.Q/

idO.Q/g

faithfully flat

commutes. The map O.Q/!R0, being faithfully flat, is injective (CA 9.6), which implies
that O.Q/!O.G/ is injective.

(b))(a): According to (VI, 11.1) O.Q/!O.G/ is faithfully flat. 2

The condition (c) says that every q 2Q.R/ lifts to G after a faithfully flat extension.
The proof of (a))(c) is valid for k a ring.

COROLLARY 7.5 Every homomorphism H !G of affine groups over a field factors into

H !H 0!G

with H !H 0 surjective and H 0!G injective.

PROOF. The homomorphism O.G/!O.H/ factors into

O.G/�O.H 0/ ,!O.H/. 2
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The affine groupH 0 in the corollary is called the image of the homomorphismH !G.

PROPOSITION 7.6 Assume that k is a field. Let G!Q be a homomorphism of algebraic
groups. If G!Q is a quotient map, then G.kal/!Q.kal/ is surjective; the converse is
true if Q is smooth.

PROOF. Let q 2 Q.kal/. For some finitely generated kal-algebra R, the image of q in
Q.R/ lifts to an element g of G.R/. Zariski’s lemma (CA 11.1) shows that there exists a
kal-algebra homomorphism R! kal, and the image of g in G.kal/ maps to q 2Q.kal/:

G.R/ G.kal/

Q.kal/ Q.R/ Q.kal/

kal R kal

id

g gkal

q qR q

For the converse, we may suppose that k is algebraically closed. Recall (I, 3.13) that
an element f of O.Q/ is a family .fR/R with fR a map Q.R/! R. Because Q is
smooth, O.Q/ is reduced, and so f is determined by fk (CA 11.8). As G.k/!Q.k/ is

surjective, f is determined by the compositeG.k/�!Q.k/
fk
�! k, and so O.Q/!O.G/

is injective. 2

More generally, a homomorphism uWG!H of algebraic groups over a field is surjec-
tive if, for some field k0 containing k, the image of G.k0/ in H.k0/ is dense in H (see IX,
3.3 below).

A 7.7 The smoothness condition in the second part of the proposition is necessary. Let k be
a field of characteristic p ¤ 0, and consider the homomorphism 1! ˛p where 1 denotes
the trivial algebraic group. The map 1.kal/! up.k

al/ is f1g ! f1g, which is surjective,
but 1! ˛p is not a quotient map because the map on coordinate rings is kŒX�=.Xp/! k,
which is not injective.

THEOREM 7.8 Let G!Q be a quotient map with kernel N . Then every homomorphism
G!Q0 whose kernel contains N factors uniquely through Q:

N G Q

Q0.

0

PROOF. Note that, if g and g0 are elements of G.R/ with the same image in Q.R/, then
g�1g0 lies in N and so maps to 1 in Q0.R/. Therefore g and g0 have the same image in
Q0.R/. This shows that the composites of the homomorphisms

G�QG⇒G!Q0
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are equal. Therefore, the composites of the homomorphisms

O.G/˝O.Q/O.G/⇔O.G/ O.Q0/

are equal. The subring of O.G/ on which the two maps coincide is O.Q/ (CA 9.6), and
so the map O.Q0/! O.G/ factors through uniquely through O.Q/ ,! O.G/. Therefore
G!Q0 factors uniquely through G!Q. 2

COROLLARY 7.9 If � WG ! Q and � 0WG ! Q0 are quotient maps with the same kernel,
then there is a unique homomorphism uWQ!Q0 such that u ı � D � 0; moreover, u is an
isomorphism.

PROOF. From the theorem, there are unique homomorphisms uWQ!Q0 and u0WQ0!Q

such that uı� D � 0 and u0 ı� 0 D � . Now u0 ıuD idQ, because both have the property that
ˇ ı� D � . Similarly, uıu0 D idQ0 , and so u and u0 are inverse isomorphisms. 2

DEFINITION 7.10 A surjective homomorphism G!Q with kernel N is called the quo-
tient of G by N , and Q is denoted by G=N .

When it exists, the quotient is uniquely determined up to a unique isomorphism by
the universal property in (7.8). We shall see later (VIII, 19.4) that quotients by normal
subgroups always exist when k is a field.

DEFINITION 7.11 A sequence

1!N !G!Q! 1

is exact if G!Q is a quotient map with kernel N .

PROPOSITION 7.12 Assume that k is a field. If

1!N !G!Q! 1

is exact, then
dimG D dimN CdimQ:

PROOF. For any homomorphism uWG!Q of abstract groups, the map

.n;g 7! .ng;g/WKer.u/�G!G�QG

is a bijection — this just says that two elements of G with the same image in Q differ by
an element of the kernel. In particular, for any homomorphism uWG!Q of affine groups
and k-algebra R, there is a bijection

Ker.u/.R/�G.R/!
�
G�QG

�
.R/,

which is natural in R. Therefore N �G 'G�QG,3 and so

O.N /˝O.G/'O.G�QG/:
3This duplicates (58), p. 83.
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Recall that the dimension of an algebraic group G has the following description: accord-
ing to the Noether normalization theorem (CA 5.11), there exists a finite set S of ele-
ments in O.G/ such that kŒS� is a polynomial ring in the elements of S and O.G/ is
finitely generated as a kŒS�-module; the cardinality of S is dimG. Since O.G �QG/ D
O.G/˝O.Q/O.G/, it follows from this description that

dim.G�QG/D 2dimG�dimQ:

Therefore 2dimG�dimQD dimN CdimG, from which the assertion follows.
[Need to explain this. If O.Q/ D kŒX1; : : : ;Xm� and O.G/ D kŒX1; : : : ;Xn�, n � m,

then the tensor product is a polynomial ring in

XmC1˝1; : : : ;Xn˝1;1˝XmC1; : : : ;1˝Xn;

over kŒX1; : : : ;Xm�; therefore, it is a polynomial ring in

mC .n�m/C .n�m/D 2n�m;

symbols over k, as required. In the general case, we can assume that k is algebraically
closed and that Q and G are reduced and connected. Let k.Q/ be the field of fractions
of O.Q/. Then dimQ is the transcendence degree of k.Q/ over Q, and similarly for
dimG. Now the statement follows from the fact that k.G�QG/ is the field of fractions of
k.G/˝k.Q/ k.G/.] 2

ASIDE 7.13 Proposition 7.12 can also be proved geometrically. First make a base extension to kal.
For a surjective map 'WG ! Q of irreducible algebraic schemes, the dimension of the fibre over
a closed point P of Q is equal dim.G/� dimQ for P in a nonempty open subset of Q (cf. AG
10.9b). Now use homogeneity (VI, �5) to see that, when G!Q is a homomorphism of algebraic
group schemes, all the fibres have the same dimension.

ASIDE 7.14 A morphism uWA! B in a category A is said to be an epimorphism if Hom.B;T /!
Hom.A;T / is injective for all objects T .

It is obvious from Theorem 7.4 that a surjective homomorphism of affine groups is an epimor-
phism. The converse is true for groups (MacLane 1971, Exercise 5 to I 5), but it is false for affine
groups. For example, the embedding

B D

��
� �

0 �

��
,!

��
� �

� �

��
D GL2

is a nonsurjective epimorphism (any two homomorphisms from GL2 that agree on B are equal).4

4This follows from the fact that GL2 =B ' P1. Let f;f 0 be two homomorphisms GL2! G. If f jB D
f 0jB , then g 7! f 0.g/ �f .g/�1 defines a map P1! G, which has image 1G because G is affine and P1 is
complete (see AG 7.5).

Alternatively, in characteristic zero, one can show that any homomorphism of B \ SL2 has at most one
extension to SL2 because any finite dimensional representation of sl2 can be reconstructed from the operators
h and y. Specifically, if hv Dmv and ymC1v D 0, then xv D 0; if hv Dmv and uD ynv, then xynv can be
computed as usual using that Œx;y�D h.
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8 Existence of quotients

PROPOSITION 8.1 Let G be an affine algebraic group over a field k, and let H be an
affine subgroup of G. Among the surjective homomorphism G!Q zero on H , there is a
universal one.

PROOF. For any finite family .G
qi
�! Qi /i2I of surjective morphisms such that H �

Ker.qi / all i , let HI D
T
i2I Ker.qi /. According to (3.3), there exists a family for which

HI is minimal. For such a family, I claim that the map from G to the image of .qi /WG!Q
i2IQi is universal. If it isn’t, then there exists a homomorphism qWG!Q containing

H in its kernel but notHI . But thenHI[fqg DHI \Ker.q/ is properly contained inHI .2

Later (VIII, 17.5), we shall show that, when H is normal and k is a field, the kernel of
the universal homomorphism G!Q is exactly H .

9 Semidirect products

DEFINITION 9.1 An affine group G is said to be a semidirect product of its affine sub-
groupsN andQ, denotedGDN oQ, ifN is normal inG and the map .n;q/ 7!nqWN.R/�

Q.R/!G.R/ is a bijection of sets for all k-algebras R.

In other words, G is a semidirect product of its affine subgroups N and Q if G.R/ is a
semidirect product of its subgroups N.R/ and Q.R/ for all k-algebras R (cf. GT 3.7).

For example, let Tn be the algebraic group of upper triangular matrices, so

Tn.R/D f.aij / 2 GLn.R/ j aij D 0 for i > j g:

Then Tn is the semidirect product of its (normal) subgroup Un and its subgroup Dn.

PROPOSITION 9.2 Let N and Q be affine subgroups of an affine group G. Then G is the
semidirect product of N and Q if and only if there exists a homomorphism G!Q whose
restriction to Q is the identity map and whose kernel is N .

PROOF. )W By assumption, the product map is a bijection of functors N �Q! G. The
composite of the inverse of this map with the projection N �Q ! Q has the required
properties.
(W Let 'WG!Q be the given homomorphism. For each k-algebra R, '.R/ realizes

G.R/ as a semidirect product G.R/DN.R/oQ.R/ of its subgroups N.R/ and Q.R/. 2

LetG be an affine group andX a functor from the category of k-algebras to sets. Recall
V, �6 that an action of G on X is a natural transformation � WG �X ! X such that each
map G.R/�X.R/! X.R/ is an action of the group G.R/ on the set X.R/. Now let N
and Q be algebraic groups and suppose that there is given an action of Q on N

.q;n/ 7! �R.q;n/WQ.R/�N.R/!N.R/

such that, for each q, the map n 7! �R.q;n/ is a group homomorphism. Then the functor

R N.R/o�RQ.R/
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(cf. GT 3.9) is an affine group because, as a functor to sets, it isN �Q, which is represented
by O.N /˝O.G/. We denote it by N o� Q, and call it the semidirect product of N and
Q defined by � .

9.3 When k is a perfect field, Gred is an affine subgroup of G (see VI, 6.3), but it need not
be normal. For example, over a field k of characteristic 3, let G D �3o .Z=2Z/k for the
(unique) nontrivial action of .Z=2Z/k on �3; then Gred D .Z=2Z/k , which is not normal in
G (see SGA 3 VIA 0.2).

A EXAMPLE 9.4 Let k be a field of characteristic 3. There is a unique nontrivial action of the
constant affine group .Z=2Z/k on �3, and we let G D �3o .Z=2Z/k . The reduced group
Gred is the subgroup .Z=2Z/k of G, which is not normal in G.

EXAMPLE 9.5 Over a field of characteristic p, there is an obvious action ofGm on ˛p, and
hence an action of �p on ˛p. The semi-direct product is a noncommutative finite connected
affine group of order p2.

10 Smooth algebraic groups

PROPOSITION 10.1 Quotients and extensions of smooth algebraic groups over a field are
smooth.

PROOF. Let Q be the quotient of G by the affine subgroup N . Then Qkal is the quotient
of Gkal by Nkal . If G is smooth, O.Gkal/ is reduced; as O.Qkal/ � O.Gkal/, it also is
reduced, and so Q is smooth. For extensions, we (at present) appeal to algebraic geometry:
letW ! V be a regular map of algebraic varieties; if V is smooth and the fibres of the map
are smooth subvarieties of W with constant dimension, then W is smooth tba... 2

A 10.2 The kernel of a homomorphism of smooth algebraic groups need not be smooth. For
example, in characteristic p, the kernels of x 7! xpWGm!Gm and x 7! xpWGa!Ga are
not smooth (they are �p and ˛p respectively).

11 Algebraic groups as sheaves

Some of the above discussion simplifies when regard affine groups as sheaves. Throughout
this section, k is a field.

PROPOSITION 11.1 Let F be a functor from the category of k-algebras to sets. If F is
representable, then

(F1) for every finite family of k-algebras .Ri /i2I , the canonical mapF.
Q
i Ri /!

Q
i F.Ri /

is bijective;
(F2) for every faithfully flat homomorphism R!R0 of k-algebras, the sequence

F.R/! F.R0/⇒ F.R0˝RR
0/

is exact (i.e., the first arrow realizes F.R/ as the equalizer of the pair of arrows).
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PROOF. (F1). For any k-algebra A, it follows directly from the definition of product that

Hom.A;
Q
i2I Ri /'

Q
i2I Hom.A;Ri /;

(F2). If R!R0 is faithfully flat, then it is injective, and so

Hom.A;R/! Hom.A;R0/

is injective for any k-algebra A. According to (CA 9.5), the sequence

R!R0⇒R0˝RR
0

is exact, and it follows that

Homk-alg.A;R/! Homk-alg.A;R
0/⇒ Homk-alg.A;R

0
˝RR

0/

is exact. 2

A functor satisfying the conditions (F1) and (F2) is said to be a sheaf for the flat topol-
ogy5.

PROPOSITION 11.2 A functor F WAlgk ! Set is a sheaf if and only if it satisfies the fol-
lowing condition:

(S) for every k-algebra R and finite family .Ri /i2I of k-algebras such that R!
Q
i Ri is

faithfully flat, the sequence

F.R/!
Q
i2I F.Ri /⇒

Q
.i;i 0/2I�I F.Ri ˝kRi 0/

is exact.

PROOF. Easy exercise (cf. Milne 1980, II 1.5). 2

We sometimes use (S1) to denote the condition that F.R/!
Q
i2I F.Ri / is injective

and (S2) for the condition that its image is subset on which the pair of maps agree. [Define
presheaf and separated sheaf.]

PROPOSITION 11.3 For any functor F WAlgk ! Set, there exists a sheaf aF and a natural
transformation F ! aF that is universal among natural transformations from F to sheaves.

PROOF. For a;b 2 F.R/, set a � b if a and b have the same image in F.R0/ for some
faithfully flat R-algebra R0. Then � is an equivalence relation on F.R/, and the functor
R F.R/=� satisfies (S1). Moreover, any natural transformation from F to a sheaf will
factor uniquely through F ! F=�.

Now let F be a functor satisfying (S1). For any k-algebra R, define

F 0.R/D lim
�!

Ker.F.R0/⇒ F.R0˝RR
0//:

where R0 runs over the faithfully flat R-algebras. One checks easily that F 0 is a sheaf, and
that any natural transformation from F to a sheaf factors uniquely through F ! F 0. 2

5Strictly, for the fpqc (fidèlement plat quasi-compacte) topology.
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The sheaf aF is called the associated sheaf of F .
[The functors Sheaves separated presheaves presheaves have left adjoints. Given

a presheafP , define xP .R/DP.R/=�where a� b if there exists a faithfully flatR-algebra
R0 such that a and b have the same image in P.R0/. Then xP is a separated presheaf. Given
a separated presheaf P , define .aP /.R/ to be the set of equivalence classes of pairs .R0;a/
where a 2 P.R0/ has the same image under the maps P.R0/! P.R0˝RR

0/ defined by
R!R0˝RR

0.]

PROPOSITION 11.4 Let S be a sheaf, and let F be a subfunctor of S . If

S.R/D
[

R0 a faithfully flatR-algebra

�
S.R/\F.R0/

�
(intersection inside S.R0/), then S is the sheaf associated with F .

PROOF. Obviously any natural transformation F ! F 0 with F 0 a sheaf extends uniquely
to S . 2

Let P be the category of functors Algk ! Set, and let S be the full subcategory of P
consisting of the sheaves.

PROPOSITION 11.5 The inclusion functor i WS! P preserves inverse limits; the functor
aWP! S preserves direct limits and finite inverse limits.

PROOF. By definition Hom.a.�/;�/'Hom.�; i.�//, and so a and i are adjoint functors.
This implies (immediately) that i preserves inverse limits and a preserves direct limits. To
show that a preserves finite inverse limits, it suffices to show that it preserves finite products
and equalizers, which follows from the construction of a. 2

PROPOSITION 11.6 Let G!Q be a surjective homomorphism of affine groups with ker-
nel N . Then Q represents the sheaf associated with the functor

R G.R/=N.R/:

PROOF. Let P be the functor R G.R/=N.R/. Then P commutes with products, and we
shall show:

(a) For any injective homomorphism R! R0 of k-algebras, the map P.R/! P.R0/ is
injective.

(b) Let
P 0.R/D lim

�!
R0

Ker.P.R0/⇒ P.R0˝RR
0//

where the limit is over all faithfully flat R-algebras; then P 0 'Q:

For (a), we have to prove that

N.R/DN.R0/\G.R/ (intersection inside G.R0/).

For some index set I , N.R/ is the subset of RI defined by some polynomial conditions

fj .: : : ;Xi ; : : :/D 0
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and N.R0/ is the subset of R0I defined by the same polynomial conditions. But if an
element of RI satisfies the conditions when regarded as an element of R0I , then it already
satisfies the conditions in RI (because R!R0 is injective).

For (b), consider the diagram

K.R0/ ! P.R0/ ⇒ P.R0˝RR
0/??y ??y

Q.R/ ! Q.R0/ ⇒ Q.R0˝RR
0/

whereK.R0/ is the equalizer of the top pair of maps — we know thatQ.R/ is the equalizer
of the bottom pair of maps. For any k-algebra R0, the map P.R0/!Q.R0/ is injective,
and so the two vertical arrows induce an injective homomorphism K.R0/!Q.R/. When
we pass to the limit over R0, it follows directly from the definition of “surjective’ (see 7.1)
that this map becomes surjective. 2

NOTES (a) Explain why it is useful to regard the affine groups as sheaves rather than presheaves.
(b) Explain the set-theoretic problems with (11.3) (limit over a proper class), and why we don’t

really need the result (or, at least, we can avoid the problems). See Waterhouse 1975.

12 Terminology

From now on, “subgroup” of an affine group will mean “affine subgroup”. Thus, if G is
an affine (or algebraic) group, a subgroup H of G is again an affine (or algebraic) group,
whereas a subgroup H of G.k/ is an abstract group.

13 Exercises

EXERCISE VII-1 LetA and B be subgroups of the affine groupG, and letAB be the sheaf
associated with the subfunctor R A.R/ �B.R/ of G.

(a) Show that AB is representable by O.G/=a where a is the kernel of homomorphism
O.G/! O.A/˝O.B/ defined by the map a;b 7! abWA�B ! G (of set-valued
functors).

(b) Show that, for any k-algebra R, an element G.R/ lies in .AB/.R/ if and only if its
image in G.R0/ lies in A.R0/ �B.R0/ for some faithfully flat R-algebra R0, i.e.,

.AB/.R/D
\

R0
G.R/\

�
A.R0/ �B.R0/

�
.

EXERCISE VII-2 Let A, B , C be subgroups of an affine group G such that A is a normal
subgroup of B and B normalizes C . Show:

(a) C \A is a normal subgroup of C \B;
(b) CA is a normal subgroup of CB .

EXERCISE VII-3 (Dedekind’s modular laws). LetA,B , C be subgroups of an affine group
G such that A is a subgroup of B . Show:

(a) B \AC D A.B \C/I
(b) if G D AC , then B D A.B \C/.





CHAPTER VIII
Representations of Affine Groups

One of the main results in this chapter is that all algebraic groups over fields can be realized
as subgroups of GLn for some n. At first sight, this is a surprising result, because it says that
all possible multiplications in algebraic groups are just matrix multiplication in disguise.

In this chapter, we often work with algebraic monoids rather than groups since this
forces us to distinguish between “left” and “right” correctly. Note that for a commutative
ring R, the only difference between a left module and a right module is one of notation: it
is simply a question of whether we write rm or mr (or better

r
m). In this chapter, it will

sometimes be convenient to regard R-modules as right modules, and write V ˝kR instead
of R˝k V .

Starting with �7, k is a field.

1 Finite groups

We first look at how to realize a finite group G as a matrix group. Let k be a field. A
representation of G on a k-vector space V is a homomorphism of groups G!Autk-lin.V /,
or, in other words, an action G �V ! V of G on V in which each 
 2 G acts k-linearly.
Let X �G!X be a right action of G on a finite set X . Define V to be the k-vector space
of maps X ! k, and let G act on V according to the rule:

.gf /.x/D f .xg/ for g 2G, f 2 V , x 2X:

This defines a representation of G on V , which is faithful if G acts effectively on X . The
vector space V has a canonical basis consisting of the maps that send one element of X to
1 and the remainder to 0, and so this gives a homomorphism G! GLn.k/ where n is the
order of X . For example, for the symmetric group Sn acting on f1;2; : : : ;ng, this gives the
map � 7! I.�/WSn! GLn.k/ in p.11. When we take X DG, the vector space V is the k-
algebra O.G/ of maps G! k, and the representation is called the regular representation.

111
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2 Definition of a representation

Let V be a k-module. For a k-algebra R, we let

V.R/D V ˝R; (R-module)

EndV .R/D EndR-lin.V .R//; (monoid under composition)

AutV .R/D AutR-lin.V .R//; (group under composition).

Then R  EndV .R/ is a functor from the category of k-algebras to monoids and R  
AutV .R/ is a functor from the category of k-algebras to groups. With the terminology of
(I, 4.2), AutV D End�V . When V is finitely generated and projective, these functors are
representable (IV, 1.6), and so EndV is an affine monoid and AutV is an affine group in this
case.

LetG be an affine monoid or group over k. A linear representation ofG on a k-module
V is a natural transformation r WG! EndV of monoid-valued functors. In other words, it
is a family of homomorphisms of monoids

rRWG.R/! EndR-lin.V .R//; R a k-algebra, (65)

such that, for every homomorphism R!R0 of k-algebras, the diagram

G.R/
rR
����! EndR-lin.V .R//??y ??y

G.R0/
rR0
����! EndR0-lin.V .R0//

commutes. When G is an affine group, r takes values in AutV and is a natural transforma-
tion of group-valued functors. A linear representation is said to be finite-dimensional if V
is finite-dimensional as a k-vector space, and it is faithful if all the homomorphisms rR are
injective.

When k is a field and W is a subspace of V , then W.R/ is a subspace of V.R/ for all
R, and we say that W is a subrepresentation if rR.g/.W.R// � W.R/ for all k-algebras
R and all g 2G.R/.

A homomorphism of linear representations .V;r/! .V 0; r 0/ is a k-linear map uWV !
V 0 such that

V.R/
u.R/
����! V 0.R/??yrR.g/ ??yr 0R.g/

V.R/
u.R/
����! V 0.R/

commutes for all g 2G.R/ and all k-algebras R.
We write V also for the functor R V.R/ defined by V . Then a linear representation

of G on V can also be defined as an action of G on V;

G�V ! V; (66)

such that each g 2G.R/ acts R-linearly on V.R/.
When V D kn, EndV is the monoid R  .Mn.R/;�/ and AutV D GLn. A linear

representation of an affine monoid (resp. group)G on V is a homomorphismG! .Mn;�/

(resp. G! GLn).
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EXAMPLE 2.1 Let G D Ga and let k be a field. Let V be a finite-dimensional k-vector
space, and let �0; : : : ;�i ; : : : be a sequence of endomorphisms V such that all but a finite
number are zero. For t 2R, let

rR.t/D
X

i�0
�i t

i
2 End.V .R//,

so rR.t/.v˝ c/D
P
�i .v/˝ ct

i . If�
�0 D idV

�i ı�j D
�
iCj
i

�
�iCj all i;j � 0;

(67)

then
rR.tC t

0/D rR.t/C rR.t
0/ for all t; t 0 2R;

and so rR is a representation. We shall see later (6.4) that all finite-dimensional repre-
sentations of Ga are of this form. Note that (67) implies that �i ı �1 D .i C 1/�iC1, and
so �n1 D nŠ�n. When k has characteristic zero, this implies that �1 is nilpotent and that
�n D �

n
1=nŠ, and so

rR.t/D
X

.�1t /
n=nŠD exp.�1t /I

hence the finite-dimensional representations ofGa are just the pairs .V;�1/ with �1 a nilpo-
tent endomorphism of V .1 When k has nonzero characteristic, there are more possibilities.
See Abe 1980, p. 185.

EXAMPLE 2.2 LetG DGLn, and letMn denote the vector space of all n�nmatrices with
entries in k. The actions

.P;A/ 7! PAP�1WG.R/�Mn.R/!Mn.R/

define a linear representation of G on Mn. The orbits of G.k/ acting on Mn.k/ are the
similarity classes, which are represented by the Jordan matrices when k is an algebraically
closed field.

EXAMPLE 2.3 There is a unique linear representation r of G on O.G/ (regarded as a k-
module) such that

.gf /R.x/D fR.xg/; for all g 2G.R/, f 2O.G/, x 2G.R/: (68)

This is called the regular representation. In more detail: the formula (68) defines a map
G.R/�O.G/! R˝O.G/, which extends by linearity to a map G.R/�R˝O.G/!
R˝O.G/.

3 Terminology

From now on, “representation” will mean “linear representation”.

1Let k be a ring of characteristic zero (i.e., containing Q). Then the same argument shows that the repre-
sentations of Ga on k-modules (not necessarily finitely generated) are the pairs .V;�1/ where �1 is a locally
nilpotent endomorphism of V (i.e., nilpotent on every finitely generated submodule). Cf. sx108817.
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4 Comodules

Let .A;m;e/ be a k-algebra, not necessarily commutative. A left A-module is a k-vector
space V together with a k-linear map �WA˝V ! V such that the diagrams

V
�

 ���� A˝Vx??� x??m˝V
A˝V

A˝�
 ���� A˝A˝V

V
�

 ���� A˝V


 x??e˝V
V

'
 ���� k˝V

(69)

commute. On reversing the directions of the arrows, we obtain the notion of comodule over
a coalgebra.

DEFINITION 4.1 Let .C;�;�/ be a k-coalgebra. A right C -comodule2 is a k-linear map
�WV ! V ˝C (called the coaction of C on V ) such that the diagrams

V
�

����! V ˝C??y� ??yV˝�
V ˝C

�˝C
����! V ˝C ˝C

V
�

����! V ˝C


 ??yV˝�
V

'
����! V ˝k

(70)

commute, i.e., such that �
.V ˝�/ı� D .�˝C/ı�

.V ˝ �/ı� D V:

A homomorphism uW.V;�/! .V 0;�0/ of C -comodules is a k-linear map uWV ! V 0 such
that the diagram

V
u

����! V 0??y� ??y�0
V ˝C

u˝C
����! V 0˝C

commutes. A comodule is said to be finite-dimensional if it is finite-dimensional as a k-
vector space.

EXAMPLE 4.2 (a) The pair .C;�/ is a right C -comodule (compare (15), p. 30, with (70)).
More generally, for any k-module V ,

V ˝�WV ˝C ! V ˝C ˝C

is a right C -comodule (called the free comodule on V ). When V is free, the choice of a
basis for V realizes .V ˝C;V ˝�/ as a direct sum of copies of .C;�/:

V ˝C
V˝�
����! V ˝C ˝C??y� ??y�

C n
�n

����! .C ˝C/n:
2It would be more natural to consider left comodules, except that it is right comodules that correspond

to left representations of monoids. Because we consider right comodules we are more-or-less forced to write
V ˝R where elsewhere we write R˝V .
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(b) Let .V1;�1/ and .V2;�2/ be comodules over coalgebras C1 and C2 respectively. The
map

V1˝V2
�1˝�2
����! V1˝C1˝V2˝C2 ' V1˝V2˝C1˝C2

provides V1˝V2 with the structure of a C1˝C2-comodule.
(c) Let .V;�/ be a right C -comodule, and let uWC ! C 0 be a homomorphism of coal-

gebras. The map

V
�
�! V ˝C

V˝u
���! V ˝C 0

provides V with the structure of a right C 0-comodule.
(d) Let V be a k-vector space, and let �WV ! V ˝C be a k-linear map. Choose a basis

.ei /i2I for V , and write
�.ej /D

X
i2I

ei ˝ cij ; cij 2 C; (71)

(finite sum, so, for each j , almost all cij ’s are zero). Then .V;�/ is a right comodule if and
only if3

�.cij / D
P
k2I cik˝ ckj

�.cij / D ıij

�
all i;j 2 I: (72)

For a module V over an algebra A, there is a smallest quotient of A, namely, the image
of A in Endk.V /, through which the action of A on V factors. In the next remark, we
show that for a comodule V over a coalgebra C , there is a smallest subcoalgebra CV of C
through which the co-action of C on V factors.

REMARK 4.3 Assume that k is a field, and let .V;�/ be a C -comodule.
(a) When we choose a k-basis .ei /i2I for V , the equations (72) show that the k-

subspace spanned by the cij is a subcoalgebra of C , which we denote CV . Clearly, CV
is the smallest subspace of C such that �.V / � V ˝CV , and so it is independent of the
choice of the basis. When V is finite dimensional over k, so also is CV .

(b) Recall that for a finite-dimensional k-vector space V ,

Homk-lin.V;V ˝C/' Homk-lin.V ˝V
_;C /:

If �$ �0 under this isomorphism, then

�.v/D
X

i2I
ei ˝ ci H) �0.v˝f /D

X
i2I

f .ei /ci :

In particular, �0.ej ˝ e_i /D cij (notation as in (71)). Therefore CV is the image of �0WV ˝
V _! C .

(c) If .V;�/ is a sub-comodule of .C;�/, then V � CV . To see this, note that the
restriction of the co-identity � of C to V is an element �V of V _ and that �0.v˝ �V /D v

3The first equality can be written symbolically as�
�.cij /

�
D .cik/˝ .ckj /:
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for all v 2 V because

�0.ej ˝ �V /D
X

i2I
�.ej /cij

D .�˝ idC /�.ej /

D .idC ˝�/�.ej / (by (15), p. 30)

D

X
i2I

ej �.cij /

D ej (by (72)).

REMARK 4.4 Assume that k is a field. Recall (II, �3) that the linear dual of a coalgebra
.C;�;�/ is an algebra .C_;�_; �_/ (associative with identity). Let V be a k-vector space,
and let �WV ! V ˝C be a k-linear map. Define � to be the composite of

C_˝V
C_˝�
����! C_˝V ˝C ' V ˝C_˝C

V˝ev
����! V ˝k ' V

where evWC_˝C ! k is the evaluation map. One can check that .V;�/ is a right C -
comodule if and only if .V;�/ is a left C_-module. When C and V are finite-dimensional,
� 7! � is a bijection

Homk-lin.V;V ˝C/' Homk-lin.C
_
˝V;V /,

and so there is a one-to-one correspondence between the right C -comodule structures on
V and the left C_-module structures on V . In the general case, not every C_-module
structure arises from a C -comodule structure, but it is known which do (Dăscălescu et al.
2001, 2.2; Sweedler 1969, 2.1).

Assume that C is flat over k (i.e., as a k-module), and let .V;�/ be a C -comodule. If
W is a k-submodule V , then W ˝C is a k-submodule of V ˝C , and we say that W is a
subcomodule of V if �.W /�W ˝C . Then .W;�jW / is a C -comodule.

PROPOSITION 4.5 Assume that k is a field. Every comodule .V;�/ is a filtered union of its
finite-dimensional sub-comodules.

PROOF. As a finite sum of (finite-dimensional) sub-comodules is a (finite-dimensional)
sub-comodule, it suffices to show that each element v of V is contained in a finite-dimensional
sub-comodule. Let .ei /i2I be a basis for C as a k-vector space, and let

�.v/D
X

i
vi ˝ ei ; vi 2 V;

(finite sum, i.e., only finitely many vi are nonzero). Write

�.ei /D
X

j;k
rijk.ej ˝ ek/; rijk 2 k.

We shall show that
�.vk/D

X
i;j
rijk

�
vi ˝ ej

�
(73)

from which it follows that the k-subspace of V spanned by v and the vi is a subcomodule
containing v. Recall from (70) that

.V ˝�/ı�D .�˝C/ı�:
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On applying each side of this equation to v, we find thatX
i;j;k

rijk.vi ˝ ej ˝ ek/D
X

k
�.vk/˝ ek (inside V ˝C ˝C/:

On comparing the coefficients of 1˝1˝ ek in these two expressions, we obtain (73). 2

COROLLARY 4.6 Assume that k is a field. A coalgebra C is a union of its sub-coalgebras
CV , where V runs over the finite-dimensional sub-comodules of C .

PROOF. For any finite-dimensional sub-comodule V of C ,

V � CV � C

(see 4.3), and so this follows from the proposition. 2

ASIDE 4.7 When k is a noetherian ring, every comodule V over a flat k-coalgebra C is a filtered
union of finitely generated subcomodules (Serre 1993, 1.4). The proof depends on the following
lemma:

Let W be a k-submodule V , and let W ı be the set v 2 V such that �.v/ 2 W ˝C ;
then W ı is a subcomodule of V .

Now W ı �W because

W ı
.70/
D ..idV ˝�/ı�/.W ı/� .idV ˝�/.W ˝C/DW;

and it is clear that W ı the largest comodule contained in W .
Granted this, let W be a finitely generated k-submodule of V . It suffices to show that W

is contained in a finitely generated subcomodule of V . As �.W / is a finitely generated over k,
there exists a finitely generated k-submodule W1 of V such that �.W / � W1˝C . Now W ı1 is a
subcomodule contained in W1, hence finitely generated (because k is noetherian), and it obviously
contains W .

ASIDE 4.8 Now let k be an arbitrary ring, but assume thatC is projective as a k-module. LetW be a
k-submodule of a C -comodule V , and let c.W /� V be the image of the k-module homomorphisms

W ˝C_
�˝id
�! V ˝C ˝C_

id˝ev
�! V:

Then c.W / is the smallest subcomodule of V containing W , and it is a finitely generated k-
submodule if W is (SGA 3, VI, 11.8). The hypothesis “projective” in this statement can not be
replaced by “flat” (ibid. 11.10.1).

5 The category of comodules

Let .C;�;�/ be a flat coalgebra over k. With the obvious definitions, the standard isomor-
phism theorems (cf. IX, 1.1, 1.2, 1.3, 1.4 below) hold for comodules over C . For example,
if .W;�W / is a sub-comodule of .V;�V /, then the quotient vector space V=W has a (unique)
comodule structure �V=W for which .V;�V /! .V=W;�V=W / is a homomorphism. In par-
ticular, the sub-comodules are exactly the kernels of homomorphism of comodules. The
category of comodules over C is abelian and the forgetful functor to k-vector spaces is
exact.
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Now assume that k is a field. A bialgebra structure .m;e/ on C defines a tensor prod-
uct structure on the category of comodules over C : when .V1;�1/ and .V2;�2/ are C -
comodules, V1˝V2 has a natural structure of a C ˝C -comodule (see 4.2b), and the homo-
morphism of coalgebras mWC ˝C ! C turns this into a C -comodule structure (see 4.2c).
The tensor product of the empty family of comodules is the trivial comodule .k;k

e
�!C '

k˝C/. The forgetful functor preserves tensor products.
Assume that V is finite dimensional. Under the canonical isomorphisms

Homk-lin.V;V ˝C/' Homk-lin.V ˝V
_;C /' Homk-lin.V

_;C ˝V _/; (74)

a right coaction � of C on V corresponds to left coaction �0 of C on V _. When C is a Hopf
algebra, the inversion S can be used to turn �0 into a right coaction �_, namely, define �_

to be the composite

V _
�0

�! A˝V _
t
�! V _˝A

V _˝S
�! V _˝A: (75)

The pair .V _;�_/ is called the dual or contragredient of .V;�/. The forgetful functor
preserves duals.

SUMMARY 5.1 Let C be a coalgebra over a field k.

˘ The finite-dimensional comodules over C form an abelian category Comod.C /; the
forgetful functor to vector spaces is exact.

˘ A bialgebra structure on C provides Comod.C / with a tensor product structure; the
forgetful functor preserves tensor products.

˘ A Hopf algebra structure on C provides Comod.C / with a tensor product structure
and duals; the forgetful functor preserves duals.

6 Representations and comodules

A comodule over a bialgebra .A;m;e;�;�/ is defined to be a comodule over the coalgebra
.A;�;�/.

PROPOSITION 6.1 Let G be an affine monoid over k, and let V be a k-module. There is
a natural one-to-one correspondence between the linear representations of G on V and the
O.G/-comodule structures on V .

We give two independent proofs of the proposition. The first is very simple, but assumes
that V is free and makes use of the choice of a basis.

Proof of Proposition 6.1 in the case that V is free

The choice of a basis .ei /i2I for V identifies EndV with a matrix algebra, and natural
transformations r WG! EndV with matrices .rij /.i;j /2I�I of elements of O.G/:

rR.g/D
�
rijR.g/

�
i;j2I

; g 2G.R/

(recall that O.G/DNat.G;A1/). Moreover, r is a homomorphism of affine monoids if and
only if�

rij
�
R
.gg0/D

P
k2I .rik/R .g/ �

�
rkj
�
R
.g0/; all g;g0 2G.R/; i;j 2 I; (76)
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and .rij /R.1/D ıij (i;j 2 I /. On the other hand, to give a k-linear map �WV ! V ˝O.G/
is the same as giving a matrix .rij /i;j2I of elements of O.G/,

�.ej /D
P
i2I ei ˝ rij ;

Moreover, � is a co-action if and only if

�.rij /D
P
k2I rik˝ rkj , all i;j 2 I; (77)

and �.rij /D ıij (i;j 2 I ). (see (72), p. 115). But

�.rij /R.g;g
0/D

�
rij
�
R
.g �g0/

and �P
k2I rik˝ rkj

�
R
.g;g0/D

P
k2I .rik/R .g/ �

�
rkj
�
R
.g0/

(see p. 47), and so r is a homomorphism if and only if � is a co-action. Therefore

r$ .rij /$ �

gives a one-to-one correspondence between the linear representations of G on V and the
O.G/-comodule structures on V .

SUMMARY 6.2 Let V D kn with its canonical basis .ei /i2I ; a matrix .rij /i;j2I of elements
of O.G/ satisfying

�.rij / D
P
k2I rik˝ rkj

�.rij / D ıij

�
all i;j 2 I;

defines a coaction of O.G/ on V by

�.ej /D
P
i2I ei ˝ rij ;

and a homomorphism r WG! GLn by

r.g/D .rij .g//i;j2I ;

such that r� is the homomorphism O.GLn/!O.G/ sending Xij to rij :

Proof of Proposition 6.1 in general

We construct a canonical correspondence between the representations and the comodule
structures. In Proposition 6.8 we show that, when a basis has been chosen, the correspon-
dence becomes that described above.

Let ADO.G/. We prove the following more precise result:

Let r WG ! EndV be a representation; the “universal” element a D idA in
G.A/ ' Homk-alg.A;A/ maps to an element of EndV .A/

def
D EndA-lin.V .A//

whose restriction to V � V.A/ is a comodule structure �WV ! V ˝A on V .
Conversely, a comodule structure � on V determines a representation r such
that, for R a k-algebra and g 2 G.R/, the restriction of rR.g/WV.R/! V.R/

to V � V.R/ is

V
�
�! V ˝A

V˝g
�! V ˝R:

These operations are inverse.
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Let V be a k-module, and let r WG ! EndV be a natural transformation of set-valued
functors. Let g 2G.R/D Homk-alg.A;R/, and consider the diagram:

V V ˝A V ˝R

V ˝A V ˝R

v 7! v˝1

�
def
D rA.a/jV

V ˝g

rA.a/ rR.g/

V ˝g

The k-linear map � determines rR.g/ because rA.a/ is the unique A-linear extension of �
to V ˝A and rR.g/ is the unique R-linear map making the right hand square commute.
Thus the map � determines the natural transformation r . Moreover, the diagram can be
used to extend any k-linear map �WV ! V ˝A to a natural transformation r of set-valued
functors, namely, for g 2 G.R/ D Homk-alg.A;R/ and define rR.g/ to be the linear map
V.R/! V.R/ whose restriction to V is .V ˝g/ı�. Thus,

rR.g/.v˝ c/D .V ˝g/.c�.v//; for all g 2G.R/, v 2 V , c 2R: (78)

In this way, we get a one-to-one correspondence r$ � between natural transformations of
set-valued functors r and k-linear maps �, and it remains to show that r is a representation
of G if and only if � is a comodule structure on V .

Recall that the identity element 1G.k/ of G.k/ is A
�
�! k. To say that rk.1G.k// D

idV˝k means that the following diagram commutes,

V V ˝A V ˝k

V ˝A V ˝k

v 7! v˝1

v 7! v˝1

�

V ˝�

V ˝k

V ˝�

i.e., that the right hand diagram in (70) commutes.
Next consider the condition that rR.g/rR.h/D rR.gh/ for g;h 2 G.R/. By definition

(see (10)), gh is the map

A
�
�! A˝A

.g;h/
�! R;

and so rR.gh/ acts on V as

V
�
�! V ˝A

V˝�
����! V ˝A˝A

V˝.g;h/
������! V ˝R: (79)

On the other hand, rR.g/rR.h/ acts as

V
�
�! V ˝A

V˝h
���! V ˝R

�˝R
���! V ˝A˝R

V˝.g;id/
������! V ˝R;

i.e., as

V
�
�! V ˝A

�˝A
���! V ˝A˝A

V˝.g;h/
������! V ˝R: (80)

The maps (79) and (80) agree for all g;h if and only if the first diagram in (70) commutes.
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Complements

EXAMPLE 6.3 Recall (4.2) that, for every k-bialgebra A, the map �WA! A˝A is a
comodule structure on A. When AD O.G/, this comodule structure on A corresponds to
the regular representation of G on O.G/ (2.3).

EXAMPLE 6.4 Assume that k is a field, and let �WV ! V ˝O.Ga/ be a finite-dimensional
O.Ga/-comodule. The k-vector space O.Ga/' kŒX� has basis 1;X;X2; : : : and so we can
write

�.v/D
X

i�0
�i .v/˝X

i , v 2 V:

As � is k-linear, so also is each map v 7! �i .v/, and as the sum is finite, for each v; �i .v/ is
zero except for a finite number of i . As V is finite-dimensional, this means that only finitely
many of the �i are nonzero. It follows that the representations constructed in (2.1) form a
complete set.

PROPOSITION 6.5 Assume that k is a field. Let r WG! EndV be the representation corre-
sponding to a comodule .V;�/. A subspace W of V is a subrepresentation if and only if it
is a subcomodule.

PROOF. Routine checking. 2

PROPOSITION 6.6 Assume that k is a field. Every representation of G is a union of its
finite-dimensional subrepresentations.

PROOF. In view of (6.1) and (6.5), this is simply a restatement of Proposition 4.5. 2

ASIDE 6.7 Let G be a flat affine group over a ring k (i.e., O.G/ is flat as a k-module), and let
.V;r/ be a representation of G. Let � be the corresponding O.G/-comodule structure on V , and let
W be a k-submodule of V . Because O.G/ is flat, W ˝O.G/ � V ˝O.G/, and .W;�jW / is an
O.G/-comodule if �.W / �W ˝O.G/. When this is so, we call the corresponding representation
.W;r jW / of G a subrepresentation of .V;r/. Therefore, when G is flat, there is a one-to-one corre-
spondence between subrepresentations of .V;r/ and subcomodules of .V;�/. When k is noetherian
and G is flat, every representation of G is a union of its finitely generated subrepresentations (4.7).

PROPOSITION 6.8 Let r WG ! EndV be the representation corresponding to a comodule
.V;�/. Assume that V is a free k-module, and choose a basis .ei /i2I for V . Write

�.ej /D
X

i
ei ˝aij ; aij 2O.G/: (81)

Then, for each g 2G.R/,

rR.g/.ej ˝1/D
P
i2I ei ˝g.aij /D

P
i2I ei ˝aijR.g/ (82)

(equality in V.R/; recall that aijR is a map G.R/! R and that rR.g/ is a map V.R/!
V.R/).
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PROOF. According to (78),

rR.g/.ej ˝1/D .idV ˝g/.�.ej //

D .idV ˝g/.
P
i ei ˝aij /

D
P
i ei ˝g.aij /

D
P
i ei ˝aijR.g/:

In the last step, we used that g.f /D fR.g/ for f 2O.G/ and g 2G.R/ (see I, 3.13). 2

COROLLARY 6.9 Let .G;r/ be the representation corresponding to a comodule .V;�/. As-
sume that V is a free k-module, with basis .ei /i2I . Then O.EndV / is a polynomial ring
in variables Xij (i;j 2 I ) where Xij acts by sending an endomorphism of V to its .i;j /th
matrix entry. The homomorphism O.EndV /!O.G/ defined by r sends Xij to aij where
aij is given by (81).

PROOF. Restatement of the proposition. 2

COROLLARY 6.10 Let r WG ! EndV be the representation corresponding to a comodule
.V;�/. Let H be an affine subgroup of G, and let O.H/DO.G/=a. The following condi-
tions on a vector v 2 V are equivalent:

(a) for all k-algebras R and all g 2H.R/, rR.g/.vR/D vRI
(b) �.v/� v˝1 mod V ˝a.

