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Preface

For one who attempts to unravel the story, the
problems are as perplexing as a mass of hemp
with a thousand loose ends.

Dream of the Red Chamber, Tsao Hsueh-Chin.

Algebraic groups are groups defined by polynomials. Those that we shall be concerned
with in this book can all be realized as groups of matrices. For example, the group of
matrices of determinant 1 is an algebraic group, as is the orthogonal group of a symmetric
bilinear form. The classification of algebraic groups and the elucidation of their structure
were among the great achievements of twentieth century mathematics (Borel, Chevalley,
Tits and others, building on the work of the pioneers on Lie groups). Algebraic groups are
used in most branches of mathematics, and since the famous work of Hermann Weyl in
the 1920s they have also played a vital role in quantum mechanics and other branches of
physics (usually as Lie groups).

The goal of the present work is to provide a modern exposition of the basic theory of
algebraic groups. It has been clear for fifty years, that in the definition of an algebraic
group, the coordinate ring should be allowed to have nilpotent elements,' but the standard
expositions? do not allow this.> What we call an affine algebraic group is usually called an
affine group scheme of finite type. In recent years, the tannakian duality* between algebraic
groups and their categories of representations has come to play a role in the theory of alge-
braic groups similar to that of Pontryagin duality in the theory of locally compact abelian
groups. We incorporate this point of view.

Let k be a field. Our approach to affine group schemes is eclectic.” There are three
main ways viewing affine group schemes over k:

¢ as representable functors from the category of k-algebras to groups;
¢ as commutative Hopf algebras over k;
© as groups in the category of schemes over k.

All three points of view are important: the first is the most elementary and natural; the sec-
ond leads to natural generalizations, for example, affine group schemes in a tensor category
and quantum groups; and the third allows one to apply algebraic geometry and to realize

ISee, for example, Cartier 1962. Without nilpotents the centre of SL p in characteristic p is visible only
through its Lie algebra. Moreover, the standard isomorphism theorems fail (IX, 4.6), and so the intuition
provided by group theory is unavailable. While it is true that in characteristic zero all algebraic groups are
reduced, this is a theorem that can only be stated when nilpotents are allowed.

2The only exceptions I know of are Demazure and Gabriel 1970, Waterhouse 1979, and SGA 3.

3Worse, much of the expository literature is based, in spirit if not in fact, on the algebraic geometry of
Weil’s Foundations (Weil 1962). Thus an algebraic group over k is defined to be an algebraic group over some
large algebraically closed field together with a k-structure. This leads to a terminology in conflict with that of
modern algebraic geometry, in which, for example, the kernel of a homomorphism of algebraic groups over a
field k need not be an algebraic group over k. Moreover, it prevents the theory of split reductive groups being
developed intrinsically over the base field.

When Borel first introduced algebraic geometry into the study of algebraic groups in the 1950s, Weil’s
foundations were they only ones available to him. When he wrote his influential book Borel 1969, he persisted
in using Weil’s approach to algebraic geometry, and subsequent authors have followed him.

4Strictly, this should be called the “duality of Tannaka, Krein, Milman, Hochschild, Grothendieck, Saave-
dra Rivano, Deligne, et al.,” but “tannakian duality” is shorter. In his Récoltes et Semailles, 1985-86, 18.3.2,
Grothendieck argues that “Galois-Poincaré” would be more appropriate than “Tannaka” .

SEclectic: Designating, of, or belonging to a class of ancient philosophers who selected from various
schools of thought such doctrines as pleased them. (OED).
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affine group schemes as examples of groups in the category of all schemes. We emphasize
the first point of view, but make use of all three. We also use a fourth: affine group schemes
are the Tannaka duals of certain tensor categories.

TERMINOLOGY

For readers familiar with the old terminology, as used for example in Borel 1969, 1991,
we point out some differences with our terminology, which is based on that of modern
(post-1960) algebraic geometry.

¢ We allow our rings to have nilpotents, i.e., we don’t require that our algebraic groups
be reduced.

¢ For an algebraic group G over k and an extension field K, G(K) denotes the points
of G with coordinates in K and Gk denotes the algebraic group over K obtained
from G by extension of the base field.

¢ We do not identify an algebraic group G with its k-points G(k), even when the
ground field k is algebraically closed. Thus, a subgroup of an algebraic group G is
an algebraic subgroup, not an abstract subgroup of G (k).

¢ An algebraic group G over a field k is intrinsically an object over k, and not an
object over some algebraically closed field together with a k-structure. Thus, for
example, a homomorphism of algebraic groups over k is truly a homomorphism over
k, and not over some large algebraically closed field. In particular, the kernel of such
a homomorphism is an algebraic subgroup over k. Also, we say that an algebraic
group over k is simple, split, etc. when it simple, split, etc. as an algebraic group
over k, not over some large algebraically closed field. When we want to say that G
is simple over k£ and remains simple over all fields containing k, we say that G is
geometrically (or absolutely) simple.

Beyond its greater simplicity and its consistency with the terminology of modern algebraic
geometry, there is another reason for replacing the old terminology with the new: for the
study of group schemes over bases other than fields there is no old terminology.

Notations; terminology

We use the standard (Bourbaki) notations: N = {0,1,2,...}; Z = ring of integers; Q =
field of rational numbers; R = field of real numbers; C = field of complex numbers; [, =
7/ pZ = field with p elements, p a prime number. For integers m and n, m|n means that
m divides n, i.e., n € mZ. Throughout the notes, p is a prime number, i.e., p = 2,3,5,....

Throughout k is the ground ring (always commutative, and often a field), and R always
denotes a commutative k-algebra. Unadorned tensor products are over k. Notations from
commutative algebra are as in my primer CA (see below). When £ is a field, k*P denotes a
separable algebraic closure of k and k' an algebraic closure of k. The dual Homy,_j;, (V. k)
of a k-module V is denoted by V'V. The transpose of a matrix M is denoted by M*.

We use the terms “morphism of functors” and “natural transformation of functors” inter-
changeably. For functors F and F’ from the same category, we say that “a homomorphism
F(X) — F'(X) is natural in X” when we have a family of such maps, indexed by the
objects X of the category, forming a natural transformation F — F’. For a natural trans-
formation a: F — F’, we often write ay for the morphism a(X): F(X) — F’(X). When
its action on morphisms is obvious, we usually describe a functor F by giving its action



X ~ F(X) on objects. Categories are required to be locally small (i.e., the morphisms

between any two objects form a set), except for the category AV of functors A — Set. A

diagram A — B = C is said to be exact if the first arrow is the equalizer of the pair of

arrows; in particular, this means that A — B is a monomorphism (cf. EGA I, Chap. 0, 1.4).
Here is a list of categories:

Category | Objects Page
Algy commutative k-algebras

AY functors A — Set

Comod(C) | finite-dimensional comodules over C p. 118
Grp (abstract) groups

Rep(G) finite-dimensional representations of G | p. 112
Rep(g) finite-dimensional representations of g

Set sets

Vecy finite-dimensional vector spaces over k

Throughout the work, we often abbreviate names. In the following table, we list the
shortened name and the page on which we begin using it.

Shortened name Full name Page
algebraic group affine algebraic group p. 28
algebraic monoid affine algebraic monoid p- 28
bialgebra commutative bi-algebra p. 37
Hopf algebra commutative Hopf algebra p. 37
group scheme affine group scheme p-75
algebraic group scheme | affine algebraic group scheme | p. 75
group variety affine group variety p-75
subgroup affine subgroup p. 109
representation linear representation p- 113

When working with schemes of finite type over a field, we typically ignore the nonclosed
points. In other words, we work with max specs rather than prime specs, and “point” means
“closed point”.

We use the following conventions:

X CY X isasubsetof Y (not necessarily proper);
def

X =Y X isdefinedtobe Y, or equals Y by definition;
X ~Y X isisomorphic to Y;
X ~Y X andY are canonically isomorphic (or there is a given or unique isomorphism);

Passages designed to prevent the reader from falling into a possibly fatal error are sig-
nalled by putting the symbol ;@ in the margin.

ASIDES may be skipped; NOTES should be skipped (they are mainly reminders to the
author). There is some repetition which will be removed in later versions.



Prerequisites

Although the theory of algebraic groups is part of algebraic geometry, most people who use
it are not algebraic geometers, and so I have made a major effort to keep the prerequisites
to a minimum. The reader needs to know the algebra usually taught in first-year graduate
courses (and in some advanced undergraduate courses), plus the basic commutative algebra
to be found in my primer CA. Familiarity with the terminology of algebraic geometry, either
varieties or schemes, will be helpful.

References

In addition to the references listed at the end (and in footnotes), I shall refer to the following
of my notes (available on my website):

CA A Primer of Commutative Algebra (v2.22, 2011).
GT Group Theory (v3.11, 2011).

FT Fields and Galois Theory (v4.22, 2011).

AG Algebraic Geometry (v5.22, 2012).

CFT Class Field Theory (v4.01, 2011).

The links to CA, GT, FT, and AG in the pdf file will work if the files are placed in the same
directory.
Also, I use the following abbreviations:

Bourbaki A Bourbaki, Algebre.

Bourbaki AC Bourbaki, Algebre Commutative (I-IV 1985; V-VI 1975; VIII-IX 1983; X
1998).

Bourbaki LIE Bourbaki, Groupes et Algebres de Lie (I 1972; II-1II 1972; IV-VI 1981).

DG Demazure and Gabriel, Groupes Algébriques, Tome I, 1970.

EGA Eléments de Géométrie Algébrique, Grothendieck (avec Dieudonné).

SGA 3 Schémas en Groupes (Séminaire de Géométrie Algébrique, 1962-64, Demazure,
Grothendieck, et al.); 2011 edition.

monnnnn http://mathoverflow.net/questions/nnnnn/

Sources

I list some of the works which I have found particularly useful in writing this book, and
which may be useful also to the reader: Demazure and Gabriel 1970; Serre 1993; Springer
1998; Waterhouse 1979.
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Introductory overview

Loosely speaking, an algebraic group over a field k is a group defined by polynomials.
Before giving the precise definition in Chapter I, we look at some examples of algebraic
groups.

Consider the group SL;, (k) of n x n matrices of determinant 1 with entries in a field k.
The determinant of a matrix (a;;) is a polynomial in the entries a;; of the matrix, namely,

det(aij) = ) ¢ sign(0)a1o(1)dno(n) (Sn = symmetric group)

and so SL;, (k) is the subset of My, (k) = k™ defined by the polynomial condition det(a;;) =
1. The entries of the product of two matrices are polynomials in the entries of the two
matrices, namely,

(aij)(bij) = (cij) withci; =ajbyj+-+ainbnj.

and Cramer’s rule realizes the entries of the inverse of a matrix with determinant 1 as poly-
nomials in the entries of the matrix,® and so SL,, (k) is an algebraic group (called the special
linear group). The group GL, (k) of n x n matrices with nonzero determinant is also an
algebraic group (called the general linear group) because its elements can be identified
with the n? 4 1-tuples ((@ij)1<i,j<n.d) such that det(a;;)-d = 1. More generally, for a
finite-dimensional vector space V, we define GL(V) (resp. SL(V)) to be the group of au-
tomorphisms of V' (resp. automorphisms with determinant 1). These are again algebraic
groups.

In order to simplify the statements, we assume for the remainder
of this section that k is a field of characteristic zero.

The building blocks

We describe the five types of algebraic groups from which all others can be constructed
by successive extensions: the finite algebraic groups, the abelian varieties, the semisimple
algebraic groups, the tori, and the unipotent groups.

FINITE ALGEBRAIC GROUPS

Every finite group can be realized as an algebraic group, and even as an algebraic subgroup
of some GL, (k). Let 0 be a permutation of {1,...,n} and let /(o) be the matrix obtained
from the identity matrix by using o to permute the rows. For any n x n matrix A, the matrix
I(0)A is obtained from A by using o to permute the rows. In particular, if o and o’ are two
permutations, then /(0)I(c’) = I(o0c’). Thus, the matrices /(o) realize S, as a subgroup

6 Alternatively, according to the Cayley-Hamilton theorem, an 1 x 1 matrix A satisfies a polynomial equa-
tion
X"+ 1 X" ' day X +an=0
with a; = (—1)" det(A), and so
A- A"V a A" 2 4 odap_g D) = (=1l det(4) - 1.
If det(A) # 0, then
DM AT @ AP+t ap1 1)/ det(A)

is an inverse for A.
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of GL,. Since every finite group is a subgroup of some S, this shows that every finite
group can be realized as a subgroup of GL,,, which is automatically defined by polynomial
conditions. Therefore the theory of algebraic groups includes the theory of finite groups.
The algebraic groups defined in this way by finite groups are called constant finite algebraic
groups.

More generally, to give an étale finite algebraic group over a field is the same as giving
a finite group together with a continuous action of Gal(k® / k) — all finite algebraic groups
in characteristic zero are of this type.

An algebraic group is connected if has no nontrivial finite quotient group.

ABELIAN VARIETIES

Abelian varieties are connected algebraic groups that are projective when considered as
algebraic varieties. An abelian variety of dimension 1 is an elliptic curve, which can be
described by a homogeneous equation

Y2Z =X3+bXZ*+cZ3.

Therefore, the theory of algebraic groups includes the theory of abelian varieties. We shall
ignore this aspect of the theory. In fact, we shall study only algebraic groups that are affine
when considered as algebraic varieties. These are exactly the algebraic groups that can be
realized as a closed subgroup of some GL,, and, for this reason, are often called linear
algebraic groups.

SEMISIMPLE ALGEBRAIC GROUPS

A connected affine algebraic group G is simple if it is not commutative and has no normal
algebraic subgroups other than 1 and G, and it is almost-simple’ if its centre Z is finite and
G/ Z is simple. For example, SL,, is almost-simple for n > 1 because its centre

() et

is finite, and the quotient PSL,, = SL, /Z is simple.

An isogeny of connected algebraic groups is a surjective homomorphism G — H with
finite kernel. Two connected algebraic groups H; and H, are isogenous if there exist
isogenies

7 =

Hy <~ G — H,.

This is an equivalence relations. When k is algebraically closed, every almost-simple alge-
braic group is isogenous to exactly one algebraic group on the following list:

Ap (n > 1), the special linear group SL;,+1;

B, (n > 2), the special orthogonal group SO, 41 consisting of all 2z + 1 x2n + 1 matrices
A such that AT - A = I and det(4) = 1;

Cy, (n > 3), the symplectic group Sp,,, consisting of all invertible 2n x 2n matrices A such
that A”-J-A=J where J = (_91);

Dy, (n > 4), the special orthogonal group SO5;;

7Other authors say “quasi-simple” or “simple”.

12



E¢, E7, Eg, F4,Gy the five exceptional groups.

We say that an algebraic group G is an almost-direct product of its algebraic subgroups
Gi,...,Gy if the map

(&15---.8) > 8181 G1 X xXGr > G

is an isogeny. In particular, this means that each G; is a normal subgroup of G and that the
G; commute with each other. For example,

G =SLyxSLo /N, N ={(I,1),(—~1,—1I)} )

is the almost-direct product of SL, and SL,, but it is not a direct product of two almost-
simple algebraic groups.

A connected algebraic group is semisimple if it is an almost-direct product of almost-
simple subgroups. For example, the group G in (1) is semisimple.

GROUPS OF MULTIPLICATIVE TYPE; ALGEBRAIC TORI

An affine algebraic subgroup T of GL(V) is said to be of multiplicative type if, over k%,
there exists a basis of V relative to which 7" is contained in the group D, of all diagonal
matrices

% 0 0 0
0 * 0 0
0 0 -+ % 0
0 0 -+ 0 =

In particular, the elements of an algebraic torus are semisimple endomorphisms of V. A
torus is a connected algebraic group of multiplicative type.
UNIPOTENT GROUPS

An affine algebraic subgroup G of GL(V) is unipotent if there exists a basis of V relative
to which G is contained in the group Uy, of all n x n matrices of the form

1 % - % x%
0 * %
Do : (2)
0 0 1 *
0 0 0 1

In particular, the elements of a unipotent group are unipotent endomorphisms of V.

Extensions

We now look at some algebraic groups that are nontrivial extensions of groups of the above
types.

13



SOLVABLE GROUPS

An affine algebraic group G is solvable if there exists a sequence of affine algebraic sub-
groups
G=GoD-DG;D---DGy=1

such that each G; 41 is normal in G; and G;/G;+1 is commutative. For example, the group
U, is solvable, and the group T,, of upper triangular n x n matrices is solvable because it
contains U, as a normal subgroup with quotient isomorphic to D,,. When k is algebraically
closed, a connected subgroup G of GL(V') is solvable if and only if there exists a basis of
V relative to which G is contained in T, (Lie-Kolchin theorem XVI, 4.7).

REDUCTIVE GROUPS

A connected affine algebraic group is reductive if it has no connected normal unipotent
subgroup other than 1. According to the table below, such groups are the extensions of
semisimple groups by tori. For example, GL, is reductive because it is an extension of the
simple group PGL,, by the torus G,

l1—-G,, —»GL, ->PGL, — 1.

Here G,;, = GL and the first map identifies it with the group of nonzero scalar matrices in
GL,.

NONCONNECTED GROUPS

We give some examples of naturally occurring nonconnected algebraic groups.

The orthogonal group. For an integer n > 1, let O, denote the group of n x n matrices A
such that A’ A = I. Then det(A4)? = det(A?)det(A) = 1, and so det(A4) € {#1}. The matrix
diag(—1,1,...) lies in O, and has determinant —1, and so O, is not connected: it contains

ef d . . . .
SO, & Ker (O - {#£1} ) as a normal algebraic subgroup of index 2 with quotient the

constant finite group {£1}.

The monomial matrices. Let M be the group of monomial matrices, i.e., those with
exactly one nonzero element in each row and each column. This group contains both the
algebraic subgroup D, and the algebraic subgroup S, of permutation matrices. Moreover,
for any diagonal matrix diag(ay,...,dn),

1(0)-diag(ar,...,an)-1(0)~" = diag(ag(1y - - - do(m))- 3)

As M =D, - Sy, this shows that I, is normal in M. Clearly DN S, = 1, and so M is the
semi-direct product
M =D, xg Sy

where 0: S, — Aut(D,) sends o to the automorphism in (3).

14



Summary

Recall that we are assuming that the base field k has characteristic zero. Every algebraic
group has a composition series whose quotients are respectively a finite group, an abelian
variety, a semisimple group, a torus, and a unipotent group. More precisely:

(a) An algebraic group G contains a unique normal connected algebraic subgroup G°
such that G/G° is a finite étale algebraic group (see XIII, 3.7).

(b) A connected algebraic group G contains a largest® normal connected affine algebraic
subgroup N; the quotient G/N is an abelian variety (Barsotti, Chevalley, Rosen-
licht).?

(c) A connected affine algebraic group G contains a largest normal connected solvable
algebraic subgroup N (see XVII, §1); the quotient G/ N semisimple.

(d) A connected solvable affine algebraic group G contains a largest connected normal
unipotent subgroup N ; the quotient G/ N is a torus (see XVII, 1.2; XVI, 5.1).

In the following tables, the group at left has a subnormal series whose quotients are the
groups at right.

General algebraic group Affine algebraic group  Reductive algebraic groups
general e
| finite étale affine o
connected @ | finite étale
|  abelian variety connected @ reductive @
connected affine @ |  semisimple |  semisimple
| semisimple solvable @ torus @
solvable o | torus | torus
| torus unipotent ® {1} e
unipotent @ |  unipotent
|  unipotent {1} e
{1} o

When £ is perfect of characteristic p 7% 0 and G is smooth, the same statements hold.
However, when k is not perfect the situation becomes more complicated. For example, the
algebraic subgroup N in (b) need not be smooth even when G is, and its formation need
not commute with extension of the base field. Similarly, a connected affine algebraic group
G without a normal connected unipotent subgroup may acquire such a subgroup after an
extension of the base field — in this case, the group G is said to be pseudo-reductive (not
reductive).

Exercises

EXERCISE 0.1 Let f(X,Y) € R[X,Y]. Show that if f(x,e*) =0 for all x € R, then f is
zero (as an element of R[X, Y]). Hence the subset {(x,e%) | x € R} of R? is not the zero-set
of a family of polynomials.

8<Jargest” = “unique maximal”
9The theorem is proved in Barsotti 1955b, Rosenlicht 1956, and Chevalley 1960. Rosenlicht (ibid.) credits
Chevalley with an earlier proof. A modern exposition can be found in Conrad 2002.
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EXERCISE 0.2 Let T be a commutative subgroup of GL(V') consisting of diagonalizable
endomorphisms. Show that there exists a basis for V' relative to which 7' C D,.

EXERCISE 0.3 Let ¢ be a positive definite bilinear form on a real vector space V', and let
SO(¢) be the algebraic subgroup of SL(V') of maps « such that ¢ (ax,ay) = ¢ (x, y) for all
x,y € V. Show that every element of SO(¢) is semisimple (but SO(¢) is not diagonalizable
because it is not commutative).

EXERCISE 0.4 Let k be a field of characteristic zero. Show that every element of GL,, (k)
of finite order is semisimple. (Hence the group of permutation matrices in GL,, (k) consists
of semisimple elements, but it is not diagonalizable because it is not commutative).