PROOF. We may suppose that v ¤ 0, and so is part of a basis .ei /i2I for V , say v D ej .
Let .aij /i;j2I be as in (81); then (b) holds for ej if and only if aij � ıij 2 a for all i . On
the other hand, (82) shows that (a) holds for ej if and only if the same condition holds on�
aij
�
. 2

We say that v 2 V is fixed by H if it satisfies the equivalent conditions of the corollary,
and we let V H denote the subspace of fixed vectors in V . If H.k/ is dense in H , then
v 2 V H if and only if r.g/vD v for all g 2H.k/ (because there is a largest subgroup of G
fixing v).

LEMMA 6.11 Let G, r , V , �, and H be as in the corollary, and let R be a k-algebra. The
following submodules of V.R/ are equal:

(a) V H ˝R;
(b) fv 2 V.R/ j rR0.g/.vR0/D vR0 for all R-algebras R0 and g 2H.R0/gI
(c) fv 2 V.R/ j �.v/� v˝1 mod V ˝a˝Rg.

PROOF. Nothing in this section requires that k be a field (provided one assumes V to be
free). Therefore the equality of the sets in (b) and (c) follows by taking k DR in Corollary
6.10. The condition

�.v/� v˝1 mod V ˝a

is linear in v, and so if W is the solution space over k, then W ˝k R is the solution space
over R. This proves the equality of the sets in (a) and (c). 2

!Need to fix this. In 6.10 we assume that v is part of a basis.!
For the remainder of this chapter, k is a field.
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7 The category of representations of G

Let G be an affine monoid over a field k, and let Rep.G/ be the category of representations
of G on finite-dimensional k-vector spaces. As this is essentially the same as the category
of finite-dimensional O.G/-comodules (see 6.1), it is an abelian category and the forgetful
functor to k-vector spaces is exact and faithful.

The tensor product of two representations .V;r/ and .V 0; r 0/ is defined to be .V ˝
V;r˝ r 0/ where .r˝ r 0/R.g/D rR.g/˝ r 0R.g/.

When G is a group, the contragredient (or dual) of a representation .V;r/ is defined to
be .V _; r_/ where,�

r_R.g/.f /
�
.v/D f .rR.g

�1/v/; g 2G.R/; f 2 V _.R/; v 2 V.R/

(more succinctly, .gf /.v/D f .g�1v/).

PROPOSITION 7.1 Let .V;r/ and .V 0; r 0/ be representations of G, and let � and �0 be the
corresponding comodule structures on V and V 0. The comodule structures on V ˝V 0 and
V _ defined by r˝ r 0 and r_ are those described in �5.

PROOF. Easy exercise for the reader. 2

8 Affine groups are inverse limits of algebraic groups

It is convenient at this point to prove the following theorem.

THEOREM 8.1 Every affine monoid (resp. group) over a field is an inverse limit of its
algebraic quotients.

In particular, every affine monoid (resp. group) is an inverse limit of algebraic monoids
(resp. groups) in which the transition maps are quotient maps.

We prove Theorem 8.1 in the following equivalent form (recall that a k-bialgebra is said
to be finitely generated if it is finitely generated as k-algebra, II, 4.3).

THEOREM 8.2 Every bialgebra (resp. Hopf algebra) over field k is a directed union of its
finitely generated sub-bialgebras (resp. Hopf subalgebras) over k.

PROOF. Let A be a k-bialgebra. By (4.5), every finite subset of A is contained in a finite-
dimensional k-subspace V such that �.V / � V ˝A. Let .ei / be a basis for V , and write
�.ej /D

P
i ei ˝aij . Then �.aij /D

P
k aik˝akj (see (72), p. 115), and the subspace L

of A spanned by the ei and aij satisfies �.L/� L˝L. The k-subalgebra A0 generated by
L satisfies �.A0/� A0˝A0, and so it is a finitely generated sub-bialgebra of A. It follows
that A is the directed union AD

S
A0 of its finitely generated sub-bialgebras.

Suppose that A has an inversion S . If �.a/D
P
bi ˝ ci , then �.Sa/D

P
Sci ˝Sbi

(Exercise II-3b). Therefore, the k-subalgebra A0 generated by L and SL satisfies S.A0/�
A0, and so it is a finitely generated Hopf subalgebra of A. It follows that A is the directed
union of its finitely generated Hopf subalgebras. 2

COROLLARY 8.3 Let B be a Hopf algebra over a field, and let A be a Hopf subalgebra of
B . Then A and B are directed unions of finitely generated Hopf subalgebras Ai and Bi
such that Ai � Bi .
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PROOF. Since each finitely generated Hopf subalgebra of A is contained in a finitely gen-
erated Hopf subalgebra of B , this follows easily from the theorem. 2

COROLLARY 8.4 Let A be a Hopf algebra over a field k. If A is an integral domain and its
field of fractions is finitely generated (as a field) over k, then A is finitely generated.

PROOF. Any finite subset S of A is contained in a finitely generated Hopf subalgebra A0 of
A. When S is chosen to generate the field of fractions of A, then A0 and A have the same
field of fractions, and so they are equal (VI, 11.2). 2

COROLLARY 8.5 A Hopf algebra over a field whose augmentation ideal is finitely gener-
ated is itself finitely generated.

PROOF. Let A be a Hopf algebra. If IA is finitely generated, then there exists a finitely
generated Hopf subalgebra A0 of A containing a set of generators for IA. The inclusion
A0 ! A corresponds to a quotient map G ! G0 whose kernel has Hopf algebra A˝A0
A0=IA0 'A=IA0ADA=IA ' k. Proposition VII, 1.1 shows that G 'G0, and so A0 'A.2

PROPOSITION 8.6 Every quotient of an algebraic group over a field is itself an algebraic
group.

PROOF. We have to show that a Hopf subalgebra A of a finitely generated Hopf algebra
B is finitely generated. Because B is noetherian, the ideal IAB is finitely generated, and
because B is flat over A, the map IA˝AB!A˝AB 'B is an isomorphism of IA˝AB
onto IAB . Therefore IA˝B is a finitely generated as a B-module, and as B is faithfully
flat over A, this implies that IA is finitely generated.4 2

ASIDE 8.7 Proposition 8.6 does require proof, because subalgebras of finitely generated k-algebras
need not be finitely generated, even when k is a field. For example, the subalgebra kŒX;XY;XY 2; : : :�
of kŒX;Y � is not even noetherian. There are even subfields K of k.X1; : : : ;Xn/ containing k such
that K \kŒX1; : : : ;Xn� is not finitely generated as a k-algebra (counterexamples to Hilbert’s four-
teenth problem; Nagata and others).

ASIDE 8.8 An affine group is said to be separable if it is an inverse limit of a countable collection
of algebraic quotients. This is a useful class of affine groups: countable inverse limits are easier to
work with than general inverse limits, and most naturally occurring affine groups are separable.

ASIDE 8.9 Theorem 8.1 is also true for nonaffine group schemes: every quasicompact group scheme
over a field k is a filtered inverse limit of group schemes of finite type over k (Perrin 1976).

4As a B-module, IA˝AB has a finite set of generators fc1˝b1; : : : ; cm˝bmg, and the map

.a1; : : : ;am/ 7!˙aici WA
m
! IA

is surjective because it becomes surjective when tensored with B .
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9 Algebraic groups admit finite-dimensional faithful
representations

It is obvious that the regular representation (over any ring) is faithful: let g 2 G.R/ and
suppose that rA.g/D 1; then fR0.x/D fR0.xg/ for all R-algebras R0 and all x 2 G.R0/,
which implies that g D 1.

We now assume that k is a field, and prove that every sufficiently large finite-dimensional
subrepresentation of the regular representation will be faithful.

THEOREM 9.1 For any algebraic group G, the regular representation of G has faithful
finite-dimensional subrepresentations; in particular, the regular representation itself is faith-
ful.

PROOF. Let ADO.G/, and let V be a finite-dimensional subcomodule of A containing a
set of generators for A as a k-algebra. Let .ei /1�i�n be a basis for V , and write �.ej /DP
i ei˝aij . According to (6.9), the image of O.GLV /!A contains the aij . But, because

�WA! k is a co-identity (see (15), p. 30),

ej D .�˝ idA/�.ej /D
X
i

�.ei /aij ;

and so the image contains V ; it therefore equals A. We have shown that O.GLV /! A is
surjective, which means thatG!GLV is injective (VII, 2.1). [Variant: AV � V (see 4.3c),
and so AV D A; this implies that the representation on V is faithful.] 2

COROLLARY 9.2 Every affine group admits a faithful family of finite-dimensional repre-
sentations.

PROOF. Write G as an inverse limit G D lim
 �i2I

Gi of algebraic groups, and, for each
i 2 I , choose a faithful finite-dimensional representation .Vi ; ri / of Gi . Each .Vi ; ri / can
be regarded as a representation of G, and the family is faithful. 2

The theorem says that every algebraic group can be realized as an algebraic subgroup
of GLn for some n. This does not mean that we should consider only subgroups of GLn
because realizing an algebraic group in this way involves many choices.

PROPOSITION 9.3 Let .V;r/ be a faithful representation of an algebraic group G. Then V
is a union of its finite-dimensional faithful subrepresentations.

PROOF. Let .ei /i2I be a basis for V , and write �.ej /D
P
i2I ei ˝aij , aij 2 A. Because

.V;r/ is faithful, the k-algebra A is generated by the aij (6.9). Because A is finitely gen-
erated as a k-algebra, only finitely many aij ’s are need to generate it, and so there exists a
finite subset J of I such that the aij ’s appearing in �.ej / for some j 2 J generate A. Every
finite-dimensional subrepresentation of .V;r/ containing fej j j 2 J g is faithful. 2

ASIDE 9.4 Does every flat affine group of finite type over a ring admit an injective homomorphism
into GLn for some n? Apparently, this is not known even when k is the ring of dual numbers over
a field and G is smooth (mo22078, Brian Conrad). Using (4.7), one sees by the above arguments
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that a flat affine group scheme G of finite type over a noetherian ring k has a faithful representation
on a finitely generated submodule M of the regular representation. If M is flat over k, then it
is projective, and hence a direct summand of a free finitely generated k-module L, and so G ,!

GLrank.L/. When k is a Dedekind domain and G is flat, the module M is torsion-free, and hence
automatically flat. Thus, every flat affine group scheme of finite type over a Dedekind domain admits
an embedding into GLn for some n. As every split reductive group scheme over a ring k arises by
base change from a similar group over Z (Chevalley), such group schemes admit embeddings into
GLn. Since every reductive group splits over a finite étale extension of the base ring (SGA 3), an
argument using restriction of scalars proves the statement for every reductive group (mo22078).

10 The regular representation contains all

Let .V;rV / be a representation of G. For v 2 V.R/ and u 2 V _.R/, let hu;vi D u.v/ 2R.
For a fixed v 2 V and u 2 V _, the maps

x 7! hu;rV .x/viWG.R/!R

are natural in R, and so define an element of O.G/, i.e., there exists a �u.v/ 2O.G/ such
that

�u.v/R.x/D hu;rV .x/vi (in R) for all x 2G.R/:

Let ADO.G/, and let rA be the regular representation of G on A.

PROPOSITION 10.1 The map �u is a homomorphism of representations .V;rV /! .A;rA/.

PROOF. We have to show that

.�u/R ı rV .g/D rA.g/ı .�u/R

for all k-algebras R and all g 2G.R/. For any v 2 V.R/ and x 2G.R/,

.LHS.v//.x/ D �u.rV .g/v/R.x/

D hu;rV .x/rV .g/vi (definition of �u)
D hu;rV .xg/vi (rV is a homomorphism)
D �u.v/R.xg/ (definition of �u)
D .rA.g/�u.v//R.x/ ((68), p. 113)
D .RHS.v//.x/,

as required. 2

PROPOSITION 10.2 If u1; : : : ;un span V _, then the k-linear map

v 7! .�u1.v/; : : : ;�un.v//WV ! An (83)

is injective.

PROOF. Note that �u.v/.1/D hu;vi, and so the composite

V.R/! An.R/!Rn

of (83) with the map “evaluate at 1” is

v 7! .hu1;vi; : : : ;hun;vi/;

which is injective by our choice of the ui ’s. 2



11. Every faithful representation generates Rep.G/ 127

Thus, V embeds into a finite sum of copies of the regular representation. We give a
second proof of this.

PROPOSITION 10.3 Assume that G is a flat affine group over a ring k, and let .V;�/ be a
representation of G. Let V0 denote V regarded as a k-module, and let V0˝O.G/ be the
free comodule on V0 (see 4.2). Then

�WV ! V0˝O.G/

is an injective homomorphism of representations.

PROOF. The coaction on V0˝O.G/ is

V0˝�WV0˝O.G/! V0˝O.G/˝O.G/:

The commutative diagram (see (70), p. 114)

V
�

����! V0˝O.G/??y� ??yV0˝�
V ˝O.G/

�˝O.G/
�����! V0˝O.G/˝O.G/

says exactly that the map �WV ! V0˝O.G/ is a homomorphism of comodules. It is
injective because its composite with idV ˝� is injective (VIII, 4.1). 2

11 Every faithful representation generates Rep.G/

Let .C;�;�/ be a coalgebra over k, and let .V;�/ be a comodule over C . Recall (4.3)
that CV denotes the smallest subspace of C such that �.V / � V ˝CV . The space CV is
a sub-coalgebra of C , and, for any basis .ei /i2I of V , it is spanned by the elements cij
determined by the equation

�.ej /D
X

i2I
ei ˝ cij .

Note that
C˚Vi D

X
i
CVi (sum of subspaces of C ).

Any CV -comodule .W;�W / can be regarded as a C -comodule with the coaction

W
�W
�!W ˝CV �W ˝C:

LEMMA 11.1 Let .V;�/ be a finite-dimensional C -comodule. Every finite-dimensional
CV -comodule (considered as a C -comodule) is isomorphic to a quotient of a sub-comodule
of V n for some n.

PROOF. We may replace C with CV , and so assume that C is finite dimensional. Let
A D C_. Because of the correspondence between right C -comodule structures and left
A-module structures (4.4), it suffices to prove the following statement:

let A be a finite k-algebra and let V be a finite-dimensional faithful left A-
module; then every finite-dimensionalA-moduleW is isomorphic to a quotient
of a submodule of V n for some n.
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Every module W is isomorphic to a quotient of the free module Am for some m, and
so it suffices to prove that A itself is isomorphic to a submodule of V n for some n. But if
e1; : : : ; en span V as a k-vector space, then a 7! .ae1; : : : ;aen/WA! V n is injective because
V is faithful. 2

Now assume that A is a bialgebra over k. Then the tensor product of two A-comodules
has a natural A-comodule structure (�5).

LEMMA 11.2 Let A be a bialgebra over k, and let V and V 0 be finite-dimensional A-
comodules. Then AV˝V 0 D AV �AV 0 .

PROOF. Choose k-bases .ei /i2I and .e0i /i2I 0 for V and V 0, and write

�V .ej /D
X
i2I

ei ˝aij ; �V 0.e
0
j /D

X
i2I 0

e0i ˝a
0
ij :

Then .ei ˝ ei 0/.i;i 0/2I˝I 0 is a basis for V ˝k V 0, and

�V˝V 0.ej ˝ ej 0/D
P
i;i 0 .ei ˝ ei 0/˝ .aij �a

0
i 0j 0/

(see �5). As

AV D haij j i;j 2 I i

AV 0 D haij j i;j 2 I
0
i

AV˝V 0 D haij �a
0
i 0j 0 j i;j 2 I; i 0;j 0 2 I 0i;

the statement is clear. (Alternatively, note that AV ˝AV 0 is the sub-coalgebra attached to
the A˝A-comodule V ˝V 0, and thatAV˝V 0 is the image of this by the multiplication map
mWA˝A! A.) 2

Now assume that A is a Hopf algebra over k. Then the dual of an A-comodule has a
natural A-comodule structure (�5).

LEMMA 11.3 Let A be a Hopf algebra over k, and let S WA! A be its inversion. For any
finite-dimensional A-comodule .V;�/, AV _ D SAV .

PROOF. Under the isomorphisms (74), the right co-action �WV ! V ˝A corresponds to
a left co-action �0WV _ ! A˝V _, and AV is also the smallest subspace of A such that
�0.V _/�AV ˝V

_. It follows from the definition of �_ (see (75)) that SAV is the smallest
subspace of A such that �_.V _/� V _˝A. 2

LEMMA 11.4 Let V be a finite-dimensional comodule over a k-bialgebra A. Then

A.V /
def
D

X
n�0

AV˝n � A

is the smallest sub-bialgebra of A containing AV and 1.

PROOF. It follows from Lemma 11.2 that

AV˝n D AV � � �AV (n factors),

and so it is clear that A.V / is the subalgebra of A generated by AV and 1. 2
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Note that AD
S
V A.V / because AD

S
V AV (see 4.6).

LEMMA 11.5 Let V be a finite-dimensional comodule over a Hopf k-algebra A. Then
A.V ˚V _/ is the smallest sub-bialgebra of A containing AV and 1 and stable under S (in
other words, it is the smallest Hopf subalgebra of A containing AV and 1).

PROOF. From Lemma 11.4, A.V ˚ V _/ is the smallest sub-bialgebra of A containing
AV˚V _ and 1. But

AV˚V _ D AV CAV _
11.3
D AV CSAV ;

and so it is the smallest sub-bialgebra of A containing AV , SAV , and 1. 2

Let G be an algebraic group over k, and let ADO.G/.

LEMMA 11.6 Let .V;r/ be a finite-dimensional representation of G, and let .V;�/ be the
corresponding A-comodule. The representation r is faithful if and only if A.V ˚V _/DA.

PROOF. Choose a basis .ei /i2I for V , and write �.ej /D
P
ei ˝aij . Then A.V ˚V _/ is

the smallest sub-bialgebra of A containing the aij and 1 and stable under S (by 11.5). On
the other hand, the image of O.GLV /! O.G/D A is the k-subalgebra generated by the
aij (6.9). As this image is a sub-bialgebra stable under S , we see that O.GLV /!O.G/ is
surjective (so r is faithful) if and only if A.V ˚V _/D A. 2

THEOREM 11.7 Let G!GLV be a representation of G. If V is faithful, then every finite-
dimensional representation of G is isomorphic to a quotient of a sub-representation of a
direct sum of representations

Nn
.V ˚V _/ .

PROOF. Let W be the direct sum of the representations
Nn

.V ˚ V _/. By definition,
A.V ˚ V _/ D AW . According to Lemma 11.1, every finite-dimensional AW -comodule
is isomorphic to a quotient of a sub-comodule of W . When V is faithful, AW D A. 2

COROLLARY 11.8 Every simple G-module is a Jordan-Hölder quotient of
Nn

.V ˚V _/

for some n.

PROOF. Immediate consequence of the theorem. 2

We close this section with some remarks.

11.9 When M is an affine monoid with coordinate ring O.M/ D A, we let MV denote
the quotient affine monoid of M with coordinate ring A.V /. Similarly, when G is an affine
group, we let GV denote the quotient affine group of G with coordinate ring A.V ˚V _/.
Both MV and GV act faithfully on V . Moreover,

M D lim
 �

MV ; G D lim
 �

GV

because AD
S
A.V /.
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11.10 Let .V;�/ be a finite-dimensional comodule over a Hopf k-algebra A. Choose
a basis .ei /i2I for V and define the matrix .aij / by �.ej / D

P
i2I ei ˝ aij . Let ıV D

det.aij /. Then ıV is an invertible element of A, contained in A.V /, and

A.V ˚V _/D A.V /

�
1

ıV

�
:

11.11 The quotient MV of M is the smallest affine submonoid of EndV containing the
image of r , and the quotient GV of G is the smallest affine subgroup of GLV containing
the image of r .

11.12 Let det.V /D
VdimV

V . Then every simple G-module is a Jordan-Hölder quotient
of
Nn

V ˝
Nm det.V /_ for some m;n.

11.13 It sometimes happens that O.GV / is a quotient of O.EndV / (and not just of O.GLV /),
i.e., that A.V / D A.V ˚V _/. This is the case, for example, if GV is contained in SLV .
In this case, Theorem 11.7 and its corollary simplify: the tensor powers of V ˚V _ can be
replaced by those of V .

ASIDE 11.14 Our exposition of Theorem 11.7 follows Serre 1993.

12 Stabilizers of subspaces

PROPOSITION 12.1 Let G! GLV be a representation of G, and let W be a subspace of
V . The functor

R fg 2G.R/ j gWR DWRg

is a subgroup of G (denoted GW , and called the stabilizer of W in G).

PROOF. Let .ei /i2J be a basis for W , and extend it to a basis .ei /JtI for V . Write

�.ej /D
P
i2JtI ei ˝aij ; aij 2O.G/:

Let g 2G.R/D Homk-alg.O.G/;R/. Then (see 6.8)

gej D
P
i2JtI ei ˝g.aij /:

Thus, g.W ˝R/�W ˝R if and only if g.aij /D 0 for j 2 J , i 2 I . As g.aij /D .aij /R.g/
(see I, 3.13), this shows that the functor is represented by the quotient of O.G/ by the ideal
generated by faij j j 2 J; i 2 I g. 2

ASIDE 12.2 Let k be a ring (not necessarily a field). Let G�V ! V be a linear action of an affine
k-group G on a k-module V , and let W be a submodule of V . By definition, the functor

GW D TG.W;W /:

If W is projective and finitely generated, then Sym.W / is a locally free k-module, and so GW is
represented by a quotient of O.G/ (see V, 6.9).

We say that an affine subgroup H of G stabilizes W if H � GW , i.e., if hWR D WR
for all k-algebras R and h 2H.R/.
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COROLLARY 12.3 Let H be an algebraic subgroup of G such that H.k/ is dense in H . If
hW DW for all h 2H.k/, then H stabilizes W .

PROOF. As hW DW for all h 2H.k/, we have .H \GW /.k/DH.k/, and soH \GW D
H . 2

PROPOSITION 12.4 Let G act on V and V 0, and let W and W 0 be nonzero subspaces of V
and V 0. Then the stabilizer of W ˝W 0 in V ˝V 0 is GW \GW 0 .

PROOF. Clearly GW \GW 0 � GW˝W 0 . Conversely, if g is an element of G.R/ not in
GW .R/, then there exists a nonzero w 2W such that gw …WR. For any nonzero element
w0 of W 0, the element g.w˝w0/ D gw˝gw0 of VR˝V 0R is not in WR˝W 0R,5 and so
g …GW˝W 0.R/. 2

PROPOSITION 12.5 Let G! GLV be a representation of G, and let v 2 V . The functor

R Gv.R/
def
D fg 2G.R/ j g.v˝1/D v˝1 (in VR)g

is a subgroup of G (denoted Gv, and called the isotropy or stability group of v in G).

PROOF. If v D 0, then Gv D G and there is nothing to prove. Otherwise, choose a basis
.ei /i2I for V with ei0 D v for some i0 2 I . Write

�.ej /D
P
i2JtI ei ˝aij ; aij 2O.G/:

An element g 2G.R/ fixes v˝1 if and only if

g.ai i0/D

�
1 if i D i0
0 otherwise.

ThereforeGv is represented by the quotient of O.G/ by the ideal generated by fai i0�ıi i0 j
i 2 I g. 2

DEFINITION 12.6 For a representation r WG! GLV of G,

V G D fv 2 V j gv D v (in VR/ for all k-algebras R and g 2G.R/g:

It is the largest subspace of V on which the action of G is trivial. If � denotes the corre-
sponding coaction, then

V G D fv 2 V j �.v/D v˝1g.

5Let e and e0 be nonzero elements of V and V 0; if e˝ e0 2WR˝W 0R for some k-algebra R, then e2W
and e0 2W 0. To see this, write V DW ˚W1, so that

V ˝V 0 DW ˝V 0˚W1˝V
0:

Let e D e0C e1 with e0 2 W and e1 2 W1. If e1 ¤ 0, then e1˝ e0 ¤ 0 in W1˝V 0 � .W1˝V 0/R, and so
e˝ e0 …

�
W ˝V 0

�
R

.
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13 Chevalley’s theorem

THEOREM 13.1 (CHEVALLEY) Every subgroup of an algebraic group G is the stabilizer
of a one-dimensional subspace in a finite-dimensional representation of G.

PROOF. Let H be a subgroup of G, and let a be the kernel of O.G/!O.H/. According
to (4.5), there exists a finite-dimensional k-subspace V of O.G/ containing a generating
set of a as an ideal and such that

�.V /� V ˝O.G/:

Let W D a\V in V . Let .ei /i2J be a basis for W , and extend it to a basis .ei /JtI for V .
Let

�ej D
P
i2JtI ei ˝aij ; aij 2O.G/:

As in the proof of 12.1,GW is represented by the quotient of O.G/ by the ideal a0 generated
by faij j j 2 J; i 2 I g. Because O.G/!O.H/ is a homomorphism of coalgebras6

�.a/� Ker.O.G/˝O.G/!O.H/˝O.H//DO.G/˝aCa˝O.G/;
�.a/D 0:

The first of these applied to ej , j 2 J , shows that a0 � a, and the second shows that

ej D .�; id/�.ej /D
P
i2I �.ei /aij :

As the ej , j 2 J , generate a (as an ideal), so do the aij , j 2 J , and so a0 D a. Thus H D
GW . The next (elementary) lemma shows that W can be taken to be one-dimensional. 2

LEMMA 13.2 Let W be a finite-dimensional subspace of a vector space V , and let D D
DD

VdimW
W �

VdimW
V . Let u be an automorphism of VR for some k-algebraR. Then

uWR DWR if and only if uDR DDR.

PROOF. Let .ej /j2J be a basis for W , and extend it to a basis .ei /JtI of V . Let w DV
j2J ej . For any k-algebra R,

WR D fv 2 VR j v^w D 0 (in
VdC1

VR)g.

To see this, let v 2 VR and write v D
P
i2JtI aiei , ai 2R. Then

v^w D
P
i2I aie1^� � �^ ed ^ ei .

As the elements e1^� � �^ ed ^ ei , i 2 I , are linearly independent in
VdC1

V , we see that

v^w D 0 ” ai D 0 for all i 2 I:

Let u 2 GL.VR/. If uWR D WR, then obviously .
Vd

u/.DR/ D DR. Conversely,
suppose that .

Vd
u/.DR/DDR, so that .

Vd
u/w D cw for some c 2R�. When v 2WR,

v^w D 0, and so

0D .
VdC1

u/.v^w/D uv^ .
Vd

u/w D c ..uv/^w/;

which implies that uv 2WR. 2

6We use the following elementary fact: for any subspace W of a vector space V , the kernel of V ˝V !
V=W ˝V=W is V ˝W CW ˝V: To prove this, write V DW ˚W 0.
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COROLLARY 13.3 A subgroup H of an algebraic group G is the subgroup of G fixing a
vector in some finite-dimensional representation of G in each of the following two cases:

(a) all the representations of H are semisimple;
(b) a nonzero multiple of each character of H defined over k extends to a similar char-

acter of G.

PROOF. According to Chevalley’s theorem, H is the stabilizer of a line D in a finite-
dimensional representation V of G. Let D_ be the dual of D with H acting contragre-
diently. If we can find a representation V 0 of G containing D_ as an H -stable subspace,
then H will be the subgroup of G fixing any nonzero vector in D˝D_ � V ˝V 0.7

Certainly D_ occurs as a quotient of V _, and so, in case (a), it also occurs as a direct
summand of V _ (regarded as an H -module). In this case, we can take V 0 D V _.

The action ofH onD defines a character ofH , which in case (b) extends to a character
of G. In this case, we can take V 0 DD_. 2

14 Sub-coalgebras and subcategories

LetC be a coalgebra over k. As before, Comod.C / denotes the category of finite-dimensional
right C -comodules. Let D be a sub-coalgebra of C . Any D-comodule .V;�/ becomes a
C -comodule with the coaction

V
�
�! V ˝D � V ˝C:

In this way, we get an exact fully faithful functor Comod.D/! Comod.C /. We let D_

denote the full subcategory of Comod.C / whose objects are isomorphic to a comodule in
the image of this functor.

DEFINITION 14.1 A full subcategory of an abelian category is replete if it is closed under
the formation of finite direct sums, subobjects, and quotient objects.

In particular, every object isomorphic to an object in a replete subcategory also lies in
the subcategory. A replete subcategory is an abelian category, and the inclusion functor is
exact.

THEOREM 14.2 The mapD 7!D_ is a bijection from the set of sub-coalgebras of C onto
the set of replete subcategories of Comod.C /.

PROOF. It is obvious that D_ is replete. Let S be a replete subcategory of Comod.C /, and
let

C.S/D
X

V 2S
CV (sub-coalgebra of C ).

To prove the theorem, we have to show that:

˘ C.D_/DD for all sub-coalgebras D of C , and

7Let v be a nonzero vector in D. Then

H �Gv˝v_ �GD˝D_ DGD \GD_ DGD DH:
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˘ C.S/_ D S for all replete subcategories S of Comod.C /. 2

The first statement follows from Corollary 4.6, and the second follows from Lemma 11.1.

PROPOSITION 14.3 Let A be a bialgebra over k.

(a) A sub-coalgebra D of A is a sub-bialgebra of A if and only if D_ is stable under
tensor products and contains the trivial comodule.

(b) Assume A has an inversion S . A sub-bialgebraD is stable under S if and only ifD_

is stable under the contragredient functor.

PROOF. (a) If D is a sub-bialgebra of A, then certainly D_ is stable under tensor products
and contains the trivial comodule (see �5). For the converse, recall thatDD

S
DV and that

DV �DV 0 DDV˝V 0 (see 11.2), and so D is closed under products. Because D_ contains
V0 D k, D contains DV0 D k.

(b) Use the formula AV _ D SAV (11.3). 2

15 Quotient groups and subcategories

For an affine groupG over k, Rep.G/ denotes the category of finite-dimensionalG-modules.
Let G ! Q be a quotient of G. A representation r WQ! GLV defines a representation
G ! Q

r
�! GLV of G. We get in this way an exact fully faithful functor Rep.Q/!

Rep.G/. The essential image of the functor consists of the representations of G containing
Ker.G!Q/ in their kernel. We let Q_ denote this subcategory of Rep.G/.

THEOREM 15.1 The map Q 7!Q_ is a bijection from the set of isomorphism classes of
quotients of G to the set of replete subcategories of Rep.G/ closed under the formation of
tensor products (including the empty tensor product) and under passage to the contragredi-
ent.

PROOF. Obvious from (14.2), (14.3), and the dictionary between Hopf algebras and their
comodules and affine groups and their representations. 2

16 Characters and eigenspaces

A character of an affine group G is a homomorphism G!Gm. As O.Gm/D kŒX;X�1�
and �.X/ D X ˝X , we see that to give a character � of G is the same as giving an
invertible element a D a.�/ of O.G/ such that �.a/ D a˝a; such an element is said to
be group-like. A one-dimensional representation L of G defines a character of G (because
GLL 'Gm).

A character �WG! Gm defines a representation of G on any finite-dimensional space
V : let g 2 G.R/ act on VR as multiplication by �.g/ 2 R�. For example, � defines a
representation of G on V D kn by

g 7!

0B@�.g/ 0
: : :

0 �.g/

1CA ; g 2G.R/:
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Let r WG! GLV be a representation of G. We say that G acts on V through a character�
if

r.g/v D �.g/v all g 2G.R/, v 2 VR:

More precisely, this means that the image of r is contained in the centre Gm of GLV and is
the composite of

T
�
�!Gm ,! GLV : (84)

More generally, we say that G acts on a subspace W of V through a character � if W
is stable under G and G acts on W through �. Note that this means, in particular, that
the elements of W are common eigenvectors for the g 2 G.k/: if w 2 W , then for every
g 2 G.k/, r.g/w is a scalar multiple of w. If G acts on subspaces W and W 0 through a
character �, then it acts on W CW 0 through �. Therefore, there is a largest subspace V� of
V on which G acts through �, called the eigenspace for G with character �.

LEMMA 16.1 Let .V;r/ be a representation of G, and let .V;�/ be the corresponding co-
module. For any character � of G,

V� D fv 2 V j �.v/D v˝a.�/g.

PROOF. LetW be a subspace of V . ThenG acts onW through � if and only if �jW factors
as

W
w 7!w˝X
�������!W ˝O.Gm/

w˝X 7!w˝a.�/
�����������!W ˝O.G/. 2

THEOREM 16.2 Let r WG! GL.V / be a representation of an algebraic group on a vector
space V . If V is a sum of eigenspaces, V D

P
�2� V�, then it is a direct sum of the

eigenspaces
V D

M
�2�

V�:

PROOF. We first prove this when G is smooth. We may replace k with a larger field, and
so assume that k is algebraically closed. If the sum is not direct, there exists a finite subset
f�1; : : : ;�mg, m� 2; of � and a relation

v1C�� �Cvm D 0, vi 2 V�i , vi ¤ 0. (85)

On applying g 2G.k/ to (85), we get a relation

�1.g/v1C�� �C�m�1.g/vm�1C�m.g/vm D 0: (86)

As �m ¤ �m�1 and G is smooth, there exists a g 2 G.k/ such that �m.g/ ¤ �m�1.g/.
Multiply (86) by �m.g/�1 and subtract it from (85). This will give us a new relation of the
same form but with fewer terms. Continuing in this fashion, we arrive at a contradiction.

For the proof of the general case, we shall make use of the elementary lemma XIV, 1.2,
which says that any set of units a in O.G/ satisfying�.a/D a˝a is linearly independent.
From the relation (85), we get a relation

0D
P
i2J �.vi /D

P
i2J vi ˝a.�i /

which contradicts the linear independence of the a.�i /. 2

In Chapter XV we shall show that when G is a split torus, V is always a sum of the
eigenspaces V�. In general, this will be far from true. For example, SLn has no nontrivial
characters.



136 VIII. Representations of Affine Groups

17 Every normal affine subgroup is a kernel

LEMMA 17.1 Let v and w be nonzero vectors in vector spaces V and W respectively, and
let u and ˇ be endomorphisms of VR and WR for some k-algebra R. If v˝w is fixed by
u˝ˇ, then there exists a c 2R� such that u.v/D cv and ˇ.w/D c�1w.

PROOF. Write
V D hvi˚V 0; W D hwi˚W 0:

Then
V ˝W D hv˝wi ˚ hvi˝W 0 ˚ V 0˝hwi ˚ V 0˝W 0;

where hv˝wi D hvi˝hwi ¤ 0. Write

uv D avCv0; ˇw D bwCw0; a;b 2R; v0 2 V 0R; w0 2W 0R.

Then
.u˝ˇ/.v˝w/D ab.v˝w/Cav˝w0Cv0˝bwCv0˝w0:

If .u˝ˇ/.v˝w/D v˝w, then ab D 1 and

a
�
v˝w0

�
D 0D b

�
v0˝w

�
:

As a;b 2R� and v ¤ 0¤ w, this implies that w0 D 0D v0, as required. 2

LEMMA 17.2 For any normal subgroup N of an affine group G and representation .V;r/
of G, the subspace V N is stable under G.

PROOF. Let w 2 .V N /R and let g 2 G.R/ for some k-algebra R. For any R-algebra R0

and n 2N.R0/

r.n/.r.g/w/D r.ng/w D r.gn0/w D r.g/r.n0/w D r.g/w;

because n0 D g�1ng 2N.R0/. Therefore, r.g/w 2 .V N /R, as required. 2

LEMMA 17.3 Let G be an affine group over k, and let .V;r/ be a representation of G. If
V is a sum of simple subrepresentations, say V D

P
i2I Si (the sum need not be direct),

then for any subrepresentation W of V , there is a subset J of I such that

V DW ˚
M

i2J
Si :

In particular, V is semisimple.

PROOF. Let J be maximal among the subsets of I such the sum SJ
def
D
P
j2J Sj is direct

and W \SJ D 0. I claim that W CSJ D V (hence V is the direct sum of W and the Sj
with j 2 J ). For this, it suffices to show that each Si is contained in W CSJ . Because Si
is simple, Si \ .W CSJ / equals Si or 0. In the first case, Si �W CSJ , and in the second
SJ \Si D 0 and W \ .SJ CSi /D 0, contradicting the definition of I . 2

LEMMA 17.4 Suppose that k is algebraically closed. Every normal subgroup of an alge-
braic group G over k occurs as the kernel of representation of G.
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PROOF. Let N be a normal subgroup of G. According to Chevalley’s theorem 13.1, N is
the stabilizer of a line L in a representation V of G. Let N act on L through the character
�. After possibly replacing .V;L/ with a second pair, we shall find a G-module U and
a line L0 in U such that N acts on L0 through � and L0 is a direct summand of U as an
N -module. Then U_ contains a line L_ on which N acts through the character ��1, and
L˝L_ � .V ˝U_/N . If an element u of G.R/ acts trivially on .V ˝U_/NR , then it acts
trivially on .L˝L_/R, and so it stabilizesLR in VR (by 17.1); hence u 2N.R/. Therefore
N is the kernel of the representation of G on .V ˝U_/N .

It remains to construct U . Suppose first that G is smooth. In this case, we take U to
be the smallest G-stable subspace of V containing L. The subspace

P
g2G.k/gL of V is

stable under G.k/, hence under G (12.3), and so equals U . According to Lemma 17.3, U
decomposes into a direct sum U D

L
i2I Li of lines Li stable under N , one of which can

be taken to be L.
If G is not smooth, then the characteristic of k is p ¤ 0, and there exists an n such that

O.G/pn is a reduced Hopf subalgebra of O.G/ (see VI, 10.2). In this case, we replace V by
V ˝p

n

and L by L˝p
n

— Proposition 12.4 shows that N is still the stabilizer of L. Let G0

be the quotient of G such that O.G0/DO.G/pn . Choose a basis .ei /i2I for V containing
a nonzero element e of L. Write

�.e/D e˝aC
X

ei¤e
ei ˚ai ; ai1 2 aD Ker.O.G/!O.N //: (87)

In replacing L with L˝p
r

, we replaced the original a with ap
n

, which now lies in O.G0/.
Let L0 D hai �O.G0/, and consider the representation

G!G0! GLO.G0/

of G on O.G0/. The character � of N corresponds to the element xa of O.N /, where xa is
the image of b in O.N /DO.G/=a (see (87)). As

�.a/� a˝a mod O.G/˝O.G/=a;

N acts on the line L0 through the same character �. Because G0 is smooth, we can take U
to be the smallest G0-stable subspace of O.G0/ containing L0, as in the paragraph above. 2

THEOREM 17.5 Let N be a normal subgroup of an algebraic group G. The universal
surjective homomorphism G!Q containing N its kernel (see VII, 8.1) has kernel exactly
N .

PROOF. Lemma 17.4 show that, over some finite extension k0 of k, there exists a homo-
morphismGk0!H with kernelNk0 . The kernel ofG!˘k0=kH isN . From the universal
property of G!Q, we see that Ker.G!Q/�N , and hence the two are equal. 2

COROLLARY 17.6 For any distinct normal subgroups N �N 0 of an affine group G, there
exists a representation of G on which N acts trivially but N 0 acts nontrivially.

PROOF. Let Q D G=N be the quotient of G by N , and let Q! GLV be a faithful repre-
sentation of Q. The composite G!Q! GLV is the required representation. 2
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18 Variant of the proof of the key Lemma 17.4

LEMMA 18.1 Let .V;r/ be a finite-dimensional faithful representation of an algebraic
group G, and let N be the kernel of the representation of G on V _˝V . Then

N.R/D fu 2G.R/ j there exists a c 2R such that ux D cv for all v 2 V g:

In other words, for any subgroup G of GLV , the subgroup of G acting trivially on
V _˝V is the subgroup acting on V by scalars.

PROOF. Let .ei /1�i�n be a basis for V , and let eij D e_i ˝ ej . Let u be endomorphism of
VR for some k-algebra R. A direct calculation shows that u.eij / D eij for all i;j if and
only if there exists a c 2R such that uei D cei for all i . 2

LEMMA 18.2 Let G be an algebraic group, and let H be a subgroup of G. The following
are equivalent:

(a) H is normal in G;
(b) for each representation V of G and k-character � of H , the subspace V � of V on

which H acts through � is stable under G;
(c) every H -isotypic component of a representation of G is stable under G.

PROOF. See André 1992, Lemma 1. (We sketch the proof of (a) H) (b). For any g 2G.k/,
gV � D V g�, but the action of G on the set of k-characters of H is trivial, because G is
connected and the set is discrete. When G is smooth, this is shown in the proof of (XVI,
4.7).) 2

We now prove that every normal subgroup N of a connected algebraic group G occurs
as the kernel of a representation of G (without assumption on the field k). Let L be a line
in a representation V of G such that GL D N . Then N acts on L through a character �.
Let W be the smallest G-stable subspace of V containing L. Then W � V � by (18.2), and
so N is contained in the kernel H of G! GLW _˝W . According to (18.1), H acts on W
through a k-character. In particular, it stabilizes L, and so H �N .

19 Applications of Corollary 17.6

LEMMA 19.1 Let N1 and N2 be normal subgroups of an affine group G. If Rep.G/N1 D
Rep.G/N2 then N1 DN2.

PROOF. If N1 ¤ N2, then Corollary 17.6 shows that there exists a representation .V;r/ of
G and a v 2 V fixed by N1 but not by N1N2. Then V N1 is an object of Rep.G/N1 but not
of Rep.G/N2 , which contradicts the hypothesis. 2

THEOREM 19.2 LetN be a normal subgroup of an affine groupG, and letQ be a quotient
of G. Then N D Ker.G!Q/ if and only if Rep.G/N DQ_.
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PROOF. ): According to Theorem 7.8, Chapter VII, a representation r WG!GLV factors
throughQ (and so lies inQ_) if and only if r mapsN to 1 (and so .V;r/ lies in Rep.G/N ).
(: Let N 0 be the kernel of G ! Q. Then Rep.G/N

0

D Q_, and so Rep.G/N D
Rep.G/N

0

. This implies that N DN 0. 2

COROLLARY 19.3 The map N 7! Rep.G/N is a bijection from the set of normal sub-
groups of G to the set of replete subcategories of Rep.G/ closed under tensor products and
passage to the contragredient.

PROOF. Let S be a replete subcategory of Rep.G/ closed under tensor products and pas-
sage to the contragredient. The S D Q_ for some quotient Q of G, well-defined up to
isomorphism, and the kernel N of G!Q is a normal subgroup of G. The maps S 7! N

and N 7! Rep.G/N are inverse. 2

THEOREM 19.4 For any normal subgroup N of an affine group G, there exists a quotient
map with kernel N .

PROOF. The subcategory Rep.G/N of Rep.G/ is replete and closed under tensor products
and passage to the contragredient. Therefore Rep.G/N DQ_ for some quotient Q of G,
and the Theorem 19.2 implies that N is the kernel of G!Q. 2

NOTES Add a discussion of the correspondence between normal subgroups of an affine group G
and the normal Hopf ideals in O.G/ (Abe 1980, p. 179), and also of the correspondence between
normal Hopf ideals and Hopf subalgebras (ibid. 4.4.7, p. 207, in the case that k is algebraically
closed and the Hopf algebras are assumed to be reduced).

NOTES Add a discussion of the general theorem on the existence of quotients of group schemes
over artinian rings (SGA 3, VIA).





CHAPTER IX
Group Theory: the Isomorphism

Theorems

In this chapter, we show that the (Noether) isomorphism theorems in abstract group theory
hold also for affine groups. Throughout, k is a field.

1 Review of abstract group theory

For a group G (in the usual sense), we have the notions of subgroup, a normal subgroup, an
embedding (injective homomorphism), and of a quotient map (surjective homomorphism).
Moreover, there are the following basic results, which are often referred to collectively as
the isomorphisms theorems.1

1.1 (Existence of quotients). The kernel of a quotient map G!Q is a normal subgroup
ofG, and every normal subgroupN ofG arises as the kernel of a quotient mapG!G=N .

1.2 (Homomorphism theorem). The image of a homomorphism uWG!G0 is a subgroup
uG of G0, and u defines an isomorphism from G=Ker.u/ onto uG; in particular, every
homomorphism is the composite of a quotient map and an embedding.

1.3 (Isomorphism theorem). Let H and N be subgroups of G such thatH normalizes N ;
thenHN is a subgroup ofG,N is a normal subgroup ofHN ,H \N is a normal subgroup
of H , and the map

h.H \N/ 7! hN WH=H \N !HN=N

is an isomorphism.

1.4 (Correspondence theorem). Let N be a normal subgroup of G. The map H 7!H=N

defines a one-to-one correspondence between the set of subgroups of G containing N and
the set of subgroups of G=N . A subgroup H of G containing N is normal if and only if
H=N is normal in G=N , in which case the map

G=H ! .G=N/=.H=N/

defined by the quotient map G!G=N is an isomorphism.
1Statements (1.2), (1.3), and (1.4) are sometimes called the first, second, and third isomorphism theorems,

but the numbering varies. In Noether 1927, the first isomorphism theorem is (1.4) and the second is (1.3).

141
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In this chapter, we shall see that, appropriately interpreted, all these notions and state-
ments extend to affine groups (in particular, to algebraic groups).

2 The existence of quotients

THEOREM 2.1 The kernel of a quotient map G!Q of affine groups over k is a normal
affine subgroup of G, and every normal affine subgroup N of G arises as the kernel of a
quotient map G!G=N .

PROOF. See Theorem 17.5, Chapter VIII. 2

EXAMPLE 2.2 Let PGLn be the quotient of GLn by its centre, and let PSLn be the quotient
of SLn by its centre:

PGLn D GLn =Gm; PSLn D SLn =�n:

The homomorphism SLn! GLn! PGLn contains �n in its kernel, and so defines a ho-
momorphism

PSLn! PGLn : (88)

Is this an isomorphism? Note that

SLn.k/=�n.k/! GLn.k/=Gm.k/ (89)

is injective, but not in general surjective: not every invertible n�n matrix can be written
as the product of a matrix with determinant 1 and a scalar matrix (such a matrix has de-
terminant in k�n). Nevertheless, I claim that (88) is an isomorphism of algebraic groups.
In characteristic zero, this follows from the fact that (89) is an isomorphism when k D kal

(apply VII, 4.5 and 7.6). In the general case, we have to check the conditions (VII, 2.1a and
7.1).

Let q¤ 1 2 PSLn.R/. For some faithfully flatR-algebraR0, there exists a g 2 SLn.R0/
mapping to q in PSLn.R0/. The image of g in GLn.R0/ is not in Gm.R0/ (because q ¤ 1/;
therefore, the image of g in PGLn.R0/ is¤ 1, which implies that the image of q in PGL.R/
is¤ 1:

PSLn.R0/ ����! PGLn.R0/x?? x??injective

PSLn.R/ ����! PGLn.R/:

We have checked condition (VII, 2.1a).
Let q 2 PGLn.R/. For some faithfully flat R-algebra R0, there exists a g 2 GLn.R0/

mapping to q. If a def
D det.g/ is an nth power, say a D tn, then g D g0t with det.g0/D 1,

and the image of g in GLn.R0/=Gm.R0/ is in the image of SLn.R0/=�n.R0/. Hence, the
image of q in PGLn.R0/ is in the image of PSLn.R0/. If a is not an nth power in R0, we
replaceR0 by the faithfully flat (even free) algebraR0ŒT �=.T n�a/ in which it does become
an nth power. We have checked condition (VII, 7.1).
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3 The homomorphism theorem

A homomorphism uWG!G0 of affine groups defines a homomorphism u\WO.G0/!O.G/
of Hopf algebras, whose kernel a is a Hopf ideal in O.G0/.2 Thus

aD ff 2O.G0/ j fR.uR.P //D 0 for all k-algebras R and all P 2G.R/g:

The subgroupH of G0 corresponding to a (see VII, 3.2) is called the image of u (and often
denoted uG). Thus

H.R/D fg 2G.R/ j fR.g/D 0 for f 2 ag.

THEOREM 3.1 (Homomorphism theorem) For any homomorphism uWG ! G0 of affine
groups, the kernel N of u is a normal subgroup of G, the image uG of u is a subgroup of
G0, and u factors in a natural way into the composite of a surjection, an isomorphism, and
an injection:

G
u

�������! G0

surjective
??y x??injective

G=N
isomorphism
�������! uG:

If G is an algebraic group, then so also are G=N and uG.

PROOF. The factorization

O.G/ O.G0/=a O.G0/

of u\ defines a factorization
G! uG!G0

of u into a surjection followed by an injection. As G ! G=N and G ! uG are both
quotient maps with kernel N , there is a unique isomorphism G=N ! uG such that the
composite

G!G=N ! uG

is G
u
�! uG (apply VII, 7.9).

The final statement follows from (VIII, 8.6). 2

COROLLARY 3.2 For any k-algebra R,

.uG/.R/D
[

R0
G.R/\ Imu.R0/

where R0 runs over the faithfully flat R-algebras. Therefore uG represents the sheaf asso-
ciated with

R Im.u.R//:

Moreover, uG is the intersection of the subgroupsH ofG0 with the property that Imu.R/�
H.R/ for all k-algebras R.

2In fact, we don’t need to use that a is a Hopf ideal, just that it is an ideal.
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PROOF. The map G! uG is a quotient map, and so the first statement follows from (VII,
11.6). If H is a subgroup of G0 such that H.R/ � Imu.R/ for all k-algebras R, then, for
any fixed k-algebra R,

H.R/�
[

R0
G.R/\ Imu.R0/D .uG/.R/;

and so H � uG. 2

COROLLARY 3.3 A homomorphism uWG ! G0 of algebraic groups is surjective if, for
some field K containing k, the image of G.K/ in G0.K/ is dense in G0.

PROOF. As u.G.K//� .uG/.K/�G0.K/, the condition implies that uG DG. 2

Let uWG! G0 be a homomorphism of algebraic groups. Then G.kal/! .uG/.kal/ is
surjective (see VII, 7.6), and so

.uG/.k/DG0.k/\ .uG/.kal/

DG0.k/\ Im.G.kal/
u.kal/
�! G0.kal//:

4 The isomorphism theorem

Let H and N be algebraic subgroups of G such that H normalizes N . The natural ac-
tion of H.R/ on N.R/ defines an action � of H on N by group homomorphisms, and
multiplication defines a homomorphism

N o� H !G.

We define NH DHN to be the image of this homomorphism. The following statements
are obvious from �3.

4.1 For any k-algebraR, .HN/.R/ consists of the elements ofG.R/ that lie inH.R0/N.R0/
for some finitely generated faithfully flat R-algebra R0. ThereforeHN represents the sheaf
associated with the functor

R H.R/ �N.R/�G.R/:

Moreover, HN is the intersection of the subgroups G0 of G such that, for all k-algebras R,
G0.R/ contains both H.R/ and N.R/.

4.2 We have
.HN/.kal/DH.kal/ �N.kal/;

and so
.HN/.k/DG.k/\ .H.kal/ �N.kal//:

A
4.3 It is not true that .HN/.R/DH.R/N.R/ for all k-algebrasR. For example, consider

the algebraic subgroups SLn and Gm (nonzero scalar matrices) of GLn. Then GLn D
SLn �Gm, but a matrixA2GLn.R/whose determinant is not an nth power is not the product
of a scalar matrix with a matrix of determinant 1.
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THEOREM 4.4 (Isomorphism theorem) Let H and N be algebraic subgroups of the alge-
braic group G such that H normalizes N . The natural map

H=H \N !HN=N (90)

is an isomorphism.

PROOF. We have an isomorphism of group-valued functors

H.R/=.H \N/.R/!H.R/N.R/=N.R/� .HN/.R/=N.R/:

The statement now follows from (VII, 11.6), or by passing to the associated sheaves. 2

EXAMPLE 4.5 Let G D GLn, H D SLn, and N D Gm (scalar matrices in G). Then
N \H D �n (obviously), HN D GLn (by the arguments in 2.2), and (90) becomes the
isomorphism

SLn =�n! GLn =Gm:

EXAMPLE 4.6 The isomorphism theorem fails in the category of smooth algebraic groups.
Consider, for example, the subgroups H D Gm (diagonal) and N D SLp of GLp over a
field of characteristic p. In the category of smooth algebraic groups, N \H D 1, and the
map H=H \N !HN=N is the homomorphism SLp ! PGLp, which is an inseparable
isogeny of degree p — it is injective and surjective in the category of smooth algebraic
groups, but it is not an isomorphism.

5 The correspondence theorem

THEOREM 5.1 (Correspondence theorem). Let N be a normal algebraic subgroup of G.
The map H 7! H=N defines a one-to-one correspondence between the set of algebraic
subgroups of G containing N and the set of algebraic subgroups of G=N . An algebraic
subgroup H of G containing N is normal if and only if H=N is normal in G=N , in which
case the map

G=H ! .G=N/=.H=N/ (91)

defined by the quotient map G!G=N is an isomorphism.

PROOF. The first statement follows from the fact that the analogous statement holds for
Hopf algebras (cf. Exercise II-6). For the second statement, note that the map

G.R/=H.R/! .G.R/=N.R//=.H.R/=N.R//

defined by the quotient map G.R/! G.R/=N.R/ is an isomorphism. This isomorphism
is natural in R, and when we pass to the associated sheaves, we obtain the isomorphism
(91). 2

ASIDE 5.2 Let qWG!G=N be the quotient map. For any subgroup H of G, qH is a subgroup of
G=N , which corresponds to HN . Deduce that if H 0 is normal in H , then H 0N is normal in HN .

NOTES Need to discuss how much of the isomorphism theorems hold for smooth groups. Should
move the smoothness part of (XVII, 1.1) here.
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6 The Schreier refinement theorem

LEMMA 6.1 (BUTTERFLY LEMMA) Let H1 � N1 and H2 � N2 be algebraic subgroups
of an algebraic group G with N1 and N2 normal in H1 and H2. Then N1.H1\N2/ and
N2.N1\H2/ are normal algebraic subgroups of the algebraic groups N1.H1\H2/ and
N2.H2\H1/ respectively, and there is a canonical isomorphism of algebraic groups

N1.H1\H2/

N1.H1\N2/
'
N2.H1\H2/

N2.N1\H2/

PROOF. The algebraic groupH1\N2 is normal inH1\H2 and soN1.H1\H2/ is normal
in N1.H1\N2/ (see Exercise VII-2). Similarly, N2.H2\N1/ is normal in N2.H2\H1/.

The subgroup H1\H2 of G normalizes N1.H1\N2/, and so the isomorphism Theo-
rem 4.4 shows that

H1\H2

.H1\H2/\N1.H1\N2/
'
.H1\H2/ �N1.H1\N2/

N1.H1\N2/
: (92)

As H1\N2 �H1\H2, we have that H1\H2 D .H1\H2/.H1\N2/, and so

N1 � .H1\H2/DN1 � .H1\H2/ � .H1\N2/.

The first of Dedekind’s modular laws (Exercise VII-3a) with ADH1\N2, B DH1\H2,
and C DN1 becomes

.H1\H2/\N1 .H1\N2/D .H1\N2/.H1\H2\N1/

D .H1\N2/.N1\H2/.

Therefore (92) is an isomorphism

H1\H2

.H1\N2/.N1\H2/
'
N1.H1\H2/

N1.H1\N2/
:

A symmetric argument shows that

H1\H2

.H1\N2/.N1\H2/
'
N2.H1\H2/

N2.H2\N1/
;

and so
N1.H1\H2/

N1.H1\N2/
'
N2.H1\H2/

N2.H2\N1/
:

2

A subnormal series in an affine group G is a finite sequence of subgroups, beginning
with G and ending with 1, such that each subgroup is normal in the preceding subgroup.

PROPOSITION 6.2 Let H be a subgroup of an affine group G. If

G DG0 �G1 � �� � �Gs D f1g

is a subnormal series for G, then

H DH \G0 �H \G1 � �� � �H \Gs D f1g

is a subnormal series for H , and

H \Gi=H \GiC1 ,!Gi=GiC1:
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PROOF. Obvious. 2

Two subnormal sequences

G DG0 �G1 � �� � �Gs D f1g

G DH0 �H1 � �� � �Ht D f1g

are said to be equivalent if s D t and there is a permutation � of f1;2; : : : ; sg such that
Gi=GiC1 �H�.i/=H�.i/C1.

THEOREM 6.3 Any two subnormal series in an algebraic group have equivalent refine-
ments.

PROOF. Let Gij D GiC1.Hj \Gi / and let Hj i D HjC1.Gi \Hj /. According to the
butterfly lemma

Gij =Gi;jC1 'Hj i=Hj;iC1,

and so the refinement .Gij / of .Gi / is equivalent to the refinement .Hj i / of .Hi /. 2

A subnormal series is a composition series if no quotient group Gi has a proper non-
trivial normal subgroup.

THEOREM 6.4 For any two composition series

G DG0 �G1 � �� � �Gs D f1g

G DH0 �H1 � �� � �Ht D f1g;

s D t and there is a permutation � of f1;2; : : : ; sg such that Gi=GiC1 is isomorphic to
H�.i/=H�.i/C1 for each i .

PROOF. Use that, for each i , only one of the quotients GiC1.Hj \Gi /=GiC1.HjC1\Gi /
is nontrivial 2

An algebraic group is strongly connected if it has no finite quotient. An algebraic
group G with dimG > 0 is almost-simple if for every proper normal subgroup N we have
dimN < dimG. An almost-simple group is strongly connected.

THEOREM 6.5 Let G be a strongly connected algebraic group. There exists a subnormal
sequence

G DG0 �G1 � �� � �Gs D f1g

such that each Gi is strongly connected and Gi=GiC1 is almost-simple. If

G DH0 �H1 � �� � �Ht D f1g

is a second such sequence, then s D t and there is a permutation � of f1;2; : : : ; sg such that
Gi=GiC1 is isogenous to H�.i/=H�.i/C1 for each i .
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7 The category of commutative algebraic groups

THEOREM 7.1 The commutative algebraic groups over a field form an abelian category.

PROOF. The Hom sets are commutative groups, and the composition of morphisms is bilin-
ear. Moreover, the product G1�G2 of two commutative algebraic groups is both a product
and a sum of G1 and G2. Thus the category of commutative algebraic groups over a field
is additive. Every morphism in the category has both a kernel and cokernel (VII, 4.1; VIII,
17.5), and the canonical morphism from the coimage of the morphism to its image is an
isomorphism (homomorphism theorem, 3.1). Therefore the category is abelian. 2

COROLLARY 7.2 The finitely generated commutative co-commutative Hopf algebras over
a field form an abelian category.

ASIDE 7.3 Theorem 7.1 is generally credited to Grothendieck but, as we have seen, it is a fairly
direct consequence of allowing the coordinate rings to have nilpotent elements. See SGA 3, VIA,
5.4; DG III �3, 7.4, p. 355.

Corollary 7.2 is proved purely in the context of Hopf algebras in Sweedler 1969, Chapter XVI,
for finite-dimensional commutative co-commutative Hopf algebras, and in Takeuchi 1972, 4.16, for
finitely generated commutative co-commutative Hopf algebras.

In the latest version of SGA 3, it is shown (VIA, 5.4.2) that the category of commutative alge-
braic group schemes (not necessarily affine) over a field is abelian. It is then shown that the category
of affine commutative algebraic group schemes is thick in the full category, and so it also is abelian
(ibid. 5.4.3). Moreover, the category of all commutative affine groups (not necessarily algebraic)
over a field is abelian.

ASIDE 7.4 Let G be an algebraic group scheme over a field k. If G is affine, then every algebraic
subgroup scheme is affine, and every quotient of G by a normal algebraic subscheme is affine.
Moreover, every extension of an affine algebraic group scheme by an affine algebraic group scheme
is again an affine algebraic group scheme (SGA 3, VIB , 9.2(viii)).

8 Exercises

EXERCISE IX-1 LetH andN be subgroups of the algebraic groupG such thatH normal-
izes N . Show that the kernel of O.G/!O.HN/ is equal to the kernel of the composite

O.G/ �
�!O.G/˝kO.G/!O.H/˝kO.N /:

ASIDE 8.1 As noted earlier, in much of the expository literature (e.g., Borel 1991, Humphreys
1975, Springer 1998), “algebraic group” means “smooth algebraic group”. With this terminology,
many of the results in this chapter become false.34 Fortunately, because of Theorem 9.3, Chapter
VI, this is only a problem in nonzero characteristic. The importance of allowing nilpotents was

3For example, in the category of smooth groups, the homomorphism H=H \N ! HN=N is a purely
inseparable isogeny of degree q where q is the multiplicity of H \N in the intersection product H �N .

4The situation is even worse, because these books use a terminology based on Weil’s Foundations, which
sometimes makes it difficult to understand their statements. For example, in Humphreys 1975, p. 218, one finds
the following statement: “for a homomorphism 'WG ! G0 of k-groups, the kernel of ' need not be defined
over k.” By this, he means the following: form the kernelN of 'kal WGkal !G0

kal (in our sense); thenNred need
not arise from a smooth algebraic group over k. Of course, with our (or any reasonable) definitions, the kernel
of a homomorphism of algebraic groups over k is certainly an algebraic group over k.
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pointed out by Cartier (1962) more than forty years ago, but, except for Demazure and Gabriel 1970
and Waterhouse 1979, this point-of-view has not been adopted in the expository literature. Contrast
our statement and treatment of the isomorphism theorems and the Schreier refinement theorem with
those in Barsotti 1955a and Rosenlicht 1956.





CHAPTER X
Categories of Representations

(Tannaka Duality)

A character of a topological group is a continuous homomorphism from the group to the
circle group fz 2C j zxzD 1g. A finite commutative groupG can be recovered from its group
G_ of characters because the canonical homomorphism G!G__ is an isomorphism.

More generally, a locally compact commutative topological group G can be recovered
from its character group because, again, the canonical homomorphism G ! G__ is an
isomorphism (Pontryagin duality). Moreover, the dual of a compact commutative group
is a discrete commutative group, and so, the study of compact commutative topological
groups is equivalent to that of discrete commutative groups.

Clearly, “commutative” is required in the above statements, because every character
is trivial on the derived group. However, Tannaka showed that it is possible to recover a
compact noncommutative group from the category of its unitary representations.

In this chapter, we prove the analogue of this for algebraic groups. Initially, k is allowed
to be a commutative ring.

1 Recovering a group from its representations

LetG be an affine monoid with coordinate ring A. Recall that for the regular representation
rAWG! EndA, an element g of G.R/ acts on f 2 A according to the rule:

.gf /R.x/D fR.x �g/ all x 2G.R/: (93)

LEMMA 1.1 Let G be an affine monoid over a ring k, and let ADO.G/ be its coordinate
ring. Let u be a k-algebra endomorphism of A. If the diagram

A
�

����! A˝A??yu ??y1˝u
A

�
����! A˝A

commutes, then there exists a g 2G.k/ such that uD rA.g/.

151
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PROOF. According to the Yoneda lemma, there exists a natural transformation �WG! G

of set-valued functors such that

.uf /R.x/D fR.�Rx/ all f 2 A, x 2G.R/: (94)

The commutativity of the diagram says that, for f 2 A,

.�ıu/.f /D ..1˝u/ı�/.f /:

On evaluating this at .x;y/ 2G.R/�G.R/, we find that1

fR.�R.x �y//D fR.x ��Ry/.

As this holds for all f 2 A,

�R.x �y/D x ��R.y/; all x;y 2G.R/:

On setting yD e in the last equation, we find that �R.x/D x �g with gD �R.e/. Therefore,
for f 2 A and x 2G.R/,

.uf /R .x/
.94/
D fR.x �g/

.93)
D .gf /R.x/

def
D .rA.g/f /R.x/:

Hence uD rA.g/. 2

THEOREM 1.2 Let G be a flat affine monoid (or group) over a noetherian ring k, and let R
be a k-algebra. Suppose that, for each representation .V;rV / of G on a finitely generated
k-module V , we are given an R-linear map �V WVR! VR. If the family .�V / satisfies the
conditions,

(a) for all representations V;W ,

�V˝W D �V ˝�W ;

(b) �11 is the identity map (here 11D k with the trivial action)

1Here are the details. We shall need the formulas (p. 47)

.�f /R.x;y/D fR.x �y/ for f 2 A

.f1˝f2/R.x;y/D .f1/R.x/ � .f2/R.y/ for f1;f2 2 A

For x;y 2G.R/,

.LHS)R.x;y/D ..�ıu/.f //R.x;y/D .�.uf //R.x;y/D .uf /R.x �y/D fR.�R.x �y//:

Let �f D
P
fi ˝gi ; then

.RHS/R .x;y/D
�
.1˝u/ı .

P
i fi ˝gi /

�
R
.x;y/D

�P
i fi ˝ugi

�
R
.x;y/

D
P
i fiR.x/ � .ugi /R.y/

D
P
i fiR.x/ �giR.�Ry/

D
�P

i fi ˝gi
�
R
.x;�Ry/

D .�f /R.x;�Ry/

D fR.x ��Ry/:
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(c) for all G-equivariant maps uWV !W ,

�W ıuR D uR ı�V ;

then there exists a unique g 2G.R/ such that �V D rV .g/ for all V .

PROOF. Under our hypotheses, every representation V of G is a union of its finitely gener-
ated representations, V D

S
i2I Vi (see VIII, 6.7). It follows from (c) that

�Vi jVi \Vj D �Vi\Vj D �Vj jVi \Vj

for all i;j 2 I:Therefore, there is a unique R-linear endomorphism �V of VR such that
�V jW D �W for every finitely generated subrepresentation W � V . The conditions (a,b,c)
will continue to hold for the enlarged family.

Let ADO.G/R, and let �AWA! A be the R-linear map corresponding to the regular
representation r of G on A. The map mWA˝A! A is equivariant2 for the representations
r˝r and r , which means that �A is a k-algebra homomorphism. Similarly, the map�WA!
A˝A is equivariant for the representations r on A and 1˝ r on A˝A, and so the diagram
in (1.1) commutes with u replaced by �A. Now Lemma 1.1, applied to the affine monoid
GR over R, shows that there exists a g 2G.R/ such �A D r.g/.

Let .V;rV / be a finitely generated representation ofG, and let V0 denote the underlying
k-module. There is an injective homomorphism of representations

�WV ! V0˝O.G/

(VIII, 10.3). By definition � and r.g/ agree on O.G/, and they agree on V0 by condition
(b). Therefore they agree on V0˝O.G/ by (a), and so they agree on V by (c).

This proves the existence of g. It is unique because the regular representation is faithful
(VIII, �9). 2

Remarks

1.3 Each g 2G.R/ of course defines a family as in the theorem. Thus, from the category
Rep.G/ of representations of G on finitely generated k-modules we can recover G.R/
for all R, and hence the group G itself. For this reason, Theorem 1.2 is often called the
reconstruction theorem.

1.4 Let .�V / be a family satisfying the conditions (a,b,c) of Theorem 1.4. When G is an
affine group (rather than just a monoid), each �V is an isomorphism, and the family satisfies
the condition �V _ D .�V /_ (because this is true of the family .rV .g//).

1.5 Let !R be the forgetful functor RepR.G/! ModR, and let End˝.!R/ be the set of
natural transformations �W!R! !R commuting with tensor products — the last condition
means that � satisfies conditions (a) and (b) of the theorem. The theorem says that the

2Here are the details. For x 2G.R/;

.r.g/ım/.f ˝f 0/.x/D .r.g/.ff 0//.x/D .ff 0/.xg/D f .xg/ �f 0.xg/

.mı r.g/˝ r.g//.f ˝f 0/.x/D ..r.g/f / � .r.g/f 0/.x/D f .xg/ �f 0.xg/:
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canonical map G.R/! End˝.!R/ is an isomorphism. Now let End˝.!/ denote the func-
tor R End˝.!R/; then G ' End˝.!/. When G is an affine group, this can be written
G ' Aut˝.!/.

1.6 When k is a Dedekind domain, it suffices to consider representations on finitely gen-
erated projective k-modules in the theorem (because every finitely generated submodule of
O.G/ is projective). In fact, the theorem holds for finitely generated free k-modules.

1.7 Assume that k is a Dedekind domain and that G is a flat affine group over k. A ho-
momorphism uWV !W of finitely generated projective k-modules corresponds to a tensor
u0 2 V _˝W , and u is G-equivariant if and only if u0 is fixed by G. Let H be a flat
affine subgroup of G. It follows from the theorem that, for each k-algebra R, H.R/ is the
subgroup of G.R/ of elements fixing all tensors in all representations of G fixed by H .

1.8 Suppose that k is an algebraically closed field, and thatG is reduced, so that O.G/ can
be identified with a ring of k-valued functions on G.k/. It is possible to give an explicit de-
scription description of O.G/ in terms of the representations of G. For each representation
.V;rV / of G (over k/ and u 2 V _, we have a function �u on G.k/,

�u.g/D hu;rV .g/i 2 k:

Then �u 2 O.G/, and every element of O.G/ arises in this way (cf. Springer 1998, p.39,
and Exercise II-2).

1.9 Suppose that k is a field. In (1.7), instead of all representations of G, it suffices to
choose a faithful representation V and take all quotients of subrepresentations of a direct
sum of representations of the form˝n.V ˚V _/ (by VIII, 11.7).

1.10 In general, we can’t omit “quotients of” from (1.9).3 However, we can omit it if some
nonzero multiple of every homomorphismH !Gm extends to a homomorphismG!Gm
(VIII, 13.3).

2 Application to Jordan decompositions

In this section, we require k to be a field.

The Jordan decomposition of a linear map

In this subsection, we review some linear algebra.
Recall that an endomorphism ˛ of a vector space V is diagonalizable if V has a basis of

eigenvectors for ˛, and that it is semisimple if it becomes diagonalizable after an extension
of the base field k. For example, the linear map x 7! AxWkn ! kn defined by an n� n
matrix A is diagonalizable if and only if there exists an invertible matrix P with entries in k

3Consider for example, the subgroup B D
˚�
� �
0 �

�	
of GL2 acting on V D k�k and suppose that a vector

v 2 .V ˚V _/˝n is fixed by B . Then g 7! gv is a regular map GL2 =B! .V ˚V _/˝n of algebraic varieties
(not affine). But GL2 =B ' P1, and so any such map is trivial. Therefore, v is fixed by GL2, and so B 0 D B .
Cf VII, 7.14.
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such that PAP�1 is diagonal, and it is semisimple if and only if there exists such a matrix
P with entries in some field containing k.

From linear algebra, we know that ˛ is semisimple if and only if its minimum polyno-
mialm˛.T / has distinct roots; in other words, if and only if the subring kŒ˛�' kŒT �=.m˛.T //
of Endk.V / generated by ˛ is étale.

Recall that an endomorphism ˛ of a vector space V is nilpotent if ˛m D 0 for some
m > 0, and that it is unipotent if idV �˛ is nilpotent. Clearly, if ˛ is nilpotent, then its
minimum polynomial divides Tm for somem, and so the eigenvalues of ˛ are all zero, even
in kal. From linear algebra, we know that the converse is also true, and so ˛ is unipotent if
and only if its eigenvalues in kal all equal 1.

Let ˛ be an endomorphism of a finite-dimensional vector space V over k. We say that
˛ has all of its eigenvalues in k if the characteristic polynomial P˛.T / of ˛ splits in kŒX�:

P˛.T /D .T �a1/
n1 � � �.T �ar/

nr ; ai 2 k:

For each eigenvalue a of ˛ in k, the primary space4 is defined to be:

V a D fv 2 V j .˛�a/N v D 0; N sufficiently divisible5
g:

PROPOSITION 2.1 If ˛ has all of its eigenvalues in k, then V is a direct sum of its primary
spaces:

V D
M

i
V ai .

PROOF. Let P.T / be a polynomial in kŒT � such that P.˛/D 0, and suppose that P.T /D
Q.T /R.T / with Q and R relatively prime. Then there exist polynomials a.T / and b.T /
such that

a.T /Q.T /Cb.T /R.T /D 1:

For any v 2 V ,
a.˛/Q.˛/vCb.˛/R.˛/v D v, (95)

which implies immediately that Ker.Q.˛//\Ker.R.˛//D 0. Moreover, becauseQ.˛/R.˛/D
0, (95) expresses v as the sum of an element of Ker.R.˛// and an element of Ker.Q.˛//.
Thus, V is the direct sum of Ker.Q.˛// and Ker.P.˛//.

On applying this remark repeatedly, we find that

V D Ker.T �a1/n1˚Ker..T �a2/n2 � � �.T �ar/nr /D �� � D
M

i
Ker.T �ai /ni ;

as claimed. 2

THEOREM 2.2 Let V be a finite-dimensional vector space over a perfect field. For any
automorphism ˛ of V , there exist unique automorphisms ˛s and ˛u of V such that

(a) ˛ D ˛s ı˛u D ˛u ı˛s , and

4This is Bourbaki’s terminology (LIE VII, �1); “generalized eigenspace” is also used.
4By this I mean that there exists an N0 such that the statement holds for all positive integers divisible by

N0, i.e., that N is sufficiently large for the partial ordering

M �N ” M divides N:
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(b) ˛s is semisimple and ˛u is unipotent.

Moreover, each of ˛s and ˛u is a polynomial in ˛.

PROOF. Assume first that ˛ has all of its eigenvalues in k, so that V is a direct sum of
the primary spaces of ˛, say, V D

L
1�i�mV

ai where the ai are the distinct roots of P˛.
Define ˛s to be the automorphism of V that acts as ai on V ai for each i . Then ˛s is a
semisimple automorphism of V , and ˛u

def
D ˛ ı˛�1s commutes with ˛s (because it does on

each V ai ) and is unipotent (because its eigenvalues are 1). Thus ˛s and ˛u satisfy (a) and
(b).

Because the polynomials .T �ai /ni are relatively prime, the Chinese remainder theo-
rem shows that there exists a Q.T / 2 kŒT � such that

Q.T /� ai mod .T �ai /ni ; i D 1; : : : ;m:

Then Q.˛/ acts as ai on V ai for each i , and so ˛s DQ.˛/, which is a polynomial in ˛.
Similarly, ˛�1s 2 kŒ˛�, and so ˛u

def
D ˛ ı˛�1s 2 kŒ˛�.

It remains to prove the uniqueness of ˛s and ˛u. Let ˛ D ˇs ıˇ˛ be a second decom-
position satisfying (a) and (b). Then ˇs and ˇ˛ commute with ˛, and therefore also with ˛s
and ˛u (because they are polynomials in ˛). It follows that ˇ�1s ˛s is semisimple and that
˛uˇ

�1
˛ is unipotent. Since they are equal, both must equal 1. This completes the proof in

this case.
In the general case, because k is perfect, there exists a finite Galois extension k0 of k

such that ˛ has all of its eigenvalues in k0. Choose a basis for V , and use it to attach matrices
to endomorphisms of V and k0˝k V . Let A be the matrix of ˛. The first part of the proof
allows us to write A D AsA˛ D A˛As with As a semisimple matrix and A˛ a unipotent
matrix with entries in k0; moreover, this decomposition is unique.

Let � 2 Gal.k0=k/, and for a matrix B D .bij /, define �B to be .�bij /. Because A has
entries in k, �AD A. Now

AD .�As/.�A˛/

is again a decomposition of A into commuting semisimple and unipotent matrices. By
the uniqueness of the decomposition, �As D As and �A˛ D A˛. Since this is true for all
� 2 Gal.K=k/, the matrices As and A˛ have entries in k. Now ˛ D ˛s ı˛u, where ˛s and
˛u are the endomorphisms with matrices As and A˛, is a decomposition of ˛ satisfying (a)
and (b).

Finally, the first part of the proof shows that there exist ai 2 k0 such that

As D a0Ca1AC�� �Can�1A
n�1 .nD dimV /:

The ai are unique, and so, on applying � , we find that they lie in k. Therefore,

˛s D a0Ca1˛C�� �Can�1˛
n�1
2 kŒ˛�:

Similarly, ˛u 2 kŒ˛�. 2

The automorphisms ˛s and ˛u are called the semisimple and unipotent parts of ˛, and

˛ D ˛s ı˛u D ˛u ı˛s

is the (multiplicative) Jordan decomposition of ˛.
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PROPOSITION 2.3 Let ˛ and ˇ be automorphisms of vector spaces V andW over a perfect
field, and let 'WV !W be a linear map. If ' ı˛D ˇ ı', then ' ı˛s D ˇs ı' and ' ı˛uD
ˇ˛ ı'.

PROOF. It suffices to prove this after an extension of scalars, and so we may suppose that
both ˛ and ˇ have all of their eigenvalues in k. Recall that ˛s acts on each primary space
V a, a 2 k, as multiplication by a. As ' obviously maps V a into W a, it follows that
' ı˛s D ˇs ı'. Similarly, ' ı˛�1s D ˇ

�1
s ı', and so ' ı˛u D ˇ˛ ı'. 2

COROLLARY 2.4 Every subspace W of V stable under ˛ is stable under ˛s and ˛u, and
˛jW D ˛sjW ı˛ujW is the Jordan decomposition of ˛jW:

PROOF. It follows from the proposition that W is stable under ˛s and ˛u, and it is obvious
that the decomposition ˛jW D ˛sjW ı˛ujW has the properties to be the Jordan decompo-
sition. 2

PROPOSITION 2.5 For any automorphisms ˛ and ˇ of vector spaces V and W over a per-
fect field,

.˛˝ˇ/s D ˛s˝ˇs

.˛˝ˇ/˛ D ˛u˝ˇ˛:

PROOF. It suffices to prove this after an extension of scalars, and so we may suppose that
both ˛ and ˇ have all of their eigenvalues in k. For any a;b 2 k, V a˝kW b � .V ˝kW /

ab ,
and so ˛s˝ˇs and .˛˝ˇ/s both act on Va˝kWb as multiplication by ab. This shows that
.˛˝ˇ/s D ˛s˝ˇs . Similarly, .˛�1s ˝ˇ

�1
s /D .˛˝ˇ/�1s , and so .˛˝ˇ/˛ D ˛u˝ˇ˛. 2

A
2.6 Let k be a nonperfect field of characteristic 2, so that there exists an a 2 k that is

not a square in k, and let M D
�
0 1
a 0

�
. In the algebraic closure of k, M has the Jordan

decomposition

M D

�p
a 0

0
p
a

��
0 1=

p
a

p
a 0

�
:

These matrices do not have coefficients in k, and so, if M had a Jordan decomposition
in M2.k/, it would have two distinct Jordan decompositions in M2.k

al/, contradicting the
uniqueness.

Infinite-dimensional vector spaces

Let V be a vector space, possibly infinite dimensional, over a perfect field k. An endomor-
phism ˛ of V is locally finite if V is a union of finite-dimensional subspaces stable under
˛. A locally finite endomorphism is semisimple (resp. locally nilpotent, locally unipotent)
if its restriction to each stable finite-dimensional subspace is semisimple (resp. nilpotent,
unipotent).

Let ˛ be a locally finite automorphism of V . By assumption, every v 2 V is contained
in a finite-dimensional subspace W stable under ˛, and we define ˛s.v/ D .˛jW /s.v/.
According to (2.2), this is independent of the choice of W , and so in this way we get a
semisimple automorphism of V . Similarly, we can define ˛u. Thus:
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THEOREM 2.7 For any locally finite automorphism ˛ of V , there exist unique automor-
phisms ˛s and ˛u such that

(a) ˛ D ˛s ı˛u D ˛u ı˛s; and
(b) ˛s is semisimple and ˛u is locally unipotent.

For any finite-dimensional subspace W of V stable under ˛,

˛jW D .˛sjW /ı .˛ujW /D .˛ujW /ı .˛sjW /

is the Jordan decomposition of ˛jW .

Jordan decompositions in algebraic groups

Finally, we are able to prove the following important theorem.

THEOREM 2.8 Let G be an algebraic group over a perfect field k. For any g 2 G.k/
there exist unique elements gs;gu 2 G.k) such that, for all representations .V;rV / of G,
rV .gs/D rV .g/s and rV .gu/D rV .g/u. Furthermore,

g D gsgu D gugs: (96)

PROOF. In view of (2.3) and (2.5), the first assertion follows immediately from (1.2) ap-
plied to the families .rV .g/s/V and .rV .g/u/V . Now choose a faithful representation rV .
Because

rV .g/D rV .gs/rV .gu/D rV .gu/rV .gs/;

(96) follows. 2

The elements gs and gu are called the semisimple and unipotent parts of g, and g D
gsgu is the Jordan decomposition of g.

2.9 To check that a decomposition g D gsgu is the Jordan decomposition, it suffices to
check that r.g/ D r.gs/r.gu/ is the Jordan decomposition of r.g/ for a single faithful
representation of G.

2.10 Homomorphisms of groups preserve Jordan decompositions. To see this, let uWG!
G0 be a homomorphism and let gD gsgu be a Jordan decomposition in G.k/. For any rep-
resentation 'WG0!GLV , ' ıu is a representation of G, and so .' ıu/.g/D ..' ıu/.gs// �
..' ıu/.gu// is the Jordan decomposition in GL.V /. If we choose ' to be faithful, this
implies that u.g/D u.gs/ �u.gu/ is the Jordan decomposition of u.g/.

NOTES Our proof of the existence of Jordan decompositions (Theorem 2.8) is the standard one,
except that we have made Lemma 1.1 explicit. As Borel has noted (1991, p. 88; 2001, VIII 4.2,
p. 169), the result essentially goes back to Kolchin 1948, 4.7.
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3 Characterizations of categories of representations

Pontryagin duality has two parts. First it shows that a locally compact abelian group G can
be recovered from its dualG_. This it does by showing that the canonical mapG!G__ is
an isomorphism. Secondly, it characterizes the abelian groups that arise as dual groups. For
example, it shows that the duals of discrete abelian groups are exactly the compact abelian
groups, and that the duals of locally compact abelian groups are exactly the locally compact
abelian groups.

In Theorem 1.2 we showed how to recover an algebraic groupG from its “dual” Rep.G/
(reconstruction theorem). In this section, we characterize the categories that arise as the
category of representations of an algebraic or affine group (description or recognition theo-
rem).

Throughout this section, k is a field.

Categories of comodules

An additive category C is said to be k-linear if the Hom sets are k-vector spaces and com-
position is k-bilinear. Functors of k-linear categories are required to be k-linear, i.e., the
maps Hom.a;b/! Hom.Fa;F b/ defined by F are required to be k-linear.

For example, if C is k-coalgebra, then Comod.C / is a k-linear category. In fact,
Comod.C / is a k-linear abelian category (VIII, �5), and the forgetful functor!WComod.C /!
Veck is exact, faithful, and k-linear. The next theorem provides a converse to this statement.

THEOREM 3.1 Let C be an essentially small6 k-linear abelian category, and let !WC!
Veck be an exact faithful k-linear functor. Then there exists a coalgebra C such that C is
equivalent to the category of C -comodules of finite dimension.

The proof will occupy the rest of this section.
Because ! is faithful, !.idX /D !.0/ if and only if idX D 0, and so !.X/ is the zero

object if and only if X is the zero object. It follows that, if !.u/ is a monomorphism
(resp. an epimorphism, resp. an isomorphism), then so also is u. For objects X , Y of C,
Hom.X;Y / is a subspace of Hom.!X;!Y /, and hence has finite dimension over k.

For monomorphisms X
x
�! Y and X 0

x0

�! Y with the same target, we write x � x0 if
there exists a morphism X ! X 0 (necessarily unique) giving a commutative triangle. The
lattice of subobjects of Y is obtained from the collection of monomorphisms by identifying
two monomorphisms x and x0 if x � x0 and x0 � x. The functor ! maps the lattice of
subobjects of Y injectively7 to the lattice of subspaces of !Y . Hence X has finite length.

Similarly ! maps the lattice of quotient objects of Y injectively to the lattice of quotient
spaces of !Y .

For X in C, we let hXi denote the full subcategory of C whose objects are the quotients
of subobjects of direct sums of copies of X . For example, if C is the category of finite-
dimensional comodules over a coalgebra C , then hXi is the category of finite-dimensional
comodules over CX (see VIII, 11.1).

6A category is essentially small if it is locally small and it admits a set of representatives for its isomorphism
classes of objects.

7If !.X/D !.X 0/, then the kernel of �x
x0
�
WX �X 0! Y

projects isomorphically onto each of X and X 0 (because it does after ! has been applied).
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Let X be an object of C, and let S be a subset of !.X/. The intersection of the subob-
jects Y of X such that !.Y / � S is the smallest subobject with this property — we call it
the subobject of X generated by S .

An object Y is monogenic if it is generated by a single element, i.e., there exists a
y 2 !.Y / such that

Y 0 � Y , y 2 !.Y 0/ H) Y 0 D Y:

Proof in the case that C is generated by a single object

In the next three lemmas, we assume that CD hXi for some X .

LEMMA 3.2 For every monogenic object Y of C,

dimk!.Y /� .dimk!.X//
2 :

PROOF. By hypothesis, there are maps Y
onto
 �� Y1 ,! Xm. Let y1 be an element of !.Y1/

whose image y in !.Y / generates Y , and letZ be the subobject of Y1 generated by y1. The
image of Z in Y contains y and so equals Y . Hence it suffices to prove the lemma for Z,
i.e., we may suppose that Y � Xm for some m. We shall deduce that Y ,! Xm

0

for some
m0 � dimk!.X/, from which the lemma follows.

Suppose that m> dimk!.X/. The generator y of Y lies in !.Y /� !.Xm/D !.X/m.
Let y D .y1; : : : ;ym/ in !.X/m. Since m > dimk!.X/, there exist ai 2 k, not all zero,
such that

P
aiyi D 0. The ai define a surjective morphism Xm ! X whose kernel N

is isomorphic to Xm�1.8 As y 2 !.N/, we have Y � N , and so Y embeds into Xm�1.
Continue in this fashion until Y �Xm

0

with m0 � dimk!.X/. 2

As dimk!.Y / can take only finitely many values when Y is monogenic, there exists a
monogenic P for which dimk!.P / has its largest possible value. Let p 2 !.P / generate
P .

LEMMA 3.3 (a) The pair .P;p/ represents the functor !.
(b) The object P is a projective generator for C, i.e., the functor Hom.P;�/ is exact and

faithful.

PROOF. (a) Let X be an object of C, and let x 2 !.X/; we have to prove that there exists
a unique morphism f WP ! X such that !.f / sends p to x. The uniqueness follows from
the fact p generates P (the equalizer E of two f ’s is a subobject of P such that !.E/
contains p). To prove the existence, let Q be the smallest subobject of P �X such that
!.Q/ contains .p;x/. The morphism Q! P defined by the projection map is surjective
because P is generated by p. Therefore,

dimk!.Q/� dimk!.P /;

but because dimk.!.P // is maximal, equality must hold, and soQ!P is an isomorphism.
The composite of its inverse with the second projection Q! X is a morphism P ! X

sending p to x.

8Extend .a1; : : : ;am/ to an invertible matrix
�
a1; : : : ;am

A

�
; then AWXm!Xm�1 defines an isomorphism

of N onto Xm�1, because !.A/ is an isomorphism !.N/! !.X/m�1.
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(b) The object P is projective because ! is exact, and it is a generator because ! is
faithful. 2

Let AD End.P / — it is a k-algebra of finite dimension as a k-vector space (not neces-
sarily commutative) — and let hP be the functor X  Hom.P;X/.

LEMMA 3.4 The functor hP is an equivalence from C to the category of rightA-modules of
finite dimension over k. Its composite with the forgetful functor is canonically isomorphic
to !.

PROOF. Because P is a projective generator, hP is exact and faithful. It remains to prove
that it is essentially surjective and full.

Let M be a right A-module of finite dimension over k, and choose a finite presentation
for M ,

Am
u
�! An!M ! 0

where u is an m�n matrix with coefficients in A. This matrix defines a morphism Pm!

P n whose cokernel X has the property that hP .X/ ' M . Therefore hP is essentially
surjective.

We have just shown that every object X in C occurs in an exact sequence

Pm
u
�! P n!X ! 0.

Let Y be a second object of C. Then

Hom.Pm;Y /' hP .Y /m ' Hom.Am;hP .Y //' Hom.hP .Pm/;hP .Y //;

and the composite of these maps is that defined by hP . From the diagram

0 ����! Hom.X;Y / ����! Hom.P n;Y / ����! Hom.Pm;Y /??y ??y' ??y'
0 ����! Hom.hP .X/;hP .Y // ����! Hom.An;hP .Y // ����! Hom.Am;hP .Y //

we see that Hom.X;Y /! Hom.hP .X/;hP .Y // is an isomorphism, and so hP is full.
For the second statement,

!.X/' Hom.P;X/' Hom.hP .P /;hP .X//D Hom.A;hP .X//' hP .X/: 2

As A is a finite k-algebra, its linear dual C D A_ is a k-coalgebra, and to give a right
A-module structure on a k-vector space is the same as giving a left C -comodule structure
(see VIII, 4.4). Together with (3.4), this completes the proof in the case that CD hXi. Note
that

A
def
D End.P /' End.hP /' End.!/;

and so
C ' End.!/_,

i.e., the coalgebra C is the k-linear dual of the algebra End.!/.
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EXAMPLE 3.5 Let A be a finite k-algebra (not necessarily commutative). Because A is
finite, its dual A_ is a coalgebra (II, �3), and we saw in (VIII, 4.4) that left A-module
structures on k-vector space correspond to right A_-comodule structures. If we take C to
be Mod.A/, ! to the forgetful functor, and X to be A regarded as a left A-module, then

End.!jhXi/_ ' A_,

and the equivalence of categories C!Comod.A_/ in (3.6) simply sends anA-module V to
V with its canonical A_-comodule structure. This is explained in detail in (3.9) and (3.10).

Proof in the general case

We now consider the general case. For an object X of C, let AX D End.!jhXi/, and let
CX D A

_
X . For each Y in hXi, AX acts on !.Y / on the left, and so !.Y / is a right CX -

comodule; moreover, Y  !.Y / is an equivalence of categories

hXi ! Comod.CX /:

Define a partial ordering on the set of isomorphism classes of objects in C by the rule:

ŒX�� ŒY � if hXi � hY i.

Note that ŒX�; ŒY �� ŒX˚Y �, so that we get a directed set, and that if ŒX�� ŒY �, then restric-
tion defines a homomorphism AY ! AX . When we pass to the limit over the isomorphism
classes, we obtain the following more precise form of the theorem.