16



CHAPTER I

Definition of an affine group

What is an affine algebraic group? For example, what is SL,,? We know what SL, (R) is
for any commutative ring R, namely, it is the group of n x n matrices with entries in R and
determinant 1. Moreover, we know that a homomorphism R — R’ of rings defines a homo-
morphism of groups SL,(R) — SL,(R’). So what is SL,, without the “(R)”? Obviously, it
is a functor from the category of rings to groups. Essentially, this is our definition together
with the requirement that the functor be “defined by polynomials”.

Throughout this chapter, k is a commutative ring.

1 Motivating discussion

We first explain how a set of polynomials defines a functor. Let S be a subset of k[ X1,..., X»].
For any k-algebra R, the zero-set of S in R” is

S(R) = {(a1,....an) € R"| f(a1,...,an) =0forall f € S}.

A homomorphism of k-algebras R — R’ defines a map S(R) — S(R’), and these maps
make R ~» S(R) into a functor from the category of k-algebras to the category of sets.

This suggests that we define an affine algebraic group over k to be a functor Alg;, — Grp
that is isomorphic (as a functor to sets) to the functor defined by a finite set of polynomials
in a finite number of symbols. For example, R ~» SL, (R) satisfies this condition because
it is isomorphic to the functor defined by the polynomial det(X;;) — 1 where

det(Xij) = o sign(0) Xio(1)** Xno(m) € K[X11, X12,... Xnn] )

The condition that a functor is defined by polynomials is very restrictive.
Let S be a subset of k[X1,...,X,]. The ideal a generated by S consists of the finite
sums

Y gifi. g eklXi.... X fi€S.

Clearly S and a have the same zero-sets for every k-algebra R. Let A = k[X1,..., X,]/a.
A homomorphism 4 — R is determined by the images a; of the X;, and the n-tuples
(ai,...,an) that arise from homomorphisms are exactly those in the zero-set of a. Therefore
the functor R ~~ a(R) sending a k-algebra R to the zero-set of a in R" is canonically
isomorphic to the functor

R ~ Homy_y, (4, R).

17



18 I. Definition of an affine group

Since the k-algebras that can be expressed in the form k[X1,..., X,]/a are exactly the
finitely generated k-algebras, we conclude that the functors Alg; — Set defined by some set
of polynomials in a finite number of symbols are exactly the functors R ~» Homy_,,(4, R)
defined by some finitely generated k-algebra A; moreover, the functor can be defined by a
finite set of polynomials if and only if the k-algebra is finitely presented.'

This suggests that we define an affine algebraic group over k to be a functor Alg, — Grp
that is isomorphic (as a functor to sets) to the functor R ~» Homy_y,(A, R) defined by a
finitely presented k-algebra A. Before making this more precise, we review some category
theory.

2 Some category theory
Let A be a category. An object A of A defines a functor

h4(R) = Hom(A,R), R €ob(A),

A.
h“:A — Set by WA(f)(g)= fog., f:R— R, gehA(R)=Hom(A4,R).

A morphism «: A’ — A of objects defines a map f +— f oa:h4(R) — h4 (R) which is
natural in R (i.e., it is a natural transformation of functors 74 — hA/). Thus A ~ h4 is a
contravariant functor A — AV. Symbolically, 24 = Hom(A4, —).

The Yoneda lemma

Let F': A — Set be a functor from A to the category of sets, and let A be an object of A. The
Yoneda lemma says that to give a natural transformation 44 — F is the same as giving an
element of F(A). Certainly, a natural transformation 7' hA4 — F defines an element

ar = Ta(ida)
of F(A). Conversely, an element a of F(A) defines a map
W(R)— F(R), fr F(f)(a).

for each R in A. The map is natural in R, and so this family of maps is a natural transfor-
mation

Ta:h* > F, (T)r(f) = F(f)(a).

2.1 (YONEDA LEMMA) The maps T + at and a — T, are inverse bijections
Nat(h?, F) ~ F(A) (5)

This bijection is natural in both A and F (i.e., it is an isomorphism of bifunctors).

IRecall (CA 3.11) that a k-algebra 4 is finitely presented if it is isomorphic to the quotient of a polynomial
algebra k[X1q,..., Xn] by a finitely generated ideal. The Hilbert basis theorem (CA 3.6) says that, when & is
noetherian, every finitely generated k-algebra is finitely presented.
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PROOF. Let T be a natural transformation 44 — F. To say that 7 is a natural transforma-
tion means that a morphism f: A — R defines a commutative diagram

Ay 9 pag) idg | ¥
F(f)
F(A) —— F(R) ar = F(f)(ar), Tr(f).

The commutativity of the diagram implies that

F(f)ar) =Tr(f).
Therefore Ty, = T'. On the other hand, for a € F(A),

(Ta) 4(idy) = F(id4)(a) = a,

and so ar, = a. We have shown that the maps are inverse bijections, and the proof of the
naturality is left as an (easy) exercise for the reader. O

2.2 When we take F = h® in the lemma, we find that
Nat(h4,h®) ~ Hom(B, A).

In other words, the contravariant functor A ~» h4: A — AV is fully faithful. In particular, a
diagram in A commutes if and only if its image under the functor A ~ 14 commutes in A"

2.3 There is a contravariant version of the Yoneda lemma. For an object A of A, let /14 be
the contravariant functor
R ~~Hom(R, A): A — Set.

For every contravariant functor F': A — Set, the map
T+ Tyq(idg):Nat(hg, F) — F(A)

is a bijection, natural in both 4 and F (apply 2.1 to A™"). In particular, for any objects A, B
of A,
Nat(h 4,hpg) >~ Hom(A, B).

Representable functors

2.4 A functor F:A — Set is said to be representable if it is isomorphic to 14 for some
object A. A pair (4,a), a € F(A), is said to represent F if T,:hd — F is an isomorphism.
Note that, if F is representable, say F ~ h“4, then the choice of an isomorphism 7': h4 — F
determines an element ar € F(A) such that (A4,at) represents F, and so we sometimes
say that (A,T) represents F. The Yoneda lemma says that A ~» 4 is a contravariant
equivalence from A onto the category of representable functors A — Set.

2.5 Let F; and F5 be functors A — Set. In general, the natural transformations F; — F;
will form a proper class (not a set), but the Yoneda lemma shows that Hom(Fy, F>) is a set
when F] is representable.

Similarly, a contravariant functor is said to be representable if it is isomorphic to / 4 for
some object A.
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Groups and monoids in categories

Throughout this subsection, C is a category with finite products. In particular, there exists
a final object * (the empty product) and canonical isomorphisms

Sx*i>S<i*xS

for every object S of C. For example, the category Set has finite products — every one-
element set is a final object.

Recall that a monoid is a set G together with an associative binary operation m: G X
G — G and a neutral element e. A homomorphism (G,m,e) — (G’,m’,e’) of monoids is
amap ¢:G — G’ such that pom = mo (¢ X @) and p(e) = ¢€'.

DEFINITION 2.6 A monoid in C is a triple (G,m,e) consisting of an object G and mor-
phisms m:G X G — G and e: x* — G satisfying the two conditions:

(a) (associativity) the following diagram commutes

GxGxG G (6)

(b) (existence of an identity) both of the composites below are the identity map

exid

G:*XG—>G><G1>G

G~GxxX6xG62 0.

For example, a monoid in Set is just a monoid in the usual sense.

Recall that a group is a set G together with an associative binary operation m: G X
G — G for which there exist a neutral element and inverses. The neutral element and the
inverses are then unique — for example, the neutral element e is the only element such
that e2 = e. A homomorphism (G,m) — (G’,m’) of groups is a map ¢: G — G’ such that
pom =mo (¢ X @); it is automatic that ¢(e) = ¢’.

DEFINITION 2.7 A group in C is a pair (G,m) consisting of an object G of C and a mor-
phism m: G x G — G such that there exist morphisms e:* — G and inv: G — G for which
(G,m,e) is a monoid and the diagram

(inv,id) (id,inv)
G —> GxG «—— G

Lok
*—e>G<e—>x<

commutes. Here (inv,id) denotes the morphism whose projections on the factors are inv
and id.
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When they exist, the morphisms e and inv are unique.

2.8 A morphism m:G X G — G defines a natural transformation /,,:hgxg — hg. As
hgxg =~ hg x hg, we can regard hy, as a natural transformation hg X hg — hg. Because
the functor G ~~ hg is fully faithful (Yoneda lemma 2.3), we see that (G,m) is a group in
C if and only if (hg,hs,) is a group in the category of contravariant functors C — Set.

We make this more explicit.

2.9 For objects G and S in C, let G(S) = Hom(S,G) = hg(S). By definition, *(S) is
a one-element set. A pair (G,m) is a group in C if and only if, for every S in C, the map
m(S):G(S) xG(S) — G(S) is a group structure on G(S). Similarly a triple (M, m, e) is a
monoid in C if and only if, for every S in C, the map m(S): M(S) x M(S) — M(S) makes
M(S) into a monoid with neutral element the image of e(S): *(S) — M(S).

2.10 We shall be particularly interested in this when C is the category of representable
functors A — Set, where A is a category with finite coproducts. Then C has finite products,
and a pair (G,m) is a group in C if and only if, for every R in A, m(R): G(R) X G(R) —
G(R) is a group structure on G(R) (because R ~» hR: A%P — C is essentially surjective).
Similarly, a triple (M,m,e) is a monoid in C if and only if, for every R in A, the map
m(R): M(R) x M(R) — M(R) makes M(R) into a monoid with neutral element the image
of e(R):x(R) - M(R).

3 Affine groups

Recall (CA §8) that the tensor product of two k-algebras A; and A, is their direct sum
(coproduct) in the category Algy . Explicitly, if fi: A1 — R and f,: A — R are homomor-
phisms of k-algebras, then there is a unique homomorphism ( f1, f2): A1 ® A2 — R such
that (f1, f2)(a1 ®1) = f1(a1) and (f1, f2)(1 ®az) = f2(az) foralla; € Ay and a3 € As:

Al —— A1 Q Ay «—— A,
\(/Aflrfé)/ (8)
R.

pAI®A2 ~ pAiy pAz ©))

In other words,

It follows that the category of representable functors Alg, — Set has finite products.

DEFINITION 3.1 An affine group over k is a representable functor G: Alg; — Set together
with a natural transformation m: G x G — G such that, for all k-algebras R,

m(R):G(R)xG(R) = G(R)

is a group structure on G(R). If G is represented by a finitely presented k-algebra, then it
is called an affine algebraic group. A homomorphism G — H of affine groups over k is a
natural transformation preserving the group structures.
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Thus, a homomorphism G — H of affine groups is a family of homomorphisms
a(R):G(R) — H(R)

of groups, indexed by the k-algebras R, such that, for every homomorphism ¢: R — R’ of

k-algebras, the diagram

a(R)
G(R) =25 H(R)

|6@ |H®)
a(R)
G(R') —— H(R))
commutes.
To give an affine group over k amounts to giving a functor R ~» (G(R),m(R)) from
k-algebras to groups satisfying the following condition: there exists a k-algebra A and
“universal” element a € G(A) such that the maps

f = f(a):Hom(A, R) - G(R)

are bijections for all R.

Remarks

3.2 The Yoneda lemma shows that if G and H are affine groups over k, then Hom(G, H)
is a set (see 2.5). Therefore, the affine groups over k form a locally small category, with the
affine algebraic groups as a full subcategory.

3.3 The pair (A,a) representing G is uniquely determined up to a unique isomorphism by

G. Any such A is called the coordinate ring of A, and is denoted O(G), and a € G(A)
is called the universal element. We shall see below that there is a even canonical choice
for it. It is often convenient to regard the coordinate ring (A, a) of an affine group G as a
k-algebra A together with an isomorphism «: 14 — G of functors (cf. 2.4).

3.4 In the language of §2, a pair (G, m) is an affine group over k if and only if (G,m) is a
group in the category of representable functors Alg, — Set (see 2.10).

3.5 Let (G,m) be an affine group over k. Because m is a natural transformation, the map
G(R) — G(R’) defined by a homomorphism of k-algebras R — R’ is a group homomor-
phism. Therefore, (G,m) defines a functor Alg, — Grp. Conversely, a functor G:Alg;, —
Grp whose underlying set-valued functor is representable defines an affine group.

NOTES It is possible to write down a set of necessary and sufficient conditions in order for a functor
Affy — Grp to be representable, i.e., to be an affine group. The conditions can be verified for the
automorphism functors of some algebraic varieties. See Matsumura and Oort 1967. Sometime I'll
add a discussion of when the automorphism functor of an affine algebraic group over a field k is
itself an affine algebraic group. See Hochschild and Mostow 1969 in the case that k is algebraically
closed of characteristic zero.
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Examples

3.6 Let G, be the functor sending a k-algebra R to itself considered as an additive group,
i.e., G4(R) = (R,+). For each element r of a k-algebra R there is a unique k-algebra
homomorphism k[X] — R sending X to r. Therefore G, is represented by (k[X], X), and
so G4 is an affine algebraic group with coordinate ring O(G,) = k[X]. It is called the
additive group.

3.7 Let GL, be the functor sending a k-algebra R to the group of invertible n x n matrices
with entries in R, and let
_ kX1, X2, X, Y
(det(X;) Y — 1)

=k[x11,X12,.. ., Xnn, Y]

The matrix x = (x;;)1<i,j<n With entries in A is invertible because the equation det(x;;) -
y = 1 implies that det(x;;) € A*. For each invertible matrix C = (¢;;)1<;,j<n With entries
in a k-algebra R, there is a unique homomorphism A — R sending x to C. Therefore GL,,
is an affine algebraic group with coordinate ring O(GL,) = A.

The canonical coordinate ring of an affine group

Let A! be the functor sending a k-algebra R to its underlying set,
Al:Alg, — Set, (R,x,+,1)~ R.

Let G:Alg; — Grp be a group-valued functor, and let Gy = (forget) o G be the underlying
set-valued functor. Define A to be the set of natural transformations from G to A!,

A = Nat(Go,A).
Thus an element f of A is a family of maps of sets
frR:Go(R) — R, R ak-algebra,
such that, for every homomorphism of k-algebras ¢: R — R’, the diagram

Go(R) —2% R

|60 It

Go(R) 5 R
commutes. For f, /" € A and g € Go(R), define
(f £ )r(©) = fr(2) £ fr(g)
(ff"r(g) = fr(2) fr(2).

With these operations, A becomes a commutative ring, and even a k-algebra because each
¢ € k defines a natural transformation

cr:Go(R) —> R, cpr(g)=cforall g € Go(R).

Anelement g € Go(R) defines a homomorphism f +— fr(g): A — R of k-algebras. In this
way, we get a natural transformation o: Go — h4 of set-valued functors.
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PROPOSITION 3.8 The functor G is an affine group if and only if « is an isomorphism (in
which case it is an affine algebraic group if and only if A is finitely generated).

PROOF. If « is an isomorphism, then certainly Gy is representable (and so G is an affine
group). Conversely, suppose that Gy = 2. Then

ef oneda
A% Nat(Go, A) = Nat(hB, A1) =* A1(B) = B.

Thus A >~ B as abelian groups, and one checks directly that this is an isomorphism of k-
algebras and that a:h® — 14 is the natural transformation defined by the isomorphism.
Therefore « is an isomorphism. This proves the statement (and the parenthetical statement
is obvious). o

def

Thus, for an affine group (G,m), O(G) = Hom(G, A') is a (canonical) coordinate ring.

Affine groups and algebras with a comultiplication

A comultiplication on a k-algebra A is a k-algebra homomorphism A: 4 — A® A. Let A
be a comultiplication on the k-algebra A. For every k-algebra R, the map,

def

fi. o> fis 2= (fi, o) o AthA(R) x hA(R) — hA(R), (10)

is a binary operation on 44 (R), which is natural in R. If this is a group structure for every
R, then h4 together with this multiplication is an affine group.

Conversely, let G:Alg;, — Set be a representable functor, and let m: G x G — G be a
natural transformation. Let (A, a) represent G, so that T,,:h4 ~ G. Then

GxG:hAth(é)hA@’A,

and m corresponds (by the Yoneda lemma) to a comultiplication A:4 — A ® A. Clearly,
(G,m) is an affine group if and only if the map (10) defined by A is a group structure for
all R.

SUMMARY 3.9 It is essentially the same? to give

(a) an affine group (G,m) over k, or

(b) afunctor G:Alg; — Grp such that the underlying set-valued functor is representable,
or

(c) ak-algebra A together with a comultiplication A: 4 — A ® A such that the map (10)
defined by A is a group structure on A4 (R) for all R,

We discussed the equivalence of (a) and (b) in (3.5). To pass from (a) to (c), take A to
be Hom(A!, G) endowed with the comultiplication A: A — A ® A corresponding (by the
Yoneda lemma) to m. To pass from (c) to (a), take G to be h4 endowed with the multipli-
cation m: G x G — G defined by A.

2More precisely, there are canonical equivalences of categories.
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EXAMPLE 3.10 Let M be a group, written multiplicatively. The free k-module with basis
M becomes a k-algebra with the multiplication

(Zm amm) (Zn bnn) = Zm,n ambnmn,

called the group algebra of M over k. Assume that M is commutative, so that k[M] is a
commutative k-algebra, and let A:k[M] — k[M]® k[M] be the comultiplication with

Am)=m®m (meM).

Then h¥IMI(R) ~ Homgoup(M, R*), and A defines on R*IMI(R) its natural group struc-
ture:

(S1- f2)(m) = fr(m)- f2(m).
Therefore (A, A) defines an affine group.

Remarks

3.11 Let A:A — A® A be a homomorphism of k-algebras. In (I, 5.1) we shall see that
(A, A) satisfies (3.9¢) if and only if there exist homomorphisms €:4 — k and S: 4 — A4
such that certain diagrams commute. In particular, this will give a finite definition of “affine
group” that does not require quantifying over all k-algebras R.

3.12 Let G be an affine algebraic group, and A be the comultiplication on its group ring
O(G). Then

for some m and some polynomials f1,..., f,. The functor K@) Alg, — Grp is that de-
fined by the set of polynomials { f1,..., f»}. The tensor product

KIX1, .. Xa] @ Kk[X1,.... Xn]

is a polynomial ring in the 2n symbols X1 ®1,..., X, ®1,1® X1,...,1® X;,. Therefore A,
and hence the multiplication on the groups ho@) (R), is also be described by polynomials,
namely, by any set of representatives for the polynomials A(X7),..., A(X).

3.13 Let G be an affine group, and let A be its coordinate ring. When we regard A as
Hom(G,A'), an element f € A is a family of maps fg:G(R) — R (of sets) natural in R.
On the other hand, when we regard A as a k-algebra representing G, an element g € G(R)
is a homomorphism of k-algebras g: A — R. The two points of views are related by the
equation

fR(@) =¢(f). feA geGR). (1D

Moreover,
(Af)r(g1.82) = frR(g1-82). (12)

According to the Yoneda lemma, a homomorphism u: G — H defines a homomorphism of
k-algebras u": O(H) — O(G). Explicitly,

W' f)r(g) = frR(urg), f€O(H), geG(R). (13)
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4 Affine monoids

An affine monoid over k is a representable functor M:Alg; — Set together with natural
transformations m: M x M — M and e:* — M such that, for all k-algebras R, the triple
(M(R),m(R),e(R)) is a monoid. Equivalently, it is a functor M from Alg; to the category
of monoids such that the underlying set-valued functor is representable. If M is represented
by a finitely presented k-algebra, then it is called an affine algebraic monoid.

To give an affine monoid amounts to giving a k-algebra A together with homomor-
phisms A: 4 — A® A and €: A — k such that, for each k-algebra R, A makes 14 (R) into

a monoid with identity element A S k—R (cf. 3.9).
EXAMPLE 4.1 For a k-module V, let Endy be the functor
R ~ (EndRr.in(R® V), 0).

When V is finitely generated and projective, Endy is represented as a functor to sets by
Sym(V ®j V'), and so it is an algebraic monoid (apply IV, 1.6, below). When V is free,
the choice of a basis ey, ..., e, for V, defines an isomorphism of Endy with the functor

R ~~» (M, (R),x) (multiplicative monoid of n X n matrices),

which is represented by the polynomial ring k[X11, X12,..., Xnn].

For a monoid M, the set M of elements in M with inverses is a group (the largest
subgroup of M).
PROPOSITION 4.2 For any affine monoid M over k, the functor R ~ M(R)* is an affine
group M over k; when M is algebraic, so also is M ™.
PROOF. For an abstract monoid M, let M1 = {(a,b) € M x M | ab = 1}; then

M* ~{((a,b),(d b))y e My x My |a=1"}.

This shows that M > can be constructed from M by using only fibred products:

M, — {1} M* —— M
l l l l(a,b)l—>b
(a,b)—>ab (a,b)—~a
MxM —— M M —— M.
It follows that, for an affine monoid M, the functor R ~ M(R)> can be obtained from M
by forming fibre products, which shows that it is representable (see V, §2 below). O

EXAMPLE 4.3 Let B be an associative k-algebra B with identity (not necessarily commu-
tative), and consider the functor sending a k-algebra R to R ® B regarded as a multiplicative
monoid. When B is free of finite rank » as a k-module, the choice of a basis for B iden-
tifies it (as a functor to sets) with R — R", which is represented by k[X1,..., X,], and so
the functor is an affine algebraic monoid. More generally, the functor is an affine algebraic
monoid whenever B is finitely generated and projective as a k-module (see IV, 3.2, below).
In this case, we let G,lfl denote the corresponding affine algebraic group

R+ (R® B)™.
If B = M,(k), then GB = GL,.
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S Affine supergroups

The subject of supersymmetry was introduced by the physicists in the 1970s as part of their
search for a unified theory of physics consistent with quantum theory and general relativity.
Roughly speaking, it is the study of Z/2Z-graded versions of some of the usual objects
of mathematics. We explain briefly how it leads to the notion of an affine “supergroup”.
Throughout this subsection, k is a field of characteristic zero.