THEOREM 3.6 Let C be an essentially small k-linear abelian category and let !WC! Veck
be a k-linear exact faithful functor. Let C.!/ be the k-coalgebra lim

�!ŒX�
End.!jhXi/_. For

each object Y in C, the vector space !.Y / has a natural structure of a right C.!/-comodule,
and the functor Y  !.Y / is an equivalence of categories C! Comod.C.!//.

ASIDE 3.7 Let C be a k-linear abelian category with a tensor product structure (cf. 3.13). A coal-
gebra in C is an object C of C together with morphisms �WC ! C ˝C and �WC ! k such that the
diagrams (15), p.30, commute. Similarly, it is possible to define the notion of a C -comodule in C.
Assume that there exists an exact faithful k-linear functor to Veck preserving tensor products, and
that C admits duals and a generatorX . Then there exists a coalgebra C in C together with a coaction
of C on each object of C such that, for every exact faithful k-linear functor ! to Veck preserving
tensor products, !.C/' End.!/_ (as coalgebras) and ! preserves the comodule structures. More-
over, the tensor product makes C into a bialgebra in C, which is a Hopf algebra. In fact, we can take
C D .X_˝X/

_.

ASIDE 3.8 For the proof of Theorem 3.6, we have followed Serre 1993, 2.5. For a slightly different
proof, see Deligne and Milne 1982, �2, or Saavedra Rivano 1972. It is also possible to deduce it
from Grothendieck’s theorem on the pro-representability of right exact functors.

Categories of comodules over a bialgebra

Let C be a coalgebra over k. We saw in (VIII, �5), that a bialgebra structure on C defines
a tensor product structure on Comod.C /, and that an inversion on C defines duals. In this
section we prove the converse: a tensor product structure on Comod.C / defines a bialgebra
structure on C , and the existence of duals implies the existence of an inversion.
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3.9 Let A be a finite k-algebra (not necessarily commutative), and let R be a commutative
k-algebra. Consider the functors

Mod.A/
!

����!
forget

Vec.k/
�R

�������!
V R˝kV

Mod.R/:

For M 2 ob.Mod.A//, let M0 D !.M/. An element � of End.�R ı!/ is a family of R-
linear maps

�M WR˝kM0!R˝kM0,

functorial in M . An element of R˝k A defines such a family, and so we have a map

uWR˝k A! End.�R ı!/;

which we shall show to be an isomorphism by defining an inverse ˇ. Let ˇ.�/D �A.1˝1/.
Clearly ˇ ıuD id, and so we only have to show u ıˇ D id. The A-module A˝kM0 is a
direct sum of copies of A, and the additivity of � implies that �A˝M0 D �A˝ idM0 . The
map a˝m 7! amWA˝kM0!M is A-linear, and hence

R˝k A˝kM0 ����! R˝kM??y�A˝idM0

??y�M
R˝k A˝kM0 ����! R˝kM

commutes. Therefore

�M .1˝m/D �A.1/˝mD .uıˇ.�//M .1˝m/ for 1˝m 2R˝M;

i.e., uıˇ D id.

3.10 Let C be a k-coalgebra, and let ! be the forgetful functor on Comod.C /. When C
is finite over k, to give an object of Comod.C / is essentially the same as giving a finitely
generated module over the k-algebra AD C_ (VIII, 4.4), and so (3.9) shows that

C ' End.!/_:

In the general case,
C ' lim

�!
ŒX�

CX ' lim
�!
ŒX�

End.!C jhXi/_: (97)

Let uWC ! C 0 be a homomorphism of k-coalgebras. A coaction V ! V ˝C of C on
V defines a coaction V ! V ˝C 0 of C 0 on V by composition with idV ˝u. Thus, u defines
a functor F WComod.C /! Comod.C 0/ such that

!C 0 ıF D !C . (98)

LEMMA 3.11 Every functor F WComod.C /!Comod.C 0/ satisfying (98) arises, as above,
from a unique homomorphism of k-coalgebras C ! C 0.
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PROOF. The functor F defines a homomorphism

lim
�!
ŒX�

End.!C 0 jhFXi/! lim
�!
ŒX�

End.!C jhXi/;

and lim
�!ŒX�

End.!C 0 jhFXi/ is a quotient of lim
�!ŒY �

End.!C 0 jhY i/. On passing to the duals,
we get a homomorphism

lim
�!

End.!C jhXi/_! lim
�!

End.!C 0 jhY i/_

and hence a homomorphism C ! C 0. This has the required property. 2

Let C be a coalgebra over k. Recall (II, 2.3) that C ˝C is again a coalgebra over k. A
coalgebra homomorphism mWC ˝C ! C defines a functor

�mWComod.C /�Comod.C /! Comod.C /

sending .V;W / to V ˝W with the coaction

V ˝W
�V˝�W
�! V ˝C ˝W ˝C ' V ˝W ˝C ˝C

V˝W˝m
�! V ˝W ˝C

(cf. VIII, 4.2b, �5).

PROPOSITION 3.12 The map m 7! �m defines a one-to-one correspondence between the
set of k-coalgebra homomorphisms mWC ˝C ! C and the set of k-bilinear functors

�WComod.C /�Comod.C /! Comod.C /

such that �.V;W /D V ˝W as k-vector spaces.

(a) The homomorphism m is associative (i.e., the diagram in (14), p.29, commutes) if
and only if the canonical isomorphisms of vector spaces

u˝ .v˝w/ 7! .u˝v/˝wWU ˝ .V ˝W /! .U ˝V /˝W

are isomorphisms of C -comodules for all C -comodules U , V , W .
(b) The homomorphism m is commutative (i.e., m.a;b/ D m.b;a/ for all a;b 2 C ) if

and only if the canonical isomorphisms of vector spaces

v˝w 7! w˝vWV ˝W !W ˝V

are isomorphisms of C -comodules for all C -comodules W;V .
(c) There is an identity map eWk ! C (i.e., a k-linear map such that the right hand

diagram in (14) p.29, commutes) if and only if there exists a C -comodule U with
underlying vector space k such that the canonical isomorphisms of vector spaces

U ˝V ' V ' V ˝U

are isomorphisms of C -comodules for all C -comodules V .
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PROOF. The pair .Comod.C /�Comod.C /;!˝!/, with .!˝!/.X;Y /D !.X/˝!.Y /
(as a k-vector space), satisfies the conditions of (3.6), and lim

�!
End.!˝!jh.X;Y /i/_ D

C ˝C . Thus

.Comod.C /�Comod.C /;!C ˝!C /' .Comod.C ˝C/;!C˝C /;

and so the first statement of the proposition follows from (3.11). The remaining statements
involve only routine checking. 2

Let !WA! B be a faithful functor. We say that a morphism !X ! !Y lives in A if it
lies in Hom.X;Y /� Hom.!X;!Y /.

For k-vector spaces U;V;W , there are canonical isomorphisms

�U;V;W WU ˝ .V ˝W /! .U ˝V /˝W; u˝ .v˝w/ 7! .u˝v/˝w

�U;V WU ˝V ! V ˝U; u˝v 7! v˝u.

THEOREM 3.13 Let C be an essentially small k-linear abelian category, and let˝WC�C!
C be a k-bilinear functor. Let !WC! Veck be a k-linear exact faithful functor such that

(a) !.X˝Y /D !.X/˝!.Y / for all X;Y ;
(b) the isomorphisms �!X;!Y;!Z and �!X;!Y live in C for all X;Y;Z;
(c) there exists an (identity) object 11 in C such that !.11/D k and the canonical isomor-

phisms
!.11/˝!.X/' !.X/' !.X/˝!.11/

live in C.

LetC.!/D lim
�!

End.!jhXi/_, so that! defines an equivalence of categories C!Comod.C.!//
(Theorem 3.6). Then C.!/ has a unique structure .m;e/ of a commutative k-bialgebra such
that˝D �m and !.11/D .k

e
�! C.!/' k˝C.!//.

PROOF. To give a bialgebra structure on a coalgebra .A;�;�/, one has to give coalgebra
homomorphisms .m;e/ such thatm is commutative and associative and e is an identity map
(II, 4.2; II, �9). Thus, the statement is an immediate consequence of Proposition 3.12. 2

Categories of representations of affine groups

THEOREM 3.14 Let C be an essentially small k-linear abelian category, let ˝WC�C! C
be a k-bilinear functor. Let ! be an exact faithful k-linear functor C! Veck satisfying the
conditions (a), (b), and (c) of (3.13). For each k-algebra R, let G.R/ be the set of families

.�V /V 2ob.C/; �V 2 EndR-linear.!.V /R/;

such that

˘ �V˝W D �V ˝�W for all V;W 2 ob.C/,
˘ �11 D id!.11/ for every identity object of 11 of C, and
˘ �W ı!.u/R D !.u/R ı�V for all arrows u in C.

Then G is an affine monoid over k, and ! defines an equivalence of tensor categories,

C! Rep.G/:

When ! satisfies the following condition, G is an affine group:
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(d) for any object X such that !.X/ has dimension 1, there exists an object X�1 in C
such that X˝X�1 � 11.

PROOF. Theorem 3.13 allows us to assume that CD Comod.C / for C a k-bialgebra, and
that ˝ and ! are the natural tensor product structure and forgetful functor. Let G be the
affine monoid corresponding to C . Using (3.9) we find that, for any k-algebra R,

End.!/.R/ def
D End.�R ı!/D lim

 �
Homk-lin.CX ;R/D Homk-lin.C;R/.

An element �2Homk-lin.CX ;R/ corresponds to an element of End.!/.R/ commuting with
the tensor structure if and only if � is a k-algebra homomorphism; thus

End˝.!/.R/D Homk-alg.C;R/DG.R/:

We have shown that End˝.!/ is representable by the affine monoid G D SpecC and that
! defines an equivalence of tensor categories

C! Comod.C /! Repk.G/.

On applying (d) to the highest exterior power of an object of C, we find that End˝.!/ D
Aut˝.!/, which completes the proof. 2

REMARK 3.15 Let .C;!/ be .Repk.G/;forget/. On following through the proof of (3.14)
in this case one recovers Theorem 1.2: End˝.!G/ is represented by G.

EXAMPLE 3.16 Let G be a connected complex Lie group, and let C be the category of an-
alytic representations of G on finite-dimensional complex vector spaces. With the obvious
functors ˝WC�C! C and !WC! VecC, this satisfies the hypotheses of Theorem 3.13,
and so is the category of representations of an affine group A.G/. Almost by definition,
there exists a homomorphism P WG!A.G/.C/ such that, for every analytic representation
.V;�/ of G, there exists a unique representation .V; y�/ of A.G/ such that y� D � ıP . The
group A.G/ is sometimes called the Hochschild-Mostow group (for a brief exposition of
the work of Hochschild and Mostow, see Magid, Andy, Notices AMS, Sept. 2011, p.1089;
should add more on the history of these things).

NOTES Add discussion of how much of this section extends to base rings k. (Cf. mo3131.) See
Schäppi 2011, arXiv:1112.5213 and the references therein.

4 Homomorphisms and functors

Throughout this section, k is a field. A homomorphism f WG0!G of affine groups over k
defines an exact faithful functor

.V;r/ .V;r ıf /WRep.G/! Rep.G0/;

which we denote !f . For example, if G0 is the trivial group, then !f is the forgetful
functor !G .
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PROPOSITION 4.1 A homomorphism f WG!Q of affine groups is surjective if and only
if !f is fully faithful and every subobject of an object in the essential image9 of !f is also
in the essential image.

PROOF. If f is a quotient map, then !f identifies Rep.Q/ with the full subcategory
of Rep.G/ of representations r WG ! GLV factoring through Q. It is therefore obvi-
ous that !f has the stated properties. Conversely, the hypotheses imply that !f defines
an equivalence of Rep.Q/ with a full subcategory of Rep.G/, and that its restriction to
hXi ! h!f .X/i is an equivalence for each object X of Rep.Q/; in particular,

End.!QjhXi/_ ' End.!G jh!f .X/i/_:

Now

O.Q/D lim
�!ŒX�

End.!QjhXi/_ ' lim
�!ŒX�

End.!G jh!f .X/i/_

� lim
�!ŒY �

End.!G jhY i/_ DO.G/;

where X (resp. Y ) runs over a set of representatives for the isomorphism classes of objects
in Rep.Q/ (resp. Rep.G/). Because O.Q/! O.G/ is injective, it is faithfully flat (VI,
11.1), and so G!Q is a quotient map. 2

REMARK 4.2 When Rep.G/ is semisimple, the second hypothesis in the proposition is
superfluous: f WG!Q is a quotient map if and only if !f is fully faithful. (Let X be in
the essential image, and let Y be a subobject of X ; because Rep.G/ is semisimple, there
exists an endomorphism u of X such that uX D Y ; because !f is fully faithful, u lives in
Rep.Q/.)

PROPOSITION 4.3 A homomorphism f WH !G of affine groups is injective if and only if
every object of Rep.H/ is a subquotient of an object in the essential image of !f .

PROOF. Let C be the strictly full subcategory of Rep.H/ whose objects are subquotients
of objects in the essential image of !f . The functors

Rep.G/! C! Rep.H/

correspond to homomorphisms of k-bialgebras

O.G/! C !O.H/.

An argument as in the proof of Proposition 4.1 shows that C !O.H/ is injective. More-
over,

End.!H jh!f .X/i/! End.!G jhXi/

is injective for every object X of Rep.G/, and so O.G/! C is surjective:

O.G/� C ,!O.H/.

If f is injective, then O.G/! O.H/ is surjective and it follows that C
'
�! O.H/, and

so C D Rep.H/. Conversely, if C D Rep.H/, then C D O.H/ and O.H/! O.G/ is
surjective. 2

9Recall that the essential image of a functor consists of the objects isomorphic to an object in the actual
image.
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Let f WH ! G be an injective homomorphism of affine algebraic groups. Let .V;r/
be a faithful representation of G. Then !f .V;r/ D .V;r ıf / is a faithful representation
of H , and so every finite-dimensional representation of H is isomorphic to a quotient of

a subrepresentation of a direct sum of representations
�
!f .V;r/˚!f .V;r/_

�˝m
(VIII,

11.7). This gives another proof of the sufficiency.



CHAPTER XI
The Lie Algebra of an Affine Group

The Lie algebra of an affine group is a linear approximation to the group. It holds a sur-
prisingly large amount of information about the group, especially in characteristic zero, and
especially for semisimple algebraic groups.

Throughout this chapter, k is a field (for the present).

1 Definition of a Lie algebra

DEFINITION 1.1 A Lie algebra1 over a field k is a vector space g over k together with a
k-bilinear map

Œ ; �Wg�g! g

(called the bracket) such that

(a) Œx;x�D 0 for all x 2 g,
(b) Œx; Œy;z��C Œy; Œz;x��C Œz; Œx;y��D 0 for all x;y;z 2 g.

A homomorphism of Lie algebras is a k-linear map uWg! g0 such that

u.Œx;y�/D Œu.x/;u.y/� for all x;y 2 g:

A Lie subalgebra of a Lie algebra g is a k-subspace s such that Œx;y� 2 s whenever x;y 2 s
(i.e., such that Œs;s�� s).

Condition (b) is called the Jacobi identity. Note that (a) applied to ŒxCy;xCy� shows
that the Lie bracket is skew-symmetric,

Œx;y�D�Œy;x�, for all x;y 2 g; (99)

and that (99) allows the Jacobi identity to be rewritten as

Œx; Œy;z��D ŒŒx;y�;z�C Œy; Œx;z�� (100)
1Bourbaki LIE, Historical Notes to Chapter I to III writes:

The term “Lie algebra” was introduced by H. Weyl in 1934; in his work of 1925, he had used the
expression “infinitesimal group”. Earlier mathematicians had spoken simply of the “infinitesi-
mal transformations X1f; : : : ;Xrf ” of the group, which Lie and Engel frequently abbreviated
by saying “the group X1f; : : : ;Xrf ”.

169
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or
ŒŒx;y�;z�D Œx; Œy;z��� Œy; Œx;z�� (101)

An injective homomorphism is sometimes called an embedding, and a surjective homo-
morphism is sometimes called a quotient map.

We shall be mainly concerned with finite-dimensional Lie algebras.

EXAMPLE 1.2 For any associative k-algebra A, the bracket Œa;b�D ab�ba is k-bilinear.
It makes A into a Lie algebra because Œa;a� is obviously 0 and the Jacobi identity can be
proved by a direct calculation. In fact, on expanding out the left side of the Jacobi identity
for a;b;c one obtains a sum of 12 terms, 6 with plus signs and 6 with minus signs; by
symmetry, each permutation of a;b;c must occur exactly once with a plus sign and exactly
once with a minus sign. When A is the endomorphism ring Endk-lin.V / of a k-vector space
V , this Lie algebra is denoted glV , and when ADMn.k/, it is denoted gln. Let eij be the
matrix with 1 in the ij th position and 0 elsewhere. These matrices form a basis for gln, and

Œeij ; ei 0j 0 �D ıj i 0eij 0 � ıij 0ei 0j (ıij D Kronecker delta).

EXAMPLE 1.3 Let A be a k-algebra (not necessarily associative). A derivation of A is a
k-linear map DWA! A such that

D.ab/DD.a/bCaD.b/ for all a;b 2 A:

The composite of two derivations need not be a derivation, but their bracket

ŒD;E�
def
DD ıE�E ıD

is, and so the set of k-derivations A! A is a Lie subalgebra Derk.A/ of glA.

EXAMPLE 1.4 For x 2 g, let adgx (or adx) denote the map y 7! Œx;y�Wg! g. Then adgx
is a k-derivation because (100) can be rewritten as

ad.x/Œy;z�D Œad.x/y;z�C Œy;ad.x/z�:

In fact, adg is a homomorphism of Lie algebras g! Der.g/ because (101) can be rewritten
as

ad.Œx;y�/z D ad.x/.ad.y/z/� ad.y/.ad.x/z/:

The kernel of adgWg! Derk.g/ is the centre of g,

z.g/
def
D fx 2 g j Œx;g�D 0g:

The derivations of g of the form adx are said to be inner (by analogy with the automor-
phisms of a group of the form inng).

2 The isomorphism theorems

An ideal in a Lie algebra g is a subspace a such that Œx;a� 2 a for all x 2 g and a 2 a
(i.e., such that Œg;a�� a). When a is an ideal, the quotient vector space g=a becomes a Lie
algebra with the bracket

ŒxCa;yCa�D Œx;y�Ca.

The following statements are straightforward consequences of the similar statements for
vector spaces.
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2.1 (Existence of quotients). The kernel of a homomorphism g! q of Lie algebras is an
ideal, and every ideal a is the kernel of a quotient map g! g=a.

2.2 (Homomorphism theorem). The image of a homomorphism uWg! g0 of Lie algebras
is a Lie subalgebra ug of g0, and u defines an isomorphism of g=Ker.u/ onto ug; in partic-
ular, every homomorphism of Lie algebras is the composite of a surjective homomorphism
with an injective homomorphism.

2.3 (Isomorphism theorem). Let h and a be Lie subalgebras of g such that Œh;a�� a; then
hCa is a Lie subalgebra of g, h\a is an ideal in h, and the map

xCh\a 7! xCaWh=h\a! .hCa/=a

is an isomorphism.

2.4 (Correspondence theorem). Let a be an ideal in a Lie algebra g. The map h 7! h=a is
a one-to-one correspondence between the set of Lie subalgebras of g containing a and the
set of Lie subalgebras of g=a. A Lie subalgebra h containing a is an ideal if and only if h=a
is an ideal in g=a, in which case the map

g=h! .g=a/=.h=a/

is an isomorphism

3 The Lie algebra of an affine group

Let G be an affine group over a field k, and let kŒ"� be the ring of dual numbers:

kŒ"�
def
D kŒX�=.X2/:

Thus kŒ"�D k˚k" as a k-vector space and "2 D 0. There is a homomorphism

� WkŒ"� �! k; �.aC "b/D a:

DEFINITION 3.1 For an affine group G over k,

Lie.G/D Ker.G.kŒ"�/
�
�!G.k//:

Following a standard convention, we often write g for Lie.G/, h for Lie.H/, and so on.

EXAMPLE 3.2 Let G D GLn, and let In be the identity n�n matrix. An n�n matrix A
gives an element InC "A of Mn.kŒ"�/, and

.InC "A/.In� "A/D InI

therefore InC "A 2 Lie.GLn/. Clearly every element of Lie.GLn/ is of this form, and so
the map

A 7!E.A/
def
D InC "AWMn.k/! Lie.GLn/

is a bijection. Note that

E.A/E.B/D .InC "A/.InC "B/

D InC ".ACB/

DE.ACB/:
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In the language of algebraic geometry, Lie.G/ is the tangent space to jGj at 1G (see CA
�18).

PROPOSITION 3.3 Let IG be the augmentation ideal in O.G/, i.e., IG D Ker.�WO.G/!
k/. Then

Lie.G/' Homk-lin.IG=I
2
G ;k/: (102)

PROOF. By definition, an element x of Lie.G/ gives a commutative diagram

O.G/ x
����! kŒ"�??y� ??y�

k k;

and hence a homomorphism IG ! Ker.�/ ' k on the kernels. That this induces an iso-
morphism (102) is proved in CA 18.9. 2

From (102), we see that Lie.G/ has the structure of k-vector space, and that Lie is a
functor from the category of algebraic groups over k to k-vector spaces.

THEOREM 3.4 There is a unique way of makingG Lie.G/ into a functor to Lie algebras
such that Lie.GLn/D gln (as Lie algebras).

Without the condition on Lie.GLn/, we could, for example, take the bracket to be zero.
It is clear from the definition of the Lie algebra of an affine group that an injective family
of homomorphisms of affine groups defines an injective family of homomorphisms of Lie
algebras. Since every affine group admits a faithful family of finite-dimensional represen-
tations, the uniqueness assertion is clear. The existence assertion will be proved later in this
chapter.

REMARK 3.5 If a¤ 0, then aCb"D a.1C b
a
"/ has inverse a�1.1� b

a
"/ in kŒ"�, and so

kŒ"�� D faCb" j a¤ 0g:

An element of Lie.G/ is a k-algebra homomorphism uWO.G/! kŒ"� whose composite
with " 7! 0 is �. Therefore, elements of O.G/ not in the kernel m of � map to units in kŒ"�,
and so u factors uniquely through the local ring O.G/m. This shows that Lie.G/ depends
only on O.G/m. In particular, Lie.Gı/' Lie.G/.

REMARK 3.6 There is a more direct way of defining the action of k on Lie.G/: an element
c 2 k defines a homomorphism of k-algebras

uc WkŒ"�! kŒ"�; uc.aC "b/D aC c"b

such that � ıuc D � , and hence a commutative diagram

G.kŒ"�/
G.uc/
����! G.kŒ"�/??yG.�/ ??yG.�/

G.k/
id

����! G.k/;
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which induces a homomorphism of groups Lie.G/! Lie.G/. For example, when G D
GLn,

G.uc/E.A/DG.uc/.InC "A/D InC c"ADE.cA/:

This defines a k-vector space structure on LieG, which agrees that given by (102).

NOTES The definition (3.1) is valid for any functor GWAlgk! Grp. See DG II, �4, 1, p. 200.

4 Examples

4.1 By definition

Lie.SLn/D fI CA" 2Mn.kŒ"�/ j det.I CA"/D 1g:

When we expand det.I C "A/ as a sum of nŠ products, the only nonzero term isQn
iD1 .1C "ai i /D 1C "

Pn
iD1ai i ;

because every other term includes at least two off-diagonal entries. Hence

det.I C "A/D 1C " trace.A/

and so

sln
def
D Lie.SLn/D fI C "A j trace.A/D 0g

' fA 2Mn.k/ j trace.A/D 0g:

For n�n matrices AD .aij / and B D .bij /,

trace.AB/D
X

1�i;j�n
aij bj i D trace.BA/. (103)

Therefore ŒA;B�D AB �BA has trace zero, and sln is a Lie subalgebra of gln.

4.2 Recall that Tn (resp. Un, resp. Dn) is the group of upper triangular (resp. upper
triangular with 1s on the diagonal, resp. diagonal) invertible matrices. As

Lie.Tn/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0BBBBB@
1C "c11 "c12 � � � "c1n�1 "c1n

0 1C "c22 � � � "c2n�1 "c2 n
:::

:::
: : :

:::
:::

0 0 � � � 1C "cn�1n�1 "cn�1n
0 0 � � � 0 1C "cnn

1CCCCCA

9>>>>>=>>>>>;
;

we see that

bn
def
D Lie.Tn/' f.cij / j cij D 0 if i > j g (upper triangular matrices).

Similarly,

nn
def
D Lie.Un/' f.cij / j cij D 0 if i � j g (strictly upper triangular matrices)

dn
def
D Lie.Dn/' f.cij / j cij D 0 if i ¤ j g (diagonal matrices).

These are Lie subalgebras of gln.
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4.3 Assume that the characteristic¤ 2, and let On be orthogonal group:

On D fA 2 GLn j At �AD I g .At D transpose of A/:

For I C "A 2Mn.kŒ"�/,

.I C "A/t � .I C "A/D .I C "At / � .I C "A/D I C "At C "A;

and so

Lie.On/D fI C "A 2Mn.kŒ"�/ j A
t
CAD 0g

' fA 2Mn.k/ j A is skew symmetricg:

Similarly, Lie.SOn/ consists of the skew symmetric matrices with trace zero, but obviously
the second condition is redundant, and so

Lie.SOn/D Lie.On/:

This also follows from the fact that SOn D Oın (see 3.5).

4.4 Let G be a finite étale algebraic group: this means that O.G/ is a separable k-algebra,
and that every quotient of O.G/ is separable (XII, 2.1, 2.4). The only separable subalgebra
of kŒ"� is k, and so G.kŒ"�/DG.k/ and Lie.G/D 0. This also follows from the fact that

Lie.G/D Lie
�
Gı
�
D Lie.1/D 0

(see 3.5).

4.5 Let k have characteristic p ¤ 0, and let G D ˛p, so that ˛p.R/D fr 2 R j rp D 0g
(see IV, 1.5). Then ˛p.k/D f0g and ˛p.kŒ"�/D fa" j a 2 kg. Therefore,

Lie.˛p/D fa" j a 2 kg ' k:

Similarly,
Lie.�p/D f1Ca" j a 2 kg ' k:

As the bracket on a one-dimensional Lie algebra must be trivial, this shows that ˛p and �p
have the same Lie algebra.

4.6 Let V be a vector space over k. Every element of V."/ def
D kŒ"�˝k V can be written

uniquely in the form xC "y with x;y 2 V , i.e., V."/ D V ˚ "V . The kŒ"�-linear maps
V."/! V."/ are the maps uC "ˇ, u;ˇ 2 Endk-lin.V /, where

.uC "ˇ/.xC "y/D u.x/C ".u.y/Cˇ.x//: (104)

To see this, note that Endk-lin.V ."//'M2.Endk-lin.V //, and that " acts as
�
0 0
1 0

�
2M2.Endk.V //.

Thus

EndkŒ"�-lin.V ."//D
��
u ˇ


 ı

�
2M2.Endk.V //

ˇ̌̌̌�
u ˇ


 ı

��
0 0

1 0

�
D

�
0 0

1 0

��
u ˇ


 ı

��
D

��
u 0

ˇ u

�
2M2.Endk.V //

�
.
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It follows that
GLV .kŒ"�/D fuC "ˇ j u invertibleg

and that
Lie.GLV /D fidV C"u j u 2 End.V /g ' End.V /D glV :

4.7 Let V be a finite-dimensional k-vector space, and let Da.V / denote the algebraic
group R Homk-lin.V;R/ (see IV, 1.6). Then

Lie.Da.V //' Homk-lin.V;k/D V
_

(as a k-vector space). Similarly,
Lie.Va/' V .

4.8 Let �WV � V ! k be a k-bilinear form, and let G be the subgroup of GLV of u
preserving the form, i.e., such that

G.R/D fu 2 GLV .R/ j �.ux;ux0/D �.x;x0/ for all x;x0 2 V.R/g:

Then Lie.G/ consists of the endomorphisms idC"u of V."/ such that

�..idC"u/.xC "y/; .idC"u/.x0C "y0//D �.xC "y;x0C "y0/; all x;y;x0;y0 2 V:

The left hand side equals

�.xC "yC " �ux;x0C "y0C " �ux0/D �.xC "y;x0C "y0/C ".�.ux;x0/C�.x;ux0//;

and so

Lie.G/' fu 2 Endk-lin.V / j �.ux;x
0/C�.x;ux0/D 0 all x;x0 2 V g:

4.9 Let G be the unitary group defined by a quadratic extension K of k (IV, 1.11). The
Lie algebra of G consists of the A 2Mn.K/ such that

.I C "A/�.I C "A/D I

i.e., such that
A�CAD 0:

Note that this is not a K-vector space, reflecting the fact that G is an algebraic group over
k, not K.

4.10 Let M be a commutative group, written multiplicatively. The functor

R Hom.M;R�/ (homomorphisms of abstract groups)

is an affine group over k (see XIV, �3). On applying the functor Hom.M;�/ to the split-
exact sequence of commutative groups

0 ����! k
a 7!1Ca"
������! kŒ"��

"7!0
����! k� ����! 0;
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we find that
Lie.G/' Hom.M;k/' Hom.M;Z/˝Z k:

A split torus T is an affine group of the form D.M/ with M finitely generated. For such a
group,

X.T /
def
D Hom.T;Gm/'M;

and so

Lie.T /' Hom.X.T /;Z/˝Z k
Homk-lin.Lie.T /;k/' k˝ZX.T /.

5 Description of Lie.G/ in terms of derivations

DEFINITION 5.1 Let A be a k-algebra andM an A-module. A k-linear mapDWA!M is
a k-derivation of A into M if

D.fg/D f �D.g/Cg �D.f / (Leibniz rule).

For example, D.1/DD.1� 1/DD.1/CD.1/ and so D.1/D 0. By k-linearity, this
implies that

D.c/D 0 for all c 2 k: (105)

Conversely, every additive map A!M satisfying the Leibniz rule and zero on k is a k-
derivation.

Let uWA! kŒ"� be a k-linear map, and write

u.f /D u0.f /C "u1.f /:

Then
u.fg/D u.f /u.g/

if and only if

u0.fg/D u0.f /u0.g/ and

u1.fg/D u0.f /u1.g/Cu0.g/u1.f /:

The first condition says that u0 is a homomorphism A! k and, when we use u0 to make
k into an A-module, the second condition says that u1 is a k-derivation A! k.

Recall that O.G/ has a co-algebra structure .�;�/. By definition, the elements of
Lie.G/ are the k-algebra homomorphisms O.G/! kŒ"� such that the composite

O.G/ u
�! kŒ"�

"7!0
�! k

is �, i.e., such that u0 D �. Thus, we have proved the following statement.

PROPOSITION 5.2 There is a natural one-to-one correspondence between the elements of
Lie.G/ and the k-derivations O.G/! k (where O.G/ acts on k through �), i.e.,

Lie.G/' Derk;�.O.G/;k/: (106)

The correspondence is �C "D$D, and the Leibniz condition is

D.fg/D �.f / �D.g/C �.g/ �D.f / (107)
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6 Extension of the base field

PROPOSITION 6.1 For any field K containing k, Lie.GK/'K˝k Lie.G/.

PROOF. We use the description of the Lie algebra in terms of derivations (106). Let ei be a
basis for O.G/ as a k-vector space, and let

eiej D
X

aijkek; aijk 2 k:

In order to show that a k-linear map DWA! k is a k-derivation, it suffices to check the
Leibniz condition on the elements of the basis. Therefore, D is a k-derivation if and only
if the scalars ci DD.ei / satisfyX

k
aijkck D �.ei /cj C �.ej /ci

for all i;j . This is a homogeneous system of linear equations in the ci , and so a basis for
the solutions in k is also a basis for the solutions in K (see the next lemma).

(Alternatively, use that

Lie.G/' Homk-lin.IG=I
2
G ;k/

and that IGK 'K˝k IG .) 2

LEMMA 6.2 Let S be the space of solutions in k of a system of homogeneous linear equa-
tions with coefficients in k. Then the space of solutions in any k-algebra R of the system
of equations is R˝k S .

PROOF. The space S is the kernel of a linear map

0! S ! V
u
�!W .

Tensoring this sequence with R gives a sequence

0!R˝k S !R˝k V
idR˝u
�! R˝kW ,

which is exact because R is flat. Alternatively, for a finite system, we can put the matrix of
the system of equations in row echelon form (over k), from which the statement is obvious.2

REMARK 6.3 Let G be an affine group over k. For a k-algebra R, define

g.R/D Ker.G.RŒ"�/!G.R//

where RŒ"�D kŒ"�˝k R ' RŒX�=.X2/. Then, as in (5.2), g.R/ can be identified with the
space of k-derivations A! R (with R regarded as an A-module through �), and the same
proof shows that

g.R/'R˝k g.k/ (108)

where g.k/D Lie.G/. In other words, the functor R g.R/ is canonically isomorphic to
ga.
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7 The adjoint map AdWG! Aut.g/

For any k-algebra R, we have homomorphisms

R
i
�!RŒ"�

�
�!R; i.a/D aC "0; �.aC "b/D a; � ı i D idR :

For an affine group G over k, they give homomorphisms

G.R/
i
�!G.RŒ"�/

�
�!G.R/; � ı i D idG.R/

where we have written i and � for G.i/ and G.�/. Let g.R/D Ker.G.RŒ"�/
�
�! G.R//,

so that
g.R/'R˝k g.k/

(see 6.3). We define
AdWG.R/! Aut.g.R//

by
Ad.g/x D i.g/ �x � i.g/�1; g 2G.R/; x 2 g.R/�G.RŒ"�/:

The following formulas hold:

Ad.g/.xCx0/D Ad.g/xCAd.g/x0; g 2G.R/; x;x0 2 g.R/

Ad.g/.cx/D c.Ad.g/x/; g 2G.R/; c 2R; x 2 g.R/:

The first is clear from the definition of Ad, and the second follows from the description of
the action of c in (3.6). Therefore Ad maps into AutR-lin.g.R//. All the constructions are
clearly natural in R, and so we get a natural transformation

AdWG! Aut.ga/

of group-valued functors on Algk .
Let f WG!H be a homomorphism of affine groups over k. Because f is a functor,

the diagrams

G.RŒ"�/
�

����! G.R/??yf .RŒ"�/ ??yf .R/
H.RŒ"�/

�
����! H.R/

G.RŒ"�/
i

 ���� G.R/??yf .RŒ"�/ ??yf .R/
H.RŒ"�/

i
 ���� H.R/

commute. Thus f defines a homomorphism of functors

Lie.f /Wga! ha;

and the diagrams

G.R/ � g.R/ g.R/

H.R/ � h.R/ g.R/

f Lie.f / Lie.f /

commute for all R, i.e.,

Lie.f /.AdG.g/ �x/D AdH .f .g// �x; g 2G.R/; x 2 g.R/. (109)
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8 First definition of the bracket

The idea of the construction is the following. In order to define the bracket Œ ; �Wg�g! g,
it suffices to define the map adWg! glg, ad.x/.y/D Œx;y�. For this, it suffices to define a
homomorphism of affine groups adWG! GLg, or, in other words, an action of G on g. But
G acts on itself by inner automorphisms, and hence on its Lie algebra.

In more detail, in the last section, we defined a homomorphism of affine groups

AdWG! GLg :

Specifically,

Ad.g/x D i.g/ �x � i.g/�1; g 2G.R/; x 2 g.R/�G.RŒ"�/:

On applying the functor Lie to the homomorphism Ad, we obtain a homomorphism of
k-vector spaces

adWLieG! LieGLg
(4.6)
' Endk-lin.g/:

DEFINITION 8.1 For a;x 2 Lie.G/,

Œa;x�D ad.a/.x/:

LEMMA 8.2 For G D GLn, the construction gives ŒA;X�D AX �XA.

PROOF. An element I C "A 2 Lie.GLn/ acts on Mn.kŒ"�/ as

XC "Y 7! .I C "A/.XC "Y /.I � "A/DXC "Y C ".AX �XA/:

On comparing this with (4.6), we see that ad.A/ acts as idC"u where u.X/DAX �XA.2

LEMMA 8.3 The construction is functorial in G, i.e., the map LieG! LieH defined by a
homomorphism of affine groups G!H is compatible with the two brackets.

PROOF. This follows from (109). 2

Because the bracket ŒA;X�DAX�XA on gln satisfies the conditions in (VIII, 1.1) and
every algebraic G can be embedded in GLn (VIII, 9.1), the bracket on Lie.G/makes it into
a Lie algebra. This completes the first proof of Theorem 3.4.

9 Second definition of the bracket

Let A D O.G/, and consider the space Derk.A;A/ of k-derivations of A into A (with A
regarded as an A-module in the obvious way). The bracket

ŒD;D0�
def
D D ıD0�D0 ıD

of two derivations is again a derivation. In this way Derk.A;A/ becomes a Lie algebra.
Let G be an affine group. A derivation DWO.G/!O.G/ is left invariant if

�ıD D .id˝D/ı�: (110)
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If D and D0 are left invariant, then

�ı ŒD;D0�D�ı .D ıD0�D0 ıD/

D .id˝.D ıD0/� id˝.D0 ıD//

D .id˝ŒD;D0�/ı�

and so ŒD;D0� is left invariant.

PROPOSITION 9.1 The mapD 7! � ıDWDerk.O.G/;O.G//!Derk.O.G/;k/ defines an
isomorphism from the subspace of left invariant derivations onto Derk.O.G/;k/.

PROOF. If D is a left invariant derivation O.G/!O.G/, then

D D .id˝�/ı�ıD
(110)
D .id˝�/ı .id˝D/ı�D .id˝.� ıD//ı�;

and so D is determined by � ıD. Conversely, if d WO.G/! k is a derivation, then D D
.id˝d/ı� is a left invariant derivation O.G/!O.G/. 2

Thus, Lie.G/ is isomorphic (as a k-vector space) to the space of left invariant deriva-
tions O.G/!O.G/, which is a Lie subalgebra of Derk.O.G/;O.G//. In this way, Lie.G/
acquires a Lie algebra structure, which is clearly natural in G.

It remains to check that, when G DGLn, this gives the bracket ŒA;B�DAB�BA (left
as an exercise for the present).

10 The functor Lie preserves fibred products

PROPOSITION 10.1 For any homomorphisms G!H  G0 of affine groups,

Lie.G�H G0/' Lie.G/�Lie.H/ Lie.G0/: (111)

PROOF. By definition (V, �2),�
G�H G

0
�
.R/DG.R/�H.R/G

0.R/; R a k-algebra.

Therefore,

Lie.G�H G0/D Ker
�
G.kŒ"�/�H.kŒ"�/G

0.kŒ"�/!G.k/�H.k/G
0.k/

�
D f.g;g0/ 2G.kŒ"�/�G0.kŒ"�/ j g;g0 have the same image in H.kŒ"�/, G.k/, and G0.k/g

D Ker.G.kŒ"�/!G.k//�H.kŒ��/Ker
�
G0.kŒ"�/!G0.k/

�
D Lie.G/�Lie.H/ Lie.G0/: 2

EXAMPLE 10.2 Let k be a field of characteristic p¤ 0. There are fibred product diagrams:

�p ����! Gm??y ??yy 7!.yp;y/
Gm ������!

x 7!.1;x/
Gm�Gm

Lie

k
id

����! k??yid

??yc 7!.0;c/
k �����!

c 7!.0;c/
k�k:
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EXAMPLE 10.3 Recall (VII, 4.1) that the kernel of a homomorphism uWG!H of affine
groups can be obtained as a fibred product:

Ker.u/ ����! f1H g??y ??y
G

u
����! H

Therefore (111) shows that

Lie.Ker.u//D Ker.Lie.u//:

In other words, an exact sequence of affine groups 1!N !G!H gives rise to an exact
sequence of Lie algebras

0! LieN ! LieG! LieH:

For example, the exact sequence (cf. 10.2)

1! �p
x 7!.x;x/
������!Gm�Gm

.x;y/ 7!.yp;x=y/
�����������!Gm�Gm

gives rise to an exact sequence

0! k
x 7!.x;x/
������! k˚k

.x;y/7!.0;x�y/
�����������! k˚k:

EXAMPLE 10.4 Let H and H 0 be affine subgroups of an affine group G. The affine sub-
group H \H 0 with .H \H 0/.R/DH.R/\H 0.R/ (inside G.R/) is the fibred product of
the inclusion maps, and so

Lie.H \H 0/D Lie.H/\Lie.H 0/ (inside Lie.G/).

More generally,

Lie.
\

i2I
Hi /D

\
i2I

LieHi (inside Lie.G/) (112)

for any family of affine subgroups Hi of G.
For example, the homomorphisms in (10.2) realize Gm in two ways as subgroups of

Gm�Gm, which intersect in �p, and so

Lie.�p/D Lie.Gm/\Lie.Gm/ (inside Lie.Gm�Gm/).

A
10.5 The examples 10.2–10.4 show that the functor Lie does not preserve fibred products,

left exact sequences, or intersections in the category of smooth affine groups.

A
10.6 The sequence

1! �p
x 7!.x;x/
������!Gm�Gm

.x;y/7!.yp;x=y/
�����������!Gm�Gm! 1

is exact in the category of affine groups over k, but

0! k
x 7!.x;x/
������! k˚k

.x;y/ 7!.0;x�y/
�����������! k˚k! 0

is not exact, and so the functor Lie is not right exact.
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11 Commutative Lie algebras

A Lie algebra g is said to be commutative (or abelian) if Œx;y�D 0 for all x;y 2 g. Thus,
to give an commutative Lie algebra amounts to giving a finite-dimensional vector space.

If G is commutative, then Lie.G/ is commutative. This can be seen directly from the
first definition of the bracket because the inner automorphisms are trivial if G is commu-
tative. Alternatively, observe that if G is a commutative subgroup of GLn, then Lie.G/ is
a commutative subalgebra of Lie.GLn/. More generally, for a connected algebraic affine
group G,

Lie.ZG/� z.g/;

with equality if k has characteristic zero (tba).
Recall that an endomorphism u of a vector space V is said to be diagonalizable if V

has a basis of eigenvectors, and that it is semisimple if it becomes diagonalizable after an
extension of the base field k. Note that a nilpotent semisimple endomorphism is zero. If u
is semisimple, then its restriction to any subspaceW such that uW �W is also semisimple.

PROPOSITION 11.1 A Lie algebra is commutative if all of its elements are semisimple.

PROOF. We may suppose that k is algebraically closed. Let x be an element of such a Lie
algebra.. We have to show that ad.x/D 0. If not, ad.x/ will have a nonzero eigenvalue, say,
ad.x/.y/D cy, c ¤ 0, y ¤ 0. Then ad.y/.x/D�ad.x/.y/D�cy ¤ 0, but ad.y/2.x/D
�cŒy;y�D 0. Thus, the restriction of ad.y/ to the subspace spanned by x and y is nonzero,
nilpotent, and semisimple, which is a contradiction. 2

12 Normal subgroups and ideals

A normal algebraic subgroup N of an affine group G is the kernel of a quotient map G!
Q (see VIII, 17.5); therefore, Lie.N / is the kernel of a homomorphism of Lie algebras
LieG! LieQ (see 10.3), and so is an ideal in LieG. Of course, this can also be proved
directly.

13 Algebraic Lie algebras

A Lie algebra is said to be algebraic if it is the Lie algebra of an affine algebraic group. A
sum of algebraic Lie algebras is algebraic. Let gD Lie.G/, and let h be a Lie subalgebra
of g. The intersection of the algebraic Lie subalgebras of g containing h is again algebraic
(see 10.4) — it is called the algebraic envelope or hull of h.

Let h be a Lie subalgebra of glV . A necessary condition for h to be algebraic is that the
semisimple and nilpotent components of each element of h (as an endomorphism of glV /
lie in h. However, this condition is not sufficient, even in characteristic zero.

Let h be a Lie subalgebra of glV over a field k of characteristic zero. We explain how to
determine the algebraic hull of h. For any X 2 h, let g.X/ be the algebraic hull of the Lie
algebra spanned by X . Then the algebraic hull of h is the Lie subalgebra of glV generated
by the g.X/, X 2 h. In particular, h is algebraic if and only if each X is contained in an
algebraic Lie subalgebra of h. Write X as the sum S CN of its semisimple and nilpotent
components. Then g.N / is spanned by N , and so it remains to determine g.X/ when X is
semisimple. For some finite extension L of k, there exists a basis of L˝V for which the
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matrix of X is diag.u1; : : : ;un/. Let W be the subspace Mn.L/ consisting of the matrices
diag.a1; : : : ;an/ such thatX

i
ciui D 0, ci 2 L H)

X
i
ciai D 0,

i.e., such that the ai satisfy every linear relation over L that the ui do. Then the map

glV ! L˝glV 'Mn.L/

induces maps
g.X/! L˝g.X/'W;

which determine L˝g.X/. See Chevalley 1951 (also Fieker and de Graaf 2007 where it is
explained how to implement this as an algorithm).

A
13.1 The following rules define a five-dimensional solvable Lie algebra gD

L
1�i�5kxi :

Œx1;x2�D x5; Œx1;x3�D x3; Œx2;x4�D x4 ; Œx1;x4�D Œx2;x3�D Œx3;x4�D Œx5;g�D 0

(Bourbaki LIE, I, �5, Exercise 6). For every injective homomorphism g ,! glV , there exists
an element of g whose semisimple and nilpotent components (as an endomorphism of V )
do not lie in g (ibid., VII, �5, Exercise 1). It follows that the image of g in glV is not the Lie
algebra of an algebraic subgroup of GLV (ibid., VII, �5, 1, Example).