A superalgebra over a field k is a Z/27Z-graded associative algebra R over k. In other
words, R is an associative k-algebra equipped with a decomposition R = Ry @ R; (as a
k-vector space) such that k C Rop and R;R; C R;; (i,j € Z/27). An element a of R is
said to be even, and have parity p(a) = 0, if it lies in Ry; it is odd, and has parity p(a) =1,
if it lies in Ry. The homogeneous elements of R are those that are either even or odd. A
homomorphism of super k-algebras is a homomorphism of k -algebras preserving the parity
of homogeneous elements.

A super k-algebra R is said to be commutative if ba = (—1)?@P®)gp forall a,b € R.
Thus even elements commute with all elements, but for odd elements a, b,

ab+ba =0.

The commutative super k-algebra k[X1,..., X, Y1,..., Y] in the even symbols X; and the
odd symbols Y; is defined to be the quotient of the k-algebra of noncommuting polynomials
in X1,...,Y, by the relations

XiXi=XiXi, XiY;=Y;X;, Y;Yyy=-Y;yY;, 1<i,i’<m, 1§j,j'§n.

When n = 0, this is the polynomial ring in the commuting symbols X1, ..., X3, and when
m = 0, it is the exterior algebra of the vector space with basis {¥7,...,Y,} provided 2 # 0
ink.

A functor from the category of commutative super k-algebras to groups is an affine
supergroup if it is representable (as a functor to sets) by a commutative super k-algebra.
For example, for m,n € N, let GL,;,|,, be the functor

R~ {(&B)|AeGLn(Ry). BEMpnn(R1), C€EMym(R1), DeGLy(Ro)}.
It is known that such a matrix (é g) is invertible (Varadarajan 2004, 3.6.1), and so GL,,,, is
a functor to groups. It is an affine supergroup because it is represented by the commutative
super k-algebra obtained from the commutative super k-algebra

k[Xll’X12’-~-sXm+n,m+n,Y,Z]
in the even symbols
Y, Z, Xy (=<i,j<m, m+1=<i,j<m+n)

and the odd symbols
X;; (remaining pairs (i, j))
by setting
Y - (det(Xij)1<i,j<m =1,
Z -det(X;j)m+1<i.j<m+n = 1.
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6 Terminology

Fromnow on “algebraic group” will mean “affine algebraic group” and “algebraic monoid”
will mean “affine algebraic monoid”.

7 Exercises

EXERCISE I-1 Show that there is no algebraic group G over k such that G(R) has two
elements for every k-algebra R.



CHAPTER I I

Affine Groups and Hopf Algebras

Un principe général: tout calcul relatif aux
cogebres est trivial et incompréhensible.
Serre 1993, p. 39.

In this chapter, we study the extra structure that the coordinate ring of an affine group
G acquires from the group structure on G. Throughout k is a commutative ring.

1 Algebras

Recall that an associative algebra over k with identity is a k-module A together with a pair
of k-linear maps'
mAQA— A e:k— A

satisfying the two conditions:

(a) (associativity) the following diagram commutes

A®A

i(M \
ARA®A /A (14)

AR A
(b) (existence of an identity) both of the composites below are the identity map
A~koAS 494 4

A~ Ak 2% A4 4.

On reversing the directions of the arrows, we obtain the notion of a coalgebra.

"Warning: I sometimes also use “e” for the neutral element of G(R) (a homomorphism O(G) — R).

29
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2 Coalgebras

DEFINITION 2.1 A co-associative coalgebra over k with co-identity (henceforth, a coal-
gebra over k) is a k-module C together with a pair of k-linear maps

AC—->CQC eC—>k

satisfying the two conditions:

(a) (co-associativity) the following diagram commutes

cCeC

\%
C (15)

cC®cC

>
RN

(b) (co-identity) both of the composites below are the identity map

A .
cScec ok~
A .
cSceciec~c.
A homomorphism of coalgebras over k is a k-linear map f:C — D such that the following
diagrams commute

o
>
9}
—
[N
S

= — 0O

o0 (16)
k

i.e., such that
(f®f)oAc =Apo f
epo f =ec.

2.2 Let (C, A,¢€) be a coalgebra over k. A k-submodule D of C is called a sub-coalgebra
if A(D) C D®D. Then (D, A|D,€|D) is a coalgebra (obvious), and the inclusion D < C
is a coalgebra homomorphism.

When A and B are k-algebras, A ® B becomes a k-algebra with the multiplication
(@®b)-(a'®b") =aa’ @bb’.
A similar statement is true for coalgebras.

2.3 Let (C,Ac,ec) and (D,Ap,€ep) be coalgebras over k. Then C ® D becomes a
coalgebra when Ac g p is defined to be the composite

®t®D

A C
@ coceDeD X’ ceDC®D

A
C®D ——
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(¢ is the transposition map ¢ ® d — d ® c¢) and ec g p is defined to be the composite

ec®¢€p

CROD ——k®k ~k.

In particular, (C ® C, Acgc,€cec) is a coalgebra over k.

3 The duality of algebras and coalgebras

Recall that V'V denotes the dual of a k-module V. If V and W are k-modules, then the
formula

(fegvew) = f)gw), feVV geW veV,weW,

defines a linear map
VYWY - (Vew)Y (17)

which is always injective, and is an isomorphism when at least one of V' or W is finitely
generated and projective (CA 10.8).

Let (C, A, €) be a co-associative coalgebra over k with a co-identity. Then C becomes
an associative algebra over k with the multiplication

cvecY Doy L v
and the identity
k~kv v
Let (A,m,e) be an associative algebra over k with an identity such that A is finitely
generated and projective as a k-module. Then AY becomes a co-associative coalgebra over
k with the co-multiplication
A (4@ DAY @ a
and the co-identity
k~kY s A,
These statements are proved by applying the functor ¥ to one of the diagrams (14) or
(15).
EXAMPLE 3.1 Let X be a set, and let C be the free k-module with basis X. The k-linear
maps
AC—>CQRC, Ax)=x®x, x€eX,
e:C =k, e(x)=1, xeX,
endow C with the structure of coalgebra over k, because, for an element x of the basis X,
MdRA)(AX) =xQ(x®x)=(xQ®Xx)®x = (ARid)(A(x)),
(e®id)(A(x)) =1Qx,
(1d®e)(A(x)) =x® 1.

The dual algebra CV can be identified with the k-module of maps X — k endowed with
the k-algebra structure

m(f.g)(x) = f(x)g(x)

e(c)(x) =cx.
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4 Bi-algebras

DEFINITION 4.1 A bi-algebra over k is a k-module with compatible structures of an asso-
ciative algebra with identity and of a co-associative coalgebra with co-identity. In detail, a
bi-algebra over k is a quintuple (A4,m, e, A,€) where

(a) (A,m,e) is an associative algebra over k with identity e;

(b) (A4, A,e€) is a co-associative coalgebra over k with co-identity «;
(c) A:A— A® A is a homomorphism of algebras;

(d) €: A — k is a homomorphism of algebras.

A homomorphism of bi-algebras (A,m,...) — (A’,m’,...) is a k-linear map A — A’ that

is both a homomorphism of k-algebras and a homomorphism of k-coalgebras.

The next proposition shows that the notion of a bi-algebra is self dual.

PROPOSITION 4.2 For a quintuple (A,m,e, A,€) satistying (a) and (b) of (4.1), the fol-
lowing conditions are equivalent:

(a) A and € are algebra homomorphisms;
(b) m and e are coalgebra homomorphisms.

PROOF Consider the diagrams:

A® A A A® A
lA@A Tm@m
ARARARA — 284 AgA®A®A
ARA— 2 4 A4 —" 4 A

A

k®k =k k@k ——k kN

The first and second diagrams commute if and only if A is an algebra homomorphism, and
the third and fourth diagrams commute if and only if € is an algebra homomorphism. On the
other hand, the first and third diagrams commute if and only if m is a coalgebra homomor-
phism, and the second and fourth commute if and only if e is a coalgebra homomorphism.
Therefore, each of (a) and (b) is equivalent to the commutativity of all four diagrams. g

DEFINITION 4.3 A bi-algebra is said to be commutative, finitely generated, finitely pre-
sented, etc., if its underlying algebra is this property.

Note that these notions are not self dual.

DEFINITION 4.4 An inversion (or antipodal map?) for a bi-algebra A is a k-linear map
S:A — A such that

2Usually shortened to “antipode”.
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(a) the diagram

o(S®id o(id®S
Am(®)A®Am(®)A

U

k<——E——A——E——>k

commutes, i.e.,
mo(S®id)oA=eoe=mo(id®S)o A. (19)
and
(b) S(ab) =S(b)S(a) foralla,b e Aand S(1) = 1.
When A is commutative, (b) just means that S is a k-algebra homomorphism, and so an
inversion of A is a k-algebra homomorphism such that (19) holds.

ASIDE 4.5 In fact, condition (a) implies condition (b) (Dascalescu et al. 2001, 4.2.6). Since condi-
tion (a) is obviously self-dual, the notion of a Hopf algebra is self-dual. In particular, if (4,m,e, A,€)
is a bi-algebra with inversion S and A is finitely generated and projective as a k-module, then
(AY,AY,e¥,mY,eV) is a bi-algebra with inversion SV.

EXAMPLE 4.6 Let X be a monoid, and let k[X] be the free k-module with basis X. The
k-linear maps

m:k[X]|Qk[X] = k[X], m(x®x)=xx', x,x e€X,
ek — k[X], e(c)=cly, cEk,

endow k[X] with the structure of a k-algebra (the monoid algebra of X over k). When
combined with the coalgebra structure in (3.1), this makes k[X] into a bi-algebra over
k (i.e., A and € are k-algebra homomorphisms). If X is commutative, then k[X] is a
commutative bi-algebra. If X is a group, then the map

S:A— A, (SHx)=fx"Y, xeX,
18 an inversion, because, for x in the basis X,

mMmo(S®id))(x®x)=1=mo(1d®S))(x ® x).

PROPOSITION 4.7 Let A and A’ be bi-algebras over k. If A and A’ admit inversions S and
S’, then, for any homomorphism f: A — A’,

f oS =50 f
In particular, a bi-algebra admits at most one inversion.
PROOF. For commutative bi-algebras, which is the only case of interest to us, we shall

prove this statement in (5.2) below. The general case is proved in Déscilescu et al. 2001,
4.25. o

DEFINITION 4.8 A bi-algebra over k that admits an inversion is called a Hopf algebra over
k. A homomorphism of Hopf algebras is a homomorphism of bi-algebras.
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For example, the group algebra k[X] of a group X is a Hopf algebra (see 4.6).

A sub-bi-algebra B of a Hopf algebra A is a Hopf algebra if and only if it is stable under
the (unique) inversion of A4, in which case it is called a Hopf subalgebra.

The reader encountering bi-algebras for the first time should do Exercise 1I-1 below
before continuing.

EXAMPLE 4.9 It is possible to define coalgebras, bialgebras, and Hopf algebras in any
category with a good notion of a tensor product (see later). For example, let SVecy be the
category of Z/27Z-graded vector spaces over k (category of super vector spaces). Given two
super vector spaces V, W, let V®W denote V ® W with its natural Z/27Z-gradation. Let
V be a purely odd super vector space (i.e., V' = V7). Then the exterior algebra /\ V on V
equipped with its natural Z/27-gradation is a superalgebra, i.e., an algebra in SVecy. The

map
A:V—>(/\V)®(/\V>, 1 1R1Q1QW,

extends to an algebra homomorphism

a\v=(AV)&(AV).
With the obvious co-identity €, (/\ V,A,¢€) is a Hopf algebra in SVecy (see mo84161,
MTS).

ASIDE 4.10 To give a k-bi-algebra that is finitely generated and projective as a k-module is the
same as giving a pair of k-algebras A and B, both finitely generated and projective as k-modules,
together with a nondegenerate k-bilinear pairing

(,):BxA—k

satisfying compatibility conditions that we leave to the reader to explicate.

S5 Affine groups and Hopf algebras

Recall that a commutative bi-algebra over k is a commutative k-algebra A equipped with a
coalgebra structure (A, €) such that A and € are k-algebra homomorphisms.

THEOREM 5.1 (a) Let A be a k-algebra, andlet A:A — AQ® A and €: A — k be homomor-
phisms. Let M = hA, and letm: M x M — M and e: — M be the natural transformations
defined by A and € (here * is the trivial affine monoid represented by k ). The triple (M, m, e)
is an affine monoid if and only if (A, A, €) is a bi-algebra over k.

(b) Let A be a k-algebra, and let A:A — A ® A be a homomorphism. Let G = h4, and
let m: G x G — G be the natural transformation defined by A. The pair (G, m) is an affine
group if and only if there exists a homomorphism €: A — k such that (A, A,€) is a Hopf
algebra.

PROOF. (a) The natural transformations m and e define a monoid structure on M (R) for
each k-algebra R if and only if the following diagrams commute:

idps xXm e xidps idys xe

MxMxM —— > MxM xxM—— > MxM—— Mxx%
(20)

Jm X idag Jm ~ n‘1 ~
. i
M

MxM —— M
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The functor A ~ h4 sends tensor products to products ((9), p. 9), and is fully faithful (I,
19). Therefore these diagrams commute if and only if the diagrams (15) commute.

(b) An affine monoid M is an affine group if and only if there exists a natural transfor-
mation inv: M — M such that

(inv,id) (id,inv)
M — MxM «~— M

! [

e e
¥ —— M «— %

21)

commutes. Here (id, inv) denotes the morphism whose composites with the projection maps
are id and inv. Such a natural transformation corresponds to a k-algebra homomorphism
S: A — A such that (18) commutes, i.e., to an inversion for A. O

Thus, as promised in (I, 3.11), we have shown that a pair (A4, A) is an corresponds to
an affine group if and only if there exist homomorphisms € and S making certain diagrams
commute.

PROPOSITION 5.2 Let A and A’ be commutative Hopf algebras over k. A k-algebra ho-
momorphism f:A — A’ is a homomorphism of Hopf algebras if

(f®f)oA=Aof; (22)

moreover, then f oS = S’ o f for any inversions S for A and S’ for A'.

PROOF. According to (5.1b), G = (h4,h?) and G’ = (hA/,hA/) are affine groups. A k-
algebra homomorphism f: A — A’ defines a morphism of functors WG — G'. If (22)
holds, then this morphism sends products to products, and so is a morphism of group-
valued functors. Therefore f is a homomorphism of Hopf algebras. As 1/ commutes with
the operation g — g~ !, wehave foS = S’o f. O

COROLLARY 5.3 For any commutative k-algebra A and homomorphism A:A — A® A,
there exists at most one pair (¢, S) such that (A,m,e, A,¢€) is a Hopf algebra and S is an
inversion.

PROOF. Apply (5.2) to the identity map. O

COROLLARY 5.4 The forgettul functor (A, A,€) ~ (A, A) is an isomorphism from the
category of commutative Hopf algebras over k to the category of pairs (A, A) such that
(10), p.24, is a group structure on h(R) for all k-algebras R.

PROOF. It follows from (5.1b) and (5.3) that the functor is bijective on objects, and it is
obviously bijective on morphisms. O

EXAMPLE 5.5 Let G be the functor sending a k-algebra R to R x R x R with the (non-
commutative) group structure

(x.y.2) (.Y 2y = (x+x" y +y 2+ +x)").
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This is an algebraic group because it is representable by k[ X, Y, Z]. The map

1
(x,y,2)—~ |0
0

S = X
— <N

is an injective homomorphism from G into GL3. As the functor R ~~» R X R x R also
has an obvious commutative group structure (componentwise addition), this shows that the
k-algebra k[X, Y, Z] has more than one Hopf algebra structure.

6 Abstract restatement

A commutative bi-algebra is just a monoid in Algzpp (compare the definitions (I, 2.6, and
2.1).

A commutative Hopf algebra is just a group in Algzpp (compare the diagrams (7), p.20,
and (18), p.33).

By definition, an affine monoid (resp. group) is a monoid (resp. group) in the category
of representable functors on Alg;. Because the functor A ~~ hA4 is an equivalence from
Algipp to the category of representable functors on Alg; (Yoneda lemma I, 2.2), it induces
an equivalence from the category of commutative bi-algebras (resp. Hopf algebras) to the
category of affine monoids (resp. groups).

7 Commutative affine groups

A monoid or group G commutes if the diagram at left commutes, an algebra A commutes
if middle diagram commutes, and a coalgebra or bi-algebra C is co-commutative if the
diagram at right commutes:

t

GxG — 5 G6x6G AQA—" 5404 C®C—'"—C®C

In each diagram, ¢ is the transposition map (x,y) — (y,x) orx ® y > y ® x.

On comparing the first and third diagrams and applying the Yoneda lemma, we see
that an affine monoid or group is commutative if and only if its coordinate ring is co-
commutative.

8 Quantum groups

Until the mid-1980s, the only Hopf algebras seriously studied were either commutative
or co-commutative. Then Drinfeld and Jimbo independently discovered noncommutative
Hopf algebras in the work of physicists, and Drinfeld called them quantum groups. There is,
at present, no definition of “quantum group”, only examples. Despite the name, a quantum
group does not define a functor from the category of noncommutative k-algebras to groups.

One interesting aspect of quantum groups is that, while semisimple algebraic groups
can’t be deformed (they are determined up to isomorphism by a discrete set of invariants),
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their Hopf algebras can be. For g € k>, define A, to be the free associative (noncommuta-
tive) k-algebra on the symbols a, b, c,d modulo the relations

ba =qab, bc=cbh, ca=gqac, dc=gqcd,
db=gqbd, da=ad+(q—q Y)bc, ad =q 'bc=1.

This becomes a Hopf algebra with A defined by

Ala) = a®a+b®c

A(a b)z(a b)@(a b) ‘e Ab) = a®b+b®d
c d c d c d) " Alc) = ¢c®a+d®c ’
Ad) = c®b+d®d

and with suitable maps € and S. When ¢ = 1, A; becomes O(SL>), and so the A, can
be regarded as a one-dimensional family of quantum groups that specializes to SL, when
g — 1. The algebra A, is usually referred to as the Hopf algebra of SL,(2).

For bi-algebras that are neither commutative nor cocommutative, many statements in
this chapter become more difficult to prove, or even false. For example, while it is still true
that a bi-algebra admits at most one inversion, the composite of an inversion with itself need
not be the identity map (Déscalescu et al. 2001, 4.27).

9 Terminology

From now on, “bialgebra” will mean “commutative bi-algebra” and “Hopf algebra” will
mean ‘“‘commutative bi-algebra that admits an inversion (antipode)” (necessarily unique).
Thus, the notion of a bialgebra is not self dual.>

10 Exercises

To avoid possible problems, in the exercises assume k to be a field.

EXERCISE II-1 For a set X, let R(X) be the k-algebra of maps X — k. For a second set
Y,let R(X)® R(Y) acton X xY by therule (f ® g)(x,y) = f(x)g(y).

(a) Show that the map R(X) ® R(Y) — R(X x Y) just defined is injective. (Hint:
choose a basis f; for R(X) as a k-vector space, and consider an element ) f; ® g;.)

(b) Let I" be a group and define maps

A:R(I') = R(I'xT), (Af)(g.8) = f(gg)
e:R(I) —k, ef = f(1)

S:R(I") — R(I'), (Sf)g) = flg™h.
Show that if A maps R(I") into the subring R(I") ® R(I") of R(I" x I'), then A, €, and S

define on R(I") the structure of a Hopf algebra.
(¢) If I is finite, show that A always maps R(I") into R(I") ® R(I").

3In the literature, there are different definitions for “Hopf algebra”. Bourbaki and his school (Dieudonné,
Serre, ...) use “cogebre” and “bigebre” for “co-algebra” and “bi-algebra”.
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EXERCISE II-2 We continue the notations of the last exercise. Let I" be an arbitrary group.
From a homomorphism p:I” — GL,(k), we obtain a family of functions g — p(g)i,;,
1<i,j <n,onG. Let R'(I') be the k-subspace of R(I") spanned by the functions arising
in this way for varying n. (The elements of R’(I") are called the representative functions
onl'.)

(a) Show that R'(I") is a k-subalgebra of R(I").

(b) Show that A maps R’(I") into R'(I') ® R'(I'").

(c) Deduce that A, €, and S define on R'(I") the structure of a Hopf algebra.
(Cf. Abe 1980, Chapter 2, §2; Cartier 2007, 3.1.1.)

EXERCISE II-3 Let A be a Hopf algebra. Prove the following statements by interpreting
them as statements about affine groups.

(a) SoS =idy.
(b) AoS=toSQ@SoAwheret(a®b)=>b®a.
(c) €oS =e.

(d) Themapa®b+> (a®1)AMD): AR A — AR A is a homomorphism of k-algebras.

Hints: (¢~ )1 =e¢; (ab) ' =b"la el =e.

EXERCISE II-4 Verify directly that O(G,) and O(GL,) satisfy the axioms to be a Hopf
algebra.

EXERCISE II-5 A subspace V of a k-coalgebra C is a coideal if Ac(V)CVQC+CQV
and ec (V) = 0.

(a) Show that the kernel of any homomorphism of coalgebras is a coideal and its image
is a sub-coalgebra.

(b) Let V be a coideal in a k-coalgebra C. Show that the quotient vector space C/V
has a unique k-coalgebra structure for which C — C/V is a homomorphism. Show
that any homomorphism of k-coalgebras C — D whose kernel contains V' factors
uniquely through C — C/ V.

(c) Deduce that every homomorphism f:C — D of coalgebras induces an isomorphism
of k-coalgebras

C/Ker(f)—Im(f).

Hint: show thatif f:V — V' and g: W — W' are homomorphisms of k-vector spaces, then

Ker(f ® g) =Ker(f) @ W + V ®Ker(g).

EXERCISE II-6 (cf. Sweedler 1969, 4.3.1). A k-subspace a of a k-bialgebra A is a bi-ideal
if it is both an ideal and a co-ideal. When A admits an inversion S, a bi-ideal a is a Hopf
ideal if S(a) C a. In other words, an ideal a C A is a bi-ideal if

A(a) Ca® A+ A®a and
€(a) =0,

and it is a Hopf ideal if, in addition,

S(a) Ca.
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(a) Show that the kernel of any homomorphism of bialgebras (resp. Hopf algebras) is a
bi-ideal (resp. Hopf ideal), and that its image is a bialgebra (resp. Hopf algebra).

(b) Let a be a bi-ideal in a k-bialgebra A. Show that the quotient vector space A/a has
a unique k-bialgebra structure for which A — A/a is a homomorphism. Show that
any homomorphism of k-bialgebras A — B whose kernel contains a factors uniquely
through A — A/a. Show that an inversion on A4 induces an inversion on A /a provided
that a is a Hopf ideal.

(¢) Deduce that every homomorphism f:A — B of bialgebras (resp. Hopf algebras)
induces an isomorphism of bialgebras (resp. Hopf algebras),

A/Ker(f)— Im(f).

In this exercise it is not necessary to assume that A is commutative, although it becomes
simpler you do, because then it is possible to exploit the relation to affine groups in (5.1).






CHAPTER I I I

Affine Groups and Group Schemes

By definition, affine groups are groups in the category of representable functors Alg; — Set,
which, by the Yoneda lemma, is equivalent to the opposite of Alg,. In this chapter we
provide a geometric interpretation of Algzpp as the category of affine schemes over k. In
this way, we realize affine groups as group schemes.

The purpose of this chapter is only to introduce the reader to the language of schemes
— we make no serious use of scheme theory in this work. Throughout, k is a ring.

1 The spectrum of a ring

Let A be commutative ring, and let V' be the set of prime ideals in A. For an ideal a in 4,
let
V@) ={peV|pDal

Clearly,
aCb = V(a) DV(b).
LEMMA 1.1 There are the following equalities:
(@) V() =V;V(A)=0;

(b) V(ab) =V(anb) =V(a)UV(b);
(c) for a family (a;);ey of ideals, V(D _;cyai) = (Nies V(ai).

PROOF. The first statement is obvious. For (b) note that
abCanNbCab = V(ab) D V(anb) D V(a)UV(b).

For the reverse inclusions, observe that if p ¢ V(a) U V(b), then there exist an f € a~p
and a g € b~ p; but then fg € ab~ p, and so p ¢ V(ab). For (¢), recall that, by definition,
Y iez @i consists of all finite sums of the form ) f;, f; € a;. Thus (c) is obvious. o

The lemma shows that the sets V' (a) satisfy the axioms to be the closed sets for a topol-
ogy on V. This is called the Zariski topology. The set V endowed with the Zariski topology
is the (prime) spectrum spec(A) of A.

For f € A, the set

D(f)=1{peVI|f¢p}
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is open in V, because it is the complement of V(( f)). The sets of this form are called the
principal open subsets of V.
For any set S of generators of an ideal a,

Vav@=J, DU

and so the basic open subsets form a base for the topology on V.
By definition, a prime ideal contains a product of elements if and only if it contains one
of the elements. Therefore,

D(f1-++ fu) = D(f1)N---N D(fn), S1.o-  fn €A,

and so a finite intersection of basic open subsets is again a basic open subset.

Let ¢: A — B be a homomorphism of commutative rings. For any prime ideal p in
B, the ideal ¢~ !(p) is prime because A/¢~!(p) is a subring of the integral domain B/p.
Therefore ¢ defines a map

spec(¢):spec B — spec A, pr> ¢~ (p),

which is continuous because the inverse image of D(f) is D(¢(f)). In this way, spec
becomes a contravariant functor from the category of commutative rings to topological
spaces.

A topological space V is said to be noetherian if every ascending chain of open subsets
Uy C Uy C-+- in V eventually becomes constant; equivalently, if every descending chain
of closed subsets eventually becomes constant. A topological space is irreducible if it is
nonempty and not the union of two proper closed subsets. Every noetherian topological
space V' can be expressed as the union of a finite collection I of irreducible closed subsets,

v={Jw|wer

among such collections I there is only one that is irredundant in the sense that there are no
inclusions among its elements (CA 12.10). The elements of this I are called the irreducible
components of V.

Let A be aring, and let V' = spec(A). For a closed subset W of V, let

IW)=(\tplpeW}

Then /V(a) = (\{p | p D a}, which is the radical of a (CA 2.4). On the other hand,
VI(W) = W, and so the map a — V(a) defines a one-to-one correspondence between
the radical ideals in 4 and the closed subsets of V. Therefore, when A is noetherian, de-
scending chains of closed subsets eventually become constant, and spec(A) is noetherian.
Under the one-to-one correspondence between radical ideals and closed subsets, prime ide-
als correspond to irreducible closed subsets, and maximal ideals to points:

radical ideals <> closed subsets
prime ideals <> irreducible closed subsets

maximal ideals <> one-point sets.

The nilradical 91 of A is the smallest radical ideal, and so it corresponds to the whole space
spec(A). Therefore spec(A) is irreducible if and only if 91 is prime.



2. Schemes 43

2 Schemes

Let A be a commutative ring, and let V' = spec A. We wish to define a sheaf of rings Oy
on V such that Oy (D(f)) = Ay for all basic open subsets D(f). However, this isn’t
quite possible because we may have D(f) = D(f') with f # f’, and while 4 y and 4 ¢/
are canonically isomorphic, they are not equal, and so the best we can hope for is that
Ov(D(f) = Ay.

Let B be the set of principal open subsets. Because B is closed under the formation of
finite intersections, it makes sense to speak of a sheaf on 3 — it is a contravariant functor
JF on B satisfying the sheaf condition: for every covering D = | J;<; D; of a principal open
subset D by principal open subsets D;, the sequence

FD) -], Fon= ]_[(l_ F(DiND;) (24)

LJ)EIXI
is exact.!

For a principal open subset D of V', we define Oy (D) to be SBIA where Sp is the
multiplicative subset A ~\ Upe ppof A. If D = D(f), then Sp is the smallest saturated
multiplicative subset of A containing f, and so Oy (D) ~ Af (see CA 6.12). If D D
D’, then Sp C Spr, and so there is a canonical “restriction” homomorphism Oy (D) —
Oy (D’). Tt is not difficult to show that these restriction maps make D ~» Oy (D) into a
functor on B satisfying the sheaf condition (24).

For an open subset U of V, let I ={D € B| D C U}, and define Oy (U) by the
exactness of

Oy (U) - ]‘[Del ov(D)=]] Oy(DN D). (25)

(D,D"elxI
Clearly, U ~» Oy (U) is a functor on the open subsets of V', and it is not difficult to check
that it is a sheaf. The k-algebra Oy (U) is unchanged when the set / in (25) is replaced by
another subset of B covering U . In particular, if U = D(f), then

Oy(U)~Oy(D(f)) > Ay.
The stalk of Oy atapointp € V is

def

0, Llim,_ Oy(U)=lim . Oy(D(f) =lm A=A,

S A

(for the last isomorphism, see CA 7.3). In particular, the stalks of Oy are local rings.

Thus from A we get a locally ringed space Spec(A) = (spec(A), Ogpec 4). We often
write V or (V, ) for (V,Oy), and we call Oy (V) the coordinate ring of V. The reader
should think of an affine scheme as being a topological space V' together with the structure
provided by the ring O(V).

DEFINITION 2.1 An affine scheme (V,Oy) is a ringed space isomorphic to Spec(A) for
some commutative ring A. A scheme is a ringed space that admits an open covering by
affine schemes. A morphism of affine schemes is a morphism of locally ringed spaces, i.e.,
a morphism of ringed spaces such that the maps of the stalks are local homomorphisms of
local rings.

IRecall that this means that the first arrow is the equalizer of the pair of arrows. The upper arrow of the
pair is defined by the inclusions D; N D j < D; and the lower by D; N D; < D ;.
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A homomorphism A — B defines a morphism Spec B — Spec A of affine schemes.
PROPOSITION 2.2 The functor Spec is a contravariant equivalence from the category of
commutative rings to the category of affine schemes, with quasi-inverse (V, O) ~» O(V).
PROOF. Omitted (but straightforward). |

In other words, Spec is an equivalence from AIgOZpp to the category of affine schemes.

Schemes over k

When “ring” is replaced by “k-algebra” in the above, we arrive at the notion of a k-scheme.
To give a k-scheme is the same as giving a scheme V' together with a morphism V' — Speck.
For this reason, k-schemes are also called schemes over k.

Let V be a scheme over k. For a k-algebra R, we let

V(R) = Hom(Spec(R), V).
Thus V' defines a functor Alg; — Set.
PROPOSITION 2.3 For a k-scheme V, let V be the functor R ~~ V(R):Alg; — Set. Then
V ~~V is fully faithful.

PROOF. tba (easy). o

Therefore, to give a k-scheme is essentially the same as giving a functor Alg; — Set
representable by a k-scheme.

Recall that a morphism u: A — B in a category A is a monomorphism if f — uo
f:Hom(T, B) - Hom(T, A) is injective for all objects T of A. A morphism V' — W of
k-schemes is a monomorphism if and only if V(R) — W(R) is injective for all k-algebras
R.

NOTES The above is only a sketch. A more detailed account can be found, for example, in Mumford

1966, 11 §1.

3 Affine groups as affine group schemes
Finite products exist in the category of schemes over k. For example,
Spec(A1 ® Az) = Spec(A1) x Spec(A4>z).

A group in the category of schemes over k is called a group scheme over k. When the
underlying scheme is affine, it is called an affine group scheme over k. Because the affine
schemes form a full subcategory of the category of all schemes, to give an affine group
scheme over k is the same as giving a group in the category of affine schemes over k.

A group scheme (G, m) over k defines a functor

G:Alg;y — Set, R~ G(R),
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and a natural transformation o

m:GxG—G.
The pair (é,n’i) is an affine group if and only if G is affine. Conversely, from an affine
group (G,m) over k, we get a commutative Hopf algebra (O(G), A), and hence an affine

group scheme (Spec(O(G)), Spec(A)). These functors are quasi-inverse, and hence define
equivalences of categories.

ASIDE 3.1 Let (G,m) be a group scheme over a scheme .S, and consider the commutative diagram

G < GxsG L GxsG
Lo
S — G —— G
The first square is cartesian, and so if G is flat, smooth, ... over S, then pr, is a flat, smooth, ...

morphism. The morphism pr; X m is an isomorphism of schemes because it is a bijection of functors
(obviously). Therefore both horizontal maps in the second square are isomorphisms, and so if pr, is
flat, smooth, ..., then m is flat, smooth, ....

4 Summary

In the table below, the functors in the top row are fully faithful, and define equivalences of
the categories in the second and third rows.

h4eA A~Spec(4
Func(Algy, Set) Pt Aig;™” ASpecld) Sch/k
{Representable } A|gzpp N {Affine schemes}
functors
. opp Affine group
{Affine groups} ~ {Groups in Alg,’ ~ { }
schemes

Affine group: pair (G,m) with G a representable functor Alg; — Setand m:G xG — G
a natural transformation satisfying the equivalent conditions:

(a) for all k-algebras R, the map m(R): G(R) X G(R) — G(R) is a group structure on
the set G(R);

(b) there exist natural transformations e:* — G and inv:G — G (necessarily unique)
satisfying the conditions of I, 2.7.

(c) the pair (G, m) arises from a functor Alg;, — Grp.

Group in Algzpp: pair (A, A) with A a k-algebra and A:4 — A ® A a homomorphism
satisfying the equivalent conditions:

(a) for all k-algebras R, the map
Jis f2 > (fio f2) 0 Ak (R) x A (R) — hA(R)

is a group structure on the set 14 (R);

(b) (A4,A) is a commutative Hopf algebra over k, i.e., there exist k-algebra homomor-
phisms €: 4 — k and S: A — A (necessarily unique) satisfying the conditions of II,
2.1,4.8.
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Affine group scheme: pair (G,m) with G an affine scheme over k and m:G xG — G a
morphism satisfying the equivalent conditions:

(a) for all k-algebras R, the map m(R): G(R) x G(R) — G(R) is a group structure on
the set G(R);

(b) there exist there exist morphisms e:* — G and inv:G — G (necessarily unique)
satisfying the conditions of I, 2.7;

(c) for all k-schemes S, the map m(S): G(S) x G(S) — G(S) is a group structure on the
set G(S).
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Examples

Recall (I, 3.5) that to give an affine group amounts to giving a functor G:Alg; — Grp such
that the underlying set-valued functor Gy is representable. An element f of the coordinate
ring O(G) of G is a family of functions fr:G(R) — R of sets, indexed by the k-algebras,
compatible with homomorphisms of k-algebras (I, 3.13). An element f1 ® f> of O(G) ®
O(G) defines a function (/1 ® f2)r: G(R) X G(R) — R by the rule:

(f1® f2)r(a.b) = (f1)r(@)-(L2)r(). (26)
For f € O(G), A(f) is the unique element of O(G) ® O(G) such that
(Af)r(a.b) = fr(ab), forall Randalla,b € G(R), (27)
and ef is the element f(1¢) of k,
ef = fe); (28)
moreover, S f is the unique element of O(G) such that
(Sf)r(a) = fr(a™"), forall Randalla € G(R). (29)

Throughout this section, k is a ring.

1 Examples of affine groups

1.1 Let G, be the functor sending a k-algebra R to itself considered as an additive group,
i,e., Gg(R) = (R,+). Then

Gq(R) ~ Homk—alg(k [X]’ R),

and so (g, is an affine algebraic group, called the additive group.
In more detail, O(G,) = k[X] with f(X) € k[X] acting as a — f(a) on G4(R) = R.
The ring k[ X] ® k[X] is a polynomial ringin X; = X ®land X, =1 ® X,

k[X]®k[X] >~ k[X1, X2],

and so G, X G4 has coordinate ring k[ X1, X»] with F (X1, X») € k[ X1, X»2] acting as (a,b) —
F(a,b) on G(R) x G(R). According to (27)

(Af)r(a.b) = fr(a+b).
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and so
(Af)(X1,X2) = f(X1+X2)., [fe€OGy) =k[X].

In other words, A is the homomorphism of k-algebras k[X] — k[X] ® k[X] sending X to
X ®1+1® X. Moreover, €f is the constant function,

€f = f(0) (constant term of f),
and (Sf)r(a) = fr(—a), so that

(S/)X) = f(=X).

1.2 Let Gy, be the functor R ~ R* (multiplicative group). Each a € R* has a unique
inverse, and so

Gm(R) =~ {(a.b) € R* | ab = 1} ~ Homy_y,(k[X.Y]/(XY —1),R).

Therefore G, is an affine algebraic group, called the multiplicative group. Let k(X ) be the
field of fractions of k[X], and let k[X, X '] be the subalgebra of k(X) of polynomials in
X and X~!. The homomorphism

KX Y]—>k[X.X7!, XX, Y>Xx!
defines an isomorphism k[X,Y]/(XY —1) ~ k[X, X '], and so
Gum(R) 2 Homy o (K[X. X '], R).

Thus O(G,,) = k[X, X "] with f € k[X,X ] actingasa — f(a,a”!) on G,,(R) = R*.
The comultiplication A is the homomorphism of k-algebras k[X, X 1] — k[X, X1 ®
k[X,X!]sending X to X ® X, € is the homomorphism k[ X, X ~!] — k sending f(X,X 1)
to £(1,1), and S is the homomorphism k[X, X ~'] — k[X, X ~!] interchanging X and X ~!.

1.3 Let G be the functor such that G(R) = {1} for all k-algebras R. Then
G(R) ~ Homk—alg(k7 R),

and so G is an affine algebraic group, called the trivial algebraic group, often denoted .

More generally, let G be a finite group, and let A be the set of maps G — k with its
natural k-algebra structure. Then A is a product of copies of k indexed by the elements of
G. More precisely, let e, be the function that is 1 on ¢ and 0 on the remaining elements of
G. The e;’s form a complete system of orthogonal idempotents for A:

eg =eg, eger=0foro#1, Y es=1.
The maps
1 ifo=1
Alep)= ), eo®er eleg) =1 o uo . Seo)=eom.

0,7 withot=p

define a bi-algebra structure on A with inversion S (cf. II, 4.6). Let (G); be the associated
algebraic group, so that
(G)g (R) = Homy 54 (A, R).
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If R has no idempotents other than O or 1, then a k-algebra homomorphism 4 — R must
send one ey to 1 and the remainder to 0. Therefore, (G); (R) >~ G, and one checks that
the group structure provided by the maps A, €, S is the original one. For this reason, (G)
is called the constant algebraic group defined by G, even though for k-algebras R with
nontrivial idempotents, (G); (R) may be bigger than G.

1.4 For an integer n > 1,
un(Ry={reR|r" =1}

is a multiplicative group, and R ~» ,(R) is a functor. Moreover,
fin(R) 2 Homy o (K[X]/(X" = 1), R),

and so [y, is an affine algebraic group with O(u,) = k[X]/ (X" —1).

1.5 In characteristic p # 0, the binomial theorem takes the form (a + b)? = a? + b?.
Therefore, for any k-algebra R over a ring k such that pk = 0,

ap(R)y={reR|r? =0}
is a group under addition, and R ~+ a,(R) is a functor to groups. Moreover,
ap(R) > Homy oo (k[T]/(T?), R),

and so «, is an affine algebraic group with O(«ap) = k[T]/(T?).

1.6 For any k-module V', the functor of k-algebras'
Dy(V): R ~ Homy_j;,(V,R) (additive group) (30)
is represented by the symmetric algebra Sym(V') of V:
Homy_,(Sym(V), R) >~ Homy i, (V, R), R a k-algebra,

(see CA §8). Therefore D,(1) is an affine group over k (and even an affine algebraic group
when V is finitely presented).
In contrast, it is known that the functor

Va:R~» R®V (additive group)

is not representable unless V is finitely generated and projective.” Recall that the finitely
generated projective k-modules are exactly the direct summands of free k-modules of finite
rank (CA §10), and that, for such a module,

Homk_lin(VV, R) ~R X Vv

(CA 10.8). Therefore, when V is finitely generated and projective, Vj is an affine algebraic
group with coordinate ring Sym(V'"Y).
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When k is not a field, the functor W, defined by a submodule W of V' need not be a
subfunctor of V.

When V is finitely generated and projective, the canonical maps o)
<

Endgiin(R® V) <~ R®End; in(V) - RQ(VY ®V),
are isomorphisms,* and so
R ~~ Endgin(R®V) (additive group)

is an algebraic group with coordinate ring Sym(V ® V'V).

When V is free and finitely generated, the choice of a basis ey, ..., e, for V' defines iso-
morphisms Endgin(R® V) ~ M, (R) and Sym(V ® VV) ~ k[X11. X12.-.., Xnn] (poly-
nomial algebra in the n2 symbols (Xij)1<i,j<n)- For f € k[X11,X12,....Xppn) and a =
(aij) € Mn(R),

fr(a) = f(ai1,a12,....ann).

1.7 For n xn matrices M and N with entries in a k-algebra R,
det(MN) = det(M)-det(N) 31

and
adj(M)-M =det(M)-1 = M -adj(M) (Cramer’s rule) (32)

where I denotes the identity matrix and
adj(M) = ((_1)"+J deth,-) € My(R)

with M;; the matrix obtained from M by deleting the ith row and the jth column. These
formulas can be proved by the same argument as for R a field, or by applying the principle
of permanence of identities (Artin 1991, 12.3). Therefore, there is a functor SL,, sending a
k-algebra R to the group of n x n matrices of determinant 1 with entries in R. Moreover,

k[X11, X125, Xnn] R)
(det(X;)—1) ")

SL» (R) >~ Homy_yje (

where det(X;;) is the polynomial (4), and so SL,, is an affine algebraic group with O(SL,) =

k[X11,X12,-.,Xnn]
(det(X,'j)—l)

SL,(R),

. Itis called the special linear group. For f € O(SL;) and a = (a;;) €

fr(a) = f(ai1,....ann).

Notations suggested by those in DG II, §1, 2.1. In SGA 3, 1, 4.6.1, Do (V) is denoted V(V) and V, is
denoted W(V).

2This is stated without proof in EGA T (1971) 9.4.10: “on peut montrer en effet que le foncteur 7
I'(T,&(T)) ... n’est représentable que si £ est localement libre de rang fini”. Nitsure (2002, 2004) proves
the following statement: let V' be a finitely generated module over a noetherian ring k; then V, and GLy are
representable (if and) only if V' is projective.