A
13.2 The functor G Lie.G/ is not full. For example

End.Gm/D Z  k D End.Lie.Gm//.

For another example, let k be an algebraically closed field of characteristic zero, and let
G DGaoGm with the product .a;u/.b;v/D .aCub;uv/. Then

Lie.G/D Lie.Ga/�Lie.Gm/D kyCkx

with Œx;y� D y. The Lie algebra morphism Lie.G/! Lie.Ga/ such that x 7! y, y 7! 0

is surjective, but it is not the differential of a homomorphism of algebraic groups because
there is no nonzero homomorphism Gm!Ga.

NOTES Need to prove the statements in this section (not difficult). They are important for the
structure of semisimple algebraic groups and their representations.

14 The exponential notation

Let S be an R-algebra, and let a be an element of S such that a2 D 0. There is a unique
R-algebra homomorphism RŒ"�! S sending " to a. Following DG, II �4, 3.7, p.209, we
denote the image of x 2 Lie.G/.R/ under the composite

Lie.G/.R/ ,!G.RŒ"�/!G.S/

by eax . For example, x D e"x in G.RŒ"�/. For x;y 2 Lie.G/.R/;

ea.xCy/ D eaxeay (in G.S/).
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The action of a 2R on x 2 Lie.G/.R/ is described by

e."a/x D e".ax/ (in G.RŒ"�/).

If f WG!H is a homomorphism of algebraic groups and x 2 Lie.G/.R/, then

f .eax/D ea.Lie.f /.x//:

The adjoint map Ad is described by

ge"xg�1 D e".Ad.g/x/ (in G.RŒ"�);

(g 2G.R/; x 2 Lie.G/.R/). Moreover,

Ad.e"x/D idC"ad.x/ (in AutR-lin.Lie.G/.R//.

Let x;y 2 Lie.G/.R/ and let a;b 2 S be of square 0. Then

eaxebye�axe�by D eabŒx;y� (in G.S/)

(ibid. 4.4).

15 Arbitrary base rings

Now let k be a commutative ring, and let kŒ"�D kŒX�=.X2/. For any smooth affine group
G over k, define gD Lie.G/ to be

Lie.G/D Ker.G.kŒ"�/
"7!0
�! G.k//:

This is a finitely generated projective k-module, and for any k-algebra R,

Lie.GR/DR˝g.

Therefore, the functor R  Lie.GR/ is equal to ga. The action of G on itself by inner
automorphisms defines an action of G on g, and, in fact, a homomorphism

AdWG! GLg

of affine groups over k. On applying the functor Lie to this, we get the adjoint map

adWg! Homk-lin.g;g/:

Now we can define a bracket operation on g by

Œx;y�D ad.x/y:

Equipped with this bracket, g is a Lie algebra over k. Most of the material in this section
extends to smooth affine groups over rings.

NOTES Should rewrite the chapter for k a ring.
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NOTES (mo84255) If you are interested in PBW for Lie algebras over rings, here is a nice (and well
written) paper: P.J. Higgins, Baer Invariants and the Birkhoff-Witt theorem, J. of Alg. 11, 469-482,
(1969). (Grinberg)

There is a joke definition of a Lie algebra, due to my adviser John Moore, that is relevant.
His definition of a Lie algebra over a commutative ring R is that it is a module L with a bracket
operation such that there exists an associative R-algebra A and a monomorphism L! A of R-
modules that takes the bracket operation to the commutator in A. The point is to try to build in the
PBW and dodge the question of which identities characterize Lie algebras. It is equivalent to the
usual definition when R is a field, as one sees by proving PBW using only the standard identities,
but not so over a general commutative ring.

Even over a field (char ¤ 2 for simplicity) there is an interesting contrast with the definition
of a Jordan algebra. There the analogue of the commutator is 1=2.abCba/. One writes down the
identities this satisfies and defines a Jordan algebra to be a vector space that satisfies the identities.
But Jordan algebras do not generally embed in associative algebras (those that do are called special).
(Peter May)

16 More on the relation between algebraic groups and their Lie
algebras

In Chapter VI, we defined the dimension of an affine algebraic groupG to be the dimension
of the associated algebraic scheme jGj.

16.1 We list some alternative descriptions of dimG.

(a) According to the Noether normalization theorem (CA 5.11), there exists a finite set
S of elements in O.G/ such that kŒS� is a polynomial ring in the elements of S and
O.G/ is finitely generated as a kŒS�-module. The cardinality of S is dimG.

(b) Let Gı be the identity component of G (see XIII, 3.1). The algebraic variety jGıj is
irreducible, and so O.Gı/=N is an integral domain (XIII, 3.2). The transcendence
degree of its field of fractions is dimG.

(c) Let m be a maximal ideal of O.G/. The height of m is dimG.

PROPOSITION 16.2 For an affine algebraic group G, dimLieG � dimG, with equality if
and only if G is smooth.

PROOF. Because Lie.Gkal/'Lie.G/˝k kal (see 6.1), we may suppose kD kal. According
to (3.3),

Lie.G/' Homk-lin.m=m
2;k/

where mDKer.O.G/ �
�! k/. Therefore, dimLie.G/� dimG, with equality if and only if

the local ring O.G/m is regular (VI, 7.3), but O.G/m is regular if and only if G is smooth
(VI, 8.2). 2

EXAMPLE 16.3 We have

dimLieGa D 1D dimGa
dimLie˛p D 1 > 0D dim˛p

dimLieSLn D n2�1D dimSLn :
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PROPOSITION 16.4 If
1!N !G!Q! 1

is exact, then
dimG D dimN CdimQ:

PROOF. See VII, 7.12. 2

Applications

PROPOSITION 16.5 Let H be a smooth affine algebraic subgroup of a connected affine
algebraic group G. If LieH D LieG, then G is smooth and H DG.

PROOF. We have

dimH
(16.2)
D dimLieH D dimLieG

(16.2)
� dimG:

Because H is a subgroup of G, dimH � dimG (see VI, 8.1). Therefore

dimH D dimLie.G/D dimG;

and so G is smooth (16.2) and H DG (see VI, 8.1). 2

COROLLARY 16.6 Assume char.k/D 0 and that G is connected. A homomorphismH !

G is a surjective if LieH ! LieG is surjective.

PROOF. We know (VIII, 17.5) that H !G factors into

H ! xH !G

with H ! xH surjective and xH ! G injective. Correspondingly, we get a diagram of Lie
algebras

LieH ! Lie xH ! LieG:

Because xH !G is injective, Lie xH ! LieG is injective (10.3). If LieH ! LieG is surjec-
tive, then Lie xH ! LieG is an isomorphism. As we are in characteristic zero, xH is smooth
(VI, 9.3), and so (16.5) shows that xH DG. 2

COROLLARY 16.7 Assume char.k/D 0. If

1!N !G!Q! 1

is exact, then
0! Lie.N /! Lie.G/! Lie.Q/! 0

is exact.

PROOF. The sequence 0! Lie.N /! Lie.G/! Lie.Q/ is exact (by 10.3), and the equal-
ity

dimG
(16.4)
D dimN CdimQ

implies a similar statement for the Lie algebras (by 16.2, as the groups are smooth). This
implies (by linear algebra) that Lie.G/! Lie.Q/ is surjective. 2
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COROLLARY 16.8 The Lie algebra of G is zero if and only if G is étale; in particular, a
connected affine algebraic group with zero Lie algebra is trivial.

PROOF. We have seen that the Lie algebra of an étale group is zero (4.4). Conversely, if
LieGD 0 thenG has dimension 0, and so O.G/ is a finite k-algebra; moreover, IG=I 2G D 0,
which implies that O.G/ is étale. 2

COROLLARY 16.9 In characteristic zero, a homomorphism G ! H of connected affine
algebraic groups is an isogeny if and only if Lie.G/! Lie.H/ is an isomorphism.

PROOF. Apply (16.6), (16.7), and 16.8). 2

A
16.10 The smoothness and connectedness assumptions are necessary in (16.5) because

Lie.˛p/D Lie.Ga/ but ˛p ¤Ga and

Lie.SOn/D Lie.On/ but SOn ¤ On.

The same examples show that the characteristic and connectedness assumptions are neces-
sary in (16.6). The characteristic assumption is necessary in (16.7) because

0! ˛p!Ga
x 7!xp

�! Ga! 0

is exact, but the sequence

0! Lie˛p! LieGa! LieGa! 0

is
0! k

'
�! k

0
�! k! 0;

which is not exact.

THEOREM 16.11 Assume that char.k/D 0 and thatG is connected. The mapH 7! LieH
from connected affine algebraic subgroups ofG to Lie subalgebras of LieG is injective and
inclusion preserving.

PROOF. Let H and H 0 be connected algebraic subgroups of G. Then (see 10.4)

Lie.H \H 0/D Lie.H/\LieH 0/:

If Lie.H/D Lie.H 0/, then

Lie.H/D Lie.H \H 0/D Lie.H 0/;

and so (16.5) shows that
H DH \H 0 DH 0: 2
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EXAMPLE 16.12 Let k be a field of characteristic zero, and consider GLn as an algebraic
group over k. According to VIII, 9.1, every algebraic group over k can be realized as a
subgroup of GLn for some n, and, according to (16.11), the algebraic subgroups of GLn
are in one-to-one correspondence with the algebraic Lie subalgebras of gln. This suggests
two questions: find an algorithm to decide whether a Lie subalgebra of gln is algebraic
(i.e., arises from an algebraic subgroup)2; given an algebraic Lie subalgebra of gln, find an
algorithm to construct the group. For a recent discussion of these questions, see, de Graaf,
Willem, A. Constructing algebraic groups from their Lie algebras. J. Symbolic Comput. 44
(2009), no. 9, 1223–1233.3

PROPOSITION 16.13 Assume char.k/D 0. Let u;v be homomorphisms of affine algebraic
groups G!H . If Lie.u/D Lie.v/ and G is connected, then uD v:

PROOF. Let � denote the diagonal in G �G — it is an algebraic subgroup of G �G
isomorphic to G. The homomorphisms u and ˇ agree on the algebraic group

G0
def
D�\G�H G:

The hypothesis implies Lie.G0/D Lie.�/, and so G0 D�. 2

Thus, when char.k/D 0, the functor G Lie.G/ from connected algebraic groups to
Lie algebras is faithful and exact. It is not fully faithful, because

End.Gm/D Z¤ k D End.Lie.Gm//.

Moreover, it is trivial on étale algebraic groups.

16.14 Even in characteristic zero, infinitely many nonisomorphic connected algebraic
groups can have the same Lie algebra. For example, let g be the two-dimensional Lie
algebra hx;y j Œx;y�D yi, and, for each nonzero n 2 N, let Gn be the semidirect product
GaoGm defined by the action .t;a/ 7! tna of Gm on Ga. Then Lie.Gn/D g for all n, but
no two groups Gn are isomorphic.

However, there is the following theorem: let k be an algebraically closed field; for every
algebraic Lie algebra g over k, there exists a connected affine algebraic group Gg with
unipotent centre such that Lie.Gg/D g; if g0 is a second algebraic Lie algebra over k, then
every isomorphism g! g0 is the differential of an isomorphism Gg! Gg0 . In particular,
Gg is uniquely determined up to isomorphism, and Aut.Gg/DAut.g/ (Hochschild 1971b).
Exercise: prove this by identifying which subcategory of Rep.g/ is equal to Rep.Gg/.

Representations

A representation of a Lie algebra g on a k-vector space V is a homomorphism �Wg! glV .
Thus � sends x 2 g to a k-linear endomorphism �.x/ of V , and

�.Œx;y�/D �.x/�.y/��.y/�.x/:

2See �13.
3de Graaf (ibid.) and his MR reviewer write: “A connected algebraic group in characteristic 0 is uniquely

determined by its Lie algebra.” This is obviously false — for example, SL2 and its quotient by f˙I g have
the same Lie algebra. What they mean (but didn’t say) is that a connected algebraic subgroup of GLn in
characteristic zero is uniquely determined by its Lie algebra as a subalgebra of gln.
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We often call V a g-module and write xv for �.x/.v/. With this notation

Œx;y�v D x.yv/�y.xv/. (113)

A representation � is said to be faithful if it is injective. The representation x 7! adxWg!
glg is called the adjoint representation of g (see 1.4).

Let W be a subspace of V . The stabilizer of W in g is

gW
def
D fx 2 g j xW �W g.

It is clear from (113) that gW is a Lie subalgebra of g.
Let v 2 V . The isotropy algebra of v in g is

gv
def
D fx 2 g j xv D 0g:

It is a Lie subalgebra of g. The Lie algebra g is said to fix v if gD gv, i.e., if gv D 0.
Let r WG ! GLV be a representation of G on a k-vector space V . Then Lie.r/ is a

representation of Lie.G/ on V . Recall (VIII, 12.1) that, for any subspace W of V , the
functor

R GW .R/
def
D fg 2G.R/ j g.W ˝R/DW ˝Rg

is an affine subgroup of G, called the stabilizer of W in G .

PROPOSITION 16.15 For any representation G! GLV and subspace W � V ,

LieGW D .LieG/W :

PROOF. By definition, LieGW consists of the elements idC"u of G.kŒ"�/, u 2 End.V /,
such that

.idC"u/.W C "W /�W C "W;

(cf. 4.6), i.e., such that u.W /�W . 2

COROLLARY 16.16 IfW is stable underG, then it is stable under Lie.G/, and the converse
is true when char.k/D 0 and G is connected.

PROOF. To say that W is stable under G means that G D GW , but if G D GW , then
LieG D LieGW D .LieG/W , which means that W is stable under LieG. Conversely, to
say that W is stable under LieG, means that LieG D .LieG/W . But if LieG D .LieG/W ,
then LieG D LieGW , which implies that GW D G when char.k/D 0 and G is connected
(16.5). 2





CHAPTER XII
Finite Affine Groups

In this chapter, we allow k to be a commutative ring. As usual, unadorned tensor products
are over k.

1 Definitions

DEFINITION 1.1 An affine group G over k is finite (resp. flat, resp. finite locally free) if
O.G/ is finitely generated (resp. flat, resp. finitely generated and projective) as a k-module.

In particular, a finite affine group is algebraic.
According to (CA 10.4) an affine group G over k is finite and locally free if and only if

O.G/ satisfies the following equivalent conditions:

˘ O.G/ is finitely generated and projective as a k-module;
˘ O.G/ is finitely presented as a k-module and O.G/m is a free km-module for all

maximal ideals m of k;
˘ there exists a finite family .fi /i2I of elements of k generating the ideal k and such

that, for all i 2 I , the kfi -module O.G/fi is free of finite rank;
˘ O.G/ is finitely presented and flat as a k-module;
˘ (k an integral domain) O.G/ is finitely presented and dimk.p/.M ˝k k.p// is the

same for all prime ideals p of k (here k.p/ is the field of fractions of k=p).

In general, if G is finite and locally free, the function

p 7! dimk.m/M ˝k.m/Wspm.k/! N

is locally constant (because of the third condition above). It is called the order of G over
k. When k is noetherian, “finite flat” is equivalent to “finite locally free” (because “finitely
generated” is equivalent to “finitely presented”).

When k is a field, flatness is automatic, and an affine group G over k is finite if and
only if dimkO.G/ is finite (and dimkO.G/ is then the order of G over k).

DEFINITION 1.2 An affine group G over a field is profinite if its algebraic quotients are
finite.

Thus, an affine group over a field is profinite if and only if it is an inverse limit of finite
affine groups (VIII, 8.1). A profinite affine group is algebraic if and only if it is finite.

191
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DEFINITION 1.3 A homomorphism of affine groups over a field is an isogeny if its kernel
and cokernel are both profinite.

As the kernel and cokernel of a homomorphism of algebraic groups over a field are
algebraic, such a homomorphism is an isogeny if and only if its kernel and cokernel are
finite.

PROPOSITION 1.4 An algebraic group G over a field is finite if and only if there exists a
finite-dimensional representation .V;r/ such that every finite-dimensional representation of
G is isomorphic to a subrepresentation of V n for some n� 0.

PROOF. If G is finite, then the regular representation X of G is finite-dimensional, and
(VIII, 10.3) says that it has the required property. Conversely if, with the notations of (X,
�3), Repk.G/ D hXi, then G D SpecB where B is the linear dual of the finite k-algebra
AX D End.!/: 2

Recall (p.147) that an algebraic group over a field is strongly connected if it has no
nontrivial finite quotient.

COROLLARY 1.5 An algebraic group G over a field is strongly connected if and only if,
for every representation V on which G acts nontrivially, the full subcategory of Rep.G/ of
subquotients of V n, n� 0, is not stable under˝.

PROOF. An algebraic group G is strongly connected if and only if there is no non-trivial
epimorphism G ! G0 with G0 finite. According to (VIII, 15.1), this is equivalent to
Repk.G/ having no non-trivial subcategory of the type described in (1.4). 2

PROPOSITION 1.6 An algebraic group G over a field k is finite if and only if G.kal/ is
finite.

PROOF. LetADO.G/. IfA is finite, thenG.kal/DHomk-algebra.A;k
al/ is obviously finite.

Conversely, if Homk-algebra.A;k
al/ is finite, then A has only finitely many maximal ideals

m1; : : : ;mr , the nilradical N of A equals
T
imi , and A=N'

Q
A=mi (Chinese remainder

theorem). Each quotient A=mi is finite-dimensional over k by Zariski’s lemma (CA 11.1),
and so A=N is finite-dimensional as a k-vector space. Because the ideal N is finitely gen-
erated, Ns D 0 for some integer s, and each quotient space Ni=NiC1 is finite-dimensional.
Therefore A is a finite k-algebra. 2

ASIDE 1.7 Let G be a finite flat affine group over an integral domain k. If k is a Dedekind domain,
then O.G/red is flat over k, but probably not in general otherwise (mo61570). Moreover, O.G/˝
O.G/ need not be reduced, so the Hopf algebra structure on O.G/ need not pass to the quotient.

NOTES In SGA 3 a finite group scheme over a scheme S is defined to be a group scheme f WG! S

such that f is a finite map. When S is affine, say, S D Spec.k/, this agrees with our definition.
Similarly our definition of “finite locally free” agrees with SGA 3 (cf. DG I, �5, 1.1, p.127). Our
definition of “isogeny” agrees with that in DG V, �3, 1.6, p. 577.
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2 Étale affine groups

Unless we say otherwise, k is a field in this section.

Étale algebras over a field

DEFINITION 2.1 An algebra A over a field k is diagonalizable if it is isomorphic to the
product algebra kn for some n, and it is étale if L˝A is diagonalizable for some field L
containing k.1

Let k be a field, and let A be a finite k-algebra. For any finite set S of maximal ideals
in A, the Chinese remainder theorem (CA 2.12) shows that the map A!

Q
m2S A=m is

surjective with kernel
T

m2Sm. In particular, jS j � ŒAWk�, and so A has only finitely many
maximal ideals. If S is the set of all maximal ideals in A, then

T
m2Sm is the nilradical N

of A (CA 11.8), and so A=N is a finite product of fields.

PROPOSITION 2.2 The following conditions on a finite k-algebra A are equivalent:

(a) A is étale;
(b) L˝A is reduced for all fields L containing kI
(c) A is a product of separable field extensions of k.

PROOF. (a))(b). Let L be a field containing k. By hypothesis, there exists a field L0

containing k such that L0˝A is diagonalizable. Let L00 be a field containing (copies of)
bothL andL0 (e.g., takeL00 to be a quotient ofL˝L0 by a maximal ideal). ThenL00˝AD
L00˝L0 L

0˝A is diagonalizable, and the map L˝A! L00˝A defined by the inclusion
L! L00 is injective, and so L˝A is reduced.

(b))(c). The map a 7! a˝1W A!L˝A is injective, and so if L˝A is reduced, then
so also is A. The discussion above shows that it is a finite product of fields. Let k0 be one
of the factors of A. If k0 is not separable over k, then k has characteristic p ¤ 0 and there
exists an element u of k0 whose minimum polynomial is of the form f .Xp/ with f 2 kŒX�
(see FT 3.6, et seq.). Let L be a field containing k such that all the coefficients of f are pth
powers in L. Then

L˝kŒu�' L˝ .kŒX�=.f .Xp//' LŒX�=.f .Xp//;

which is not reduced because f .Xp/ is a pth power in LŒX�. Hence L˝A is not reduced.
(c))(a). We may suppose that A itself is a separable field extension of k. From the

primitive element theorem (FT 5.1), we know that A D kŒu� for some u. Because kŒu� is
separable over k, the minimum polynomial f .X/ of u is separable, which means that

f .X/D
Y
.X �ui /; ui ¤ uj for i ¤ j;

in a splitting field L for f . Now

L˝A' L˝kŒX�=.f /' LŒX�=.f /,

and, according to the Chinese remainder theorem (CA 2.12),

LŒX�=.f /'
Y

i
LŒX�=.X �ui /' L� � � ��L.

2

1This is Bourbaki’s terminology, Bourbaki A, V �6.
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COROLLARY 2.3 Let ksep be a separable closure of k. A k-algebra A is étale if and only
if ksep˝A is diagonalizable.

PROOF. The proof that (c) implies (a) in (2.2) shows that L˝A is diagonalizable if certain
separable polynomials split in L. By definition, all separable polynomials split in ksep. 2

PROPOSITION 2.4 Finite products, tensor products, and quotients of diagonalizable (resp.
étale) k-algebras are diagonalizable (resp. étale).

PROOF. This is obvious for diagonalizable algebras, and it follows for étale algebras. 2

COROLLARY 2.5 The composite of any finite set of étale subalgebras of a k-algebra is
étale.

PROOF. Let Ai be étale subalgebras of B . Then A1 � � �An is the image of the map

a1˝�� �˝an 7! a1 � � �anWA1˝�� �˝An! B;

and so is a quotient of A1˝�� �˝An. 2

PROPOSITION 2.6 If A is étale over k, then k0˝A is étale over k0 for every field k0 con-
taining k.

PROOF. Let L be such that L˝A� Lm, and let L0 be a field containing (copies of) both
L and k0. Then

L0˝k0
�
k0˝A

�
' L0˝A' L0˝LL˝A� L

0
˝LL

m
'
�
L0
�m . 2

Classification of the étale algebras over a field

Let ksep be a separable closure of k. If k is perfect, for example, of characteristic zero, then
ksep is an algebraic closure of k. Let � be the group of k-automorphisms of ksep. For any
subfield K of ksep, finite and Galois over k, an easy Zorn’s lemma argument2 shows that

� 7! � jKW� ! Gal.K=k/

is surjective. Let X be a finite set with an action of � ,

� �X !X:

We say that the action is continuous if it is continuous for the discrete topology on X and
the Krull topology on � . Because X is finite, this is equivalent to saying that it factors
through � ! Gal.K=k/ for some subfield K of ksep finite and Galois over k.

For an étale k-algebra A, let

F.A/D Homk-alg.A;k
sep/:

2Let �0 2 Gal.K=k/. Apply Zorn’s lemma to the set of all pairs .E;u/ where E is a subfield of ksep

containing k and u is homomorphism E! ksep whose restriction to K is �0.
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Then � acts on F.A/ through its action on ksep:

.
f /.a/D 
.f .a//; 
 2 � , f 2 F.A/, a 2 A:

The images of all homomorphisms A! ksep lie in some finite Galois extension of k, and
so the action of � on F.A/ is continuous.

THEOREM 2.7 The map A F.A/ defines a contravariant equivalence from the category
étale of k-algebras to the category of finite sets with a continuous action of � .

PROOF. This is a restatement of the fundamental theorem of Galois theory (FT �3), and is
left as an exercise to the reader (the indolent may see Waterhouse 1979, 6.3). 2

2.8 We sketch the proof of the theorem. Let xk D ksep. For any étale k-algebra A, there is
a canonical isomorphism

a˝ c 7! .�a � c/�2F.A/W xk˝A! xk
F.A/; (114)

where
xkF.A/

def
D Hom.F.A/; xk/D

Y
�2F.A/

k� ; k� D xk:

In other words, xkF.A/ is a product of copies of xk indexed by the elements of F.A/. When
we let � act on xk˝A through its action of xk and on xkF.A/ through its actions on both xk
and F.A/,

.
f /.�/D 
.f .
�1�//; 
 2 �; f WF.A/! xk; � 2 F.A/;

then the (114) becomes equivariant. Now:

(a) for any étale k-algebra A,
AD .xk˝A/� I

(b) for any finite set S with a continuous action of � , .xkS /� is an étale k-subalgebra of
xkS , and

F..xkS /� /' S:

Therefore, A F.A/ is an equivalence of categories with quasi-inverse S 7! .xkS /� .

2.9 Suppose thatA is generated by a single element, say, AD kŒu�' kŒX�=.f .X//. Then
A is étale if and only if f .X/ has distinct roots in kal. Assume this, and choose f .X/ to
be monic. A k-algebra homomorphism A! ksep is determined by the image of u, which
can be any root of f in ksep. Therefore, F.A/ can be identified with the set of roots of f in
ksep. Suppose F.A/ decomposes into r orbits under the action of � , and let f1; : : : ;fr be
the monic polynomials whose roots are the orbits. Then each fi is fixed by � , and so has
coefficients in k (FT 7.8). It follows that f D f1 � � �fr is the decomposition of f into its
irreducible factors over k, and that

A'
Y

1�i�r
kŒX�=.fi .X//

is the decomposition of A into a product of fields.
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Étale affine groups over a field

Let k be a field. An affine groupG over k is étale if O.G/ is an étale k-algebra; in particular,
an étale affine group is finite (hence algebraic).3

2.10 Recall (VI, 8.3) that an algebraic groupG over k is smooth if and only if kal˝O.G/
is reduced. Therefore, a finite affine group G over k is étale if and only if it is smooth. If
k has characteristic zero, then every finite affine group is étale (VI, 9.3). If k is perfect of
characteristic p ¤ 0, then O.G/pr is a reduced Hopf algebra for some r (VI, 10.2); as the
kernel of the map x 7! xp

r

WO.G/! O.G/pr has dimension a power of p, we see that a
finite affine group of order n is étale if p does not divide n.

Let A be the category of étale k-algebras. The functor G  O.G/ is an equivalence
from the category of étale affine groups over k to the category of group objects in the
category Aopp (see II, �6). As G.ksep/ D Homk-alg.O.G/;ksep/, Theorem 2.7 shows that
G G.ksep/ is an equivalence from the category of étale affine groups over k to the cate-
gory of groups in the category of finite continuous � -sets. Clearly, a group in the category
of finite sets with a continuous action of � is nothing but a finite group together with a
continuous action of � by group homomorphisms.

THEOREM 2.11 The functor G  G.ksep/ is an equivalence from the category of étale
algebraic groups over k to the category of finite groups endowed with a continuous action
of � .

Let K be a subfield of ksep containing k, and let � 0 be the subgroup of � consisting of
the � fixing the elements of K. Then K is the subfield of ksep of elements fixed by � 0 (see
FT 7.10), and it follows that G.K/ is the subgroup G.ksep/ of elements fixed by � 0:

Examples

For an étale algebraic group G, the order of G is the order of the (abstract) group G.kal/.
Since Aut.X/D 1whenX is a group of order 1 or 2, there is exactly one étale algebraic

group of order 1 and one of order 2 over any field k (up to isomorphism).
Let X be a group of order 3. Such a group is cyclic and Aut.X/ D Z=2Z. Therefore

the étale algebraic groups of order 3 over k correspond to homomorphisms � ! Z=2Z
factoring through Gal.K=k/ for some finite Galois extensionK of k. A separable quadratic
extension K of k defines such a homomorphism, namely,

� 7! � jKW� ! Gal.K=k/' Z=2Z

and all nontrivial such homomorphisms arise in this way (see FT �7). Thus, up to isomor-
phism, there is exactly one étale algebraic group GK of order 3 over k for each separa-
ble quadratic extension K of k, plus the constant group G0. For G0, G0.k/ has order 3.
For GK , GK.k/ has order 1 but GK.K/ has order 3. There are infinitely many distinct
quadratic extensions of Q, for example, QŒ

p
�1�, QŒ

p
2�, QŒ

p
3�, : : :, QŒpp�, : : :. Since

�3.Q/D 1 but �3.QŒ 3
p
1�/D 3, �3 must be the group corresponding to QŒ 3

p
1�.

3Algebraic geometers will recognize that an affine group G is étale if and only if the morphism of schemes
jGj ! Speck is étale.
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Finite étale affine groups over ring

We sketch the theory over an arbitrary commutative ring k.

DEFINITION 2.12 A k-algebra A is étale if it is flat of finite presentation as a k-module
and k.p/˝A is étale over the field k.p/ for all prime ideals p in k (here k.p/ is the field of
fractions of k=p).

Assume that Speck is connected, and choose a homomorphism x from k into a separa-
bly closed field ˝. For a finite étale k-algebra A, let F.A/ denote the set Homk-alg.A;˝/.
Then A F.A/ is a functor. The automorphism group � of F is a profinite group, which
is called the fundamental group �1.Speck;x/ of Speck. It acts on each set F.A/, and the
functor F is a contravariant equivalence from the category of finite étale k-algebras to the
category of finite sets with a continuous action of � (see my Lectures on Etale Cohomology,
�3, or Murre 1967).

An affine group G over k is étale if O.G/ is an étale k-algebra. As in the case that k is
a field, the functor

G G.˝/

is an equivalence from the category of étale affine groups over k to the category of finite
groups endowed with a continuous action of � .

NOTES EGA IV 17.3.1 defines a morphism of schemes to be étale if it is locally of finite presenta-
tion and formally étale. For a morphism of affine schemes, this agrees with our definition (cf. ibid.
17.3.2 (ii)).

3 Finite flat affine p-groups

Recall that the augmentation ideal IG of an affine group G is the kernel of �WO.G/! k.

PROPOSITION 3.1 Let G be a finite affine group over a field k of characteristic p¤ 0, and
suppose that xp D 0 for all x 2 IG . For every basis x1; : : : ;xr of IG=I 2G , the monomials

x
m1
1 � � �x

mr
r ; 0�mi < p

form a basis for O.G/ as a k-vector space (and so ŒO.G/Wk�D pr ).

PROOF. Omitted for the moment (see Waterhouse 1979, 11.4). 2

The proposition says that O.G/' kŒX1; : : : ;Xr �=.Xp1 ; : : : ;X
p
r /. This generalizes.

THEOREM 3.2 Let G be a finite group scheme over a perfect field k of characteristic
p ¤ 0 such that jGj is connected. For any basis x1; : : : ;xr of IG=I 2G , there exist integers
e1; : : : ; er � 1 such that

O.G/' kŒX1; : : : ;Xr �=.Xp
e1

1 ; : : : ;Xp
er

r /:

PROOF. Omitted for the moment (see Waterhouse 1979, 14.4). 2

Let k be nonperfect, and let a 2 k r kp. The subgroup G of Ga �Ga defined by
the equations xp

2

D 0, yp D axp is finite and connected, but O.G/ is not a truncated
polynomial algebra, i.e., (3.2) fails for G .Waterhouse 1979, p. 113).
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Classification of finite commutative affine groups over a perfect field (Dieudonné
modules)

Let k be a perfect field of characteristic p. Finite affine groups over k of order prime to
p are étale (2.10), and so are classified in terms of the Galois group of k (2.11). In this
subsection, we explain the classification of commutative finite affine groups over k of order
a power of p (which we call finite affine p-groups ).

Let W be the ring of Witt vectors with entries in k. Thus W is a complete discrete
valuation ring with maximal ideal generated by pD p1W and residue field k. For example,
if kDFp, thenW DZp. The Frobenius automorphism � ofW is the unique automorphism
such that �a� ap .mod p/:

THEOREM 3.3 There exists a contravariant equivalence G M.G/ from the category of
commutative finite affine p-groups to the category of triples .M;F;V / in which M is a
W -module of finite length and F and V are endomorphisms of M satisfying the following
conditions (c 2W , m 2M ):

F.c �m/D �c �Fm

V.�c �m/D c �Vm

FV D p � idM D VF:

The order of G is plength.M.G//. For any perfect field k0 containing k, there is functorial
isomorphism

M.Gk0/'W.k
0/˝W.k/M.G/:

PROOF. The proof is quite long, and will not be included. See Demazure 1972, Chap. III,
or Pink 2005. 2

For example:

M.Z=pZ/DW=pW; F D �; V D 0I

M.�p/DW=pW; F D 0; V D p��1I

M.˛p/DW=pW; F D 0; V D 0:

LetD DW� ŒF;V � be theW -algebra of noncommutative polynomials in F and V over
W , subject to the relations:

˘ F � c D �c �F , all c 2W ;
˘ �c �V D V � c, all c 2W ;
˘ FV D p D VF:

To give a triple .M;F;V / as in the theorem is the same as giving a D-module of finite
length over W . The module M.G/ attached to a commutative finite affine p-group G is
called the Dieudonné module of G.

The theorem is very important since it reduces the study of commutative affine p-groups
over perfect fields to semi-linear algebra. There are important generalizations of the theo-
rem to Dedekind domains, and other rings.
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4 Cartier duality

In this section, we allow k to be a ring.

The Cartier dual as a Hopf algebra

If .A;m;e;�;�/ is a bi-algebra over k and A is finitely generated and projective as a k-
module, then .A_;�_; �_;m_; e_/ is also a k-bialgebra (see II, �3 and II, Proposition 4.2).
If moreover .A;m;e;�;�/ is commutative (resp. co-commutative), then .A_;�_; �_;m_; e_/
is co-commutative (resp. commutative).

The coordinate ring O.G/ of a commutative finite locally free affine monoid is a com-
mutative co-commutative bi-algebra, and so its dual O.G/_ is also the coordinate ring of a
commutative finite locally free algebraic monoid G_, called the Cartier dual of G:

O.G/D .A;m;e;�;�/$ .A_;�_; �_;m_; e_/DO.G_/:

LEMMA 4.1 If O.G/ is a Hopf algebra, then so also is O.G_/ (and so G_ is an affine
group).

PROOF. More precisely, we show that if S is an inversion for O.G/, then S_ is an inversion
for O.G/. Condition (a) of the Definition II, 4.4 is obviously self-dual. For (b) we have
to show that S_ is an algebra homomorphism. For this we have to check that �_ ı .S_˝
S_/DS_ı�_, or, equivalently, that�ıS D .S˝S/ı�. In other words, we have to check
that the diagram at left below commutes. This corresponds (under a category equivalence)
to the diagram at right, which commutes precisely because G is commutative (the inverse
of a product is the product of the inverses):

O.G/ �
����! O.G/˝O.G/??yS ??yS˝S

O.G/ �
����! O.G/˝O.G/

G
m
 ���� G�Gx??inv

x??inv�inv

G
m
 ���� G�G:

(Alternatively, we could appeal to the unproven (II, 4.5), which says that condition (b) is
superfluous. We had to use the commutativity of G in the above proof of condition (b)
because we checked it in the form S_.ab/D S_.a/S_.b/.) 2

The functor G G_ is a contravariant equivalence from the category of commutative
finite locally free affine groups to itself, and .G_/_ 'G.

The Cartier dual as a functor

In this subsection, we describe the functor defined by the Cartier dualG_ of a commutative
finite locally free affine group G.

For k-algebra R, let Hom.G;Gm/.R/ be the set of homomorphisms of uWGR!GmR
of affine groups over R. This becomes a group under the multiplication

.u1 �u2/.g/D u1.g/ �u2.g/; g 2G.R0/; R0 an R-algebra.

In this way,
R Hom.G;Gm/.R/

becomes a functor Algk! Grp.
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THEOREM 4.2 There is a canonical isomorphism

G_ ' Hom.G;Gm/

of functors Algk! Grp.

PROOF. Let R be a k-algebra. We have

G.R/D HomR-alg.O.G/;R/ ,! HomR-lin.O.G/;R/DO.G_/R: (115)

The multiplication in O.G/ corresponds to comultiplication in O.G_/, from which it fol-
lows that the image of (115) consists of the group-like elements in O.G_/R. On the other
hand, we know that Hom.G_R;Gm/ also consists of the group-like elements in O.G_/R
(VIII, �16). Thus,

G.R/' Hom.G_;Gm/.R/:

This isomorphism is natural in R, and so we have shown that G ' Hom.G_;Gm/. To
obtain the required isomorphism, replace G with G_ and use that .G_/_ 'G. 2

NOTES For more on Cartier duality, see Pink 2005, �24, and the notes on Cartier duality on Ching-
Li Chai’s website

EXAMPLE 4.3 Let G D ˛p, so that O.G/D kŒX�=.Xp/D kŒx�. Let 1;y;y2; : : : ;yp�1 be
the basis of O.G_/DO.G/_ dual to 1;x; : : : ;xp�1. Then yi D i Šyi ; in particular, yp D 0.
In fact, G_ ' ˛p, and the pairing is

a;b 7! exp.ab/W˛p.R/�˛p.R/!R�

where

exp.ab/D 1C
ab

1Š
C
.ab/2

2Š
C�� �C

.ab/p�1

.p�1/Š
.

The category of finite locally free affine groups over a ring

Let FL.k/ denote the category of finite locally free affine groups over a ring k. When k is
a field, then FL.k/ has most of the good properties of the category of groups; in particular,
the category of commutative finite affine groups over a field is abelian. See Chapter IX.

When k is not a field, the situation is much more complicated. For example, let k D Z
and consider the homomorphism uW.Z=2Z/Z ! .�2/Z corresponding to the map of rings

T 7! .1;�1/WZŒT �=.T 2�1/! Z�Z:

This is both a monomorphism and an epimorphism in FL.k/, but it is not an isomorphism.
The kernel of u in the category of finite affine groups over k has trivial fibre over all primes
ideals of Z except .2/, where it has fibre is �2. The kernel of u in FL.k/ is zero, but the
kernel of the base change of u to F2 is Z=2Z.

The main positive result is the following theorem of Grothendieck.
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THEOREM 4.4 Let G be a finite locally free affine group over k, and let G �X ! X be
an action of G on a functor X in Alg_

k
. Assume that X is representable and that the natural

transformation
.g;x/ 7! .g;gx/WG�X !X �X

is closed (see V, �6). Then there exists a representable functor GnX and a morphism
uWX !GnX such that

(a) u is constant on the orbits of G, and every natural transformation X ! Y of repre-
sentable functors with this property factors uniquely through u;

(b) X is finite and locally free over GnX ;
(c) for every k-algebra R, G.R/nX.R/! .XnG/.R/ is injective (in other words, the

map from the naive quotient to the genuine quotient is injective);
(d) if G and X are represented by A and B respectively, then GnX is represented by the

equalizer of the map b 7! 1˝bWB! A˝B with the map defined by u.

PROOF. See Tate 1997, 3.4, for a discussion of the theorem. See also Mumford, Abelian
Varieties, III, �12. (The proof will be included in the next version — it is about 6 pages.) 2

As a corollary, one sees that quotients of affine groups by normal finite locally free
affine groups exist as affine groups, and have the expected properties.

For a homomorphism of finite locally free affine groups whose kernel is locally free,
everything works as expected: the kernel, cokernel, image, and co-image exist, and the map
from the co-image to the image is an isomorphism.

In general, the category of finite locally free commutative affine groups over a ring k is
exact but not abelian (see mo7688, especially the answer of Laurent Fargues).

ASIDE 4.5 The theory of finite locally free affine groups is extensive. See Tate 1997 for a short
introduction.

5 Exercises

In the exercises, k is a field.

EXERCISE XII-1 Show that A is étale if and only if there are no nonzero k-derivations
DWA! k. [Regard A as a left A-module by left multiplication. Let A be a k-algebra and
M an A-module. A k -derivation is a k-linear map DWA!M such that

D.fg/D f �D.g/Cg �D.f / (Leibniz rule).]

EXERCISE XII-2 How many finite algebraic groups of orders 1;2;3;4 are there overR (up
to isomorphism)?

EXERCISE XII-3 Let G be the constant algebraic group over k defined by a finite commu-
tative group � . Let n be the exponent of � , and assume that k contains n distinct nth roots
of 1 (so, in particular, n is not divisible by the characteristic of k). Show that the Cartier
dual of G is the constant algebraic group defined by the dual group Hom.�;Q=Z/.

EXERCISE XII-4 If k has characteristic p ¤ 0, show that ˛_p ' ˛p and .Z=pZ/_
k
' �p

(hence �_p ' .Z=pZ/k) (here .Z=pZ/k , �p, and ˛p are the groups in (IV, 1.3), (IV, 1.4),
and (IV, 1.5)).





CHAPTER XIII
The Connected Components of an

Algebraic Group

Recall that a topological spaceX is connected if it is not the union of two disjoint nonempty
open subsets. This amounts to saying that, apart from X itself and the empty set, there is
no subset of X that is both open and closed. For each point x of X , the union of the
connected subsets of X containing x is again connected, and so it is the largest connected
subset containing x — it is called the connected component of x. The set of the connected
components of the points of X is a partition of X by closed subsets. Write �0.X/ for the
set of connected components of X .

In a topological group G, the connected component of the neutral element is a closed
normal connected subgroup Gı of G, called the neutral (or identity) component of G.
Therefore, the quotient �0.G/ D G=Gı is a separated topological group. For example,
GL2.R/ has two connected components, namely, the identity component consisting of the
matrices with determinant> 0 and another connected component consisting of the matrices
with determinant < 0.

In this chapter, we discuss the identity component Gı of an algebraic affine group and
the (étale) quotient group �0.G/ of its connected components. Throughout, k is a field.

1 Idempotents and connected components

Throughout this section, A is a commutative ring. An element e of A is idempotent if
e2 D e. For example, 0 and 1 are both idempotents — they are called the trivial idempo-
tents. Idempotents e1; : : : ; en are orthogonal if eiej D 0 for i ¤ j . A sum of orthogonal
idempotents is again idempotent. A finite set fe1; : : : ; eng of orthogonal idempotents is
complete if e1C�� �C en D 1. Every finite set of orthogonal idempotents fe1; : : : ; eng can
be completed by adding the idempotent e D 1� .e1C�� �C en/.

If AD A1� � � ��An (direct product of rings), then the elements

e1 D .1;0; : : :/, e2 D .0;1;0; : : :/, : : : , en D .0; : : : ;0;1/

form a complete set of orthogonal idempotents. Conversely, if fe1; : : : ; eng is a complete set
of orthogonal idempotents in A, then Aei becomes a ring with the addition and multiplica-
tion induced by that of A (but with the identity element ei ), and A' Ae1� � � ��Aen.

203
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LEMMA 1.1 The space specA is disconnected if and only if A contains a nontrivial idem-
potent.

PROOF. Let e be a nontrivial nilpotent, and let f D 1� e. For a prime ideal p, the map
A! A=p must send exactly one of e or f to a nonzero element. This shows that specA
is a disjoint union of the sets1 D.e/ and D.f /, each of which is open. If D.e/D specA,
then e would be a unit (CA 2.2), and hence can be cancelled from ee D e to give e D 1.
Therefore D.e/¤ specA, and similarly, D.f /¤ specA.

Conversely, suppose that specA is disconnected, say, the disjoint union of two nonempty
closed subsets V.a/ and V.b/. Because the union is disjoint, no prime ideal contains both
a and b, and so aC b D A. Thus aC b D 1 for some a 2 a and b 2 b. As ab 2 a\ b,
all prime ideals contain ab, which is therefore nilpotent (CA 2.5), say .ab/m D 0. Any
prime ideal containing am contains a; similarly, any prime ideal containing bm contains b;
thus no prime ideal contains both am and bm, which shows that .am;bm/D A. Therefore,
1D ramC sbm for some r;s 2 A. Now

.ram/.sbm/D rs.ab/m D 0;

.ram/2 D .ram/.1� sbm/D ram,

.sbm/2 D sbm

ramC sbm D 1;

and so fram; sbmg is a complete set of orthogonal idempotents. Clearly V.a/ � V.ram/
and V.b/ � V.sbm/. As V.ram/\V.sbm/D ;, we see that V.a/D V.ram/ and V.b/D
V.sbm/, and so each of ram and sbm is a nontrivial idempotent. 2

PROPOSITION 1.2 Let fe1; : : : ; eng be a complete set of orthogonal idempotents inA. Then

specADD.e1/t : : :tD.en/

is a decomposition of specA into a disjoint union of open subsets. Moreover, every such
decomposition arises in this way.

PROOF. Let p be a prime ideal in A. Because A=p is an integral domain, exactly one of the
ei ’s maps to 1 in A=p and the remainder map to zero. This proves that specA is the disjoint
union of the sets D.ei /.

Now consider a decomposition

specAD U1t : : :tUn

eachUi open. We use induction on n to show that it arises from a complete set of orthogonal
idempotents. When nD 1, there is nothing to prove, and when n� 2, we write

specAD U1t .U2t : : :tUn/.