3When V is free of finite rank, this is obvious, and it follows easily for a direct summand of such a module.
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1.8 Similar arguments show that the n x n matrices with entries in a k-algebra R and
with determinant a unit in R form a group GL,(R), and that R ~~ GL,(R) is a functor.
Moreover,

K[X11,X12, - Xnn, Y
GLn(R):Homk_alg( Y11 X12 nn ],R),

(det(X;))Y — 1)

4 k[XllaXIZ’---ann’Y]

X -1 - 1tis

and so GL, is an affine algebraic group with coordinate ring

called the general linear group.
For f € O(GL,) and a = (a;;) € GL,(R),

fr@ij) = f(air,....ann,det(a;;)™h).

Alternatively, let A be the k-algebra in 2n2 symbols, X11, X12,..., Xnn, Y11,..., Ynn mod-
ulo the ideal generated by the n? entries of the matrix (X; 7)(Y;j)—1. Then

Homy,_, (A, R) = {(A, B) | A, B € My(R), AB=1}.

The map (A4, B) — A projects this bijectively onto {4 € M, (R) | A is invertible} (because
a right inverse of a square matrix is unique if it exists, and is also a left inverse). Therefore
A >~ O(GLy). For G = GL,,

k[X117X127"'7Xnn,Y]

OG) = =k R
@) (¥ det(X;j) 1) it X))
and
Axik = ._IZ x,-j®xjk E(Xzz) i (1) ) S(xij) = yaj;
j=1,...,n e(xlj) = JLFE] S(y) = det(x;j)
Ay = y®y e(y) = 1 y

where a j; is the cofactor of x j; in the matrix (x;;). Symbolically, we can write the formulas
for A and € as

A(x) = (x) ® (x)
ex)=1

where (x) is the matrix with ij th entry x;;. We check the formula for A(x;):

(Axip)r ((aij). (bij)) = (i) g ((@ij) (b)) definition (27)
=Y ;aijbjk as (xx7) g ((cij)) = ¢k
= (X 1,0 Xi) ®X1)R ((aif), (bij)) as claimed.

1.9 Let C be an invertible n x n matrix with entries in k, and let

G(R)={T €GL,(R)|T"-C-T =C)}.

4In other words, O(GLy) is the ring of fractions of k[X11,X12,...,Xnn] for the multiplicative subset
generated by det(X;;),
O(GL,) = k[X11,X12,- .., Xnn]det(X,'j)'

See CA, 6.2.
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If C = (cij), then G(R) consists of the matrices (#;;) (automatically invertible) such that
thicjktkl =c¢;y, LI=1,...,n,
ik

and so
G(R) ~ Homk-alg(A: R)

with A equal to the quotient of k[X 11, X12,..., Xun, Y] by the ideal generated by the poly-
nomials

ZinCijkl —ci1, i, l=1,...,n.

j.k
Therefore G is an affine algebraic group. When C = [, it is the orthogonal group O, and
when C = (_9 1), it is the symplectic group Sp,,.

1.10 There are abstract versions of the last groups. Let V' be a finitely generated projective
k—module, let ¢ be a nondegenerate symmetric bilinear form V x V — k, and let ¥ be a
nondegenerate alternating form V' x V' — k. Then there are affine algebraic groups with

SLy (R) = {R-linear automorphisms of R ®; V' with determinant 1},

GLy (R) = {R-linear automorphisms of R ®j V'},

O(@)(R) ={a e GLy(R) | p(av,aw) = ¢p(v,w) forall v,w € RQ V},
Sp(¥)(R) = {a € GLy(R) | ¥ (av,aw) = ¥ (v,w) forall v,w € R V}.

When V is free, the choice of a basis for V' defines an isomorphism of each of these functors
with one of those in (1.7), (1.8), or (1.9), which shows that they are affine algebraic groups
in this case. For the general case, use (3.2).

1.11 Let k be a field, and let K be a separable k-algebra of degree 2. This means that
there is a unique k-automorphism a — a of K such that a = a if and only if a € k, and that
either

(a) K is a separable field extension of k of degree 2 and a > & is the nontrivial element
of the Galois group, or
(b) K =k xk and (a,b) = (b,a).

For an n x n matrix A = (a;;) with entries in K, define A to be (a;;) and A* to be the
transpose of A. Then there is an algebraic group G over k such that

Gk)y={AeMy(K)| A*A=1)}.

More precisely, for a k-algebra R, definea @ r =a ®r fora @ r € K ®. R, and, with the
obvious notation, let

G(R)={AeM,(K®yR)| A*A=1}.

Note that A* A = I implies det(A)det(A) = 1. In particular, det(A) is a unit, and so G(R)
is a group.
In case (b),
G(R) ={(A,.B) e My(R) | AB =1}
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and so (A, B) — A is an isomorphism of G with GL,,.

In case (a), let e € K \ k. Then e satisfies a quadratic polynomial with coefficients
in k. Assuming char(k) # 2, we can “complete the square” and choose e so that e? € k
and e = —e. A matrix with entries in K ®; R can be written in the form A 4+ eB with
A, B € M, (R). It lies in G(R) if and only if

(A" —eB")(A+eB)=1
i.e., if and only if

A'-A—e?’B'"-B=1, and
A"-B—B'-A=0.
Evidently, G is represented by a quotient of k[..., X;j,...]®x k[...,Yij,...].

In the classical case k = R and K = C. Then G(R) is the set of matrices in M, (C) of
the form A+iB, A, B € M, (R), such that

A" A+ B'-B=1, and
A" B—B'.A=0.

1.12 There exists an affine algebraic group G, called the group of monomial matrices,
such that, when R has no nontrivial idempotents, G(R) is the group of invertible matrices
in M, (R) having exactly one nonzero element in each row and column. For each o € S,
(symmetric group), let

As = O(GLn)/(Xij | j # 0 (i))

and let O(G) = [[,¢5, Ao Then

A > k[X10(1)7 ce Xna(n)7 Y]/(sign(a) ’ Xla(l) "'Xno(n)Y 1),

and so
G(R) ~ |_|0 Homy_y¢(Ag, R) =~ Homy_,(O(G), R).

1.13 Letk =ky x---xky,and write | =e; +---+¢;,. Then {eq,...,e,} is a complete set
of orthogonal idempotents in k. For any k-algebra R,

R=R1X---XR,,

where R; is the k-algebra Re; >~ k; ®; R. To give an affine group G over k is the same as
giving an affine group G; over each k;. If G <> (G;)1<i<n, then

G(R) =[] Gi(R) (33)

for all k-algebras R.
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2 Examples of homomorphisms
2.1 The determinant defines a homomorphism of algebraic groups

det:GL,, — Gy,.
2.2 The homomorphisms

R — SLy(R), al—)((l) ‘1’)

define a homomorphism of algebraic groups G, — SL,.

2.3 Add example of the (relative) Frobenius map. [Let G be an affine algebraic group over
a field k of characteristic p # 0. The kernel of the relative Frobenius map Fg/r: G — G
is a finite connected affine group. It has the same Lie algebra as G, and in particular it is

noncommutative if the Lie algebra is nonabelian, e.g. for G = GL,, n > 2. If G is regular
(e.g. smooth over k) then Fg/ is faithfully flat. See mo84936.]

3 Appendix: A representability criterion

We prove that a functor is representable if it is representable “locally”.

THEOREM 3.1 Let F:Alg, — Set be a functor. If F is representable, then, for every faith-
fully flat homomorphism R — R’ of k-algebras, the sequence

F(R)— F(R) = F(R'®r R

is exact (i.e., the first arrow maps F (R) bijectively onto the set on which the pair of arrows
coincide). Conversely, if there exists a faithfully flat homomorphism k — k' such that

(a) F|Algy is representable, and
(b) for all k-algebras R, the following sequence is exact

F(R) = F(Ry') = F(Rp ® Ryr),

then F is representable.

PROOF. Suppose that F is representable, say F = h“. For every faithfully flat homomor-
phism of rings R — R’, the sequence

R—R =R ®@rR
is exact (CA 9.6). From this it follows that
Homk—alg(A’ R) — Homk-alg(A’ R/) = Homk—alg(Av R’ R R/)

is exact.

Conversely, let k — k' be a faithfully flat map such that the restriction F’ of F to k’-
algebras is represented by a k’-algebra A’. Because F’ comes from a functor over k, it is
equipped with a descent datum, which defines a descent datum on A’ (Yoneda lemma), and
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descent theory shows that A, together with this descent datum, arises from a k-algebra A;
in particular, A" = k' ® A (Waterhouse 1979, Chapter 17). On comparing the following
exact sequences for F and h4, we see that A represents F:

F(R) — F/(Rk/) = F/(Rk/ ®R Rk’)

S S
MR — W (Ry) = h* (R ®r Ryp).

EXAMPLE 3.2 Let fi,..., fr be elements of k such that (f1,..., fr) =k. Thenk — l_[kfi
is faithfully flat because the condition means that no maximal ideal of k contains all f;. Let
F be a functor of k-algebras, and let F; = F|Alg; 4, Then F is representable if

(a) each functor F; is representable, and
(b) for each k-algebra R, the sequence

F(R) — ]_[l, F(Rs)= ]_[i’j F(Ry;, ®rRy,)

18 exact.

NOtethatRfl.®RRfj :Rfifj‘

ASIDE 3.3 A functor F:Alg;, — Set defines a presheaf on spec(R) for each k-algebra R. We say
that F is a sheaf for the Zariski topology if this presheaf is a sheaf for every R. Then (3.2) can be
expressed more naturally as: a functor F that is a sheaf for the Zariski topology is representable
if it is locally representable for the Zariski topology on spec(k). A similar statement holds with
“Zariski” replaced by “étale”.






CHAPTER V

Some Basic Constructions

Throughout this chapter, k is a commutative ring.

1 Products of affine groups
Let G1 and G5 be affine groups over k. The functor
R~ G1(R) x G2(R)
is an affine group G| x G, over k with coordinate ring
O(G1xG2) = 0(G1) @ O(G2), (34)

because, for any k-algebras A, A,, R,

Homy g5 (A1 ®f A2, R) >~ Homy g0 (A1, R) X Homy g0 (A2, R) (35)
(see (8), p. 21).

More generally, let (G;);e7 be a (possibly infinite) family of affine groups over k in-
dexed by a set I, and let G be the functor

R~ l_[iel Gi(R).

Then G is an affine group with coordinate ring ), .; O(G;) (in the infinite case, apply
Bourbaki A, 111, §5, Prop. 8). Moreover, G together with the projection maps is the product
of the G; in the category of affine groups. If [ is finite and each G; is an algebraic group,
then [ [;c; G; is an algebraic group.

The trivial group is a final object in the category of affine groups over k, and so all
products exist in this category (and all finite products exist in the subcategory of algebraic

groups).

2 Fibred products of affine groups
Let Gy, G3, and H be functors from the category of k-algebras to sets, and let

G1 — H <« G2 (36)

57
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be natural transformations. We define the fibred product functor G x g G, to be the
functor

R~ G1(R) Xg(Rr) G2(R).

Obviously Gy x g G is the fibred product of G; and G, over H in AIgZ.

Let B be a k-algebra, and let A1 and A, be B-algebras. For any k-algebra R and
choice of a k-algebra homomorphism B — R (i.e., of a B-algebra structure on R), there is
a canonical isomorphism

Homp_45(A1 ® p A2, R) ~ Homp_45(A1, R) x Homp_44(A42, R).
On taking the union over the different k-algebra homomorphisms B — R, we find that
Homk-alg (Al ®p A2, R) = Homk—alg(Al , R) ><Homk_a]g(B,R) Homk—alg (AZ, R)- (37)

It follows that, if the functors G1, G, and H in (36) are represented by k-algebras A1, A,
and B, then the functor G| x g G, is represented by the k-algebra A; @ p A».

If the natural transformations Gy — H < G, are homomorphisms of affine groups,
then G x g Gy is a group-valued functor, and the above remark shows that it is an affine
group with coordinate ring

O(G1 xH G2) = O(G1) Qo) O(G2). (38)

It is called the fibred product of G and G, over H.
The fibred product of two homomorphisms «, 8: G — H is the equalizer of @ and § in
the category of affine groups over k

Eq(@.f) =G %01, G-

Let * —> H be the unique homomorphism from the trivial group to H. For any homomor-
phism o: G — H, the equalizer of « and e is the kernel of « in the category of affine groups
over k,

Ker(e) = Eq(a,e) = G x g *.

Note that

O(Eq(a, p)) = O(G) ®o @) O(G) (39)
O(Ker(@)) = O(G) ®o () k (40)

and that

Eq(a. B)(R) = Eq(a(R). B(R))
Ker(a)(R) = Ker(x(R))

for all k-algebras R.

3 Limits of affine groups

Recall (MacLane 1971, 111 4, p.68) that, for a functor F': I — C from a small category I to
a category C, there is the notion of an inverse limit of F (also called a projective limit, or
just limit). This generalizes the notions of a limit over a directed set and of a product.
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THEOREM 3.1 Let F be a functor from a small category I to the category of affine groups
over k ; then the functor
R ~~1lim F(R) 41)
e—

is an affine group, and it is the inverse limit of F in the category of affine groups.

PROOF. Denote the functor (41) by (Ii ; thus 5 (R) is the inverse limit of the functor i ~~
F;(R) from I to the category of (abstract) groups. It is easy to see that (Ii = l(iLnF in the
category of functors from k-algebras to groups, and it will follow that (Ii is the inverse limit
in the category of affine groups once we show that it is an affine group. But (E is equal to
the equalizer of two homomorphisms

HiEOb(I) Fi= HuEarr(I) Fuargei (42)
(MacLane 1971, V 2 Theorem 2, p.109). Both products are affine groups, and we saw in
(V, §2) that equalizers exist in the category of affine groups. O

In particular, inverse limits of algebraic groups exist as affine groups. Later (VIII, 8.1)
we shall see that every affine group arises in this way.

THEOREM 3.2 Let F be a functor from a finite category I to the category of algebraic
groups over k ; then the functor
R~ limF; (R) 43)

is an algebraic group, and it is the inverse limit of F in the category of algebraic groups.
PROOF. Both products in (42) are algebraic groups. O

Direct limits, even finite direct limits, are more difficult. For example, the sum of
two groups is their free product, but when G; and G, are algebraic groups, the functor
R ~~» G1(R) * G(R) will generally be far from being an algebraic group. Moreover, the
functor R ~~ lim = F;(R) need not be a sheaf. Roughly speaking, when the direct limit of a
system of affine groups exists, it can be constructed by forming the naive direct limit in the
category of functors, and then forming the associated sheaf (see VII, 11).

4 Extension of the base ring (extension of scalars)

Let k" be a k-algebra. A k’-algebra R can be regarded as a k-algebra through k — k’ — R,
and so a functor G of k-algebras “restricts” to a functor

Gi: R ~ G(R)

of k’-algebras. If G is an affine group, then Gy is an affine group with coordinate ring
O(Gyr) = O(G)y because, for all k’-algebras R,

Homk’—alg(k/ ® O(G), R) = Homk—alg(O(G)a R)

(in (8), p. 21, take Ay = k', A = O(G), and f| equal to the given k’-algebra structure on
R). The affine group Gy is said to have been obtained from G by extension of the base
ring or by extension of scalars. If G is an algebraic group, so also is G/. Clearly G ~~ G/
is a functor.
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EXAMPLE 4.1 Let V be a k-module and let W be a k’-module. A k-linear map V — W’
extends uniquely to a k’-linear map V» — W:

Homy iy (V, W) >~ Homy/ iy (Vir, W).
On applying this remark with W a k’-algebra R, we see that
Da(V)k’ = Da(Vk’)‘
Similarly, if V' is finitely generated and projective, then

(Va)k’ = (Vk’)a-

EXAMPLE 4.2 Let G be the unitary group defined by a separable k-algebra K of degree
2 (see IV, 1.11). For any field extension k — k’, G/ is the unitary group defined by the
k’-algebra K ®y k', and so, for example, Gga 2>~ GL,,.

5 Restriction of the base ring (Weil restriction of scalars)

Let k" be a k-algebra. For an affine k’-group G, we let (G)/ denote the functor
R ~ G(k' ® R):Alg; — Grp.

PROPOSITION 5.1 Assume that k' is finitely generated and projective as a k-module. For
all affine k'-groups G, the functor (G) /i is an affine k-group; moreover, for all affine
k-groups H and affine k’-groups G, there are canonical isomorphisms

Homy (H. (G)x/k) ~ Homy (Hy:, G),

natural in both H and G.

In other words, G ~ (G)//« is a functor from affine k’-groups to affine k-groups which
is right adjoint to the functor “extension of the base ring” k — k.

The affine group (G )g//k is said to have been obtained from G by (Weil) restriction of
scalars (or by restriction of the base ring), and (G )/ is called the Weil restriction of G.
The functor G ~~ (G )y is denoted by Resyr/ or [T/ /.

Before proving the proposition, we list some of the properties of Resy// that follow
directly from its definition.

Properties of the restriction of scalars functor

Throughout this subsection, k’ is finitely generated and projective as a k-module.

5.2 Because it is a right adjoint, Resy//x preserves inverse limits MacLane 1971, V, §5).
In particular, it takes products to products, fibred products to fibred products, equalizers to
equalizers, and kernels to kernels. This can also be checked directly from its definition.

5.3 Let G be an affine group over k’. There is a homomorphism

i:G — (Resgr/k Gy

of affine groups over k” such that, for all k’-algebras R, i (R) is the map G(R) — G (k' ® R)
defined by a — 1 ® a: R — k’ ® R. The homomorphism i is injective (obviously), and has
the following universal property:
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every homomorphism G — Hy from G to the extension of scalars of a k-group

H factors uniquely through i.
This simply restates the fact that Resy-, is a right adjoint to extension of scalars (MacLane
1971, 1V, 1, Theorem 1).

5.4 For any homomorphisms k — k’ — k” of rings such that k" (resp. k") is finitely
generated and projective over k (resp. k'),

Resy/ /i oResgr /s >~ Resgr i .
Indeed, for any affine group G over k" and k-algebra R,

((Resk//k oResku/k/) (G)) (R)= (Resk//k(Resku/k/ G)) (R)
= (Resgr/x G)) (k' ®k R)
=G(k" Qr k' @k R)
~ G(k" @k R)
= (Reskn/k G) (R)

because k" ®y k' ®x R ~ k" ®j R. Alternatively, observe that Resy//x oRes/x- is right
adjoint to H ~» Hpr.

5.5 For any k-algebra K and any affine group G over k’,

(Resk//k G)K o~ Resk’®kK/K(GK); (44)

in other words, Weil restriction commutes with extension of scalars. Indeed, for a K-algebra
R 9

(Reskr/x G) g (R) = (Resgr/x G) (R)
= G(K' @ R)
~G(k'®r K®k R)
= Respg, k/k(Gk)(R)

because k' @ R ~ k' ®; K ®k R.
5.6 Let k’ be a product of k-algebras, k' = kq x --- x k;,, with each k; finitely generated

and projective as a k-module. Recall (IV, 1.13) that to give an affine group G over k’ is the
same as giving an affine group G; over each k;. In this case,

Gy = Gy ke XX (G / k- (45)

Indeed, for any k-algebra R,

(G)irjk(R) = G(k'® R)
=G1(k1® R) X+ xGpu(k, ® R) (by (33), p.53)
= (GDk,/k (R) X% (Gn), /k (R)
= ((GDky sk X+ X (Gn)ky /i) (R).
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5.7 Let k' be a finite separable field extension of a field k, and let K be a field containing
all k-conjugates of k', i.e., such that |Homy (k’, K)| = [k’:k]. Then

(Resk//k G)K ~ Hoz:k’—)K oG

where aG is the affine group over K obtained by extension of scalars with respect to a: k" —

K. Indeed
(44) (45)

(RCSk//k G)K x~ ReSk/®K/K Gk ~ ak'—K Ga

because k' ® K ~ KHomk(*".K)

5.8 Let k' = k[e] where &2 = 0. For any algebraic group G over k’, there is an exact
sequence
0— Va_>(G)k’/k —-G—0

where V is the tangent space to G at 1, i.e., V = Ker(G(k[¢]) — G(k)). This is proved in
XI, 6.3, below.

5.9 We saw in (5.7) that, when k' is a separable field extension of k, (G)z//x becomes
isomorphic to a product of copies of G over some field containing k’. This is far from true
when k’/k is an inseparable field extension. For example, let k be a nonperfect field of
characteristic 2, so that there exists a nonsquare a in k, and let k" = k[+/a]. Then

K@pk' ~k'le], e=a®l1—1®a, &>=0.

According to (5.5),
(Resk//k G)k’ ol Resk’[s]/k’ Gk’,

which is an extension of G by a vector group (5.8).

Proof of Proposition 5.1

We first explain the existence of a right adjoint for functors to sets.

From a functor F:Alg; — Set we obtain a functor Fy.: Alg,, — Set by setting Fy/(R) =
F(R). On the other hand, from a functor F’: Alg,, — Set we obtain a functor (F”)/,: Algy —
Set by setting (F')g//x(R) = F'(k’ ® R). Let ¢ be a natural transformation ¢: Fr — F'.
The homomorphisms

F(r—1®r) ,
F(R)———> F(k'®R)

def

o(kK’®R)
——— F'(K'® R) = (F")r//x(R)

are natural in the k-algebra R, and so their composite is a natural transformation F —
(F")s/k- Thus, we have a morphism

Hom(Fy/, F') - Hom(F, (F)i//k)- (46)

This has an obvious inverse. Given F — (F’)g/, we need a map Fy — F’. Let R be a
k’-algebra, and let Ro be R regarded as a k-algebra. The given k-algebra map k" — R and
the identity map Ry — R define a map k' ®; Ry — R (of k’-algebras). Hence we have a
map

F(Ro) — F' (k' ®k Ro) — F'(R),
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and F(Rp) = Fy/(R). Thus (46) is a bijection.
We have shown that the extension of scalars functor F ~ Fj has a right adjoint F’ ~~

(Fkryk:
Hom(Fy, F') >~ Hom(F, (F' )/ /k). 47)

LEMMA 5.10 Assume thatk' is finitely generated and projective as a k-module. If F: Alg, —
Set is represented by a k-algebra (resp. a finitely presented k-algebra), then so also is

(F)r/ke-
PROOF. We prove this first in the case that k’ is free as a k-module, say,
k' =kei®---Dkey, e ck’.

Consider first the case that F = A", so that F(R) = R" for all k’-algebras R. For any
k-algebra R,
REKQR~Re; ®-® Rey,

and so there is a bijection

(@i)1<i<n — (bij) 1<i<n : R — R"
1<j<d

which sends (a;) to the family (b;;) defined by the equations
ai =Y 9_ bijej, i=1...n (48)

The bijection is natural in R, and shows that (F)g//x ~ A" (the isomorphism depends
only on the choice of the basis ey, ...,eq).

Now suppose that F is the subfunctor of A" defined by a polynomial f(X1,...,X,) €
k'[X1,...,Xy]. On substituting

Xi = Y5_1Yije,
into f', we obtain a polynomial g(Y11,Y12,...,Y,4) with the property that
f(ay,...,an) =0 < g(b11,b12,...,b,4) =0

when the a’s and b’s are related by (48). The polynomial g has coefficients in k', but we
can write it (uniquely) as a sum

g=gie1+--+ggeq, & €k[Y11.Y12,.... Y4l
Clearly,
g(b11,b12,....bpq) =0 < gi(b11.b12,....bpg) =0fori =1,....d,

and so (F)gs/k is isomorphic to the subfunctor of A" defined by the polynomials g1, ..., g .
This argument extends in an obvious way to the case that F' is the subfunctor of A”
defined by a finite set of polynomials, and even to the case that it is a subfunctor of an
infinite dimensional affine space defined by infinitely many polynomials.
We deduce the general case from the free case by applying IV, Theorem 3.1, in the
form of (3.2). According to (CA 10.4), there exist elements fi,..., f; of k such that
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(fi,..., fr) = k and k/fi is a free k s,-module for each i. Therefore ((F)k//k)k/, is

representable for each i. For any faithfully flat homomorphism R — R’ of k—algeblras,
Ry — R;c/ is a faithfully flat homomorphism of k’-algebras (CA 9.7), and so

F(Ry)) > F(Ry) = F(R}, ®R, Ry)
is exact. But this equals

(F)ir/k(R) = (F)irjk(R') = (F)irjk(R'®R R'),

and so (F)gs/ satisfies the condition (b) of IV, 3.2. O

If G is a functor Algy, — Grp, then (G )/ is a functor Alg; — Grp. The lemma shows
that if G is an affine group or an affine algebraic group, then so also is (G )/, and (47)
shows that the functor G’ ~» (G')x /i is right adjoint to the functor “extension of scalars”.

ASIDE 5.11 Let k’ be free as a k-module, with basis (e;);ey (not necessarily finite), and let F €
Algy/, be the functor represented by A = k[X;]jcs/a. Let F' = h*Xjljes (affine space with coor-
dinates indexed by J). Then (F')x,x is represented by k[Y(; )], j)erxs (affine space with coordi-
nates indexed by / x J), and so (F)/,x is represented by a quotient of k[Y(; )], jyerxs (see 6.6
below).

6 Transporters

Recall that an action of a monoid G on a set X is a map

(g.x)>gx:GxX > X

such that

(@) (g182)x = g1(g2x) forall g1,82 € G, x € X, and
(b) ex = x forall x € X (here e is the identity element of G).

Now let G be an affine monoid over k, and let X be a functor from the category of k-
algebras to sets, i.e., an object of AIg,\C’. An action of G on X is a natural transformation
G x X — X such that G(R) x X(R) — X(R) is an action of the monoid G(R) on the set
X(R) for all k-algebras R. Let Z and Y be subfunctors of X. The transporter Tg (Y, Z)
of Y into Z is the functor

R~{geG(R)|gY CZ},

where the condition g¥ C Z means that gY(R’) C Z(R’) for all R-algebras R’, i.e., that
gY C Z as functors on the category of R-algebras.

In the remainder of this section, we shall define the notion of a closed subfunctor, and
prove the following result.

THEOREM 6.1 Let G x X — X be an action of an affine monoid G on a functor X, and
let Z and Y be subfunctors of X such that Z is closed in X. IfY is representable by a
k-algebra that is free as a k-module, then Tg (Y, Z) is represented by a quotient of O(G).
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Closed subfunctors

A subfunctor Z of a functor Y from Algy, to Set is said to be closed if, for every k-algebra A
and natural transformation /4 — Y, the fibred product Z xy h“ is represented by a quotient
of A. The Yoneda lemma identifies a natural transformation 24 — ¥ with an element « of
Y(A), and, for all k-algebras R,

(z Xy hA) (R) = {p: A — R | p(a) € Z(A)).

Thus, Z is closed in Y if and only if, for every k-algebra A and o € Y(A), the functor of
k-algebras
R~~{p:A— R|p(a) e Z(A)}

is represented by a quotient of 4, i.e., there exists an ideal a C A such that, for all homo-
morphism ¢: 4 — R,
Y(p)(@) € Z(R) <= ¢(a) =0.

EXAMPLE 6.2 Let Z be a subfunctor of ¥ = h® for some k-algebra B. For the identity
map hB — Y, the functor Z Xy hB = Z. Therefore, if Z is closed in B, then it represented
by a quotient of B. Conversely, let Z C 4% be the subfunctor represented by a quotient B/ b
of B, so that

Z(R) ={¢:B — R | ¢(b) =0j.

For any a: B — A, the functor Z x5 h4 is
R~~{p:A— R|poa € Z(R)},

which is represented by A/a(b). Therefore Z is closed.

EXAMPLE 6.3 Let Y be the functor A” = (R ~» R™). A subfunctor of A” is closed if and
if it is defined by a finite set of polynomials in k[X7,..., X,] in the sense of I, §1. This is
the special case B = k[X1,..., Xy] of Example 6.2.

EXAMPLE 6.4 If Y is the functor of k-algebras defined by a scheme Y’ (III, 2), then the
closed subfunctors of Y are exactly those defined by closed subschemes of Y’. When Y’ is
affine, this is a restatement of (6.2), and the general case follows easily.

LEMMA 6.5 Let B be a k-algebra that is free as a k-module, and let A be a k-algebra. For
every ideal b in B ® A, there exists an ideal a in A such that, for an ideal o’ in A,

adDa << B®dDb.

PROOF. Choose a basis (e;);ey for B as k-vector space. Each element b of B ® A can be
expressed uniquely as b =) ;.;e; ®a;, a; € A, and we let a be the ideal in A generated
by the coordinates a; of the elements b € b. Clearly B ® a D b, and so if a’ D a, then
B ®a’ D b. Conversely, if B® a’ D b then the coordinates of all elements of b lie in a, and
sod Da. o

For a k-algebra B and functor X:Algg — Set, we let X, denote the functor R ~
X(B ® R):Alg;, — R (cf. §5).
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LEMMA 6.6 Let B be a k-algebra that is free as a k-module, and let Z and X be functors
Algp — Set. If Z be a closed subfunctor of X, then Z 4 is a closed subfunctor of X «.

PROOF. Let A be a k-algebra, and o € X «(A). To prove that Z is closed in X x we have
to show that there exists an ideal a C A such that, for every homomorphism ¢: A — R of
k-algebras,

Xx(p)(@) € Z«(R) <= ¢(a) =0,

ie.,
X(BRe)(a)e Z(B®R) < ¢(a) =0.

Because Z is closed in X, there exists an ideal b in B ® A such that, for the homomorphism
BR¢:B®A—~> BQR,

XBRe)(a)e Z(B®R) < (B®¢p)(b) =0. (49)
According to (6.5), there exists an ideal a in A such that
aCa <= bCB®d (a anidealin A). (50)
On taking o’ = Kerg, we see that
a C Ker(p) <= b C B®Ker(¢p) =Ker(BQ¢).

Combined with (49), this shows that a has the required property. O

LEMMA 6.7 If Z is a closed subfunctor of X, then, for every natural transformation T —
X, Z xx T is a closed subfunctor of T'.

PROOF. Let h4 — T be a natural transformation. Then Z xx T x7 hd ~ Z xx h4, and
so (Z xx T) x7 h* is represented by a quotient of A. o

LEMMA 6.8 LetZ andY be subfunctors of a functor X , and let G x X — X be an action of
an affine monoid G on X . Assume that Y = h®, and for a k-algebra R, let ygr € Y(R® B)
be the homomorphism b +— 1 @ b: B — R® B. Then

Tc(Y,Z)(R) ={g € G(R) | gyr € Z(R® B)}.

Hence
Tg(Y,Z) =G xx, Zx,

where G — X is the natural transformation g — gyr:G(R) - X(R® B).

PROOF. Certainly, LHS C RHS. For the reverse inclusion, let R’ be an R-algebra, and let
a € Y(R') = Hom(B, R’). Then yg maps to & under the map Y(R ® B) — Y(R') defined

byR—>R’andBi>R/, and so

gYREZ(R®B) = ga € Z(R'). -
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Proof of Theorem 6.1

We may suppose that Y = hB. Lemma 6.8 allows us to write
Te(Y,Z) =G xx, Zx.

Lemma 6.6 shows that Z is a closed subfunctor of X, and so it follows from (6.7) that
Tg(Y,Z) is a closed subfunctor of G. This means that it is represented by a quotient of
O(G) (see 6.2).

A modest generalization

We say that a k-algebra A is locally free if there exist exist elements f1,..., fr of k such
that (f1,..., fr) =k and Ay, is a free k r,-module for each i. For example, a k-algebra
is locally free if it is projective and finitely generated as a k-module (CA 10.4, and all
k-algebras are (locally) free when k is a field.

THEOREM 6.9 Let G x X — X be an action of an affine monoid G on a functor X, and
let Z and Y be subfunctors of X. If Y is representable by a locally free k-algebra and Z is
closed in X, then Tg (Y, Z) is a closed subfunctor of G (hence represented by a quotient of
0(G)).

PROOF. Apply 1V, 3.2. O

ASIDE 6.10 A little more generally: let G be a monoid in Alg, acting on an X in Alg)/, and let ¥
and Z be subfunctors of X. If Y is representable by a locally free k-scheme (i.e., admits a covering
by affines U; such that O(U;) is a free k-module) and Z is a closed subfunctor of X, then T (Y, Z)
is a closed subfunctor of G. See also DG 1, §2, 7.7, p. 65, and 11, §2, 3.6, p. 165.

7 Galois descent of affine groups

In this section, k is a field. Let £2 be a Galois extension of the field k, and let I" =
Gal(£2/ k). When £2 is an infinite extension of k, we endow I" with the Krull topology. By
an action of I" on an §2-vector space V' we mean a homomorphism I" — Autg (V') such
that each o € I acts o-linearly, i.e., such that

o(cv)y=o0(c)-o(v)foralloce",c e 2,andv e V.

We say that the action is continuous if every element of V is fixed by an open subgroup of
I ie.,if

V= UF’ I (union over the open subgroups I"’ of I').

PROPOSITION 7.1 For any §2-vector space V equipped with a continuous action of I", the
map
DiCi®Ui Y icivii 82 Q vl v

is an isomorphism.

PROOF. See AG, 16.15 (the proof is quite elementary). O
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For any vector space V over k, the group I" acts continuously on £2 ® V according to
rule:
o(c®v)=oc®uforalloel',ce2,andveV.

PROPOSITION 7.2 The functor V ~~ 2 ®; V from vector spaces over k to vector spaces
over 2 equipped with a continuous action of I" is an equivalence of categories.

PROOF. When we choose bases for V and V', then Homy_j;,(V, V') and Homg j;,(2 ®
V.2 ® V') become identified with with certain sets of matrices, and the fully faithfulness
of the functor follows from the fact that 27" = k. That the functor is essentially surjective
follows from (7.1). o

Let G be an affine group over §2. By a continuous action of I" on G we mean a
continuous action of I" on O(G) preserving A and the k-algebra structure on A; thus

olf-f) = of-of
ol = 1 forallo e, f, f' € A.
(0®0)(A(f) = A(of)

PROPOSITION 7.3 The functor G ~ Gg from affine groups over k to affine groups over
§2 equipped with a continuous action of I' is an equivalence of categories.

PROOF. Proposition 7.2 shows that it is an equivalence of categories on the Hopf algebras.q

EXAMPLE 7.4 Let k’ be a finite separable field extension of k, and let §2 be a Galois
extension of k containing all conjugates of k’. Let G be the affine group over k’ defined by
a k-algebra A and a comultiplication A (see I, 3.9), and let G« be the affine group over k’
corresponding to the pair

(Ag, Ay) = ]‘[r_k/_)g(m,m)

where t runs over the k-homomorphisms k” — 2. There is an obvious continuous action
of Gal(§2/k) on (A«, Ax), and the corresponding affine group over k is (G)g//k. This is
essentially the original construction of (G )/« in Weil 1960, 1.3.

8 The Greenberg functor

Let A be a local artinian ring with residue field k. For example, 4 could be the ring W, (k)
of Witt vectors of length m. A general A is a W;,(k)-module for some m. For an affine
group G over A, consider the functor G(G):

R~ G(A W, (k) Wi (R)):Alg;, — Grp.

Then G(G) is an affine group over k. See Greenberg 1961, 1963.
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9 Exercises

EXERCISE 9.1 Let k' be a finite separable extension of a field k. Let A! be the functor
Alg; — Set sending R to R, and let U;, i € k, be the subfunctor of A! such that U; (R) =
{a € R|a#i}. Show that A = Uy UU; but My A # (M1 Uo) U (MM Un) if
k' #k.

EXERCISE 9.2 Let k’/k be a finite field extension. Let o: G — H be a homomorphism
of algebraic groups over k', and let 8:G — Iy, /; H be the corresponding homomorphism
over k. Show that Ker(f) is the unique affine subgroup of G such that Ker(8); = Ker(«).






CHAPTER V I

Affine groups over fields

Throughout this chapter, k is a field. When k is a field, the affine scheme attached to an
affine algebraic group can be regarded as a variety over k (perhaps with nilpotents in the
structure sheaf). This gives us a geometric interpretation of the algebraic group, to which
we can apply algebraic geometry.

1 Affine k-algebras

An affine k-algebra is a finitely generated k-algebra A such that k¥ ®j A is reduced. If
A is affine, then K ®j A is reduced for all fields K containing k; in particular, A itself
is reduced (CA 18.3). When k is perfect, every reduced finitely generated k-algebra is an
affine k-algebra (CA 18.1). The tensor product of two affine k-algebras is again an affine
k-algebra (CA 18.4).

2 Schemes algebraic over a field

Let k be a field, and let V be an affine k-scheme. When Oy (V) is a finitely generated
k-algebra (resp. an affine k-algebra), V is called an affine algebraic scheme over k (resp.
an affine algebraic variety over k).

For schemes algebraic over a field it is convenient to ignore the nonclosed points and
work only with the closed points. What makes this possible is that, for any homomorphism
¢: A — B of algebras finitely generated over a field, Zariski’s lemma shows that the pre-
image of a maximal ideal in B is a maximal ideal in A.'

For a finitely generated k-algebra A, define spm(A) to be the set of maximal ideals in
A endowed with the topology for which the closed sets are those of the form

V(a) e {m maximal | m D a}, aanidealin A4.

The inclusion map spm(A) < spec(A) identifies spm(A) with the set of closed points of
spec(A), and the map S — S Nspm(A) is a bijection from the open (resp. closed) subsets of

IRecall (CA 11.1) that Zariski’s lemma says that if a field K that is finitely generated as an algebra over a
subfield k, then it is finitely generated as a vector space over k. Let ¢: A — B be a homomorphism of finitely
generated k-algebras. For any maximal ideal m in B, B/m is a field, which Zariski’s lemma shows to be finite
over k. Therefore the image A/¢~!(m) of A in B/m is finite over k. As it is an integral domain, this implies
that it is a field, and so ¢! (m) is a maximal ideal.

71
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spec(A) onto the open (resp. closed) subsets of spm(A4). As noted, Zariski’s lemma shows
that spm is a contravariant functor from the category of finitely generated k-algebras to
topological spaces. On V' = spm(A) there is a sheaf Oy such that Oy (D( f)) > A 7 for all
f € A. Tt can be defined the same way as for spec(A), or as the restriction to spm(A) of the
sheaf on spec(A). When working with affine algebraic schemes (or varieties), implicitly we
use max specs. In other words, all points are closed.

When k is algebraically closed, the definition of an affine algebraic variety over k that
we arrive at is essentially the same as that in AG, Chapter 3 — see the next example.

EXAMPLE 2.1 Let k be an algebraically closed field, and endow k" with the topology for
which the closed sets are the zero-sets of families of polynomials. Let V' be a closed subset
of k™, let a be the set of polynomials that are zero on V, and let

klVl=k[X1,...,Xnl/a=k[x1,...,x4].
A pair of elements g,/ € k[V] with h £ 0 defines a function

P»%:D(h)—wc

on the open subset D (k) of V where & is nonzero. A function f:U — k on an open subset
U of V is said to be regular if it is of this form in a neighbourhood of each point of U. Let
O(U) be the set of regular functions on U. Then U ~~ O(U) is a sheaf of k-algebras on V,
and (V, O) is an affine algebraic scheme over k with O(V) = k[V]. See AG 3.4 — the map

(ai,....,ap) > (x1—ai,....,.xp—ay):V — spm(k[V])

is a bijection because of the Nullstellensatz. When V = k", the scheme (V,O) is affine
n-space A",

EXAMPLE 2.2 Let k be an algebraically closed field. The affine algebraic scheme
Spm(k[X,Y]/(Y))

can be identified with the scheme attached to the closed subset Y = 0 of k x k in (2.1). Now
consider
Spm(k[X,Y]/(Y?)).

This has the same underlying topological space as before (namely, the x-axis in k x k), but
it should now be thought of as having multiplicity 2, or as being a line thickened in another
dimension.

2.3 Let K be a field containing k. An affine algebraic scheme V over k defines an affine
algebraic scheme Vg over K with O(Vg) = K®; O(V).

2.4 An affine algebraic scheme V over a field k is said to be reduced if O(V) is reduced,
and it is said to be geometrically reduced if Vja is reduced. Thus V is geometrically
reduced if and only if O(V) is an affine k-algebra, and so a “geometrically reduced affine
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algebraic scheme” is another name for an “affine algebraic variety”. Let 91 be the nilradical
of O(V). Then

V is reduced <= I =0;
V is irreducible <= 91is prime;
V is reduced and irreducible <= O(V') is an integral domain.

The first statement follows from the definitions, the second statement has already been noted
(I11, §1), and the third statement follows from the first two.

2.5 Recall (CA 3.12) that the height ht(p) of a prime ideal p in a noetherian ring A is the
greatest length d of a chain of distinct prime ideals

pPOpP1D--DPg,
and that the Krull dimension of A is

sup{ht(m) | m € spm(A4)}.

2.6 The dimension of an affine algebraic scheme V is the Krull dimension of O(V) —
this is finite (CA 13.11). When V is irreducible, the nilradical 91 of O(V) is prime, and
so O(V)/M is an integral domain. In this case, the dimension of V' is the transcendence
degree over k of the field of fractions of O(V)/, and every maximal chain of distinct
prime ideals in O(V') has length dimV (CA 13.8). Therefore, every maximal chain of
distinct irreducible closed subsets of V' has length dim V. For example, the dimension of
A" is the transcendence degree of k(X1,...,X,) over k, which is n.

3 Algebraic groups as groups in the category of affine algebraic
schemes

Finite products exist in the category of affine algebraic schemes over k. For example, the
product of the affine algebraic schemes V and W is Spec(O(V) ® O(W)), and * = Spm(k)
is a final object. Therefore monoid objects and group objects are defined. A monoid (resp.
group) in the category of affine algebraic schemes over k is called an affine algebraic
monoid scheme (resp. affine algebraic group scheme) over k.

As the tensor product of two affine k-algebras is again affine (§1), the category of affine
algebraic varieties also has products. A monoid object (resp. group object) in the category
of affine algebraic varieties is called an affine monoid variety (resp. affine group variety).

An affine algebraic scheme V' defines a functor

R~ V(R) = Homy_,(O(V), R), (51)

from k-algebras to sets. For example, A”(R) ~ R" for all k-algebras R. Let V' be the
functor defined by V. It follows from (III, 2.2) and the Yoneda lemma that V ~» V' is
an equivalence from the category of algebraic schemes over k to the category of functors
from k-algebras to sets representable by finitely generated k-algebras. Group structures
on V correspond to factorizations of V' through the category of groups. Thus V ~ V' is
an equivalence from the category of affine algebraic group schemes over k to the category
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of functors Alg; — Grp representable by finitely generated k-algebras, with quasi-inverse
G ~ Spm(O(G)).