The proof of the lemma shows that there exist orthogonal idempotents e1, e01 2 A such that
e1C e

0
1 D 1 and

U1 DD.e1/

U2t : : :tUn DD.e
0
1/D specAe01:

1The set D.e/ consists of the prime ideals of A not containing e, and V.a/ consists of all prime ideals
containing a.
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By induction, there exist orthogonal idempotents e2; : : : ; en in Ae01 such that e2C�� �CenD
e01 and Ui D D.ei / for i D 2; : : : ;n. Now fe1; : : : ; eng is a complete set of orthogonal
idempotents in A such that Ui DD.ei / for all i . 2

1.3 Recall that a ring A is said to be Jacobson if every prime ideal is an intersection of
maximal ideals, and that every finitely generated algebra over a field is Jacobson (see CA
12.3 et seq.). In a Jacobson ring, the nilradical is an intersection of maximal ideals. When
A is Jacobson, “prime ideal” can be replaced by “maximal ideal” and “spec” with “spm”
in the above discussion. In particular, for a Jacobson ring A, there are natural one-to-one
correspondences between

˘ the decompositions of spm.A/ into a finite disjoint union of open subspaces,
˘ the decompositions of A into a finite direct products of rings, and
˘ the complete sets of orthogonal idempotents in A.

Now consider a ring AD kŒX1; : : : ;Xn�=a. When k is an algebraically closed field,

spmA' the zero set of a in kn

as topological spaces (Nullstellensatz, CA 11.6), and so spmA is connected if and only if
the zero set of a in kn is connected.

LEMMA 1.4 Let A be a finitely generated algebra over a separably closed field k. The
number of connected components of spmA is equal to the largest degree of an étale k-
subalgebra of A (and both are finite).

PROOF. Because spmA is noetherian, it is a finite disjoint union of its connected compo-
nents, each of which is open (CA 12.12). Let E be an étale k-subalgebra of A. Because k
is separably closed, E is a product of copies of k. A decomposition of E corresponds to
a complete set .ei /1�i�m of orthogonal idempotents in E, and mD ŒEWk�. Conversely, a
complete set .ei /1�i�m of orthogonal idempotents in A defines an étale k-subalgebra of A
of degree m, namely,

P
kei . Thus the statement follows from (1.3). 2

LEMMA 1.5 LetA be a finitely generated k-algebra. Assume that k is algebraically closed,
and let K be an algebraically closed field containing k. If spmA is connected, so also is
spmAK .

PROOF. Write AD kŒX1; : : : ;Xn�=a, so that AK D KŒX1; : : : ;Xn�=b where b is the ideal
generated by a. By assumption, the zero set V.a/ of a in kn is connected, and it lies in the
zero set V.b/ of b in Kn. As the closure of a connected set is connected, it suffices to show
that V.b/ is the Zariski closure of V.a/. For this it suffices to show that if an element f of
KŒX1; : : : ;Xn� is zero on V.a/, then it is zero on V.b/. Choose a basis .ai /i2I for K over
k, and write

f D
X

i
aifi (fi 2 kŒX1; : : : ;Xn�, finite sum).

As f is zero on V.a/, so also is each fi . By the Strong Nullstellensatz (CA 11.7), some
power of fi lies in a� b. Hence each fi is zero on V.b/, and so f is zero on V.b/. 2
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LEMMA 1.6 Let A and B be finitely generated algebras over an algebraically closed field
k. If spmA and spmB are connected, then so also is spmA˝B .

PROOF. Because of the Nullstellensatz, we can identify spmA˝B with spmA�spmB (as
a set). For m1 2 spmA, the k-algebra homomorphisms

B ' .A=m1/˝B � A˝B

give continuous maps

n 7! .m1;n/Wspm.B/' spm.A=m1˝B/
closed
,! spm.A˝B/' spm.A/� spm.B/:

Similarly, for n2 2 spmB , we have continuous maps

m 7! .m;n2/Wspm.A/' spm.A˝B=n2/
closed
,! spm.A˝B/' spm.A/� spm.B/:

The images of spmA and spmB in spm.A/� spm.B/ intersect in .m1;n2/ and are con-
nected, which shows that .m1;n1/ and .m2;n2/ lie in the same connected component of
spmA� spmB for all n1 2 spm.B/ and m2 2 spm.A/. 2

ASIDE 1.7 On Cn there are two topologies: the Zariski topology, whose closed sets are the zero
sets of collections of polynomials, and the complex topology. Clearly Zariski-closed sets are closed
for the complex topology, and so the complex topology is the finer than the Zariski topology. It
follows that a subset of Cn that is connected in the complex topology is connected in the Zariski
topology. The converse is false. For example, if we remove the real axis from C, the resulting space
is not connected for the complex topology but it is connected for the topology induced by the Zariski
topology (a nonempty Zariski-open subset of C can omit only finitely many points). Thus the next
result is a surprise:

If V � Cn is closed and irreducible for the Zariski topology, then it is connected for
the complex topology.

For the proof, see Shafarevich 1994, VII 2.

2 Étale subalgebras

Let A be a finitely generated k-algebra. An étale k-subalgebra of A will give an étale kal-
subalgebra of the same degree ofAkal (XII, 2.6), and so its degree is bounded by the number
of connected components of spmAkal (1.4). The composite of two étale subalgebras of A is
étale (XII, 2.5), and so there is a largest étale k-subalgebra �0.A/ of A, containing all other
étale subalgebras.

LetK be a field containing k. ThenK˝�0.A/ is an étaleK-subalgebra ofK˝A (see
XII, 2.6). We shall need to know that it is the largest étale subalgebra.

PROPOSITION 2.1 Let A be a finitely generated k-algebra, and let K be a field containing
k. Then

K˝�0.A/D �0.K˝A/:

PROOF. We first prove the statement withK D ksep. It follows from (XII, 2.8) that the map

B 7! ksep
˝B
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is a bijection from the set of étale k-subalgebras of A to the set of étale ksep-algebras of
ksep˝A stable under the action of � D Gal.ksep=k/; its inverse is B 7! B� . Because it is
the (unique) largest étale ksep-algebra in ksep˝A, �0.ksep˝A/ is stable under the action
of � . The étale k-subalgebras �0.A/ and �0.ksep˝A/� correspond to the étale ksep-
subalgebras ksep˝�0.A/ and �0.ksep˝A/ respectively. As ksep˝�0.A/� �0.k

sep˝A/,
we have �0.A/ � �0.ksep˝A/� ; hence �0.A/D �0.ksep˝A/� (maximality of �0.A/),
and so ksep˝�0.A/D �0.k

sep˝A/.
We next prove the statement when k D ksep and K D kal. If K ¤ k, then k has charac-

teristic p ¤ 0 and K is purely inseparable over it. Let e1; : : : ; em be a basis of idempotents
for �0.A˝K/. Write ej D

P
ai˝ci with ai 2A and ci 2K. For some r , all the elements

c
pr

i lie in k, and then ep
r

j D
P
a
pr

i ˝ c
pr

i 2 A. But ej D e
pr

j , and so �0.A˝K/ has a
basis in A.

We now prove the statement when k and K are both algebraically closed. We may
suppose that A is not a product of k-algebras, and so has no nontrivial idempotents. We
have to show that then A˝K also has no nontrivial idempotents, but this follows from 1.5.

Finally, we prove for a general K. Let Kal be an algebraic closure of K, and let kal be
the algebraic closure of k inKal. IfK˝�0.A/ is not the largest étale subalgebra ofK˝A,
then Kal˝�0.A/DK

al˝KK˝�0.A/ is not the largest étale subalgebra of Kal˝A, but
this contradicts the above statements. 2

COROLLARY 2.2 Let A be a finitely generated k-algebra. The degree Œ�0.A/Wk� of �0.A/
is equal to the number of connected components of spm.kal˝A/:

PROOF. We have

Œ�0.A/Wk�D Œk
al
˝�0.A/Wk

al�D Œ�0.k
al
˝A/Wkal�;

and so this follows from 1.4. 2

Let A and A0 be finitely generated k-algebras. Then �0.A/˝�0.A0/ is an étale subal-
gebra of A˝A0 (see XII, 2.4). We shall need to know that it is the largest étale subalgebra.

PROPOSITION 2.3 Let A and A0 be finitely generated k-algebras. Then

�0.A˝A
0/D �0.A/˝�0.A

0/:

PROOF. As �0.A/˝�0.A0/� �0.A˝A0/, we may suppose that k is algebraically closed
(2.1), and we may replace each ofA andA0 with a direct factor and so suppose that �0.A/D
1D �0.A

0/. We then have to show that �0.A˝A0/D 1, but this follows from 1.6. 2

ASIDE 2.4 Let V be an algebraic variety over a field k, and let �0.Vksep/ be the set of connected
components of V over ksep. Then �0.Vksep/ is a finite set with an action of Gal.ksep=k/, and so
defines an étale k-algebra B (XII, 2.7). Let �0.V / D spmB . Then �0.V / is an algebraic variety,
(finite and) étale over k, and there is a canonical morphism V ! �0.V / of algebraic varieties whose
fibres are connected.2 For a projective variety, this is the Stein factorization of the morphism V !

Spmk (cf. Hartshorne 1977, III, 11.5). For an affine variety V D spmA, �0.V /D spm.�0.A//.

2More precisely, let m be a point of spm.�0.V //, and let k.m/ be the residue field at m (finite extension of
k). Then the fibre over m is a geometrically connected algebraic variety over k.m/.
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3 Algebraic groups

In this section, G is an affine algebraic group with coordinate ring A D O.G/. The map
�WA! A˝A is a k-algebra homomorphism, and so sends �0.A/ into �0.A˝A/

2.3
D

�0.A/˝�0.A/. Similarly, S WA! A sends �0.A/ into �0.A/, and we can define � on
�0.A/ to be the restriction of � on A. Therefore �0.A/ is a Hopf subalgebra of A.

DEFINITION 3.1 Let G be an algebraic group over a field k.

(a) The group of connected components �0.G/ of G is the quotient algebraic group
corresponding to the Hopf subalgebra �0.O.G// of O.G/:

(b) The identity component Gı of G is the kernel of the homomorphism G! �0.G/.

PROPOSITION 3.2 The following four conditions on an algebraic group G are equivalent:

(a) the étale affine group �0.G/ is trivial;
(b) the topological space spm.O.G// is connected;
(c) the topological space spm.O.G// is irreducible;
(d) the ring O.G/=N is an integral domain.

PROOF. (b))(a). Condition (b) implies that �0.O.G// has no nontrivial idempotents (see
1.3), and so is a field. The existence of the k-algebra homomorphism �WO.G/! k then
implies that �0.O.G//D k.

(c))(b). Trivial.
(d),(c). In general, spmA is irreducible if and only if the nilradical of A is prime (see

III, �1).
(a))(d). If �0.G/ is trivial, so also is �0.Gkal/ (Lemma 2.1). Write spmO.Gkal/ as a

union of its irreducible components. By definition, no irreducible component is contained in
the union of the remainder. Therefore, there exists a point that lies on exactly one irreducible
component. By homogeneity (VI, 5.1), all points have this property, and so the irreducible
components are disjoint. As spmO.Gkal/ is connected, there must be only one, and so Gkal

is irreducible. Let N0 be the nilradical of O.Gkal/ — we have shown that O.Gkal/=N0 is
an integral domain. The canonical map O.G/! kal˝O.G/ ' O.Gkal/ is injective, and
remains injective after we have passed to the quotients by the respective nilradicals, and so
O.G/=N is an integral domain. 2

DEFINITION 3.3 An affine algebraic group is connected if it satisfies the equivalent con-
ditions of the proposition.

Thus an algebraic group G is connected if and only if it has no nontrivial étale quotient.

PROPOSITION 3.4 The fibres of the map jGj ! j�0.G/j are the connected components of
the topological space jGj.

PROOF. The connected components of jGj and the points of j�0.G/j are both indexed by
the elements of a maximal complete set of orthogonal idempotents. 2

PROPOSITION 3.5 Every homomorphism fromG to an étale algebraic group factors uniquely
through G! �0.G/.
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PROOF. LetG!H be a homomorphism fromG to an étale algebraic groupH . The image
of O.H/ in O.G/ is étale (see XII, 2.4), and so is contained in �0.O.G//

def
DO.�0G/. 2

PROPOSITION 3.6 The subgroup Gı of G is connected, and every homomorphism from a
connected algebraic group to G factors through Gı!G.

PROOF. The homomorphism of k-algebras �WO.�0G/! k decomposes O.�0G/ into a
direct product

O.�0G/D k�B .

Let e D .1;0/. Then the augmentation ideal of O.�0G/ is .1� e/, and

O.G/D eO.G/� .1� e/O.G/

with eO.G/ ' O.G/=.1� e/O.G/ D O.Gı/ (see VII, 4.1). Clearly, k D �0.eO.G// '
�0.O.Gı//. Therefore �0Gı D 1, which implies that Gı is connected.

If H is connected, then the composite H !G! �0.G/ has trivial image. 2

PROPOSITION 3.7 The subgroup Gı is the unique connected normal affine subgroup of G
such that G=Gı is étale.

PROOF. The subgroup Gı is normal with étale quotient by definition, and we have shown
it to be connected. Suppose that H is a second normal algebraic subgroup of G. If G=H is
étale, then (by (a)) the homomorphism G! G=H factors through �0.G/, and so we get a
commutative diagram

1 ����! Gı ����! G ����! �0G ����! 1??y 


 ??y
1 ����! H ����! G ����! G=H ����! 1

with exact rows. The similar diagram with each � replaced with �.R/ gives, for each k-
algebra R, an exact sequence

1!Gı.R/!H.R/! .�0G/.R/: (116)

Since this functorial in R, it gives a sequence of algebraic groups

1!Gı!H ! �0G:

The exactness of (116) shows that Gı is the kernel ofH ! �0G. This map factors through
�0H , and so if �0H D 1, its kernel is H : therefore Gı 'H . 2

Proposition 3.7 says that, for any algebraic group G, there is a unique exact sequence

1!Gı!G! �0.G/! 1

such that Gı is connected and �0.G/ is étale. This is sometimes called the connected-étale
exact sequence.

The next proposition says that the functors G  �0G and G  Gı commute with
extension of the base field.
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PROPOSITION 3.8 For any field extension k0 � k,

�0.Gk0/' �0.G/k0

.Gk0/
ı
' .Gı/k0 :

In particular, G is connected if and only if Gk0 is connected.

PROOF. As O.Gk0/'O.G/˝k k0, this follows from (2.1). 2

PROPOSITION 3.9 For any algebraic groups G and G0,

�0.G�G
0/' �0.G/��0.G

0/

.G�G0/ı 'Gı�G0ı:

In particular, G�G0 is connected if and only if both G and G0 are connected.

PROOF. The coordinate ring O.G �G0/ ' O.G/˝O.G0/, and so the first isomorphism
follows from (2.3). 2

REMARK 3.10 Let G be an algebraic group over k. For any field k0 containing k, Propo-
sition 3.8 shows that G is connected if and only if Gk0 is connected. In particular, if an
algebraic group G over a field is connected, then so also is Gkal . In other words, a con-
nected algebraic group is geometrically connected. This is false for algebraic varieties: for
example,

X2CY 2 D 0

is connected over R (even irreducible), but becomes a disjoint union of the two lines

XC˙iY D 0

over C— the ring RŒX;Y �=.X2CY 2/ is an integral domain, but

CŒX;Y �=.X2CY 2/' CŒX;Y �=.XC iY /�CŒX;Y �=.X � iY /.

The reason for the difference is the existence of the homomorphism �WO.G/! k (the neu-
tral element of G.k/). An integral affine algebraic variety V over a field k is geometrically
connected if and only if k is algebraically closed in O.V /, which is certainly the case if
there exists a k-algebra homomorphism O.V /! k (AG 11.5).

PROPOSITION 3.11 Let
1!N !G!Q! 1

be an exact sequence of algebraic groups. If N and Q are connected, so also is G; con-
versely, if G is connected, so also is Q.

PROOF. Assume N and Q are connected. Then N is contained in the kernel of G !
�0.G/, so this map factors through G ! Q (see VII, 7.8); therefore it factors through
�0.Q/D 1. Conversely, since G maps onto �0.Q/, it must be trivial if G is connected. 2
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Examples

3.12 Let G be finite. When k has characteristic zero, G is étale, and so G D �0.G/ and
Gı D 1. Otherwise, there is an exact sequence

1!Gı!G! �0.G/! 1:

When k is perfect, the homomorphism G! �0.G/ has a section, and so G is a semidirect
product

G DGıo�0.G/:

To see this, note that the homomorphism Gred! �0.G/ is an isomorphism because both
groups are étale and it is an isomorphism on kal-points:

Gred.k
al/DG.kal/

�
�! �0.G/.k

al/:

The groupsGa, GLn, Tn (upper triangular),Un (strictly upper triangular),Dn are connected
because in each case O.G/ is an integral domain. For example,

kŒTn�D kŒGLn�=.Xij j i > j /;

which is isomorphic to the polynomial ring in the symbols Xij , 1 � i � j � n, with the
product X11 � � �Xnn inverted.

3.13 For the group G of monomial matrices (IV, 1.12), �0.O.G// is a product of copies
of k indexed by the elements of Sn. Thus, �0G D Sn (regarded as a constant algebraic
group, and Gı D Dn.

3.14 The group SLn is connected. As we noted in the proof of (VII, 5.11), the natural
isomorphism of set-valued functors

A;r 7! A �diag.r;1; : : : ;1/WSLn.R/�Gm.R/! GLn.R/

defines an isomorphism of k-algebras

O.GLn/'O.SLn/˝O.Gm/;

and the algebra on the right contains O.SLn/. In particular, O.SLn/ is a subring of O.GLn/,
and so it is an integral domain.

3.15 Assume char.k/ ¤ 2. For any nondegenerate quadratic space .V;q/, the algebraic
group SO.q/ is connected. It suffices to prove this after replacing k with kal, and so we
may suppose that q is the standard quadratic form X21 C�� �CX

2
n , in which case we write

SO.q/D SOn. The latter is shown to be connected in Exercise XIII-4 below.
The determinant defines a quotient map O.q/! f˙1g with kernel SO.q/. Therefore

O.q/ı D SO.q/ and �0.O.q//D f˙1g (constant algebraic group).

3.16 The symplectic group Sp2n is connected (for some hints on how to prove this, see
Springer 1998, 2.2.9).
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ASIDE 3.17 According to (1.7) and (3.2), an algebraic group G over C is connected if and only if
G.C/ is connected for the complex topology. Thus, we could for example deduce that GLn over C
is a connected algebraic group from knowing that GLn.C/ is connected for the complex topology.
However, it is easier to deduce that GLn.C/ is connected from knowing that GLn is connected (of
course, this requires the serious theorem stated in (1.7)).

A
3.18 An algebraic group G over R may be connected without G.R/ being connected for

the real topology, and conversely. For example, GL2 is connected as an algebraic group,
but GL2.R/ is not connected for the real topology, and �3 is not connected as an algebraic
group, but �3.R/D f1g is certainly connected for the real topology.

3.19 In characteristic zero, an algebraic group is connected if and only if it is strongly
connected (XII, 2.10).

4 Affine groups

Let G be an affine group, and write it as the inverse limit G D lim
 �i2I

Gi of its family
.Gi /i2I of algebraic quotients (see VIII, 8.1). Define

Gı D lim
 �i2I

Gıi ;

�0G D lim
 �i2I

�0Gi :

ASIDE 4.1 For a smooth group scheme G of finite presentation over a scheme S , there is a unique
open subgroup scheme Gı of G such that .Gı/s D .Gs/ı for all s 2 S . See SGA 3, VIB , 3.10,
p.355. However, even when G is affine over S , Gı need not be affine over S .

NOTES Discuss connectedness over a base ring (or scheme). The useful condition is not that G be
connected as a scheme, but that its fibres be connected.

5 Exercises

EXERCISE XIII-1 Show that if 1! N ! G ! Q ! 1 is exact, so also is �0.N /!
�0.G/!�0.Q/! 1. Give an example to show that �0.N /!�0.G/ need not be injective.

EXERCISE XIII-2 What is the map O.SLn/!O.GLn/ defined in example 3.14?

EXERCISE XIII-3 Prove directly that �0.O.On//D k�k.

EXERCISE XIII-4 (Springer 1998, 2.2.2). Assume k has characteristic ¤ 2. For any k-
algebra R, let V.R/ be the set of skew-symmetric matrices, i.e., the matrices A such that
At D�A.

(a) Show that the functor R 7! V.R/ is represented by a finitely generated k-algebra A,
and that A is an integral domain.

(b) Show that A 7! .InCA/
�1.In�A/ defines a bijection from a nonempty open subset

of SOn.kal/ onto an open subset of V.kal/.
(c) Deduce that SOn is connected.



6. Where we are 213

EXERCISE XIII-5 Let A be a product of copies of k indexed by the elements of a finite
set S . Show that the k-bialgebra structures on A are in natural one-to-one correspondence
with the group structures on S .

EXERCISE XIII-6 Let G be a finite affine group. Show that the following conditions are
equivalent:

(a) the k-algebra O.Gred/ is étale;
(b) O.Gred/˝O.Gred/ is reduced;
(c) Gred is a subgroup of GI
(d) G is isomorphic to the semi-direct product of Gı and �0G.

EXERCISE XIII-7 Let k be a nonperfect field of characteristic 2, so that there exists an
a 2 k that is not a square. Show that the functorR G.R/

def
D fx 2R j x4D ax2g becomes

a finite commutative algebraic group under addition. Show that G.k/ has only one element
but �0.G/ has two. Deduce that G is not isomorphic to the semi-direct product of Gı and
�0.G/. (Hence XIII-6 shows that O.G/=N is not a Hopf algebra.)

EXERCISE XIII-8 Let k be a field of characteristic p. Show that the extensions

0! �p!G! Z=pZ! 0

with G a finite commutative algebraic group are classified by the elements of k�=k�p (the
split extension G D �p �Z=pZ corresponds to the trivial element in k�=k�p). Show that
Gred is not a subgroup of G unless the extension splits.

6 Where we are

As discussed in the first section, every affine algebraic group has a composition series with
the quotients listed at right:

affine G

j finite étale

connected Gı

j semisimple

solvable �

j torus

unipotent �

j unipotent

f1g

We have constructed the top segment of this picture. Next we look at tori and unipotent
groups. Then we study the most interesting groups, the semisimple ones, and finally, we
put everything together.





CHAPTER XIV
Groups of Multiplicative Type; Tori

In this chapter we study the affine groups that become diagonalizable over an extension
field. Through k is a field.

We state for reference:

Gm.R/DR� O.Gm/D kŒX;X�1� �.X/DX˝X �.X/D 1 S.X/DX�1

�n.R/D f� 2R j �
n D 1g O.�n/D kŒX�

.Xn�1/
D kŒx� �.x/D x˝x �.x/D 1 S.x/D xn�1

For an algebraic group G over a field k,

X.G/D Hom.G;Gm/ (meaning homomorphisms over k/

X�.G/D Hom.Gksep ;Gmksep/:

[Need to prove somewhere: a smooth connected algebraic group is a torus if and only
if all the elements of G.kal/ are semisimple.]

1 Group-like elements

DEFINITION 1.1 Let AD .A;�;�/ be a k-coalgebra. An element a of A is group-like if
�.a/D a˝a and �.a/D 1.

LEMMA 1.2 The group-like elements in A are linearly independent.

PROOF. If not, it will be possible to express one group-like element e as a linear combina-
tion of other group-like elements ei ¤ e:

e D
P
i ciei , ci 2 k: (117)

We may even suppose that the ei occurring in the sum are linearly independent. Now

�.e/D e˝ e D
P
i;j cicj ei ˝ ej

�.e/D
P
i ci�.ei /D

P
i ciei ˝ ei :

The ei ˝ ej are also linearly independent, and so this implies that�
cici D ci all i
cicj D 0 if i ¤ j:

215
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We also know that

�.e/D 1

�.e/D
P
ci�.ei /D

P
ci :

On combining these statements, we see that the ci form a complete set of orthogonal idem-
potents in the field k, and so one of them equals 1 and the remainder are zero, which
contradicts our assumption that e is not equal to any of the ei . 2

Let A be a k-bialgebra. If a and b are group-like elements in A, then

�.ab/D�.a/�.b/D .a˝a/.b˝b/D ab˝ab

�.ab/D �.a/�.b/D 1

because � and � are k-algebra homomorphisms. Therefore the group-like elements form a
submonoid of .A;�/.

Let A be a Hopf algebra, and let a 2 A. If a is group-like, then

1D .e ı �/.a/
II, (19)
D .multı .S˝ idA/ı�/.a/D S.a/a,

and so a is a unit in A with a�1 D S.a/. Conversely, if a is a unit in A such that �.a/D
a˝a, then

a
II
D ..�; idA/ı�/.a/D �.a/a;

and so �.a/D 1. Thus the group-like elements of A are exactly the units such that �.a/D
a˝a.

ASIDE 1.3 We have just seen that the group-like elements in a Hopf algebra over a field are in-
vertible. Conversely, if the group-like elements in a commutative or cocommutative bialgebra are
invertible, then the bialgebra admits an inversion, but this is false for a general bialgebra. See
mo86197.

2 The characters of an affine group

Recall that a character of an affine group G is a homomorphism �WG ! Gm. To give a
character � of G is the same as giving a homomorphism of k-algebras O.Gm/! O.G/
respecting the comultiplications, and this is the same as giving a unit a.�/ of O.G/ (the
image of X ) such that �.a.�//D a.�/˝a.�/. Therefore, �$ a.�/ is a one-to-one cor-
respondence between the characters of G and the group-like elements of O.G/.

For characters �;�0, define

�C�0WG.R/!R�

by
.�C�0/.g/D �.g/ ��0.g/:

Then �C�0 is again a character, and the set of characters is an commutative group, denoted
X.G/. The correspondence �$ a.�/ between characters and group-like elements has the
property that

a.�C�0/D a.�/ �a.�0/:
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ASIDE 2.1 Recall (I, 3.13) that an element f of O.G/ can be regarded as a natural transformation
f WG! A1. Suppose that�

f .1G/D 1; for 1G the identity element in G.R/, and
f .xy/D f .x/f .y/; for x;y 2G.R/, R a k-algebra. (118)

Then f .R/ takes values in R� �A1.R/ and is a homomorphism G.R/!R�. In other words, f is
a character of G. One can see directly from the definitions that the condition (118) holds if and only
if f is group-like.

3 The affine group D.M/

Let M be a commutative group (written multiplicatively), and let kŒM� be the k-vector
space with basis M . Thus, the elements of kŒM� are finite sumsP

i aimi ; ai 2 k; mi 2M:

When we endow kŒM� with the multiplication extending that on M ,�P
i aimi

��P
j bjnj

�
D
P
i;j aibjminj ;

then kŒM� becomes a k-algebra, called the group algebra ofM . It becomes a Hopf algebra
when we set

�.m/Dm˝m; �.m/D 1; S.m/Dm�1 .m 2M/

because, for m an element of the basis M ,

.id˝�/.�.m//Dm˝ .m˝m/D .m˝m/˝mD .�˝ id/.�.m//,

.�˝ id/.�.m//D 1˝m; .id˝�/.�.m//Dm˝1;

.multı .S˝ id//.m˝m/D 1D .multı .id˝S//.m˝m/

(see also II, 4.6). Note that kŒM� is generated as a k-algebra by any set of generators for
M , and so it is finitely generated if M is finitely generated.

EXAMPLE 3.1 Let M be a cyclic group, generated by e.

(a) Case e has infinite order. Then the elements of kŒM� are the finite sums
P
i2Zaie

i

with the obvious addition and multiplication, and �.e/ D e˝ e, �.e/ D 1, S.e/ D
e�1. Therefore, kŒM�' kŒGm�.

(b) Case e is of order n. Then the elements of kŒM� are sums a0Ca1eC�� �Can�1en�1

with the obvious addition and multiplication (using enD 1), and�.e/D e˝e, �.e/D
1, and S.e/D en�1. Therefore, kŒM�' kŒ�n�.

EXAMPLE 3.2 Recall that if W and V are vector spaces with bases .ei /i2I and .fj /j2J ,
then W ˝k V is a vector space with basis .ei˝fj /.i;j /2I�J . Therefore, if M1 and M2 are
commutative groups, then

.m1;m2/$m1˝m2WkŒM1�M2�$ kŒM1�˝kŒM2�

is an isomorphism of k-vector spaces, and one checks easily that it respects the Hopf k-
algebra structures.
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PROPOSITION 3.3 For any commutative group M , the functor D.M/

R Hom.M;R�/ (homomorphisms of groups)

is an affine group, with coordinate ring kŒM�. When M is finitely generated, the choice of
a basis for M determines an isomorphism of D.M/ with a finite product of copies of Gm
and various �n’s.

PROOF. To give a k-linear map kŒM�!R is the same as giving a map M !R. The map
kŒM�! R is a k-algebra homomorphism if and only if M ! R is a homomorphism from
M into R�. This shows that D.M/ is represented by kŒM�, and it is therefore an affine
group.

A decomposition of commutative groups

M � Z˚�� �˚Z˚Z=n1Z˚�� �˚Z=nrZ;

defines a decomposition of k-bialgebras

kŒM�� kŒGm�˝�� �˝kŒGm�˝kŒ�n1 �˝�� �˝kŒ�nr �

(3.1,3.2). Since every finitely generated commutative group M has such a decomposition,
this proves the second statement. 2

LEMMA 3.4 The group-like elements of kŒM� are exactly the elements of M .

PROOF. Let e 2 kŒM� be group-like. Then

e D
P
ciei for some ci 2 k, ei 2M:

The argument in the proof of Lemma 1.2 shows that the ci form a complete set of orthogonal
idempotents in k, and so one of them equals 1 and the remainder are zero. Therefore eD ei
for some i . 2

Thus
X.D.M//'M:

The character of D.M/ corresponding to m 2M is

D.M/.R/
def
D Hom.M;R�/

f 7!f .m/
������!R�

def
DGm.R/:

SUMMARY 3.5 Let p be the characteristic exponent1 of k. Then:

D.M/ is algebraic ” M is finitely generated
D.M/ is connected ” M has only p-torsion
D.M/ is algebraic and smooth ” M is finitely generated and has no p-torsion
D.M/ is algebraic, smooth, and connected ” M is free and finitely generated.

1The characteristic exponent of a field k is p if k has characteristic p¤ 0, and it is 1 if k has characteristic
zero.
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We noted above that D.M/ is algebraic if M is finitely generated. If M is not finitely
generated, then D.M/ is an infinite product of nontrivial groups, and so can’t be algebraic.
The affine group D.Z/DGm is connected and smooth. Let nD n0�pm where n0 is prime
to p. Then D.Z=nZ/D �n0 ��pm ; the finite affine group �n0 is étale (hence smooth), and
it is nonconnected if n0 ¤ 1; the finite affine group �pm is connected, and it is nonsmooth
if pm ¤ 1.

Note that

D.M/ı DD.M=fprime-to-p torsiong

D.M/red DD.M=fp-torsiong

D.M/ıred DD.M=ftorsiong.

ASIDE 3.6 When M is an additive commutative group, it is more natural to define kŒM� to be the
vector space with basis the set of symbols fem jm 2M g. The multiplication is then em �en D emCn

and the comultiplication is �.em/D em˝ em.

4 Diagonalizable groups

DEFINITION 4.1 An affine group G is diagonalizable if the group-like elements in O.G/
span it as a k-vector space.

THEOREM 4.2 An affine groupG is diagonalizable if and only if it is isomorphic toD.M/

for some commutative group M .

PROOF. The group-like elements of kŒM� span it by definition. Conversely, suppose the
group-like elements M span O.G/. Lemma 1.2 shows that they form a basis for O.G/ (as
a k-vector space), and so the inclusion M ,! O.G/ extends to an isomorphism kŒM�!

O.G/ of vector spaces. That this isomorphism is compatible with the bialgebra structures
.m;e;�;�/ can be checked on the basis elements m 2M , where it is obvious. 2

ASIDE 4.3 When we interpret the characters of G as elements of O.G/ satisfying (118), we can
say that G is diagonalizable if and only if O.G/ is spanned by characters.

THEOREM 4.4 (a) The functor M  D.M/ is a contravariant equivalence from the cat-
egory of commutative groups to the category of diagonalizable affine groups (with quasi-
inverse G X.G/).
(b) If

1!M 0!M !M 00! 1

is an exact sequence of commutative groups, then

1!D.M 00/!D.M/!D.M 0/! 1

is an exact sequence of affine groups.
(c) Subgroups and quotient groups of diagonalizable affine groups are diagonalizable.

PROOF. (a) Certainly, we have a contravariant functor

DW fcommutative groupsg fdiagonalizable groupsg:
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We first show that D is fully faithful, i.e., that

Hom.M;M 0/! Hom.D.M 0/;D.M// (119)

is an isomorphism for all M;M 0. It sends direct limits to inverse limits and direct sums
to products, and so it suffices to prove that (119) is an isomorphism when M and M 0 are
cyclic. If, for example, M and M 0 are both infinite cyclic groups, then

Hom.M;M 0/D Hom.Z;Z/' Z;
Hom.D.M 0/;D.M//D Hom.Gm;Gm/D fX i j i 2 Zg ' Z;

and (119) is an isomorphism. The remaining cases are similarly easy.
Theorem 4.2 shows that the functor is essentially surjective, and so it is an equivalence.
(b) The map kŒM 0�! kŒM� is injective, and so D.M/! D.M 0/ is a quotient map

(by definition). Its kernel is represented by kŒM�=IkŒM 0�, where IkŒM 0� is the augmentation
ideal of kŒM 0� (see VII, 4.1). But IkŒM 0� is the ideal generated the elements m� 1 for
m 2M 0, and so kŒM�=IkŒM 0� is the quotient ring obtained by puttingmD 1 for allm 2M 0.
Therefore M !M 00 defines an isomorphism kŒM�=IkŒM 0�! kŒM 00�.

(c) If H is a subgroup of G, then O.G/!O.H/ is surjective, and so if the group-like
elements of O.G/ span it, the same is true of O.H/.

Let D.M/! Q be a quotient map, and let H be its kernel. Then H D D.M 00/ for
some quotient M 00 of M . Let M 0 be the kernel of M !M 00. Then D.M/!D.M 0/ and
D.M/!Q are quotient maps with the same kernel, and so are isomorphic (VII, 7.9). 2

ASIDE 4.5 Our definition of a diagonalizable group agrees with that in SGA 3, VIII 1.1: a group
scheme is diagonalizable if it is isomorphic to a scheme of the form D.M/ for some commutative
group M .

Diagonalizable representations

DEFINITION 4.6 A representation of an affine group is diagonalizable if it is a sum of
one-dimensional representations.

According to VIII, 17.3, a diagonalizable representation is a direct sum of one-dimensional
representations.

Recall that Dn is the group of invertible diagonal n�n matrices; thus

Dn 'Gm� � � ��Gm„ ƒ‚ …
n copies

'D.Zn/:

A finite-dimensional representation .V;r/ of an affine group G is diagonalizable if and
only if there exists a basis for V such that r.G/ � Dn. In more down-to-earth terms, the
representation defined by an inclusion G �GLn is diagonalizable if and only if there exists
an invertible matrix P in Mn.k/ such that, for all k-algebras R and all g 2G.R/,

PgP�1 2

8̂<̂
:
0B@� 0

: : :

0 �

1CA
9>=>; :
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A character �WG! Gm defines a representation of G on any finite-dimensional space
V : let g 2 G.R/ act on VR as multiplication by �.g/ 2 R�. For example, � defines a
representation of G on kn by

g 7!

0B@�.g/ 0
: : :

0 �.g/

1CA :
Let .V;r/ be a representation of G. We say that G acts on V through� if

r.g/v D �.g/v all g 2G.R/, v 2 VR:

This means that the image of r is contained in the centre Gm of GLV and that r is the
composite of

G
�
�!Gm ,! GLV :

Let �WV ! V ˝O.G/ be the coaction defined by r . ThenG acts on V through the character
� if and only if

�.v/D v˝a.�/, all v 2 V:

When V is 1-dimensional, GLV DGm, and soG always acts on V through some character.
Let .V;r/ be a representation of G. If G acts on subspaces W and W 0 through the

character �, then it acts onW CW 0 through the character �. Therefore, for each � 2X.G/,
there is a largest subspace V� (possibly zero) such that G acts on V� through �. We have
(VIII, 16.1)

V� D fv 2 V j �.v/D v˝a.�/g:

THEOREM 4.7 The following conditions on an affine group G are equivalent:

(a) G is diagonalizable;
(b) every finite-dimensional representation of G is diagonalizable;
(c) every representation of G is diagonalizable;
(d) for every representation .V;r/ of G,

V D
M

�2X.T /
V�:

PROOF. (a))(c): Let �WV ! V ˝O.G/ be the comodule corresponding to a representa-
tion of G (see VIII, 6.1). We have to show that V is a sum of one-dimensional representa-
tions or, equivalently, that V is spanned by vectors u such that �.u/ 2 hui˝O.G/.

Let v 2 V . As the group-like elements form a basis .ei /i2I for O.G/, we can write

�.v/D
P
i2I ui ˝ ei ; ui 2 V:

On applying the identities (p. 114)�
.idV ˝�/ı� D .�˝ idA/ı�
.idV ˝�/ı� D idV :

to v, we find that X
i
ui ˝ ei ˝ ei D

X
i
�.ui /˝ ei

v D
P
ui :
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The first equality shows that

�.ui /D ui ˝ ei 2 hui i˝k A;

and the second shows that the set of ui ’s arising in this way span V .
(c))(a): In particular, the regular representation ofG is diagonalizable, and so O.G/ is

spanned by its eigenvectors. Let f 2O.G/ be an eigenvector for the regular representation,
and let � be the corresponding character. Then

f .hg/D f .h/�.g/ for h;g 2G.R/, R a k-algebra.

In particular, f .g/D f .e/�.g/, and so f is a multiple of �. Hence O.G/ is spanned by its
characters.

(b))(c): As every representation is a sum of finite-dimensional subrepresentations
(VIII, 9.3), (b) implies that every representation is a sum of one-dimensional subrepresen-
tations.

(c))(b): Trivial.
(c))(d): Certainly, (c) implies that V D

P
�2X.G/V�, and Theorem 16.2, Chapter

VIII, implies that the sum is direct.
(d))(c): Clearly each space V� is a sum of one-dimensional representations. 2

NOTES Part of this section duplicates VIII, �16.

NOTES An affine group G is diagonalizable if and only if Rep.G/ is semisimple and every simple
object has dimension 1 (equivalently, the tensor product of two simple objects in simple). Explain
that to give a representation of D.M/ on V is the same as giving a gradation on V (for a base ring,
see CGP A.8.8.). Explain that the categories of representations of diagonalizable affine groups are
exactly the neutral tannakian categories graded by some commutative group M , and the Tannaka
dual is D.M/. See also the last chapter.

Split tori

4.8 A split torus is an algebraic group isomorphic to a finite product of copies of Gm.
Equivalently, it is a connected diagonalizable algebraic group. Under the equivalence of
categories M  D.M/ (see 4.4a), the split tori correspond to free commutative groups M
of finite rank. A quotient of a split torus is again a split torus (because it corresponds to a
subgroup of a free commutative group of finite rank), but a subgroup of a split torus need
not be a split torus. For example, �n is a subgroup of Gm (the map �n!Gm corresponds
to Z! Z=nZ).

EXAMPLE 4.9 Let T be the split torus Gm�Gm. Then X.T /' Z˚Z, and the character
corresponding to .m1;m2/ 2 Z˚Z is

.t1; t2/ 7! t
m1
1 t

m2
2 WT .R/!Gm.R/.

A representation V of T decomposes into a direct sum of subspaces V.m1;m2/, .m1;m2/ 2
Z�Z, such that .t1; t2/ 2 T .k/ acts on V.m1;m2/ as tm11 t

m2
2 . In this way, the category

Rep.T / acquires a gradation by the group Z�Z.
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5 Groups of multiplicative type

DEFINITION 5.1 An affine group G is of multiplicative type if Gksep is diagonalizable.

Let M be an commutative group, and let � D Gal.ksep=k/. A continuous action of �
on M is a homomorphism � ! Aut.M/ such that every element of M is fixed by an open
subgroup of � , i.e.,

M D
[

K
MGal.ksep=K/

where K runs through the finite Galois extensions of k contained in ksep.
For an affine group G, we define

X�.G/D Hom.Gksep ;Gm/:

LEMMA 5.2 The canonical action of � on X�.G/ is continuous.

PROOF. WhenG is algebraic, X�.G/ is finitely generated, and each of its generators is de-
fined over a finite separable extension of k; therefore the action factors through Gal.K=k/
for some finite Galois extensionK of k. In the general case, every homomorphismGksep!

Gm factors through an algebraic quotient of G, and so X�.G/D
S
X�.Q/ with Q alge-

braic. 2

THEOREM 5.3 The functor X� is a contravariant equivalence from the category of affine
groups of multiplicative type over k to the category of commutative groups with a contin-
uous action of � . Under the equivalence, short exact sequences correspond to short exact
sequences.

PROOF. To give a continuous semilinear action of � on ksepŒM � is the same as giving a
continuous action of � on M (because M is the set of group-like elements in ksepŒM � and
M is a ksep-basis for ksepŒM �), and so this follows from Theorem 4.4 and Proposition 7.3,
Chapter V. 2

Let G be a group of multiplicative type over k. For any K � ksep,

G.K/D Hom.X�.G/;ksep�/�K

where �K is the subgroup of � of elements fixing K, and the notation means the G.K/
equals the group of homomorphisms X�.G/! ksep� commuting with the actions of �K .

EXAMPLE 5.4 Take k D R, so that � is cyclic of order 2, and let X�.G/ D Z. Then
Aut.Z/D Z� D f˙1g, and so there are two possible actions of � on X�.G/:

(a) Trivial action. Then G.R/D R�, and G 'Gm.
(b) The generator � of � acts on Z as m 7! �m. Then G.R/D Hom.Z;C�/� consists

of the elements of C� fixed under the following action of �,

�z D xz�1:

Thus G.R/D fz 2 C� j zxz D 1g, which is compact.
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EXAMPLE 5.5 Let K be a finite separable extension of k, and let T be the functor R 
.R˝k K/

�. Then T is the group of multiplicative type corresponding to the � -module
ZHomk.K;ksep/ (families of elements of Z indexed by the k-homomorphisms K! ksep).

ASIDE 5.6 SGA 3, IX 1.1, defines a group scheme to be of multiplicative type if it is locally di-
agonalizable group for the flat (fpqc) topology. Over a field k, this amounts to requiring the group
scheme to become diagonalizable over some field extension of k. Because of Theorem 5.11 below,
this is equivalent to our definition.

Tori

DEFINITION 5.7 A torus is an algebraic group T such that Tksep is a split torus.

In other words, the tori are the algebraic groups T of multiplicative type such that
X�.T / is torsion free.

PROPOSITION 5.8 For a torus T , there exist (unique) subtori T1; : : : ;Tr such that

˘ T D T1 � � �Tr ;

˘ Ti \Tj is finite for all i ¤ j , and
˘ X�.Ti /Q is a simple � -module for all i:

PROOF. Let � DGal.ksep=k/. BecauseX�.T / is finitely generated, � acts on it through a
finite quotient. Therefore Maschke’s theorem (GT 7.4) shows that X�.T /Q is a direct sum
of simple � -modules, say,

X�.T /Q D V1˚�� �˚Vr :

Let Mi be the image of X�.T / in Vi . Then there is an exact sequence

0!X�.T /!M1� � � ��Mr ! F ! 0

of continuous � -modules with F finite. On applying the functor D, we get an exact se-
quence of algebraic groups of multiplicative type

0!D.F /!D.M1/� � � ��D.Mr/! T ! 0:

Take Ti DD.Mi /. 2

A torus is anisotropic if X.T /D 0, i.e., X�.T /� D 0.

COROLLARY 5.9 Every torus has a largest split subtorus Ts and a largest anisotropic subtorus
Ta. The intersection Ts \Ta is finite and Ts �Ta D T .

PROOF. In fact Ts is the product of the Ti in the proposition such that � act trivially on
X�.Ti / and Ta is the product of the remainder. 2
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Representations of a group of multiplicative type

When G is a diagonalizable affine group, Rep.G/ is a semisimple abelian category whose
simple objects are in canonical one-to-one correspondence with the characters of G. When
G is of multiplicative type, the description of Rep.G/ is only a little more complicated.

Let ksep be a separable closure of k, and let � D Gal.ksep=k/.

THEOREM 5.10 LetG be an affine group of multiplicative type. Then Rep.G/ is a semisim-
ple abelian category whose simple objects are in canonical one-to-one correspondence with
the orbits of � acting on X�.G/.

PROOF. It suffices to prove this in the case that G is algebraic, and so we may suppose that
G is split by a finite Galois extension˝ of k with Galois group x� . Let x� act on O.G˝/'
˝˝O.G/ through its action on ˝. By a semilinear action of x� on a representation .V;r/
of G˝ , we mean a semilinear action of x� on V such that 
� D � where � is the coaction
of O.G/ on V . It follows from Proposition 7.2, Chapter V, that the functor V  V˝ from
Repk.G/ to the category of objects of Rep˝.G˝/ equipped with a semilinear action of x�
is an equivalence of categories.

Let V be a finite-dimensional representation of G˝ equipped with a semilinear action
of x� . Then

V D
M

�2X.G˝/
V�:

An element 
 of � acts on V by mapping V� isomorphically onto V
�. Therefore, as a
representation of G˝ equipped with a semilinear action of x� , V decomposes into a direct
sum of simple objects corresponding to the orbits of x� acting on X.G˝/. As these are also
the orbits of � acting on X�.Gksep/'X.G˝/, the statement follows. 2

Criteria for an affine group to be of multiplicative type

Recall that if C is a finite-dimensional cocommutative coalgebra over k, then its linear
dual C_ is a commutative algebra over k (II, �3). We say that C is coétale if C_ is étale.
More generally, we say that a cocommutative coalgebra over k is coétale if every finite-
dimensional subcoalgebra is coétale (cf. VIII, 4.6).

THEOREM 5.11 The following conditions on an affine group G over k are equivalent:

(a) G is of multiplicative type (i.e., G becomes diagonalizable over ksep);
(b) G becomes diagonalizable over some field K � k;
(c) G is commutative and Hom.G;Ga/D 0;
(d) G is commutative and O.G/ is coétale.

PROOF. (a))(b): Trivial.
(b))(c): Clearly

Hom.G;Ga/' ff 2O.G/ j�.f /D f ˝1C1˝f g:

The condition on f is linear, and so, for any field K � k,

Hom.GK ;GaK/' Hom.G;Ga/˝K:
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Thus, we may suppose that G is diagonalizable. If uWG ! Ga is a nontrivial homomor-
phism, then

g 7!

�
1 u.g/

0 1

�
is a nonsemisimple representation of G, which contradicts (4.7).

(c))(d): We may assume that k is algebraically closed. Let C be finite-dimensional
subcoalgebra of O.G/, i.e., a finite-dimensional k-subspace such that �.C/� C ˝C . Let
A D C_. Then A is a finite product of local Artin rings with residue field k (CA 15.7).
If one of these local rings is not a field, then there exists a surjective homomorphism of
k-algebras

A! kŒ"�; "2 D 0:

This can be written x 7! hx;aiChx;bi" for some a;b 2 C with b ¤ 0. For x;y 2 A,

hxy;aiChxy;bi"D hxy;�aiChx˝y;�bi"

and

.hx;aiChx;bi"/.hy;aiChy;bi"D hx;aihy;aiC .hx;aihy;biChx;bihy;ai/"

D hx˝y;aiChx˝y;a˝bCb˝bi":

It follows that

�aD a˝a

�b D a˝bCb˝a.

On the other hand, the structure map k! A is .�jC/_, and so �.a/D 1. Therefore a is a
group-like element of O.G/, and so it is a unit (see �1). Now

�.ba�1/D�b ��a�1 D .a˝bCb˝a/.a�1˝a�1/

D 1˝ba�1Cba�1˝1;

and so Hom.G;Ga/¤ 0, which contradicts (c). Therefore A is a product of fields.
(d))(a): We may suppose that k is separably closed. Let C be a finite-dimensional

subcoalgebra of O.G/, and let AD C_. By assumption, A is a product of copies of k. Let
a1; : : : ;an be elements of C such that

x 7! .hx;a1i; : : : ;hx;ani/WA! kn

is an isomorphism. Then fa1; : : : ;ang spans C and the argument in the above step shows
that each ai is a group-like element of C . As O.G/ is a union of its finite-dimensional
subcoalgebras (VIII, 4.6), this shows that O.G/ is spanned by its group-like elements. 2

COROLLARY 5.12 An affine group G is of multiplicative type if and only if Gkal is diago-
nalizable.

PROOF. Certainly, Gkal is diagonalizable if G is of multiplicative type, and the converse
follows the theorem. 2
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COROLLARY 5.13 A smooth commutative group G is of multiplicative type if and only if
G.kal/ consists of semisimple elements.

PROOF. We may replace k with kal. Let .V;r/ be a faithful finite-dimensional repre-
sentation .V;r/ of G. If G is of multiplicative type, there exists a basis for V such that
r.G/� Dn; from this it follows that the elements of G.kal/ are semisimple. Conversely, if
the elements of G.kal/ are semisimple, hence diagonalizable, we know from linear algebra
that there exists a basis for V such that .rG/.kal/� Dn.kal/. Therefore r.G/� Dn. 2

ASIDE 5.14 The condition “commutative” is unnecessary. If G.kal/ consists of semisimple ele-
ments, then the same is true of Lie.G/, which is therefore commutative (XI, 11.1). It follows that G
is commutative if k has characteristic zero. In nonzero characteristic, the proofs in the literature are
more elaborate (Kohls 2011, 3.1).

COROLLARY 5.15 A commutative affine group G is of multiplicative type if and only if
Rep.G/ is semisimple.

PROOF. We saw in 5.10 that Rep.G/ is semisimple if G is of multiplicative type. Con-
versely, if Rep.G/ is semisimple, then Hom.G;Ga/ D 0, and so G is of multiplicative
type. 2

ASIDE 5.16 In nonzero characteristic, the groups of multiplicative type are the only algebraic
groups whose representations are all semisimple.2 In characteristic zero, the reductive groups also
have semisimple representations (see XVII, 5.4).

6 Rigidity

Later (see the proof of XVII, Theorem 5.1) we shall need the following result.

THEOREM 6.1 Every action of a connected affine group G on an algebraic group H of
multiplicative type is trivial.

Clearly, it suffices to prove the theorem for an algebraically closed base field k:

PROOF OF THE THEOREM WHEN H IS FINITE.

When H D �n, an action of G on H is a natural transformation

G! Aut.�n/� Hom.�n;�n/' Hom.�n;Gm/' Z=nZ

(see XII, �4), which is trivial, because G is connected. A similar argument proves the
theorem when H is finite (hence a finite product of groups of the form �n).

2More precisely, for an algebraic group over a field k of characteristic p¤ 0, Rep.G/ is semisimple if and
only if Gı is of multiplicative type and G=Gı has order prime to p (Nagata’s theorem, DG IV �3 3.6, p. 509;
Kohls 2011).
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PROOF OF THE THEOREM IN THE CASE THAT G IS SMOOTH.

We shall use that G.k/ is dense in G. We may suppose that H is a torus T . The kernel
of x 7! xmWT ! T is a product of copies of �m, and so G acts trivially on it. Because
of the category equivalence T  X.T /, it suffices to show that g 2 G.k/ acts trivially
on the X.T /, and because g acts trivially on the kernel of mWT ! T it acts trivially on
X.T /=mX.T /. We can now apply the following elementary lemma.

LEMMA 6.2 Let M be a finitely generated commutative group, and let uWM !M be a
homomorphism such that

M
u

����! M??y ??y
M=mM

id
����! M=mM

commutes for all m. Then uD id.

PROOF. We may suppose that M is torsion-free. Choose a basis ei for M , and write
u.ej /D

P
i aij ei , aij 2 Z. The hypothesis is that, for every integer m,

.aij /� In mod m;

i.e., that mjaij for i ¤ j and mjai i �1. Clearly, this implies that .aij /D In. 2

PROOF OF THE THEOREM IN THE GENERAL CASE.

This doesn’t use the smooth case.

LEMMA 6.3 Let V be a k-vector space, and let M be a finitely generated commutative
group. Then the family of homomorphisms

V ˝kŒM�! V ˝kŒM=nM�; n� 2;

is injective.

PROOF. An element f of V ˝kŒM� can be written uniquely in the form

f D
P
m2M fm˝m; fm 2 V .

Assume f ¤ 0, and let I D fm 2M j fm ¤ 0g. As I is finite, for some n, the elements
of I will remain distinct in M=nM , and for this n, the image of f in V ˝k kŒM=nM� is
nonzero. 2

As k is algebraically closed, the group H is diagonalizable. We saw above, that G acts
trivially on Hn for all n. Let H DD.M/ with M a finitely generated commutative group.
Then O.H/D kŒM� and O.Hn/D kŒM=nM�. Let

�WkŒM�!O.G/˝kŒM�

give the action. We have to show that �.x/ D 1˝ x for each x 2 kŒM�, but this follows
from the fact that G acts trivially on Hn for all n� 2, and the family of maps

O.G/˝k kŒM�!O.G/˝k kŒM=nM�; n� 2;

is injective.
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Density of the torsion points

PROPOSITION 6.4 Let T be an algebraic group of multiplicative type, and let Tn be the
kernel of nWT ! T . Let uWT ! T be a homomorphism whose restriction to Tn is the
identity map for all n. Then u is the identity map.

PROOF. It suffices to show that X�.u/WX�.T / ! X�.T / is the identity map, but the
hypothesis says that X�.u/ induces the identity map on the quotient X�.T /=nX�.T / D
X�.Tn/ for all n, and so this follows from Lemma 6.2. 2

7 Smoothness

LEMMA 7.1 LetH andG be algebraic groups over a ringR, and letR0 denote the quotient
of R by an ideal I of square zero. IfH is of multiplicative type, then every homomorphism
u0WHR0 ! GR0 lifts to a homomorphism uWH ! G; if u0 is a second lift, then u0 D
inn.g/ıu for some g 2 Ker.G.R/!G.R0//:

PROOF. The proof uses Hochschild cohomology Hn.G;V /, which is defined for any rep-
resentation .V;r/ of an algebraic group G. The lemma is a consequence of the following
statements:

Let G and H be algebraic groups over R, let R0 D R=I with I 2 D 0, and let
� �0 denote base change R!R0.

˘ The obstruction to lifting a homomorphism u0WH0! G0 to R is a class
in H 2.H0;Lie.G0/˝ I ); if the class is zero, then the set of lifts modulo
the action of Ker.G.R/! G.R0// by conjugation is a principal homo-
geneous space for the group H 1.H0;Lie.G0/˝I /.

˘ If G is diagonalizable, then Hn.G;V / D 0 for n > 0 (DG, II, �3, 4.2,
p195). 2

PROPOSITION 7.2 Let G be an algebraic group over a field k, acting on itself by conjuga-
tion, and let H and H 0 be subgroups of G. If G is smooth and H is of multiplicative type,
then the transporter TG.H;H 0/ is smooth.

PROOF. We use the following criterion:
An algebraic schemeX over a field k is smooth if and only if, for all k-algebras
R and ideals I in R such that I 2 D 0, the map X.R/! X.R=I / is surjective
(DG I, �4, 4.6, p.111).

We may replace k with its algebraic closure. Let g0 2 TG.H;H 0/.R0/. Because G is
smooth, g0 lifts to an element g 2G.R/. On the other hand, becauseH is of multiplicative
type, the homomorphism

inn.g0/WH0!H 00

lifts to a homomorphism uWH !H 0 (see 7.1). The homomorphisms

inn.g/WH !G

uWH !H 0 ,!G

both lift inn.g0/WH0! G0, and so uD inn.g0g/ for some g0 2 G.R/ (see 7.1). Now g0g

is an element of TG.H;H 0/.R/ lifting g0. 2
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COROLLARY 7.3 Let H be a subgroup of an algebraic group G. If G is smooth and H is
of multiplicative type, then NG.H/ and CG.H/ are both smooth.

PROOF. In fact,

NG.H/D TG.H;H/

CG.H/D TG�G.H;H/

(cf. the proofs of VII, 6.1, 6.7). 2

8 Group schemes

Add a brief summary of SGA 3, VIII, IX, X.

9 Exercises

EXERCISE XIV-1 Show that the functor

C  fgroup-like elements in C ˝ksep
g

is an equivalence from the category of coétale finite cocommutative k-coalgebras to the
category of finite sets with a continuous action of Gal.ksep=k/. (Hint: use XII, 2.7.)

EXERCISE XIV-2 Show that Aut.�m/' .Z=mZ/� (constant group defined by the group
of invertible elements in the ring Z=mZ). Hint: To recognize the elements of Aut.�m/.R/
as complete systems of orthogonal idempotents, see the proof of (1.2).

EXERCISE XIV-3 Let k0=k be a cyclic Galois extension of degree n with Galois group �
generated by � , and let G D .Gm/k0=k .

(a) Show that X�.G/' ZŒ� � (group algebra ZCZ�C�� �CZ�n�1 of � ).
(b) Show that

End� .X�.G//D

8̂̂̂<̂
ˆ̂:
0BBB@
a1 a2 : : : an
an a1 : : : an
:::

:::
:::

a2 a3 � � � a1

1CCCA
ˇ̌̌̌
ˇ̌̌̌
ˇai 2 Z

9>>>=>>>; :



CHAPTER XV
Unipotent Affine Groups

Recall that an endomorphism of a finite-dimensional vector space V is unipotent if its char-
acteristic polynomial is .T �1/dimV . For such an endomorphism, there exists a basis of V
relative to which its matrix lies in

Un.k/
def
D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0BBBBB@
1 � � : : : �

0 1 � : : : �

0 0 1 : : : �
:::

:::
: : :

:::

0 0 0 � � � 1

1CCCCCA

9>>>>>=>>>>>;
:

Let G be an algebraic group over a perfect field k. We say that g 2G.k/ is unipotent if
r.g/ is unipotent for all finite-dimensional representations .V;r/ of G. It suffices to check
that r.g/ is unipotent for some faithful representation .V;r/, or that g D gu (see X, 2.8).

By definition, a smooth algebraic group G over a field k is unipotent if the elements of
G.kal/ are all unipotent. However, not all unipotent groups are smooth, and so we adopt
a different definition equivalent to requiring that the group be isomorphic to a subgroup of
Un.

Throughout this chapter, k is a field. We remind the reader that “algebraic group” means
“affine algebraic group”.

1 Preliminaries from linear algebra

LEMMA 1.1 Let G ! GL.W / be a simple linear representation of an abstract group G
on a finite-dimensional vector space W over an algebraically closed field k. Let G act on
End.W / by the rule:

.gf /.w/D g.f .w//; g 2G; f 2 End.W /; w 2W:

Then every nonzero G-subspace X of End.W / contains an element f0WW !W such that
f0.W / has dimension one.

PROOF. We may suppose that X is simple. Then the k-algebra of G-endomorphisms of X
is a division algebra, and hence equals k (Schur’s lemma, GT 7.24, 7.29). For any w 2W ,
the map 'w ,

f 7! f .w/WX !W

231
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is a G-homomorphism. As X ¤ 0, there exists an f 2X and a w0 2W such that f .w0/¤
0. Then 'w0 ¤ 0, and so it is an isomorphism (because X and W are simple). Let f0 2 X
be such that 'w0.f0/D w0.

Letw 2W . Then '�1w0 ı'w is aG-endomorphism ofX , and so 'w D c.w/'w0 for some
c.w/ 2 k. On evaluating this at f0, we find that f0.w/D c.w/w0, and so f0.W /� hw0i.2

PROPOSITION 1.2 Let V be a finite-dimensional vector space, and let G be a subgroup of
GL.V / consisting of unipotent endomorphisms. Then there exists a basis of V for which G
is contained in Un.

PROOF. It suffices to show that V G ¤ 0, because then we can apply induction on the di-
mension of V to obtain a basis of V with the required property1.

Choose a basis .ei /1�i�n for V . The condition that a vector v D
P
aiei be fixed by

all g 2 G is linear in the ai , and so has a solution in kn if and only if it has a solution in
.kal/n.2 Therefore we may suppose that k is algebraically closed.

Let W be a nonzero subspace of V of minimal dimension among those stable under G.
Clearly W is simple. For each g 2G, TrW .g/D dimW , and so

TrW .g.g0�1//D TrW .gg0/�TrW .g/D 0:

Let U D ff 2 End.W / j TrW .gf /D 0 for all g 2Gg. If G acts nontrivially on W , then U
is nonzero because .g0�1/jW 2 U for all g0 2 G. The lemma then shows that U contains
an element f0 such that f0.W / has dimension one. Such an f0 has TrW f0 ¤ 0, which
contradicts the fact that f0 2 U . We conclude that G acts trivially on W . 2

2 Unipotent affine groups

DEFINITION 2.1 An affine group G is unipotent if every nonzero representation of G has
a nonzero fixed vector (i.e., a nonzero v 2 V such that �.v/D v˝1 when V is regarded as
a O.G/-comodule).

Equivalently, G is unipotent if every simple object in Rep.G/ is trivial. We shall see
that the unipotent algebraic groups are exactly the algebraic groups isomorphic to affine
subgroups of Un for some n. For example, Ga and its subgroups are unipotent.

1We use induction on the dimension of V . Let e1; : : : ; em be a basis for V G . The induction hypothesis
applied to G acting on V=V G shows that there exists a basis xemC1; : : : ;xen for V=V G such that

u.xemCi /D c1;ixemC1C�� �C ci�1;iemCi�1CxemCi for all i � n�m:

Let xemCi D emCi CV G with emCi 2 V . Then e1; : : : ; en is a basis for V relative to which G � Un.k/:
2For any representation .V;r/ of an abstract group G, the subspace V G of V is the intersection of the

kernels of the linear maps
v 7! gv�vWV ! V; g 2G:

It follows that .V ˝ xk/Gxk ' V G˝ xk, and so

.V ˝ xk/Gxk ¤ 0 H) V G ¤ 0:
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PROPOSITION 2.2 An algebraic groupG is unipotent if and only if, for every finite-dimensional
representation .V;r/ of G, there exists a basis of V for which the image of G is contained
in Un.

PROOF. ): This can be proved by induction on the dimension of V (see footnote 1).
(: If e1; : : : ; en is such a basis, then he1i is fixed by G. 2

DEFINITION 2.3 A Hopf algebra A is said to be coconnected if there exists a filtration
C0 � C1 � C2 � �� � of A by subspaces Ci such that3

C0 D k,
[

r�0
Cr D A, and �.Cr/�

X
0�i�r

Ci ˝Cr�i : (120)

THEOREM 2.4 The following conditions on an algebraic group G are equivalent:

(a) G is unipotent;
(b) G is isomorphic to an algebraic subgroup of Un for some n;
(c) the Hopf algebra O.G/ is coconnected.

PROOF. (a))(b). Apply Proposition 2.2 to a faithful finite-dimensional representation of
G (which exists by VIII, 9.1).

(b))(c). Every quotient of a coconnected Hopf algebra is coconnected because the
image of a filtration satisfying (120) will still satisfy (120), and so it suffices to show that
O.Un/ is coconnected. Recall that O.Un/' kŒXij j i < j �, and that

�.Xij /DXij ˝1C1˝Xij C
X
i<r<j

Xir˝Xrj :

Assign a weight of j � i to Xij , so that a monomial
Q
X
nij
ij will have weight

P
nij .j � i/,

and let Cr be the subspace spanned by the monomials of weight � r . Clearly, C0 D k,S
r�0Cr D A, and CiCj � CiCj . It suffices to check the third condition in (120) on the

monomials. For the Xij it is obvious. We proceed by induction on weight of a monomial.
If the condition holds for monomials P ,Q of weights r , s, then�.PQ/D�.P /�.Q/ lies
in �X

Ci ˝Cr�i

��X
Cj ˝Cr�j

�
�

X�
CiCj ˝Cr�iCs�j

�
�

X
CiCj ˝CrCs�i�j .

(c))(a). Now assume that O.G/ is a coconnected Hopf algebra, and let �WV ! V ˝

O.G/ be a comodule. Then V is a union of the subspaces

Vr D fv 2 V j �.v/ 2 V ˝Crg.

If V0 contains a nonzero vector v, then �.v/D v0˝1 for some vector v0; on applying �, we
find that v D v0, and so v is fixed. We complete the proof by showing that

Vr D 0 H) VrC1 D 0:

3This definition is probably as mysterious to the reader as it is to the author. Basically, it is the condition
you arrive at when looking at Hopf algebras with only one group-like element (so the corresponding affine
group has only one character). See Sweedler, Moss Eisenberg. Hopf algebras with one grouplike element.
Trans. Amer. Math. Soc. 127 1967 515–526.
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By definition, �.VrC1/� V ˝CrC1, and so

.id˝�/�.VrC1/� V ˝
X

i
Ci ˝Cr�i :

Hence VrCi maps to zero in V ˝A=Cr˝A=Cr . We now use that .id˝�/ı�D .�˝ id/ı�.
The map V ! V ˝A=Cr defined by � is injective because Vr D 0, and on applying �˝ id
we find that V ! .V ˝A=Cr/˝A=Cr is injective. Hence VrC1 D 0. 2

NOTES The exposition of 2.4 follows Waterhouse 1979, 8.3.

COROLLARY 2.5 Subgroups, quotients, and extensions of unipotent groups are unipotent.

PROOF. If G is isomorphic to a subgroup of Un, then so also is a subgroup of G.
A representation of a quotient ofG can be regarded as a representation ofG, and so has

a nonzero fixed vector if it is nontrivial and G is unipotent.
Suppose thatG contains a normal subgroupN such that bothN andG=N are unipotent.

For any representation .V;r/ of G, the subspace V N is stable under G (see VIII, 17.2), and
so it defines a representation of G=N . If V ¤ 0, then V N ¤ 0, and so V G D .V N /G=N ¤
0. 2

COROLLARY 2.6 LetG be an algebraic group. IfG is unipotent, then all elements ofG.k/
are unipotent, and the converse is true when G.k/ is dense in G.

PROOF. Let G be unipotent, and let .V;r/ be a finite-dimensional representation of V . For
some basis of V , the r.G/ � Un and so r.G.k// � Un.k/; in particular, the elements of
r.G.k// are unipotent. For the converse, choose a faithful representation G ! GLV of
G and let n D dimV . According to Proposition 1.2, there exists a basis of V for which
G.k/� Un.k/. Because G.k/ is dense in G, this implies that G � Un. 2

A
2.7 For an algebraic groupG, even over an algebraically closed field k, it is possible for all

elements of G.k/ to be unipotent without G being unipotent. For example, in characteristic
p, the algebraic group �p has �p.kal/D 1, but it is not unipotent.

COROLLARY 2.8 Let k0 be a field containing k. An algebraic group G over k is unipotent
if and only if Gk0 is unipotent.

PROOF. If G is unipotent, then O.G/ is coconnected. But then k0˝O.G/ is obviously
coconnected, and so Gk0 unipotent. Conversely, suppose that Gk0 is unipotent. For any
representation .V;r/ of G, the subspace V G of V is the kernel of the linear map

v 7! �.v/�v˝1WV ! V ˝O.G/.

It follows that
.V ˝k0/Gk0 ' V G˝k0;

and so
.V ˝k0/Gk0 ¤ 0 H) V G ¤ 0: 2
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COROLLARY 2.9 Let G be an algebraic group over k. If G is unipotent, then �0.G/ has
order a power of the characteristic exponent of k; in particular, G is connected if k has
characteristic zero.

PROOF. We may assume that k is algebraically closed. A representation of �0.G/ can be
regarded as a representation ofG. Therefore, every representation of the finite group �0.G/
is unipotent. This implies that �0.G/ has order a power of the characteristic exponent of k
(Maschke’s theorem, GT 7.4). 2

For example, if k has characteristic p ¤ 0, then .Z=pZ/k is unipotent4 (but not con-
nected).

EXAMPLE 2.10 Let k be a nonperfect field of characteristic p ¤ 0, and let a 2 kr kp.
The affine subgroup G of Ga�Ga defined by the equation

Y p DX �aXp

becomes isomorphic to Ga over kŒa
1
p �, but it is not isomorphic to Ga over k. To see this,

let C be the complete regular curve whose function field k.C / is the field of fractions of
O.G/. The inclusion O.G/ ,! k.C / realizes G as an open subset of C , and one checks
that the complement consists of a single point whose residue field is kŒa

1
p �. For G D Ga,

the same construction realizes G as an open subset of P1 whose complement consists of a
single point with residue field k.

COROLLARY 2.11 A smooth algebraic groupG is unipotent ifG.kal/ consists of unipotent
elements.

PROOF. If G.kal/ consists of unipotent elements, then Gkal is unipotent (2.6), and so G is
unipotent (2.8). 2

A
2.12 A unipotent group need not be smooth. For example, in characteristic p, the sub-

group of U2 consisting of matrices
�
1 a
0 1

�
with ap D 0 is not smooth (it is isomorphic to

˛p).

COROLLARY 2.13 An algebraic group is unipotent if and only if it admits a subnormal
series whose quotients are isomorphic to affine subgroups of Ga.

PROOF. The group Un has a subnormal series whose quotients are isomorphic toGa — for
example, the following subnormal series

U4 D

8̂̂<̂
:̂
0BB@
1 � � �

0 1 � �

0 0 1 �

0 0 0 1

1CCA
9>>=>>;�

8̂̂<̂
:̂
0BB@
1 0 � �

0 1 0 �

0 0 1 0

0 0 0 1

1CCA
9>>=>>;�

8̂̂<̂
:̂
0BB@
1 0 0 �

0 1 0 0

0 0 1 0

0 0 0 1

1CCA
9>>=>>;� 1

has quotients Ga �Ga �Ga, Ga �Ga, Ga. Therefore any affine subgroup of Un has a
subnormal series whose quotients are isomorphic to affine subgroups of Ga (see IX, 6.2).
For the converse, note that Ga is unipotent, and so we can apply (2.5). 2

4To give a representation of .Z=pZ/k on a k-vector space V is the same as giving an endomorphism u of
V of order p. The characteristic polynomial of such an u is Xp �1D .X �1/p .
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COROLLARY 2.14 Every homomorphism from a unipotent algebraic group to an algebraic
group of multiplicative type is trivial.

PROOF. A nontrivial homomorphism U !H over k gives rise to a nontrivial homomor-
phism over kal. Over an algebraically closed field, every algebraic group H of multiplica-
tive type is a subgroup of Gnm for some n (because every finitely generated commutative
group is a quotient of Zn for some n), and so it suffices to show that Hom.U;Gm/D 0when
U is unipotent. But a homomorphism U !Gm is a one-dimensional representation of G,
which is trivial by definition. 2

COROLLARY 2.15 The intersection of a unipotent affine subgroup of an algebraic group
with an affine subgroup of multiplicative type is trivial (i.e., maps to 1)

PROOF. The intersection is unipotent (2.5), and so the inclusion of the intersection into the
group of multiplicative type is trivial. 2

For example, Un\Dn D 1 (which, of course, is obvious).

PROPOSITION 2.16 An algebraic groupG is unipotent if and only if every nontrivial affine
subgroup of it admits a nonzero homomorphism to Ga.

PROOF. It follows from (2.13) that every nontrivial unipotent algebraic group admits a
nontrivial homomorphism to Ga. But every affine subgroup of a unipotent algebraic group
is unipotent (2.5).

For the converse, let G1 be the kernel of a nontrivial homomorphism G ! Ga. If
G1 ¤ 1, let G2 be the kernel of a nontrivial homomorphism G1 ! Ga. Continuing in
this fashion, we obtain a subnormal series whose quotients are affine subgroups of Ga (the
series terminates in 1 because the topological space jGj is noetherian and only finitely many
Gi can have the same underlying topological space). Now apply (2.13). 2

COROLLARY 2.17 Every homomorphism from a group of multiplicative type to a unipo-
tent algebraic group is trivial.

PROOF. Let uWT ! U be such a homomorphism. If uT ¤ 1, then it admits a nontrivial
homomorphism to Ga, but this contradicts the fact that uT is of multiplicative type (XIV,
5.11). 2

EXAMPLE 2.18 Let k be a nonperfect field characteristic p. For every finite sequence
a0; : : : ;am of elements of k with a0 ¤ 0 and n � 1, the affine subgroup G of Ga �Ga
defined by the equation

Y p
n

D a0XCa1X
P
C�� �CamX

pm
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is a form5 of Ga, and every form of Ga arises in this way (Russell 1970, 2.1; or apply 4.1).
Note that G is the fibred product

G ����! Ga??y ??ya0FC���CamF pm
Ga

F n

����! Ga:

In particular, G is an extension of Ga by a finite subgroup of Ga (so it does satisfy 2.13).
There is a criterion for when two forms are isomorphic (ibid. 2.3). In particular, any form
becomes isomorphic to Ga over a purely inseparable extension of k.

DEFINITION 2.19 A unipotent algebraic group is said to be split if it admits a subnormal
series whose quotients are isomorphic to Ga (and not just subgroups of Ga).6

Such a group is automatically smooth (VII, 10.1) and connected (XIII, 3.11).

PROPOSITION 2.20 Every smooth connected unipotent algebraic group over a perfect field
is split.

PROOF. tba (cf. Borel 1991, 15.5(ii)). 2

In particular, every smooth connected unipotent algebraic group splits over a purely
inseparable extension.

Although the definition of “unipotent” applies to all affine groups, we have stated most
of the above results for algebraic groups. The next statement shows how to extend them to
affine groups.

PROPOSITION 2.21 (a) An inverse limit of unipotent affine groups is unipotent.
(b) An affine group is unipotent if and only if all of its algebraic quotients are unipotent.

PROOF. Obvious from the definitions. 2

3 Unipotent affine groups in characteristic zero

Let H.X;Y / D
P
n>0H

n.X;Y / denote the Hausdorff series. Recall (IV, 1.6) that, for a
finite-dimensional vector space V , Va denotes the algebraic group R R˝k V .

PROPOSITION 3.1 Let G be a unipotent algebraic group. Then

exp.x/ � exp.y/D exp.h.x;y// (121)

for all x;y 2 gR and k-algebras R.

5I.e., becomes isomorphic to Ga over an extension of k.
6Cf. SGA3, XVII, 5.10: Let k be a field andG an algebraic k-group. Following the terminology introduced

by Rosenlicht (Questions of rationality for solvable algebraic groups over nonperfect fields. Ann. Mat. Pura
Appl. (4) 61 1963 97–120), we say that G is “k-résoluble” if G has a composition series whose successive
quotients are isomorphic to Ga . . .
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PROOF. We may identify G with a subgroup of GLV for some finite-dimensional vector
space V . Then g� glV , and, because G is unipotent, g is nilpotent. Now (121) holds in G
because it holds in GLV . 2

THEOREM 3.2 Assume char.k/D 0.
(a) For any finite-dimensional nilpotent Lie algebra over k, the maps

.x;y/ 7!
P
n>0H

n.x;y/Wg.R/�g.R/! g.R/

(R a k-algebra) make ga into a unipotent algebraic group over k.
(b) The functor g ga is an equivalence from the category of finite-dimensional nilpo-

tent Lie algebras over k to the category of unipotent algebraic groups, with quasi-inverse
G Lie.G/.

PROOF. Omitted for the moment (see ALA, II �4; DG IV �2 4.5, p. 499; Hochschild 1971a,
Chapter 10). 2

COROLLARY 3.3 Every Lie subalgebra of glV formed of nilpotent endomorphisms is al-
gebraic.

See the discussion XI, �13.

REMARK 3.4 In the equivalence of categories in (b), commutative Lie algebras (i.e., finite-
dimensional vector spaces) correspond to commutative unipotent algebraic groups. In other
words,U  Lie.U / is an equivalence from the category of commutative unipotent algebraic
groups over a field of characteristic zero to the category of finite-dimensional vector spaces,
with quasi-inverse V  Va.

Miscellaneous results on unipotent groups (moved from Lie algebras)

LEMMA 3.5 Let U be a unipotent subgroup of an algebraic group G. Then G=U is iso-
morphic to a subscheme of an affine scheme.

PROOF. Let .V;r/ be a representation of G such that U is the stabilizer of a line L in V .
As U is unipotent, it acts trivially on L, and so LU D L. For any nonzero x 2 L, the map
g 7! gx is an injective regular map G=U ! Va. Cf. DG, IV, 2 2.8, p. 489. 2

LEMMA 3.6 For any connected algebraic group G, the quotient Ker.AdWG! GLg/=ZG

is unipotent .

PROOF. We may suppose that k is algebraically closed. Let Oe D O.G/e (the local ring
at the identity element), and let me be its maximal ideal. Then G acts on k-vector space
Oe=mrC1e by k-algebra homomorphisms. By definition, Ker.Ad/ acts trivially on me=m

2
e ,

and so it acts trivially on each of the quotients mie=m
iC1
e . Let Cr be the centralizer of

O.G/e=mrC1 in G. Clearly Ker.Ad/=Cr is unipotent, and Cr D ZG for r sufficiently
large. Cf. DG IV 2 2.12, p. 490. 2
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PROPOSITION 3.7 Let G be a smooth connected algebraic group over an algebraically
closed field k. If G contains no subgroup isomorphic to Gm, then it is unipotent.

PROOF. Let .V;r/ be a faithful representation of G, and let F be the variety of maximal
flags in V . Then G acts on V , and according to AG 10.6, there exists a closed orbit, say
Gd 'G=U . Then U is solvable, and so, by the Lie-Kolchin theorem XVI, 4.7, U ıred � Tn
for some choice of basis. By hypothesis, U ıred \Dn D 0, and so U ıred is unipotent. Now
G=U ıred is affine and connected, and so its image in F is a point. Hence G D U ıred. Cf. DG,
IV, 2, 3.11, p. 496. 2

COROLLARY 3.8 Let G be a smooth connected algebraic group. The following conditions
are equivalent:

(a) G is unipotent;
(b) The centre of G is unipotent and Lie.G/ is nilpotent;
(c) For every representation .V;r/ of G, Lier maps the elements of Lie.G/ to nilpotent

endomorphisms of V ;
(d) Condition (c) holds for one faithful representation .V;r/.

PROOF. (a))(c). There exists a basis for V such that G maps into Un (see 2.2).
(c))(d). Trivial.
(a))(b). Every subgroup of a unipotent group is unipotent (2.5), and G has a filtration

whose quotients are isomorphic to subgroups of Ga (2.13).
(d))(a). We may assume that k is algebraically closed (2.8). If G contains a subgroup

H isomorphic to Gm, then V D
L
n2ZVn where h 2 H.k/ acts on Vn as hn. Then x 2

Lie.H/ acts on Vn as nx, which contradicts the hypothesis.
(b))(a). If the centre of G is unipotent, then the kernel of the adjoint representation

is an extension of unipotent groups, and so it is unipotent (2.5). Suppose that G contains a
subgroup H isomorphic to Gm. Then H acts faithfully on g, and its elements act semisim-
ply, contradicting the nilpotence of g.

Cf. DG, IV, 2 3.12, p. 496. 2

4 Group schemes

Add a brief summary of SGA 3 XVII and Tits 1967 etc..

ASIDE 4.1 The unipotent algebraic groups over a field of characteristic p¤ 0 are more complicated
than in characteristic zero. However, those isomorphic to a subgroup ofGna for some n are classified
by the finite-dimensional kŒF �-modules (polynomial ring with Fa D apF ). See DG IV �3, 6.6 et
seq., p. 521.

ASIDE 4.2 We compare the different definitions of unipotent in the literature.

(a) In SGA 3, XVII 1.3, an algebraic group scheme G over a field k is defined to be unipotent
if there exists an algebraically closed field xk containing k such that Gxk admits a composition
series whose quotients are isomorphic to algebraic subgroups of Ga. It is proved ibid. 2.1
that such a group is affine, and so 2.8 and 2.13 show that this definition is equivalent to our
definition.
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(b) In DG IV, �2, 2.1, p. 485, a group scheme G over a field is defined to be unipotent if it is
affine and every nontrivial affine subgroup H admits a nontrivial homomorphism H ! Ga.
Statement 2.16 shows that this is equivalent to our definition. (They remark that an algebraic
group scheme satisfying the second condition is automatically affine. However, the constant
group scheme .Z/k satisfies the second condition but is not affine.)

(c) In Conrad et al. 2010, A.1.3, p. 393, a group scheme U over a field is defined to be unipotent
if it is affine of finite type and Ukal admits a finite composition series over kal with successive
quotients isomorphic to a kal-subgroup ofGa. This is equivalent to our definition, except that
we don’t require the group scheme to be algebraic.

(d) In Springer 1998, p. 36, a linear algebraic group is defined to be unipotent if all its elements
are unipotent. Implicitly, the group G is assumed to be a smooth affine algebraic group over
an algebraically closed field, and the condition is that all the elements of G.k/ are unipotent.
For such groups, this is equivalent to our definition because of (2.6) (but note that not all
unipotent algebraic groups are smooth).

ASIDE 4.3 Unipotent groups are extensively studied in Tits 1967. For summaries of his results, see
Oesterlé 1984, Chap. V, and Conrad et al. 2010 IV Appendix B. ( A unipotent group is said to be
wound if every map of varieties A1! G is constant. Every smooth unipotent algebraic group G
has a unique largest split affine subgroup Gs , called the split part of G. It is normal in G, and the
quotient G=Gs is wound. The formation of Gs commutes with separable extensions.)



CHAPTER XVI
Solvable Affine Groups

Let G be an abstract group. Recall that the commutator of x;y 2G is

Œx;y�D xyx�1y�1 D .xy/.yx/�1:

Thus, Œx;y�D 1 if and only if xy D yx, and G is commutative if and only if every com-
mutator equals 1. The (first) derived group G0 (or DG) of G is the subgroup generated by
commutators. Every automorphism of G maps commutators to commutators, and so G0 is
a characteristic subgroup of G (in particular, it is normal). In fact, it is the smallest normal
subgroup such that G=G0 is commutative.

The map (not a group homomorphism)

.x1;y1; : : : ;xn;yn/ 7! Œx1;y1� � � � Œxn;yn�WG
2n
!G

has image the set of elements ofG that can be written as a product of at most n commutators,
and so DG is the union of the images of these maps. Note that the mapG2n�2!G factors
through G2n!G,

.x1;y1; : : : ;xn�1;yn�1/ 7! .x1;y1; : : : ;xn�1;yn�1;1;1/ 7! Œx1;y1� � � � Œxn�1;yn�1�:

A group G is said to be solvable if the derived series

G �DG �D2G � �� �

terminates with 1. For example, if n � 5, then Sn (symmetric group on n letters) is not
solvable because its derived series Sn � An terminates with An.

In this chapter we extend this theory to algebraic groups. Throughout, k is a field.

1 Trigonalizable affine groups

DEFINITION 1.1 An affine group G is trigonalizable1 if every nonzero representation of
G has a one-dimensional subrepresentation. In terms of the associated comodule .V;�/,
this means that there exists a nonzero v 2 V such that �.v/D v˝a, some a 2O.G/.

Equivalently, G is trigonalizable if every simple object in Rep.G/ is one-dimensional.
1I follow Borel 1991, p. 203, and DG IV �2 3.1. Other names: triangulable (Waterhouse 1979, p. 72);

triagonalizable.

241
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PROPOSITION 1.2 An algebraic group G is trigonalizable if and only if, for every finite-
dimensional representation .V;r/ of G, there exists a basis of V such that the image of G
is contained in Tn.

PROOF. ): This can be proved by induction on the dimension of V .
(: If e1; : : : ; en is such a basis, then he1i is stable by G. 2

The next theorem says that trigonalizable algebraic groups are exactly the algebraic
groups isomorphic to affine subgroups of Tn for some n; diagonalizable and unipotent
groups are both trigonalizable, and every trigonalizable group is an extension of one by the
other.

THEOREM 1.3 The following conditions on an algebraic group G are equivalent:

(a) G is trigonalizable;
(b) G is isomorphic to an affine subgroup of Tn for some n;
(c) there exists a normal unipotent affine subgroup U of G such that G=U is diagonaliz-

able.

PROOF. (a))(b). Apply Proposition 1.2 to a faithful finite-dimensional representation of
G (which exists by VIII, 9.1).

(b))(c). Embed G into Tn, and let U D Un\G. Then U is normal because Un is
normal in Tn, and it is unipotent by XV, 2.4.

(c))(a). Let U be as in (c), and let .V;r/ be a nonzero representation of G. Because
U is normal in G, the subspace V U of V is stable under G (VIII, 17.2), and so G=U acts
on V U . Because U is unipotent, V U ¤ 0, and because G=U is diagonalizable, it is a sum
of one-dimensional subrepresentations. 2

COROLLARY 1.4 Subgroups and quotients of trigonalizable algebraic groups are trigonal-
izable.

PROOF. If G is isomorphic to a subgroup of Tn, then so also is every affine subgroup of
G. If every nontrivial representation of G has a stable line, then the same is true of every
quotient of G (because a representation of the quotient can be regarded as a representation
of G). 2

COROLLARY 1.5 If an algebraic group G over k is trigonalizable, then so also is Gk0 for
every extension field k0.

PROOF. If G � Tn, then the same is true of Gk0 . 2

PROPOSITION 1.6 (a) An inverse limit of trigonalizable affine groups is trigonalizable.
(b) An affine group is trigonalizable if and only if all of its algebraic quotients are

trigonalizable.

PROOF. Obvious from the definitions. 2
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THEOREM 1.7 Let G be a trigonalizable algebraic group, and let U be a normal unipotent
subgroup such that G=U is diagonalizable. Then the exact sequence

1! U !G!G=U ! 1

splits in each of the following cases: k is algebraically closed; k has characteristic zero; k
is perfect and G=U is connected; U is split.

PROOF. See DG IV �2 3.5, p. 494; SGA 3, XVII, 5.1.1. (We won’t use this.) 2

ASIDE 1.8 In DG IV �3 3.1, a group scheme G over a field is defined to be trigonalizable if it is
affine and has a normal unipotent subgroupU such thatG=U is diagonalizable. Because of Theorem
1.3, this is equivalent to our definition.

2 Commutative algebraic groups

Smooth commutative algebraic groups are geometrically trigonalizable

Let u be an endomorphism of a finite-dimensional vector space V over k. If all the eigen-
values of u lie in k, then there exists a basis for V relative to which the matrix of u lies
in

Tn.k/D

8̂̂̂<̂
ˆ̂:
0BBB@
� � : : : �

0 � : : : �
:::

:::
: : :

:::

0 0 � � � �

1CCCA
9>>>=>>>;

We extend this elementary statement to sets of commuting endomorphisms.

LEMMA 2.1 Let V be a finite-dimensional vector space over an algebraically closed field
k, and let S be a set of commuting endomorphisms of V . There exists a basis of V for
which S is contained in the group of upper triangular matrices, i.e., a basis e1; : : : ; en such
that

u.he1; : : : ; ei i/� he1; : : : ; ei i for all i: (122)

In more down-to-earth terms, let S be a set of commuting n�n matrices; then there
exists an invertible matrix P such that PAP�1 is upper triangular for all A 2 S .

PROOF. We prove this by induction on the dimension of V . If every u 2 S is a scalar
multiple of the identity map, then there is nothing to prove. Otherwise, there exists an
u 2 S and an eigenvalue a for u such that the eigenspace Va ¤ V . Because every element
of S commutes with u, Va is stable under the action of the elements of S : for ˇ 2 S and
x 2 Va,

u.ˇx/D ˇ.ux/D ˇ.ax/D a.ˇx/:

The induction hypothesis applied to S acting on Va and V=Va shows that there exist bases
e1; : : : ; em for Va and xemC1; : : : ;xen for V=Va such that

u.he1; : : : ; ei i/� he1; : : : ; ei i for all i �m

u.hxemC1; : : : ;xemCi i/� hxemC1; : : : ;xemCi i for all i � n�m:

Let xemCi D emCi CVa with emCi 2 V . Then e1; : : : ; en is a basis for V satisfying (122): 2
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PROPOSITION 2.2 Let V be a finite-dimensional vector space over an algebraically closed
field k, and let G be a smooth commutative affine subgroup of GLV . Then there exists a
basis of V for which G is contained in Tn.

PROOF. According to the lemma, there exists a basis of V for which G.k/� Tn.k/. Now
G\Tn is a subgroup of G such that .G\Tn/.k/DG.k/. As G.k/ is dense in G (see VII,
5.9), this implies that G\Tn DG, and so G � Tn. 2

Decomposition of a smooth commutative algebraic group

DEFINITION 2.3 LetG be an algebraic group over a perfect field k. An element g ofG.k/
is semisimple (resp. unipotent) if g D gs (resp. g D gu) with the notations of X, 2.8.

Thus, g is semisimple (resp. unipotent) if r.g/ is semisimple (resp. unipotent) for one
faithful representation .V;r/ of G, in which case r.g/ is semisimple (resp. unipotent) for
all representations r of G (X, 2.9).

Theorem 2.8, Chapter X, shows that

G.k/DG.k/s �G.k/u (cartesian product of sets) (123)

where G.k/s (resp. G.k/u) is the set of semisimple (resp. unipotent) elements in G.k/.
However, this will not in general be a decomposition of groups, because Jordan decompo-
sitions do not respect products, for example, .gh/u ¤ guhu in general. However, if G is
commutative, then

G�G
multiplication
��������!G

is a homomorphism of groups, and so it does respect the Jordan decompositions (X, 2.10).
Thus, in this case (123) realizes G.k/ as a product of subgroups. We can do better.

PROPOSITION 2.4 Every smooth commutative algebraic group G over a perfect field is a
direct product of two affine subgroups

G 'Gu�Gs

such that Gu.kal/DG.kal/u and Gs.kal/DG.kal/s . The decomposition is unique: in fact,
Gu is the largest unipotent affine subgroup of G and Gs is the largest affine subgroup of G
of multiplicative type.

PROOF. Because of the uniqueness, if the decomposition exists over kal, it will be stable
under the action of Gal.kal=k/, and so will arise from a decomposition over k. Hence
we may assume that k D kal. First note that the subgroups Dn and Un of Tn have trivial
intersection, because

Dn.R/\Un.R/D fIng (inside Tn.R/)

for all R (alternatively, apply XIV, 2.15).
On applying (2.2) to a faithful representation of G, we obtain an embedding G ,! Tn

for some n. Let Gs DG\Dn and Gu DG\Un. Because G is commutative,

Gs �Gu!G (124)
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is a homomorphism with kernel Gs \Gu. Because Dn\Un D 1 as algebraic groups, Gs \
Gu D 1, and so (124) is injective; because Gs.k/Gu.k/D G.k/ and G is smooth, (124) is
surjective (VII, 7.6); therefore it is an isomorphism.