The functor V ~~ O(V) is an equivalence from the category of algebraic schemes over
k to the category of finitely generated k-algebras (cf. III, 2.2). Group structures on V'
correspond to Hopf algebra structures on O(V'). Thus V ~» O(V) is a contravariant equiv-
alence from the category of affine algebraic group schemes over k to the category of finitely
generated Hopf algebras over k.

PROPOSITION 3.1 Letk be a field. The functor (V,m) ~ (V',m’) is an equivalence from
the category of affine algebraic group schemes over k to the category of affine algebraic
groups over k, with quasi-inverse G ~» Spm O(G).

There is a similar statement with “group” replaced by “monoid”.

For an affine algebraic group G, we let |G|, denote the corresponding affine group
scheme; thus |G| = Spm(O(G)). The dimension of an algebraic group G is defined to
be the Krull dimension of O(G). When O(G) is an integral domain, this is equal to the
transcendence degree of O(G) over k (CA 13.8).

Is the set |G| a group?

Not usually. The problem is that the functor spm does not send sums to products. For
example, when k; and k, are finite field extensions of k, the set spm(k; ®p k2) may have
several points® whereas spm(k;) x spm(k3) has only one. For an algebraic group G, there
is a canonical map |G x G| — |G| x |G|, but the map

|G xG|— |G|

defined by m need not factor through it.

However, |G| is a group when k is algebraically closed. Then the Nullstellensatz shows
that |G| >~ G(k), and so |G| inherits a group structure from G (k). To put it another way,
for finitely generated algebras A; and A, over an algebraically closed field &,

spm(A; ® A2) = spm(A;) x spm(Az) (52)

(as sets, not as topological spaces?), and so the forgetful functor (V,0) ~» V sending an
affine algebraic scheme over k to its underlying set preserves finite products, and hence also
monoid objects and group objects.

ZFor example, if k1/k is separable, then
ky = kla] ~ k[X]/(f)

for a suitable element ¢ and its minimum polynomial f. Let f = f--- f» be the factorization of f into its
irreducible factors in k» (they are distinct because k1 /k is separable). Now

k1 @k = ka X1/ (i fr) = [T kalX1/(fi)

by the Chinese remainder theorem. Therefore spm(k; ®j k2) has r points.

3When regarded as a functor to topological spaces, (V, () ~» V does not preserve finite products: the
topology on V' x W is not the product topology. For an affine algebraic group G, the map m: |G| x |G| — |G|
is not usually continuous relative to the product topology, and so |G| is not a topological group for the Zariski
topology.
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Assume k is perfect, and let I' = Gal(k®/k). Then |G| ~ I'\G(k¥) and G (k) ~
G(k™T. In other words, |G| can be identified with the set of I'-orbits in G(k?') and
G (k) with the set of I"-orbits consisting of a single point. While the latter inherits a group
structure from G (k), the former need not.

The situation is worse with spec. For example, (52) fails for spec even when k is
algebraically closed.

4 Terminology

From now on “group scheme” and “algebraic group scheme” will mean “affine group
scheme” and “affine algebraic group scheme”; similarly for “group variety”, “monoid

variety”, “monoid scheme” and “algebraic monoid scheme”.

S Homogeneity

Let G be an algebraic group over a field k. An element a of G(k) defines an element of
G(R) for each k-algebra R, which we denote ag (or just a). Let e denote the identity
element of G (k).

PROPOSITION 5.1 Foreach a € G(k), the natural map
La:G(R) > G(R), gr>agg,
is an isomorphism of set-valued functors. Moreover,
Le=1idg and Lso Ly = Lyp, alla,b € G(k).

Here e is the neutral element in G (k).

PROOF. The second statement is obvious, and the first follows from it, because the equali-
ties
La o} Lafl == Le == idG

show that L, is an isomorphism. o

The homomorphism O(G) — O(G) defined by L, is the composite of the homomor-
phisms

0(6) % 0(6)8 0(6) 222 ke 0(G) = 0(G). (53)
For a € G(k), we let m, denote the kernel of a: O(G) — k; thus
mg ={f €O0(G)| fr(a) =0}

(see the notations I, 3.13). Then O(G)/m, >~ k, and so m, is a maximal ideal in O(G).
Note that O(G ), is the ring of fractions obtained from O(G) by inverting the elements of
the multiplicative set { f € O(G) | fr(a) # 0}.

PROPOSITION 5.2 Foreacha € G(k), O(G)m, >~ O(G)m,.
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PROOF. The isomorphism £,: O(G) — O(G) corresponding (by the Yoneda lemma) to L,
is defined by £,(f)r(g) = fr(arg). all g € G(R). Therefore, {;'m, = m,, and so £,
extends to an isomorphism O(G)m, — O(G)n, (because of the universal property of rings
of fractions; CA 6.1). o

COROLLARY 5.3 When k is algebraically closed, the local rings O(G ), at maximal ideals
m of O(G) are all isomorphic.

PROOF. When k is algebraically closed, the Nullstellensatz (CA 11.6) shows that all max-
imal ideals in O(G) are of the form m, for some a € G(k). o

5.4 The corollary fails when k is not algebraically closed. For example, for the algebraic
group 3 over Q,

kIX] kX1 kIX]
(X3—-1)  (X-1) (X2+X+1)

O(u3) = ~ QxQ[v-3],

and so the local rings are Q and Q[+ —3].

6 Reduced algebraic groups

An algebraic group G is reduced if |G| is reduced, i.e., if O(G) has no nilpotents.

PROPOSITION 6.1 Let G be a reduced algebraic group over a field k. If G(K) = {1} for
some algebraically closed field K containing k, then G is the trivial algebraic group, i.e.,

O(G) = k.

PROOF. Every maximal ideal of O(G) arises as the kernel of a homomorphism O(G) —
K (Nullstellensatz, CA 11.5), and so O(G) has only one maximal ideal m. As O(G) is
reduced, the intersection of its maximal ideals is zero (CA 11.8), and so m = 0. Therefore
O(G) is afield. It contains k, and the identity element in G is a homomorphism O(G) — k,
and so O(G) =k. o

6.2 The proposition is false for nonreduced groups. For example, «,(K) = {1} for every
field K containing k, but «, is not the trivial group.

For a k-algebra A, we let A;q denote the quotient of A by its nilradical. Thus Areq is a
reduced k-algebra, and the quotient map A — Aeq is universal for homomorphisms from
A to reduced k-algebras.

PROPOSITION 6.3 Let G be an algebraic group over a field k. If the comultiplication
map A ftactors through O(G )yeq, then there is a unique Hopf algebra structure on O(G)req
such that O(G) — O(G)req is a homomorphism of Hopt algebras. Let Gy — G be the
corresponding homomorphism of algebraic groups. Every homomorphism H — G with H
a reduced algebraic group factors uniquely through Gq — G.
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PROOF. Let (A,¢,S) be the Hopf algebra structure on O(G), and consider the composites
A
O(G) — O(G)®O(G) = O(G)red ® O(G)rea
OG) -k
S
O(G) — O(G) = O(G)req-

The lower two maps obviously factor through O(G );eq, and if the top map O(G) — O(G )req ®

O(G)req factors through O(G )eq then the maps define a Hopf algebra structure on O(G )req,
which is the unique Hopf algebra structure for which the quotient map O(G) — O(G)eq is
a homomorphism. The rest of the statement is obvious. o

The algebraic group Gyeq is called the reduced algebraic group associated with or at-
tachedto G.

6.4 If k is perfect, then A always factors through O(G).eq — the k-algebra O(G)yeq is an
affine k-algebra (§1), and s0 O(G )eq ® O(G )eq is also an affine k-algebra; in particular, it
is reduced.

6.5 When k is not perfect, a Hopf algebra structure on A need not pass to the quotient
Areq For example, let k be a nonperfect field of characteristic p, so that there exists an
a € k kP, and let G be the algebraic group

R~ G(R)={x€R| <P’ = ax?}.
Then

O(G) = k[X]/(XP" —aXP)
O(G)rea = k[X1/(X(XPP™D —gy).

Then O(G)req ® k¥ is not reduced but its localization at the ideal (x) is reduced; therefore
Geq is not an algebraic group. See also Exercise XIII-7 below and SGA 3, VI4, 1.3.2.

7 Smooth algebraic schemes

We review some definitions and results in commutative algebra.

7.1 Let m be a maximal ideal of a noetherian ring 4, and let n = mA,, be the maximal
ideal of the local ring Ay,; for all natural numbers r < s, the map

a+m’i—>a+n’:m"/m® —n"/n’
is an isomorphism (CA 6.7).

7.2 Let A be a local noetherian ring with maximal ideal m and residue field k. Then
m/m? is a k-vector space of dimension equal to the minimum number of generators of
m (Nakayama’s lemma, CA 3.9). Moreover, ht(m) < dimy (m/m?) (CA 16.5), and when
equality holds A is said to be regular. Every regular noetherian local ring is an integral
domain (CA 17.3).
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7.3 A point m of an affine algebraic scheme V is said to be regular if the local ring O(V ),
is regular, and V is said to be regular if all of its closed points are regular.* A regular affine
algebraic scheme is reduced. To see this, let f be a nilpotent element of O(V'); as f maps
to zero in O(V ), sf = 0 for some s € O(V) \ m; therefore the annihilator of f is an ideal
O(V') not contained in any maximal ideal, and so it equals O(V).

7.4 An affine algebraic scheme V over k is said to be smooth if Via is regular. If V is
smooth, then Vi is regular for all fields K containing k; in particular, V itself is regular
(CA 18.14). If V is smooth, then it follows from (7.3) that O(V') is an affine k-algebra,
and so V is an algebraic variety. Every affine algebraic variety contains a regular point (CA
18.15).

8 Smooth algebraic groups

An algebraic group G is said to be smooth if |G| is smooth, and it is connected if |G| is
connected (as a topological space).

PROPOSITION 8.1 Let H be an algebraic subgroup of an algebraic group G. Thendim H <
dimG, anddim H < dim G if G is smooth and connected and H # G.

PROOF. Because O(H) is a quotient of O(G), dim(O(H)) < dim(O(G)). If G is smooth
and connected, then O(G) is an integral domain; if H # G, then dim H < dimG by (CA
13.3). o

PROPOSITION 8.2 An algebraic group G over an algebraically closed field k is smooth if
and only if O(G )y, is regular, where m, = Ker(e: O(G) — k).

PROOF. If O(G)y, is regular for m = m,, then O(G),, is regular for all m by homogeneity
(5.2). Hence G is smooth. o

PROPOSITION 8.3 (a) An algebraic group G is smooth if and only if |G| is geometrically
reduced (i.e., an algebraic variety).
(b) An algebraic group G over a perfect field is smooth if and only if |G| is reduced.

PROOF. (a) If G is smooth, then |G| is an algebraic variety by (7.4). For the converse, we
have to show that Gja is regular. According to (7.4), Gia has a regular point, and so, by
homogeneity (5.2), all of its points are regular.

(b) When k is perfect, a finitely generated k-algebra A is reduced if and only if k¥ ® A
is reduced (see CA 18.1). Thus (b) follows from (a). o

COROLLARY 8.4 An algebraic group G over an algebraically closed field k is smooth if
every nilpotent element of O(G) is contained in m2.

4This then implies that local ring at every (not necessarily closed) point is regular (for a noetherian ring A,
if A is regular for all maximal ideals, then Ay is regular for all prime ideals (CA 17.5a).
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PROOF. Let G be the reduced algebraic group attached to G (see 6.3), and let e be the
neutral element of G (k). By definition, O(G) = O(G)/91 where N is the nilradical of
O(G). Every prime ideal of O(G) contains 91, and so the prime ideals of O(G) and O(G)
are in natural one-to-one correspondence. Therefore m, and mg have the same height, and
SO

dim O(G)my = dimO(G),

(Krull dimensions). The hypothesis on O(G) implies that
me/m2 — mz/m2

is an isomorphism of k-vector spaces. Because |G| is a reduced, G is smooth (8.3); in
particular, O(G ), is regular, and so

dimy (mz/m2) = dim O(G ), .
Therefore

dimg (me/mZ) = dimO(G )y, .
and so O(G )n, is regular. This implies that G is smooth (8.2). o

8.5 A reduced algebraic group over a nonperfect field need not be smooth. For example,
let k& be such a field, so that char(k) = p # 0 and there exists an element a of k that is not
a pth power. Then the subgroup G of G, x G, defined by Y? = a X2 is reduced but not
smooth. Indeed,

OG) =k[X,Y]/(YP —aX?P),

which is an integral domain because Y ? —a X ? is irreducible in k[ X, Y], but

O(Gya) = kX, Y]/(YP —aXP) = k¥[x, y]

contains the nilpotent element y — a%x. The reduced subgroup (Gpa)req of Gpa is the

subgroup of G4 x G, is defined by ¥ = a%X , which is not defined over k (as a subgroup
of G x Gg).

Note that G is the kernel of (x,y) — y? —ax?:G, x Gq 2 Gg. Therefore, although
Ker(otga) is (of course) defined over k, Ker(otgat)req is nOt.

9 Algebraic groups in characteristic zero are smooth (Cartier’s
theorem)

We first prove two lemmas.

LEMMA 9.1 Let V and V' be vector spaces over a field,> and let W be a subspace of V.
ForxeV,yeV/,
XRyeWRV' < xeWory=0.

PROOF. The element x ® y lies in W ® V' if and only if its image in V@ V'/W Q V' is
zero. But
VRV /WRV ~(V/W)g V',

and the image X® y of x ® y in (V/ W) ® V' is zero if and only if X =0 or y = 0. o

STt suffices to require ¥ and V' to be modules over a ring with V'’ faithfully flat.
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LEMMA 9.2 Let (A, A,€) be a Hopf algebra over k, and let I = Ker(e).

(a) Asak-vector space, A=ke&I.
(b) Foranya €1,
Ala)=a®1+1®a modl QI.

PROOF. (a) The maps k — A > k are k-linear, and compose to the identity. Therefore
A=k®I anda € A decomposes asa =€(a)+ (a—¢€(a)) ek D I.
(b) Using condition (b) of 11, 2.1, we find that, fora € I,

(d®e)(A@)—a®1l—-1®a)=a—a—0=0
(e®id)(A(@)—a®1—1®a)=a—-0—a =0.

Hence

Ala)—a®1—1®a € Ker(id®e) N Ker(e ® id)
=AQINI®A

THEOREM 9.3 (CARTIER 1962) Every algebraic group over a field of characteristic zero
is smooth.

PROOF. We may replace k with its algebraic closure. Thus, let G be an algebraic group
over an algebraically closed field k of characteristic zero, andlet A = O(G). Letm =m, =

Ker(€). Let a be a nilpotent element of A; according to (8.4), it suffices to show that a lies

in m2.

If @ maps to zero in Ay, then it maps to zero in Ay, /(mAy)?, and therefore in A/m? by
(7.1), and so a € m?. Thus, we may suppose that there exists an n > 2 such that a” = 0 in
A but a1 £ 0in Ay. Now sa” =0 in A for some s ¢ m. On replacing a with sa, we
find that a” = 0in A but a”~! # 0 in Ay,

Now a € m (because A/m = k has no nilpotents), and so (see 9.2)

Al@)=a®14+1®a+y with yem@;m.
Because A is a homomorphism of k-algebras,
0=A@")=(Aa)"=@1+1®a+y)". (54)
When expanded, the right hand side becomes a sum of terms
a"®1, n@'@l)-(1®a+y), @D'A®a)y’ (h+i+j=ni+j=>2).
As a" = 0 and the terms with i + j > 2 lie in A ® m?, equation (54) shows that
na" '@a+n@ " '®1)y e AQm?,

and so
na" 'Qaca" 'm@A+AQm? (inside A ®; A).
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In the quotient A ® (A/m?) this becomes
na" 'aea" 'm®@A/m? (inside 4 ® A/m?). (55)

Note that a”~! ¢ a"~!m, because if a”~! = a"~!m with m € m, then (1 —m)a"" 1 =0
and, as 1 —m is a unit in Ay, this would imply a" 1 = 0in Ay, which is a contradiction.
Moreover 7 is a unit in A because it is a nonzero element of k. We conclude that na ! ¢

a™ 'm, and so (see 9.1) @ = 0. In other words, a € m?, as required. o

COROLLARY 9.4 Let G be an algebraic group over a field of characteristic zero. If G(K) =
{1} for some algebraically closed field K, then G is the trivial algebraic group.

PROOF. According to the theorem, G is reduced, and so we can apply Proposition 6.1.

ASIDE 9.5 Let k be an arbitrary commutative ring. A functor F:Alg, — Set is said to be formally

smooth if, for any k-algebra A and nilpotent ideal n in A, the map F(A) — F(A/n) is surjective.

A k-scheme X is smooth over k if it is locally of finite presentation and the functor A4 ~» X(A4) o

Homy (Spec A4, X) is formally smooth. There is the following criterion (SGA1, II):

a finitely presented morphism is smooth if it is flat and its geometric fibres are nonsin-
gular algebraic varieties.

Therefore, when the ring k contains a field of characteristic zero, Cartier’s theorem (9.3) shows that
every flat affine group scheme of finite presentation over k is smooth.

ASIDE 9.6 In the language of SGA 3, Theorem 9.3 says that every affine algebraic group scheme
over a field of characteristic zero is smooth. More generally, every group scheme (not necessarily
affine) over a field of characteristic zero is geometrically reduced (extension by Perrin of Cartier’s
theorem; SGA 3, Vly, 6.9).

10 Smoothness in characteristic p # 0

THEOREM 10.1 An algebraic group G over an algebraically closed field k of characteristic
p # 0 is smooth if O(G) has the following property:

acO(G), a? =0 = a=0. (56)

PROOF. Let a be a nilpotent element of O(G). As in the proof of Theorem 9.3, we may
suppose that @ = 0 in O(G) but a"~! # 0 in O(G)m,. If p|n, then (a7 )? = 0, and so

ar = 0, which is a contradiction. Therefore n is nonzero in k, and the argument in the

proof of Theorem 9.3 shows that @ € m2. o

COROLLARY 10.2 For all r > 1, the image of a — a®? :O(G) — O(G) is a Hopf subal-
gebra of O(G), and for all sufficiently large r, it is a reduced Hopf algebra.

PROOF. Let k be a field of characteristic p # 0. For a k-algebra R, we let fg denote the
homomorphism a — a?: R — R. When R = k, we omit the subscript. We let s R denote

the ring R regarded as a k-algebra by means of the map k i) k — R. Let G be an
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algebraic group over k, and let G(?) be the functor R ~» G( #R). This is represented by
k ® 7x O(G) (tensor product of O(G) with k relative to the map f:k — k),

O(G) = k® 14 O(G)

L

k ——— k,

and so it is again an algebraic group. The k-algebra homomorphism fg:R — s R de-
fines a homomorphism G(R) — GP)(R), which is natural in R, and so arises from a
homomorphism F: G — G (P) of algebraic groups. This homomorphism corresponds to the
homomorphism of Hopf algebras

c®a > caP:0(GP) > O(G).

When k is perfect, this has image O(G)?, which is therefore a Hopf subalgebra of O(G)
(Exercise I1-6). On repeating this argument with f and F replaced by f” and F", we find
that O(G)?" is a Hopf subalgebra of O(G).

Concerning the second part of the statement, because the nilradical Dt of O(G) is
finitely generated, there exists an exponent n such that a” = 0 for all @ € ). Let r be
such that p” > n; then a?” = 0 for all a € M. With this r, O(G)?" satisfies (56). As it is a
Hopf algebra, it is reduced. O

NOTES The first part of (10.2) only requires that k be perfect (probably the same is true of the
remaining statements).

11 Appendix: The faithful flatness of Hopf algebras

In this section, we prove the following very important technical result.

THEOREM 11.1 For any Hopf algebras A C B over a field k, B is faithfully flat over A.

Let k' be a field containing k. The homomorphism A — k’ ® A is faithfully flat, and
so it suffices to show that k¢’ ® B is faithfully flat over &’ ® A (CA 9.4). This allows us to
assume that k is algebraically closed.

The homomorphism A — B corresponds to a homomorphism ¢: H — G of affine
groups over k with O(H) = B and O(G) = A:

OH) «— O(G)

H % ¢
B «— A.

We regard H and G as algebraic group schemes, i.e., we write H and G for |H| and |G]|.
Because k is algebraically closed, the underlying set of H (resp. G) can be identified with
H (k) (resp. G(k)), which is a group (see §3)
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Case that A is reduced and A and B are finitely generated.

We begin with a remark. Let V' be an algebraic scheme over an algebraically closed field.
Then V is a finite union V = V; U-.- UV, of its irreducible components (III, 1). Assume
that V' is homogeneous, i.e., for any pair (a,b) of points of V', there exists an isomorphism
V — V sending a to b. As some point of V' lies on a single component, all do, and so V'
is a disjoint union of the V;. As every V; is closed, they are also open, and they are the
connected components of V. When V; is reduced, the ring O(V;) is an integral domain.