That Gu is unipotent follows from XV, 2.11; that Gs is of multiplicative type follows
from XIV, 5.13. For any other unipotent affine subgroupU ofG, the mapU !G=Gu'Gs
is trivial (XV, 2.14), and so U � Gu; similarly any other affine subgroup of multiplicative
type is contained in Gs . 2

REMARK 2.5 Let G be a smooth algebraic group over an algebraically closed field k (not
necessarily commutative). In general, G.k/s will not be closed for the Zariski topology.
However, G.k/u is closed. To see this, embed G in GLn for some n. A matrix A is
unipotent if and only if its characteristic polynomial is .T � 1/n. But the coefficients of
the characteristic polynomial of A are polynomials in the entries of A, and so this is a
polynomial condition.

Decomposition of a commutative algebraic group

THEOREM 2.6 Let G be a commutative algebraic group over a field k.

(a) There exists a largest affine subgroup Gs of G of multiplicative type; this is a char-
acteristic subgroup (in the weak sense) of G, and the quotient G=Gs is unipotent.

(b) If k is perfect, there exists a largest unipotent affine subgroup Gu of G, and G D
Gs �Gu. This decomposition is unique.

PROOF. (a) Let Gs be the intersection of the affine subgroups H of G such that G=H is
unipotent. Then G=Gs !

Q
G=H is injective, and so G=Gs is unipotent (XV, 2.5). A

nontrivial homomorphism Gs ! Ga would have a kernel H such that G=H is unipotent
(XV, 2.5); but Gs 6�H , so this would contradict the definition of Gs . Therefore Gs is of
multiplicative type (XIV, 5.11). If H is a second affine subgroup of G of multiplicative
type, then the map H ! G=Gs is trivial (XV, 2.17), and so H � Gs . Therefore Gs is the
largest affine subgroup of G of multiplicative type. From this description, it is clear that
uGs DGs for every automorphism u of G.

(b) Assume k is perfect. Then it suffices to show that G D T �U with T of multi-
plicative type and U unipotent because, for any other unipotent affine subgroup U 0 of G,
the map U 0!G=U ' T is zero (XV, 2.14), and so U 0 � U ; similarly any other subgroup
T 0 of multiplicative type is contained in T ; therefore T (resp. U ) is the largest subgroup
of multiplicative type (resp. unipotent subgroup), and so the decomposition is unique if it
exists. When G is smooth, this is proved in (2.4). In the general case, one proves, by
considering the cases U DGa, ˛p, Z=pZ, that the exact sequence

1!Gs!G! U ! 1

(over kal) splits (see DG IV, �3, 1.1, p.502). 2

ASIDE 2.7 In fact, Gs is characteristic in the strong sense, but this requires a small additional
argument (DG IV, �2, 2.4, p. 486; �3, 1.1, p. 501); in general, Gu is not (ibid. IV �3, 1.2).
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REMARK 2.8 It is necessary that k be perfect in (b). Let k be a separably closed field of
characteristic p, and letG D .Gm/k0=k where k0 is an extension of k of degree p (necessar-
ily purely inseparable). Then G is a commutative smooth connected algebraic group over
k. The canonical map Gm! G realizes Gm as Gs , and the quotient G=Gm is unipotent.
Over kal, G decomposes into .Gm/kal � .G=Gm/kal , and so G is not reductive. However, G
contains no unipotent subgroup because G.k/D k0� has no p-torsion, and so Gu D 1. See
XVII, 6.1.

NOTES Should complete the proof of (2.6), and derive (2.4) as a corollary.

3 The derived group of an algebraic group

Let G be an algebraic group over a field k.

DEFINITION 3.1 The derived group DG (or G0 or Gder) of G is the intersection of the
normal algebraic subgroups N of G such that G=N is commutative.

PROPOSITION 3.2 The quotient G=DG is commutative (hence DG is the smallest normal
subgroup with this property).

PROOF. Because the affine subgroups of G satisfy the descending chain condition (VII,
3.3), DG D N1\ : : :\Nr for certain normal affine subgroups N1; : : : ;Nr such that G=Ni
is commutative. The canonical homomorphism

G!G=N1� � � ��G=Nr

has kernel N1\ : : :\Nr , and so realizes G=DG as an affine subgroup of a commutative
algebraic group. 2

We shall need another description of DG, which is analogous to the description of the
derived group as the subgroup generated by commutators. As for abstract groups, there
exist maps of functors

G2!G4! �� � !G2n!G:

Let In be the kernel of the homomorphism O.G/! O.G2n/ of k-algebras (not Hopf
algebras) defined by G2n!G: Then

I1 � I2 � �� � � In � �� �

and we let I D
T
In.

PROPOSITION 3.3 The coordinate ring of DG is O.G/=I .

PROOF. From the diagram of set-valued functors

G2n � G2n ��! G4n??y ??y ??y
G � G

mult
��! G
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we get a diagram of k-algebras

O.G/=In ˝ O.G/=In  O.G/=I2nx?? x?? x??
O.G/ ˝ O.G/ �

 � O.G/

(because O.G/=In is the image of O.G/ in O.G4n/ ). It follows that

�WO.G/!O.G/=I ˝O.G/=I

factors through O.G/!O.G/=I , and defines a Hopf algebra structure on O.G/=I , which
corresponds to the smallest algebraic subgroup G0 of G such that G0.R/ contains all the
commutators for all R. Clearly, this is also the smallest normal subgroup such that G=G0 is
commutative. 2

COROLLARY 3.4 For any field K � k, DGK D .DG/K :

PROOF. The definition of I commutes with extension of the base field. 2

COROLLARY 3.5 If G is connected (resp. smooth), then DG is connected (resp. smooth).

PROOF. The algebraic groupG is connected (resp. smooth) if and only ifGkal is connected
(resp. smooth), and so we may suppose that k is algebraically closed. Then G is connected
(resp. smooth) if and only if O.G/ has no nontrivial idempotents (resp. nilpotents). If
O.G/=I had a nontrivial idempotent (resp. nilpotent), then so would O.G/=In for some
n, but (by definition) the homomorphism of k-algebras O.G/=In ,! O.G2n/ is injective.
If G is connected (resp. smooth), then so also is G2n, and so O.G2n/ has no nontrivial
idempotents (resp. nilpotents). 2

COROLLARY 3.6 Let G be a smooth algebraic group. Then O.DG/DO.G/=In for some
n, and .DG/.k0/DD.G.k0// for every separably closed field k0 containing k.

PROOF. We may suppose that G is connected. As G is smooth and connected, so also is
G2n (III, 2.2; XIII, 3.9). Therefore, each ideal In is prime, and a descending sequence of
prime ideals in a noetherian ring terminates. This proves the first part of the statement (CA
16.5).

Let Vn be the image of G2n.k0/ in G.k0/. Its closure in G.k0/ is the zero-set of In.
Being the image of a regular map, Vn contains a dense open subset U of its closure (CA
12.14). Choose n as in the first part, so that the zero-set of In is DG.k0/. Then

U �U�1 � Vn �Vn � V2n �D.G.k0//D
[

m
Vm �DG.k0/:

It remains to show that U �U�1 DDG.k0/. Let g 2DG.k0/. Because U is open and dense
DG.k0/, so is gU�1, which must therefore meet U , forcing g to lie in U �U . 2

COROLLARY 3.7 The derived group DG of a connected algebraic group G is the unique
smooth affine subgroup such that .DG/.ksep/DD.G.ksep//.
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PROOF. The derived group has these properties by (3.5) and (3.6), and it is the only affine
subgroup with these properties because .DG/.ksep/ is dense in DG. 2

A
3.8 For an algebraic group G, the group G.k/ may have commutative quotients without
G having commutative quotients, i.e., we may have G.k/¤D.G.k// but G DDG. This is
the case for G D PGLn over nonperfect separably closed field of characteristic p dividing
n.

ASIDE 3.9 For each k-algebra R, the group .DG/.R/ consists of the elements of G.R/ that lie in
D.G.R0// for some faithfully flat R-algebra R0.

Commutator groups

For subgroups H1 and H2 of an abstract group G, we let .H1;H2/ denote the subgroup of
G generated by the commutators Œh1;h2�D h1h2h�11 h�12 with h1 2H1 and h2 2H2.

PROPOSITION 3.10 Let H1 and H2 be smooth connected affine subgroups of a smooth
connected algebraic group G. Then there is a (unique) smooth connected affine subgroup
.H1;H2/ of G such that .H1;H2/.kal/D .H1.k

al/;H2.k
al//:

PROOF. Consider the natural transformation

.h1;h2; : : : Ih
0
1;h
0
2; : : :/ 7! Œh1;h

0
1�Œh2;h

0
2� � � � WH

n
1 �H

n
2 !G:

Let In be the kernel of the homomorphism O.G/!O.Hn
1 �H

n
2 / of k-algebras defined by

the natural transformation, and let I D
T
In. As before, O.G/=I inherits a Hopf algebra

structure from O.G/, and the affine subgroup H of G with O.H/DO.G/=I is such that
H.kal/D .H1.k

al/;H2.k
al//. 2

ASIDE 3.11 For each k-algebra R, the group .H1;H2/.R/ consists of the elements of G.R/ that
lie in .H1.R0/;H2.R0// for some faithfully flat R-algebra R0.

4 Solvable algebraic groups

Write D2G for the second derived group D.DG/, D3G for the third derived group D.D2G/,
and so on.

DEFINITION 4.1 An algebraic group G is solvable if the derived series

G �DG �D2G � �� �

terminates with 1.

LEMMA 4.2 An algebraic group G is solvable if and only if it admits a subnormal series

G DG0 �G1 � �� � �Gn D 1 (125)

whose quotients Gi=GiC1are commutative.
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PROOF. If G is solvable, then the derived series is such a sequence. Conversely, given a
sequence as in (125), G1 �DG, so G2 �D2G, . . . , so Gn �DnG. Hence DnG D 1. 2

A sequence of algebraic subgroups (125) such that GiC1 is normal in Gi for each i and
Gi=GiC1 is commutative is called solvable series.

PROPOSITION 4.3 Subgroups, quotients, and extensions of solvable algebraic groups are
solvable.

PROOF. Obvious. 2

EXAMPLE 4.4 Let G be a finite group, and let .G/k be the algebraic group such that
.G/k.R/DG for all k-algebras R with no nontrivial idempotents. Then D.G/k D .DG/k ,
D2.G/k D .D2G/k , and so on. Therefore .G/k is solvable if and only if G is solvable.
In particular, the theory of solvable algebraic groups includes the theory of solvable finite
groups, which is already quite complicated. For example, all finite groups with no element
of order 2 are solvable (Feit-Thompson theorem).

EXAMPLE 4.5 The group Tn of upper triangular matrices is solvable. For example, the
subnormal series

T3 D

8<:
0@� � �0 � �

0 0 �

1A9=;�
8<:
0@1 � �0 1 �

0 0 1

1A9=;�
8<:
0@1 0 �

0 1 0

0 0 1

1A9=;� 1
has quotients Gm�Gm�Gm, Ga�Ga, and Ga.

More generally, the functor

R G0.R/
def
D f.aij / j ai i D 1 for all ig

is an algebraic subgroup of Tn because it is represented by O.Tn/=.T11�1; : : : ;Tnn�1/.
Similarly, there is an algebraic subgroup Gr of G0 of matrices .aij / such that aij D 0 for
0 < j � i � r . The functor

.aij / 7! .a1;rC2; : : : ;ai;rCiC1; : : :/

is a homomorphism from Gr onto Ga �Ga � � � � with kernel GrC1. Thus the sequence of
algebraic subgroups

Tn �G0 �G1 � �� � �Gn D f1g

exhibits Tn as a solvable group.
Alternatively, we can work abstractly. A flag in a vector space V is a set of subspaces

of V , distinct from f0g and V , ordered by inclusion. When we order the flags in V by
inclusion, the maximal flags are the families fV1; : : : ;Vn�1g with dimVi D i , n D dimV ,
and

V1 � �� � � Vn�1:

For example, if .ei /1�i�n is a basis for V , then we get a maximal flag by taking Vi D
he1; : : : ; ei i.

Let F D fV1; : : : ;Vn�1g be a maximal flag in V , and let T be the algebraic subgroup
of GLV such that T.R/ consists of the automorphisms preserving the flag, i.e., such that
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u.Vi ˝R/ � Vi ˝R for all k-algebras R. When we take F to be the maximal flag in kn

defined by the standard basis, G D Tn. Let G0 be the algebraic subgroup of G of u acting
as id on the quotients Vi=Vi�i ; more precisely,

G0 D Ker.G!
Y

GLVi=Vi�i /:

Then G0 is a normal algebraic subgroup of T with quotient isomorphic to Gnm. Now de-
fine Gr to be the algebraic subgroup of G0 of elements u acting as id on the quotients
Vi=Vi�r�1: Again, GrC1 is a normal algebraic subgroup of Gr with quotient isomorphic
to a product of copies of Ga.

EXAMPLE 4.6 The group of n� n monomial matrices is solvable if and only if n � 4
(because Sn is solvable if and only if n� 4; GT 4.33).

The Lie-Kolchin theorem

THEOREM 4.7 Let G be a subgroup of GLV . If G is connected, smooth, and solvable, and
k is algebraically closed, then it is trigonalizable.

PROOF. It suffices to show that there exists a basis for V such that G.k/� Tn.k/ (because
then .G\Tn/.k/DG.k/, and soG\TnDG, which implies thatG �T). Also, it suffices
to show that the elements of G.k/ have a common eigenvector, because then we can apply
induction on the dimension of V (cf. the proof of 2.1). We prove this by induction on the
length of the derived series G. If the derived series has length zero, then G is commutative,
and we proved the result in (2.2).

Let N DDG. Its derived series is shorter than that of G, and so we can assume that the
elements of N have a common eigenvector, i.e., for some character � of N , the space V�
(for N ) is nonzero. Therefore the sum W of the nonzero eigenspaces V� for N is nonzero.
According to (VIII, 16.2), the sum is direct, W D

L
V�, and so the set fV�g of nonzero

eigenspaces for N is finite.
Let x be a nonzero element of V� for some �, and let g 2G.k/. For n 2N.k/,

ngx D g.g�1ng/x D g ��.g�1ng/x D �.g�1ng/ �gx

The middle equality used that N is normal in G. Thus, gx lies in the eigenspace for the
character �g D .n 7! �.g�1ng// of N . This shows that G.k/ permutes the finite set fV�g.

Choose a � such that V�¤ 0, and letH �G.k/ be the stabilizer of V�. ThenH consists
of the g 2G.k/ such that �g D �, i.e., such that

�.n/D �.g�1ng/ for all n 2N.k/: (126)

Clearly H is a subgroup of finite index in G.k/, and it is closed for the Zariski topology on
G.k/ because (126) is a polynomial condition on g for each n. Therefore H D G.k/, oth-
erwise its cosets would disconnect G.k/. This shows that W D V�, and so G.k/ stabilizes
V�.

An element n 2 N.k/ acts on V� as the homothety x 7! �.n/x, �.n/ 2 k: But each
element n of N.k/ is a product of commutators Œx;y� of elements of G.k/ (see 3.6), and
so n acts on V� as an automorphism of determinant 1. But the determinant of x 7! �.n/x

is �.n/dimV� , and so the image of �WG ! Gm is finite. Because N is connected, this
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shows that N.k/ in fact acts trivially2 on V�. Hence G.k/ acts on V� through the quotient
G.k/=N.k/, which is commutative. In this case, we know there is a common eigenvalue
(2.1). 2

4.8 All the hypotheses in the theorem are needed (however, if k is algebraically closed
andG is solvable, then the theorem applies toGıred, which is a subgroup ofG with the same
dimension).

CONNECTED: The group G of monomial 2�2 matrices is solvable but not trigonalizable.
The only common eigenvectors of D2.k/�G.k/ are e1 D

�
1
0

�
and e2 D

�
0
1

�
, but the

monomial matrix
�
0 1
1 0

�
interchanges e1 and e2, and so there is no common eigenvec-

tor for the elements of G.k/.
SMOOTH: (Waterhouse 1979, 10, Exercise 3, p. 79.) Let k have characteristic 2, and let G

be the affine subgroup of SL2 of matrices
�
a b
c d

�
such that a2D 1D d2 and b2D 0D

c2. There is an exact sequence

0 ����! �2

a 7!
�
a 0
0 a

�
������! G

�
a b
c d

�
7!.ab;cd/

�����������! u2�u2 ����! 1:

Moreover, �2 �ZG, and soG is connected and solvable (even nilpotent), but no line
is fixed in the natural action of G on k2. Therefore G is not trigonalizable.

SOLVABLE: As Tn is solvable (4.5) and a subgroup of a solvable group is obviously solv-
able, this condition is necessary.

k ALGEBRAICALLY CLOSED: IfG.k/�Tn.k/, then the elements ofG.k/ have a common
eigenvector, namely, e1 D .10 : : : 0/t . Unless k is algebraically closed, an endomor-
phism need not have an eigenvector, and, for example,˚�

a b
�b a

� ˇ̌
a;b 2 R; a2Cb2 D 1

	
is an commutative algebraic group over R that is not trigonalizable over R.

5 Structure of solvable groups

THEOREM 5.1 Let G be a connected solvable smooth algebraic group over a perfect field
k. There exists a unique connected normal affine subgroup Gu of G such that

(a) Gu is unipotent, and
(b) G=Gu is of multiplicative type.

The formation of Gu commutes with change of the base field.

PROOF. When G is commutative

G DGu�Gs

whereGu is the largest unipotent affine subgroup ofG andGs is the largest affine subgroup
of G of multiplicative type (see 2.4). As Gu is a quotient of G, it is connected, and so this
proves the existence of Gu in this case.

2In more detail, the argument shows that the character � takes values in �m �Gm where mD dimV�. If
k has characteristic zero, or characteristic p and p 6 jm, then �m is étale, and so, because N is connected, �
is trivial. If pjm, the argument only shows that � takes values in �pr for pr the power of p dividing m. But
�pr .k/D 1, and so the action of N.k/ on V is trivial, as claimed.
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We next prove the existence of Gu when k is algebraically closed. Embed G into Tn
for some n, and construct

1 ����! Un ����! Tn ����! Dn ����! 1x?? x?? x??
1 ����! Gu ����! G ����! T ����! 1

where T is the image of G in Dn and Gu D Un \G. Certainly Gu is a normal affine
subgroup of G satisfying (a) and (b), and it remains to show that it is connected. As G=Gu
is commutative, DG �Gu, and there is an exact sequence

1!Gu=DG!G=DG! T ! 1:

Clearly, Gu=DG ' .G=DG/u, and now

.G=DG/u, DG connected H) Gu connected

(XIII, 3.11).
For the uniqueness, use that Gu is the largest unipotent affine subgroup of G: if U is a

unipotent affine subgroup of G, then the composite U !G!G=Gu is trivial (XV, 2.14),
and so U �Gu.

When k is only perfect, the uniqueness of .Gkal/u implies that it is stable under � D
Gal.kal=k/, and hence arises from a unique algebraic subgroup Gu of G (VII, 5.12), which
clearly has the required properties.

The formation ofGu commutes with extension of scalars, because, for any field k0 � k,
the affine subgroup .Gu/k0 of Gk0 has all the required properties (XIII, 3.8; XV, 2.8). 2

6 Split solvable groups

DEFINITION 6.1 A solvable algebraic group is split if it admits subnormal series whose
quotients are Ga or Gm.

Such a group is automatically smooth (VII, 10.1) and connected (XIII, 3.11). This
agrees with our definition of split unipotent group. Any quotient of a split solvable group is
again a split solvable group.

7 Tori in solvable groups

PROPOSITION 7.1 Let G be a smooth connected solvable group over an algebraically
closed field. If T and T 0 are maximal tori in G, then T 0 D gTg�1 for some g 2G.k/.

PROOF. Omitted for the present (cf. Springer 1998, 6.3.5). 2

PROPOSITION 7.2 The centralizer of any torus in a smooth connected solvable group G is
connected.

PROOF. Omitted for the present (cf. Springer 1998, 6.3.5). 2
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8 Exercises

EXERCISE XVI-1 Give a geometric proof thatG connected implies DG connected. [Show
that the image of connected set under a continuous map is connected (for the Zariski topol-
ogy, say), the closure of a connected set is connected, and a nested union of connected sets
is connected sets is connected; then apply the criterion (XIII, 3.2).]

EXERCISE XVI-2 Show that an algebraic group G is trigonalizable if and only if there
exists a filtration C0 � C1 � C2 � �� � of O.G/ by subspaces Ci such that C0 is spanned by
group-like elements,

S
r�0Cr D A, and �.Cr/ �

P
0�i�r Ci ˝Cr�i (Waterhouse 1979,

Chap. 9, Ex. 5, p. 72).





CHAPTER XVII
The Structure of Algebraic Groups

Throughout this chapter, k is a field.

1 Radicals and unipotent radicals

Let G be an algebraic group over k.

LEMMA 1.1 Let N and H be affine subgroups of G with N normal. If H and N are solv-
able (resp. unipotent, resp. connected, resp. smooth), then HN is solvable (resp. unipotent,
resp. connected, resp. smooth).

PROOF. We use the exact sequence

1 ����! N ����! HN ����! HN=N ����! 1:

(IX, 4.4)
x??'

H=H \N

BecauseH is solvable, so also is its quotientH=H\N ; henceHN=N is solvable, andHN
is solvable because it is an extension of solvable groups (XVI, 4.3). The same argument
applies with “solvable” replaced by “unipotent” (use XV, 2.5), or by “connected” (use XIII,
3.11), or by “smooth” (use VII, 10.1). 2

PROPOSITION 1.2 Let G be a smooth algebraic group over a field k.

(a) There exists a largest1 smooth connected normal solvable subgroup of G (called the
radical RG of G).

(b) There exists a largest smooth connected normal unipotent subgroup (called the unipo-
tent radical RuG of G).

PROOF. (a) Let R be a maximal smooth connected normal solvable subgroup ofG. IfH is
another such subgroup, then RH is also has these properties (1.1), and so RH DR; hence
H �R.

(b) Same as (a). 2

1Recall that “largest” means “unique maximal”.

255
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The formation of the radical and the unipotent radical each commute with separable
extensions of the base field: let K be a Galois extension of k with Galois group � ; by
uniqueness, RGK is stable under the action of � , and therefore arises from a subgroup
R0G of G (by V, 7.3); now .RG/K � RGK , and so RG � R0G; as RG is maximal,
RG DR0G, and so .RG/K D .R0G/K DRGK .

PROPOSITION 1.3 Let G be a smooth algebraic group over a perfect field k. For any
extension field K of k,

RGK D .RG/K and RuGK D .RuG/K .

Moreover, RuG D .RG/u (notations as in XVI, 5.1).

PROOF. See the above discussion. 2

DEFINITION 1.4 Let G be a smooth algebraic group over a field k. The geometric radical
of G is RGkal , and the geometric unipotent radical of G is RuGkal .

2 Definition of semisimple and reductive groups

DEFINITION 2.1 Let G be an algebraic group over a field k.

(a) G is semisimple if it is smooth and connected and its geometric radical is trivial.
(b) G is reductive if it is smooth and connected and its geometric unipotent radical is

trivial.
(c) G is pseudoreductive if it is smooth and connected and its unipotent radical is trivial.

Thus
semisimple H) reductive H) pseudoreductive.

For example, SLn, SOn, and Spn are semisimple, and GLn is reductive (but not semisim-
ple). When k is perfect, RuGkal D .RuG/kal , and so “reductive” and “pseudoreductive” are
equivalent.

PROPOSITION 2.2 Let G be a smooth connected algebraic group over a perfect field k.

(a) G is semisimple if and only if RG D 1.
(b) G is reductive if and only if RuG D 1 (i.e., G is pseudoreductive).

PROOF. Obvious from (1.3). 2

PROPOSITION 2.3 Let G be a smooth connected algebraic group over a field k:

(a) If G is semisimple, then every smooth connected normal commutative subgroup is
trivial; the converse is true if k is perfect.

(b) If G is reductive, then every smooth connected normal commutative subgroup is a
torus; the converse is true if k is perfect.
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PROOF. (a) Suppose that G is semisimple, and let H be a smooth connected normal com-
mutative subgroup of G. Then Hkal � RGkal D 1, and so H D 1. For the converse, we
use that RG and DG are stable for any automorphism of G. This is obvious from their
definitions: RG is the largest connected normal solvable algebraic subgroup and DG is the
smallest normal algebraic subgroup such that G=DG is commutative. Therefore the chain

G �RG �D.RG/�D2.RG/� �� � �Dr.RG/� 1;

is preserved by every automorphism of G, and, in particular, by the inner automorphisms
defined by elements of G.k/. This remains true over kal, and so the groups are normal in G
by (VII, 6.6). As Dr.RG/ is commutative, it is trivial.

(b) Let H be a smooth connected normal commutative subgroup of G; then Hkal �

RGkal , which has no unipotent subgroup. Therefore H is a torus. For the converse, we
consider the chain

G �RuG �D.RuG/�D2.RuG/� �� � �Dr.RuG/� 1:

Then Dr.RuG/ is a commutative unipotent subgroup, and so is trivial. 2

A smooth connected algebraic group G is pseudoreductive but not reductive if it con-
tains no nontrivial normal smooth unipotent affine subgroup but Gkal does contain such a
subgroup.

REMARK 2.4 If one of the conditions, smooth, connected, normal, commutative, is dropped,
then a semisimple group may have such a subgroup:

Group subgroup smooth? connected? normal? commutative?

SL2, char.k/¤ 2 Z=2ZD f˙I g yes no yes yes

SL2, char.k/D 2 �2 no yes yes yes

SL2 U2 D
˚�
1 �
0 1

�	
yes yes no yes

SL2�SL2 f1g�SL2 yes yes yes no

In the first two rows, the affine subgroup consists of the diagonal matrices of square 1.

PROPOSITION 2.5 Let G be a smooth connected algebraic group over a perfect field. The
quotient group G=RG is semisimple, and G=RuG is reductive.

PROOF. One sees easily that R.G=RG/D 1 and Ru.G=RuG/D 1. 2

EXAMPLE 2.6 Let G be the group of invertible matrices
�
A B
0 C

�
with A of size m�m and

C of size n�n. The unipotent radical ofG is the subgroup of matrices
�
I B
0 I

�
. The quotient

ofG byRuG is isomorphic to the reductive group of invertible matrices of the form
�
A 0
0 C

�
,

i.e., to GLm�GLn. The radical of this is Gm�Gm.

PROPOSITION 2.7 Let G be a connected algebraic group, and let U be a normal unipotent
subgroup of G. Then U acts trivially on every semisimple representation of G.
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PROOF. Let .V;r/ be a semisimple representation of G, and let W be the largest subspace
of V on which U acts trivially. As U is normal, W is stable under G (VIII, 17.2). Let W 0

be a G-complement to V . If W 0 ¤ 0, then W 0U ¤ 0, and U acts trivially on W CW 0U ,
contradicting the maximality of W . Hence W D V . 2

COROLLARY 2.8 Let G be a smooth connected algebraic group. If G has a semisimple
faithful representation, then it is reductive.

PROOF. A normal unipotent subgroup of G acts trivially on a faithful representation of G,
and therefore is trivial. 2

The proposition shows that, for a smooth connected algebraic group G,

RuG �
\

.V;r/ semisimple
Ker.r/:

In (5.4) below, we shall prove that, in characteristic zero, RuG is equal to the intersection
of the kernels of the semisimple representations of G; thus G is reductive if and only if
Rep.G/ is semisimple. This is false in nonzero characteristic.

ASIDE 2.9 In SGA 3, XIX, it is recalled that the unipotent radical of a smooth connected affine
group scheme over an algebraically closed field is the largest smooth connected normal unipotent
subgroup of G (ibid. 1.2). A smooth connected affine group scheme over an algebraically closed
field is defined to be reductive if its unipotent radical is trivial (ibid. 1.6). A group scheme G over
a scheme S is defined to be reductive if it is smooth and affine over S and each geometric fibre
of G over S is a connected reductive group (2.7). When S is the spectrum of field, this definition
coincides with our definition.

3 The canonical filtration on an algebraic group

THEOREM 3.1 Let G be an algebraic group over a field k.

(a) G contains a unique connected normal subgroup Gı such that G=Gı is an étale alge-
braic group.

(b) Assume that k is perfect; then G contains a largest smooth subgroup.
(c) Assume that k is perfect and that G is smooth and connected; then G contains a

unique smooth connected normal solvable subgroup N such that G=N is a semisim-
ple group.

(d) Assume that k is perfect and that G is smooth connected and solvable; then G con-
tains a unique connected unipotent subgroup N such that G=N is of multiplicative
type.

PROOF. (a) See XIII, 3.7.
(b) Because k is perfect, there exists a subgroup Gred of G with O.Gred/D O.G/=N

(see VI, 6.3). This is reduced, and hence smooth (VI, 8.3b). This is the largest smooth
subgroup of G because O.Gred/ is the largest reduced quotient of O.G/.

(c) The radical RG of G has these properties. Any other smooth connected normal
solvable subgroup N of G is contained in RG (by the definition of RG), and if N ¤ RG
then G=N is not semisimple.

(c) See XVI, 5.1. 2
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NOTES Perhaps (or perhaps not):

(a) Explain the connected components for a nonaffine algebraic group, at least in the smooth
case. Also discuss things over a ring k:

(b) Explain the Barsotti-Chevalley-Rosenlicht theorem.

(c) Explain anti-affine groups.

(d) Explain what is true when you drop “smooth” and “perfect”, and maybe even allow a base
ring.

4 The structure of semisimple groups

An algebraic group is simple (resp. almost-simple) if it is smooth, connected, noncom-
mutative, and every proper normal subgroup is trivial (resp. finite). For example, SLn is
almost-simple for n > 1, and PSLn D SLn =�n is simple. A simple algebraic group can not
be finite (because smooth connected finite algebraic groups are trivial, hence commutative).

Let N be a smooth subgroup of an algebraic group G. If N is minimal among the
nonfinite normal subgroups of G, then it is either commutative or almost-simple; if G is
semisimple, then it is almost-simple.

An algebraic group G is said to be the almost-direct product of its algebraic subgroups
G1; : : : ;Gr if the map

.g1; : : : ;gr/ 7! g1 � � �gr WG1� � � ��Gr !G

is a surjective homomorphism with finite kernel. In particular, this means that the Gi com-
mute and each Gi is normal in G.

PROPOSITION 4.1 Let G be a simple algebraic group over an algebraically closed field.
Then the group of inner automorphisms of G has finite index in the full group of automor-
phisms of G.

The usual proof of this shows that Aut.G/D Inn.G/ �D where D is group of automor-
phisms leaving stable a maximal torus and a Borel subgroup containing the torus. It uses
the conjugacy of Borel subgroups and the conjugacy of maximal tori in solvable groups,
and then shows that D=D\ Inn.G/ is finite by letting it act on the roots. In short, it is not
part of the basic theory. Unless, I find a more elementary proof, I’ll defer the proof to the
next chapter.

THEOREM 4.2 A semisimple algebraic groupG has only finitely many almost-simple nor-
mal subgroups G1; : : : ;Gr , and the map

.g1; : : : ;gr/ 7! g1 � � �gr WG1� � � ��Gr !G (127)

is surjective with finite kernel. Each smooth connected normal algebraic subgroup of G is
a product of those Gi that it contains, and is centralized by the remaining ones.

In particular, an algebraic group is semisimple if and only if it is an almost-direct prod-
uct of almost-simple algebraic groups. The algebraic groups Gi are called the almost-
simple factors of G.



260 XVII. The Structure of Algebraic Groups

PROOF. When k has characteristic zero, this is proved most easily using Lie algebras (see
LAG). In the general case, we let G1;G2; : : : ;Gr be distinct smooth subgroups of G, each
of which is minimal among the nonfinite normal subgroups of G. For i ¤ j , .Gi ;Gj / is a
smooth connected normal subgroup of G contained in each of Gi and Gj (see XVI, 3.10),
and so it is trivial. Thus, the map

uWG1� � � ��Gr !G

is a homomorphism of algebraic groups, and H def
DG1 � � �Gr is a smooth connected normal

subgroup of G. The kernel of u is finite, and so

dimG �
Xr

iD1
dimGi :

This shows that r is bounded, and we may assume that our family contains them all. It then
remains to show thatH DG. For this we may assume that kD kal. LetH 0DCG.H/. The
action of G on itself by inner automorphisms defines a homomorphism

G.k/! Aut.H/

whose image contains Inn.H/ and whose kernel is H 0.k/ (which equals H 0red.k/). As
Inn.H/ has finite index in Aut.H/ (see 4.1), this shows that .G=H �H 0red/.k/ is finite,
and so the quotient G=

�
H �H 0red

�
is finite. As G is connected and smooth, it is strongly

connected, and so G DH �H 0red; in fact, G DH �H 0ıred.
LetN be a smooth subgroup ofH 0ıred, and assume thatN is minimal among the nonfinite

normal subgroups ofH 0ıred. Then N is normal in G (because G DH �H 0 andH centralizes
H 0), and so it equals one of the Gi . This contradicts the definition of H , and we conclude
that H 0ıred D 1. 2

COROLLARY 4.3 All nontrivial smooth connected normal subgroups and quotients of a
semisimple algebraic group are semisimple.

PROOF. Any such group is an almost-product of almost-simple algebraic groups. 2

COROLLARY 4.4 If G is semisimple, then DG DG, i.e., a semisimple group has no com-
mutative quotients.

PROOF. This is obvious for almost-simple algebraic groups, and hence for any almost-
product of such algebraic groups. 2

Simply connected semisimple groups

(This section need to be rewritten.) An semisimple algebraic group G is simply connected
if every isogeny G0!G is an isomorphism.

LetG be a simply connected semisimple group over a field k, and let � DGal.ksep=k/.
Then Gksep decomposes into a product

Gksep DG1� � � ��Gr (128)
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of its almost-simple subgroups Gi . The set fG1; : : : ;Grg contains all the almost-simple
subgroups of G. When we apply � 2 � to (128), it becomes

Gksep D �Gksep D �G1� � � ���Gr

with f�G1; : : : ;�Grg a permutation of fG1; : : : ;Grg. LetH1; : : : ;Hs denote the products of
Gi in the different orbits of � . Then �Hi DHi , and so Hi is defined over k (V, 7.3), and

G DH1� � � ��Hs

is a decomposition of G into a product of its almost-simple subgroups.
Now suppose that G itself is almost-simple, so that � acts transitively on the Gi in

(128). Let
�D f� 2 � j �G1 DG1g;

and let K D .ksep/�.

PROPOSITION 4.5 We have G ' .G1/K=k (restriction of base field).

PROOF. We can rewrite (128) as

Gksep D

Y
�G1ksep

where � runs over a set of cosets for � in � . On comparing this with (V, 5.7), we see that
there is a canonical isomorphism

Gksep '
�
.G1/K=k

�
ksep .

In particular, it commutes with the action of � , and so is defined over k (see V, 7.3). 2

The group G1 over K is geometrically almost-simple, i.e., it is almost-simple and re-
mains almost-simple over Kal.

PROPOSITION 4.6 Every representation of a semisimple algebraic group over a field of
characteristic zero is semisimple.

PROOF. Omitted for the moment. 2

5 The structure of reductive groups

Recall that every algebraic group G of multiplicative type contains a largest torus Gıred.
For example, if G D D.M/; then Gıred D D.M=ftorsiong/. Its formation commutes with
extension of the base field:

.Gıred/k0 D .Gk0/
ı
red: (129)

THEOREM 5.1 If G is reductive, then

(a) the radical RG of G is a torus, and .RG/kal DRGkal ;
(b) the centre ZG of G is of multiplicative type, and .ZG/ıred DRGI

(c) the derived group DG of G is semisimple;
(d) ZG\DG is the (finite) centre of DG, and
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(e) G DRG �DG (hence also G D .ZG/ı �DG).

PROOF. According to (XVI, 2.6), ZGkal is a product of a group of multiplicative type with
a unipotent subgroup, and the decomposition is stable under all automorphisms. As Gkal

is reductive, the unipotent subgroup is trivial, and so ZGkal is of multiplicative type. As
ZGkal D .ZG/kal ; ZG is also of multiplicative type.

Because RGkal is a smooth connected solvable group, it is an extension of a group of
multiplicative type by a connected unipotent group (XVI, 5.1). As Gkal is reductive, the
latter is trivial, and so RGkal is of multiplicative type. As .RG/kal � RGkal , RG itself is
of multiplicative type, and as it is smooth and connected, it is a torus. Rigidity (XIV, 6.1)
implies that the action of G on RG by inner automorphisms is trivial, and so RG � ZG.
Hence RG � .ZG/ıred, but clearly .ZG/ıred �RG, and so

RG D .ZG/ıred. (130)

Now
.RG/kal

(130)
D .

�
ZG/ıred

�
kal D .ZGkal/ıred

(130)
D RGkal .

This completes the proof of (a) and (b).
We next show that the algebraic group ZG\DG is finite. For this, we may replace k

with its algebraic closure. Choose a faithful representation G! GLV , and regard G as an
algebraic subgroup of GLV . Because ZG is diagonalizable, V is a direct sum

V D V1˚�� �˚Vr

of eigenspaces for the action of ZG (see XIV, 4.7). When we choose bases for the Vi , then
.ZG/.k/ consists of the matrices 0B@A1 0 0

0
: : : 0

0 0 Ar

1CA
with each Ai of the form diag.ai ; : : : ;ai /, ai ¤ aj for i ¤ j , and so its centralizer in GLV
consists of the matrices of this shape but with the Ai arbitrary. Since .DG/.k/ consists of
commutators (XVI, 3.6), its elements have determinant 1. But SL.Vi / contains only finitely
many scalar matrices diag.ai ; : : : ;ai /, and so .ZG/.k/\ .DG/.k/ is finite. This equals
.ZG\DG/.k/, and so ZG\DG is finite (XII, 1.6).

Note that RG �DG is a normal subgroup of G. The quotient G=.RG �DG/ is semisim-
ple because .G=.RG �DG//kal is a quotient of Gkal=RGkal and we can apply (2.5 and 4.3).
On the other hand, G=.RG �DG/ is commutative because it is a quotient of G=DG. There-
fore it is trivial (4.4),

G DRG �DG:

Now the homomorphism
DG!G=RG

is surjective with finite kernel RG\DG �ZG\DG. As G=R.G/ is semisimple, so also
is DG.

Certainly ZG\DG �Z.DG/, but, because G DRG �DG and RG �ZG, Z.DG/�
ZG. This completes the proof of (c), (d), and (e). 2
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EXAMPLE 5.2 Let G D SLn. Let p be the characteristic exponent of k, and set nD n0 �pr

with gcd.n0;p/D 1. Then ZG ' �n, .ZG/ı ' �pr , .ZG/red ' �n0 , and .ZG/ıred D 1D

RG.

REMARK 5.3 From a reductive group G, we obtain a semisimple group G0 (its derived
group), a group Z of multiplicative type (its centre), and a homomorphism 'WZG0! Z.
Moreover, G can be recovered from .G0;Z;'/: the map

z 7! .'.z/�1;z/WZG0!Z�G0

is an isomorphism from ZG0 onto a central subgroup of Z �G0, and the quotient is G.
Clearly, every reductive group arises from such a triple .G0;Z;'/ (and G0 can even be
chosen to be simply connected).

Reductive groups in characteristic zero

THEOREM 5.4 The following conditions on a connected algebraic group G over a field of
characteristic zero are equivalent:

(a) G is reductive;
(b) every finite-dimensional representation of G is semisimple;
(c) some faithful finite-dimensional representation of G is semisimple.

PROOF. (a) H) (b): If G is reductive, then G D Z �G0 where Z is the centre of G (a
group of multiplicative type) and G0 is the derived group of G (a semisimple group) — see
(5.1). Let G! GLV be a representation of G. When regarded as a representation of Z, V
decomposes into a direct sum V D

L
i Vi of simple representations (XIV, 5.10). BecauseZ

andG0 commute, each subspace Vi is stable underG0. As aG0-module, Vi decomposes into
a direct sum Vi D

L
j Vij with each Vij simple as a G0-module (4.6). Now V D

L
i;j Vij

is a decomposition of V into a direct sum of simple G-modules.
(b) H) (c): Obvious, because every algebraic group has a faithful finite-dimensional

representation (VIII, 9.1).
(c)H) (a): This is true over any field (see 2.8). 2

COROLLARY 5.5 Over a field of characteristic zero, all finite-dimensional representations
of an algebraic group G are semisimple if and only if the identity component Gı of G is
reductive.

PROOF. Omitted for the moment. 2

6 Pseudoreductive groups

We briefly summarize Conrad, Gabber, and Prasad 2010, which completes earlier work of
Tits (Borel and Tits 1978; Tits 1992, 1993; Springer 1998, Chapters 13–15).

6.1 Let k be a separably closed field of characteristic p, and let G D .Gm/k0=k where k0

is an extension of k of degree p (necessarily purely inseparable). Then G is a commutative
smooth connected algebraic group over k. The canonical map Gm!G realizes Gm as the
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largest subgroup of G of multiplicative type, and the quotient G=Gm is unipotent. Over
kal, G decomposes into .Gm/kal � .G=Gm/kal (see XVI, 2.4), and so G is not reductive.
However, G contains no unipotent subgroup because G.k/D k0�, which has no p-torsion.
Therefore G is pseudo-reductive.

6.2 Let k0 be a finite field extension of k, and let G be a reductive group over k0. If k0 is
separable over k, then .G/k0=k is reductive, but otherwise it is only pseudoreductive.

6.3 Let C be a commutative connected algebraic group over k. If C is reductive, then C
is a torus, and the tori are classified by the continuous actions of Gal.ksep=k/ on free com-
mutative groups of finite rank. By contrast, “it seems to be an impossible task to describe
general commutative pseudo-reductive groups over imperfect fields” (Conrad et al. 2010,
p. xv).

6.4 Let k1; : : : ;kn be finite field extensions of k. For each i , let Gi be a reductive group
over ki , and let Ti be a maximal torus in Gi . Define algebraic groups

G - T � xT

by

G D
Y

i
.Gi /ki=k

T D
Y

i
.Ti /ki=k

xT D
Y

i
.Ti=Z.Gi //ki=k .

Let �WT ! C be a homomorphism of commutative pseudoreductive groups that factors
through the quotient map T ! xT :

T
�
�! C

 
�! xT .

Then  defines an action of C on G by conjugation, and so we can form the semi-direct
product

GoC:

The map
t 7! .t�1;�.t//WT !GoC

is an isomorphism from T onto a central subgroup of GoC , and the quotient .GoC/=T
is a pseudoreductive group over k. The main theorem (5.1.1) of Conrad et al. 2010 says
that, except possibly when k has characteristic 2 or 3, every pseudoreductive group over k
arises by such a construction (the theorem also treats the exceptional cases).

6.5 The maximal tori in reductive groups are their own centralizers. Any pseudoreductive
group with this property is reductive (except possibly in characteristic 2; Conrad et al. 2010,
11.1.1).

6.6 If G is reductive, then G D DG � .ZG/ı where DG is the derived group of G and
.ZG/ı is the largest central connected reductive subgroup of G. This statement becomes
false with “pseudoreductive” for “reductive” (Conrad et al. 2010, 11.2.1).
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6.7 For a reductive group G, the map

RG D .ZG/ı!G=DG

is an isogeny, and G is semisimple if and only if one (hence both) groups are trivial. For
a pseudoreductive group, the condition RG D 1 does not imply that G D DG. Conrad
et al. 2010, 11.2.2, instead adopt the definition: an algebraic groupG is pseudo-semisimple
if it is pseudoreductive and G D DG. The derived group of a pseudoreductive group is
pseudo-semisimple (ibid. 1.2.6, 11.2.3).

6.8 A reductive group G over any field k is unirational, and so G.k/ is dense in G if k is
infinite. This fails for pseudoreductive groups: over every nonperfect field k there exists a
commutative pseudoreductive group that it not unirational; when k is a nonperfect rational
function field k0.T /, such a group G can be chosen so that G.k/ is not dense in G (Conrad
et al. 2010, 11.3.1).

7 Properties of G versus those of Repk.G/: a summary

7.1 An affine group G is finite if and only if there exists a representation .V;r/ such that
every representation of G is a subquotient of V n for some n� 0 (XII, 1.4).

7.2 A affine group G is strongly connected if and only if, for every representation V on
which G acts nontrivially, the full subcategory of Rep.G/ of subquotients of V n, n � 0, is
not stable under ˝ (apply 7.1). In characteristic zero, a group is strongly connected if and
only if it is connected.

7.3 An affine groupG is unipotent if and only if every simple representation is trivial (this
is essentially the definition XV, 2.1).

7.4 An affine group G is trigonalizable if and only if every simple representation has
dimension 1 (this is the definition XVI, 1.1).

7.5 An affine group G is algebraic if and only if Rep.G/D hV i˝ for some representation
.V;r/ (VIII, 11.7).

7.6 Let G be a smooth connected algebraic group. If Rep.G/ is semisimple, then G is
reductive (2.8), and the converse is true in characteristic zero (II, 5.4).





CHAPTER XVIII
Beyond the basics

Not yet written. It will provide a 50 page summary of the rest of the theory of affine
algebraic groups, as developed in detail in LAG and RG.
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