Hence H and G are disjoint unions of their connected components, say H = | |,o; H;
and G = |_|je 7 Gj. Because G is reduced, each ring O(G;) is an integral domain, and
0G) =1] jeJ O(G/). Each connected component H; of H is mapped by ¢ into a con-
nected component G j;y of G. The map i — j(i): ] — J is surjective, because otherwise
O(G) — O(H) would not be injective (if jo were not in the image, then an f € O(G) such
that f|G; = 0for j # jo would have f op = 0).

Let H° (resp. G°) be the connected component of H (resp. G) containing the identity
element. Then H ° maps into G°. Because O(G °) is an integral domain, the generic flatness
theorem (CA 9.12; CA 16.9) shows that there exists a c € H° such that O(H )y, is faithfully
flat over O(G )m,,.,- Homogeneity, more precisely, the commutative diagrams

H -,y O(H)m, <—— O(H)m,
Lyw) ~
AL O(Ghmy ' O(Gmyr)

(see §5), now implies that O(H ), is faithfully flat over O(G)w,,,, for all b € H. Hence
O(H) is flat over O(G) (CA 9.9), and it remains to show that ¢: H — G is surjective as a
map of sets (CA 9.10¢). According to (CA 12.14), ¢(H ) contains a nonempty open subset
U of G°. For any g € G°, the sets U™! and Ug™! have nonempty intersection (because
G° is irreducible). This means that there exist u,v € U such that u~! = vg~!, and so
g=uv e U. Thus ¢(H) D G°, and it follows that the translates of G° by points in ¢ (H)
cover G (because I maps onto J).

Case that the augmentation ideal of A is nilpotent

We begin with a remark. Let H — G be a homomorphism of abstract groups with kernel
N . Then the map
(h,n)—~ (hn,h): HxN — H xg H (57)

is a bijection — this just says that two elements of H with the same image in G differ by
an element of the kernel. Similarly, for a homomorphism ¢: H — G of affine groups, there
is an isomorphism

HxN — HxgH (58)

that becomes the map (57) for each k-algebra R. Because of the correspondence between
affine groups and Hopf algebras, this implies that, for any homomorphism A — B of Hopf
algebras, there is a canonical isomorphism of left B-modules

B®4B— B® (B/14B) (59)

where [ 4 is the augmentation ideal Ker(A4 LN k) of A.
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Let I = I4, and assume that / is nilpotent, say /" = 0. Choose a family (e;) ey of
elements in B whose image in B/IB is a k-basis and consider the map

(a./)jGJHZja‘,-ej:A(J)eB (60)

where A) is a direct sum of copies of A indexed by J. We shall show that (60) is an
isomorphism (hence B is even free as an A-module).
Let C be the cokernel of (60). A diagram chase in

A . B C 0

l !

onto

(4/HY) — B/IB

shows that every element of C is the image of an element of B mapping to zero in B/IB,
i.e., lying in /B. Hence C = IC, and so C = IC = I?C = --- = I"C = 0. Hence
AY) S Bis surjective.

For the injectivity, consider the diagrams

QW M p o = B/IB

l ! l l

onto

M —— BY ™, pe,B  (B/IB)Y) —=— (B/IB)®; (B/IB)

in which the lower arrows are obtained from the upper arrows by tensoring on the left with
B and B/IB respectively, and M is the kernel. If b € BY“) maps to zero in B ® 4 B,
then it maps to zero in B/IB ® B/IB, which implies that it maps to zero in (B/IB)").
Therefore M is contained in (IB)"Y) = 1. B\,
Recall (59) that
B®4B~BQ®,B/IB

as left B-modules. As B/IB is free as a k-module (k is a field), B ®; B/IB is free as
a left B-module, and so B ® 4 B is free (hence projective) as a left B-module. Therefore
BY) is a direct sum of B-submodules,

B —MaN.

We know that
McIl-BY)=IM&IN,

andsoM C IM.Hence M C IM C I>M =-.- =0. We have shown that B“) > B® 4 B
is injective, and this implies that AY) - Bis injective because AY) ¢ B,
Case that A and B are finitely generated
We begin with a remark. For any diagram of abstract groups
H

1#

M G G’
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with M the kernel of G — G’, the map
(m,h)y— (m-B(h),h)M xH - Gxg' H
is an isomorphism. This implies a similar statement for affine groups:
MxH~Gxg H. (61)

After Theorem 9.3, we may suppose that k has characteristic p # 0. According to
(10.2), there exists an 1 such that O(G)?" is a reduced Hopf subalgebra of O(G). Let G’
be the algebraic group such that O(G’) = O(G)?", and consider the diagrams

N H G ON) «—— O(H) % O(G")
LT e
M G G OM) «—— OG) «—— OG)

where N and M are the kernels of the homomorphisms H — G’ and G — G’ respectively.
Because O(G’) is reduced, the homomorphism O(G’) — O(H) is faithfully flat, and so
O(G) — O(H) remains injective after it has been tensored with O(H):

injective

0(G)®oGH OH) — O(H) ®0H O(H)

(61)J2 (59)\[:

OM)RO(H) -~ > O(N)® O(H).

Because k — O(H) is faithfully flat (k is a field), the injectivity of the dotted arrow implies
that O(M) — O(N) is injective, and hence it is faithfully flat (because the augmentation
ideal of O(M) is nilpotent). Now the dotted arrow’s being faithfully flat, implies that the
top arrow is faithfully flat, which, because O(G’) — O(H) is faithfully flat, implies that
O(G) — O(H) is faithfully flat (CA 9.4).

General case

We show in (VIII, 8.3) below that A and B are directed unions of finitely generated Hopf
subalgebras A; and B; such that A; C B;. As B; is flat as an A;-module for all i, B is flat
as an A-module (CA 9.13). For the faithful flatness, we use the criterion (CA 9.10b):

A — B is faithfully flat<—> for all maximal ideals m C A, mB # B.

Let m be a maximal ideal in A. If 1 € mB, then 1 =) m;b; for some m; € m and
b;j € B. For some i, A; will contain all the m ;s and B; will contain all the b;s, and so
1 e (mNA;)B;. Butmn A; # A; (it doesn’t contain 1), and so this contradicts the faithful
flatness of B; over A;. Hence mB # B, and B is faithfully flat over 4.

COROLLARY 11.2 Let A C B be Hopf algebras with B an integral domain, and let K C L
be the fields of fractions of A and B. Then B N K = A; in particular, A= B if K = L.

PROOF. Because B is faithfully flat over A, cBN A =cA forall c € A. If a, c are elements
of Asuchthata/c € B,thena e cBNA=cA,andsoa/c € A. o
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ASIDE 11.3 Some statements have easy geometric proofs for smooth algebraic groups. In extend-
ing the proof to all algebraic groups, one often has to make a choice between a nonelementary
(sometimes difficult) proof using algebraic geometry, and an elementary but uninformative proof
using Hopf algebras. In general, we sketch the easy geometric proof for smooth algebraic groups,
and give the elementary Hopf algebra proof in detail.

ASIDE 11.4 In most of the literature, for example, Borel 1991, Humphreys 1975, and Springer
1998, “algebraic group” means “smooth algebraic group” in our sense. Our approach is similar to
that in Demazure and Gabriel 1970 and Waterhouse 1979.

The important Theorem 9.3 was announced in a footnote to Cartier 1962; the direct proof pre-
sented here follows Oort 1966.

Takeuchi 1972 proves Theorem 11.1 entirely in the context of Hopf algebras, for Hopf algebras
that are either commutative or cocommutative, and he states that “it is an open problem whether
the restriction of commutativity or cocommutativity can be removed”. The proof of the theorem
presented here follows Waterhouse 1979, Chapter 14.

ASIDE 11.5 InSGA 3, V14, 5.4.1, p.326, it is proved that a homomorphism u: H — G of algebraic

groups over a field factors into H Ny /N > G with pO(H/N) — O(H) faithfully flat and
i a closed immersion. If u%:O(G) — O(H) is injective, then i is an isomorphism, and so u? is
faithfully flat (see SGA 3, VIp, 11.14, p.426). Thus, in SGA 3, Theorem 11.1 is essentially part of
the theorem on the existence of quotients by a normal subgroup.



CHAPTER VI I

Group Theory: Subgroups and
Quotient Groups.

In this chapter and in Chapter IX, we extend the basic theory of abstract groups to affine
groups. Throughout, k is a ring.

1 A criterion to be an isomorphism

PROPOSITION 1.1 A homomorphism of affine groups u: H — G is an isomorphism if and
only if

(a) the map u(R): H(R) — G(R) is injective for all k-algebras R, and
(b) the homomorphism u": O(G) — O(H) is faithfully flat.

When k is a field, (b) can be replaced with:
(b') the homomorphism u®: O(G) — O(H) is injective.

PROOF. The conditions (a) and (b) are obviously necessary. For the sufficiency, note that
the maps

HxgH=H %G

give rise to homomorphisms of Hopf algebras

0(G) 5 O(H) = O(H) ®oc) ®(H).

Condition (a) implies that the two projection maps H xg H = H are equal, and so the
homomorphisms

X x®1

e (JOUH) = O(H) ®oG) O(H) (62)

are equal. But condition (b) implies that the subset of O(H) on which these homomor-
phisms is u'(O(G)) (see CA 9.6). Therefore u is surjective, and so it is an isomorphism
(faithfully flat homomorphisms are injective). When k is a field, condition (b") implies (b)
(see VI, 11.1). o

87
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2 Injective homomorphisms

DEFINITION 2.1 Letu: H — G be a homomorphism of affine groups over k.

(a) We say that u is a monomorphism if u(R): H(R) — G(R) is injective for all k-
algebras R.

(b) We say that u injective if the map the map u': O(G) — O(H) is surjective. An
embedding is an injective homomorphism.

In other words, u is a monomorphism if the map |u|:|H| — |G| of affine k-schemes
is a monomorphism, and it is injective (a closed immersion) if |u|:|H| — |G| is a closed
immersion.

PROPOSITION 2.2 Ifu: H — G is injective, then it is a monomorphism. The converse is
true when k is a field.

PROOF. If u?:O(G) — O(H) is surjective, then any two homomorphisms O(H) — R
that become equal when composed with u" must already be equal, and so H(R) — G(R)
is injective.

Now suppose that k is a field and that u(R) is injective for all R. The homomorphism
u! factors into homomorphisms of Hopf algebras

O(G) — u*(O(G)) = O(H).
Let H’ be the affine group whose Hopf algebra is u*(O(G)). Then u factors into
H— H — G,

and the injectivity of u(R) implies that H(R) — H’(R) is injective for all k-algebras R.
Because O(H') — O(H) is injective, Proposition 1.1 shows that the map H — H' is an
isomorphism, and so u*(O(G)) = O(H). o

PROPOSITION 2.3 Letu: H — G be a homomorphism of affine groups. If u is injective,
then uy:: Hy, — Gy is injective for every k-algebra k’. Conversely, if uy is injective for
some faithfully flat k-algebra k', then u is injective.

PROOF. Letk’be ak-algebra. If A — B is faithfully flat, then kX’ ® A — k’ ® B is faithfully
flat, and the converse is true if k — k’ is faithfully flat. O

ASIDE 2.4 What we call a monomorphism (resp. an injection) is called a monomorphism (resp. a
closed immersion) in SGA 3. For homomorphisms of group schemes (affine or not), it is a subtle
problem to determine under what conditions monomorphisms are necessarily closed immersions
(see SGA 3 VIII, 7, for a discussion of the problem). Certainly, there are examples of monomor-
phisms that are not closed immersions.
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3 Affine subgroups

DEFINITION 3.1 An affine subgroup (resp. normal affine subgroup) of an affine group G
is a closed subfunctor H of G such that H(R) is a subgroup (resp. normal subgroup) of
G(R) for all R.

In other words, a subfunctor H of an affine group G is an affine subgroup of G if

o H(R) is a subgroup of G(R) for all k-algebras R, and
¢ H is representable by a quotient of O(G) (cf. V, 6.2).

An affine subgroup H of an affine algebraic group G is an algebraic group, because
O(H) is a quotient of the finitely presented k-algebra O(G).

PROPOSITION 3.2 The affine subgroups of an affine group G are in natural one-to-one
correspondence with the Hopf ideals on O(G).

PROOF. For an affine subgroup H of G,
I(H)={f €O(G)| fr(h) =1forall h € H(R) and all R}

is a Hopf ideal in G (it is the kernel of O(G) — O(H ); see Exercise 1I-6). Conversely, if a
is a Hopf ideal in G, then the functor

R~~{geG(R)| fr(g) =0forall f €a}

is an affine subgroup G(a) of O(G) (it is represented by O(G)/a). The maps H — I(H)
and a — G(a) are inverse. o

COROLLARY 3.3 When k is noetherian, the affine subgroups of an algebraic affine group
satisfy the descending chain condition (every descending chain of affine subgroups eventu-
ally becomes constant).

PROOF. The ring O(G) is noetherian (Hilbert basis theorem, CA 3.6), and so the ideals in
O(G) satisty the ascending chain condition. o

PROPOSITION 3.4 For any affine subgroup H of an affine algebraic group G, the algebraic
scheme |H | is closed in |G|.

PROOF. If a is the kernel of O(G) — O(H), then | H| is the subspace V(a) o {m|m>Da}
of |G|. o

PROPOSITION 3.5 For any family (H ) jey of affine subgroups of an affine group G, the
functor
R~ ﬂje] H;(R) (intersection inside G(R))

is an affine subgroup ﬂjGJ H; of G, with coordinate ring O(G)/I where I is the ideal
generated by the ideals I(H ;).
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PROOF. We have
Hj(R)={g € G(R)| fr(g) =0forall f €l(H,)}.
Therefore,

H(R)={g € G(R) | fr(g) =0forall f e| JI(H))}
= Hom(O(G)/I, R). O

EXAMPLE 3.6 The intersection of the affine subgroups SL; and G, (scalar matrices) of
GL,, is i, (matrices diag(c,...,c) with ¢ = 1).

DEFINITION 3.7 An affine subgroup H of algebraic group G is said to be characteristic
if, for all k-algebras R and all automorphisms u of Gg, u(Hg) = Hg (cf. DG II, §1,
3.9). When £ is a field and the condition holds only when R is a field, we say that H is
characteristic in the weak sense.

Both conditions are stronger than requiring that u(H) = H for all automorphisms of G
(see X VI, 2.7).

3.8 In the realm of not necessarily affine group schemes over a field, there can exist non-

7= affine (necessarily nonclosed) subgroup schemes of an affine algebraic group. For example,
the constant subgroup scheme (Z); of G, over Q is neither closed nor affine. Worse, the
(truly) constant subfunctor R ~» Z C R of (3, is not representable. Over an algebraically
closed field k consider the discrete (nonaffine) group scheme with underlying set k; the
obvious map k — G, of nonaffine group schemes is a homomorphism, and it is both mono
and epi, but it is not an isomorphism.

4 Kernels of homomorphisms

The kernel of a homomorphism u: H — G of affine groups is the functor

def

R~ N(R) = Ker(u(R): H(R) — G(R)).
Let €: O(G) — k be the identity element of G (k). Then an element 2: O(H) — R of H(R)
lies in N(R) if and only if its composite with u%: O(G) — O(H) factors through e:

O(H) < 0(G)

Let Ig be the kernel of €: O(G) — k (this is called the augmentation ideal), and let
I - O(H) denote the ideal generated by its image in O(H). Then the elements of N(R)
correspond to the homomorphisms O(H) — R that are zero on Ig-O(H), i.e.,

N(R) = Homy_q,(O(H)/IcO(H).R).

We have proved:
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PROPOSITION 4.1 For any homomorphism H — G of affine groups, there is an affine
subgroup N of H (called the kernel of the homomorphism) such that

N(R) = Ker(H(R) — G(R))
for all R; its coordinate ring is O(H)/IgO(H).
Alternatively, note that the kernel of u is the fibred product of H — G < *, and so it is
an algebraic group with coordinate ring
O(H) ®o(6) (0(G)/16) ~ O(H) /1 O(H)
(see 'V, §2).

EXAMPLE 4.2 Consider the map g + g"*:G,, — Gy,. This corresponds to the map on
Hopf algebras Y + X:k[Y,Y ~!] — k[X, X 1] because

X"(g)=¢"=Y(g")

(cf. (13), p.25). The map €:k[Y,Y '] — k sends f(Y) to f(1), and so the augmentation
ideal for Gy, is (Y —1). Thus, the kernel has coordinate ring

K[X, X1/ (X" 1) ~ k[X]/ (X" —1).
In other words, the kernel is the algebraic group u,, as we would expect.

EXAMPLE 4.3 Let N be the kernel of the determinant map det: GL,, — G,. This corre-
sponds to the map on Hopf algebras

X > det(X;;):k[X, X1 = k[..., Xij,...,det(X;;) 1]

because
det(X;;)(aij) = det(a;;) = X(det(a;;)).

As we just noted, the augmentation ideal for G, is (X — 1), and so

k[...,X,-j,...,det(X,-j)_l] - k[...,Xl'j,...]

OW) = (det(X;;)— 1) = (det(X;;)—1)

In other words, the kernel of det is the algebraic group SL;, as we would expect.

PROPOSITION 4.4 If a homomorphism of affine groups is injective, then its kernel if trivial.
The converse is true when k is a field.

PROOF. The kernel of u: H — G is trivial if and only if u#(R) is injective for all R. There-
fore the proposition is a restatement of Proposition 2.2. O

COROLLARY 4.5 Whenk is a field of characteristic zero, a homomorphism of affine groups
G — H is injective if and only if G(k*) — H (k™) is injective.

PROOF. When k is a field of characteristic zero, an affine group N is trivial if N(k?) = 1
(VL 9.4). o
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NOTES Need to discuss whether trivial kernel implies injective over rings k. Consider H — G
injective as a map of functors, corresponding to A — B. Can assume A — B injective, and want
to prove that H(R) = G(R). Have H(R) C G(R). Given P € G(R), want P € H(R). Certainly
P € H(R ® B), which implies that P € H(R) if R — R ®y4 B is injective. But why should it?
Really seem to need that A — B is flat. Give examples. Actually, should look at this from the point
of view of schemes: a morphism X — Y with trivial fibres.

4.6 Proposition 4.5 is false for fields k of characteristic p # 0. For example, the ho-
momorphism x — x?:G, — G, has kernel o, and so it is not injective, but the map
x = xP:G4(R) — G4 (R) is injective for every reduced k-algebra R.

REMARK 4.7 Let A be an object of some category A. A morphism u:S — A is amonomor-
phism if f —uo f:Hom(T,S)— Hom(T, A) is injective for all objects 7. Two monomor-
phisms u: S — A and u’: S” — A are said to be equivalent if each factors through the other.
This is an equivalence relation on the monomorphisms with target A, and an equivalence
class of monomorphisms is called a subobject of A.

Let k be a field. A homomorphism of affine groups over k is a injective if and only if
it is a monomorphism in the category of affine groups over k. To see this, let u: H — G be
a homomorphism of affine groups. If u is injective and the homomorphisms 8,y: H' — H
agree when composed with u, then (1.1a) with R = O(H') shows that 8 = y. Suppose, on
the other hand, that u is not injective, so that its kernel N is nontrivial. Then the homomor-
phisms n +— 1, n +— n: N — N are distinct, but they agree when composed with u, and so
u is not a monomorphism.

Let G be an affine group. Two monomorphisms u: H — G and u: H' — G are equiv-
alent if and only if Im(u g) = Im(u’g) for all k-algebras R. It follows that, in each equiva-
lence class of monomorphisms with target G, there is exactly one with H an affine subgroup
of G and with u the inclusion map.

ASIDE 4.8 In any category, the equalizer of a pair of morphisms is a monomorphism. A monomor-
phism that arises in this way is said to be regular. In Grp, every monomorphism is regular (see,
for example, van Oosten, Basic Category Theory, Exercise 42, p.21). For example, the centralizer
of an element a of a group A (which is not a normal subgroup in general) is the equalizer of the
homomorphisms x + x, x > axa~': A — A. Is it true that every monomorphism in the category
of affine (or algebraic) groups is regular?

5 Dense subgroups

Throughout this subsection, k is a field.

Let G be an algebraic group over k. By definition, a point a € G (k) is a homomorphism
O(G) — k, whose kernel we denote m, (a maximal ideal in O(G)). As we discussed VI,
§3, the map a — mg,:G(k) — |G| is injective with image the set of maximal ideals m of
O(G) such that O(G)/m = k. We endow G (k) with the subspace topology.

PROPOSITION 5.1 Let G be an algebraic group over a field k, and let I" be a subgroup
of G(k). There exists an affine subgroup H of G such that H(k) = I if and only if I
is closed, in which case there exists a unique smallest H with this property. When k is
algebraically closed, every smooth affine subgroup of G arises in this way.
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PrROOF. If I' = H(k) for an affine subgroup H of G, then I' = |H|N G(k), which is
closed by (3.4). Conversely, let I" be a closed subgroup of G(k). Each f € O(G) defines
a function I' — k, and, for x,y € I', (Af)(x,y) = f(x-y) (see (12), p. 25). Therefore,
when we let R(I") denote the k-algebra of maps I" — k and define Ar: R(I") x R(I") —
R(I" x I') as in Exercise II-1, we obtain a commutative diagram

O(G) 2%, 0(G)® O(G)

l l

R(I) =2 R(I'xI),

which shows that Apr maps into R(I") ® R(I"), and so (R(I"),Ar) is a Hopf algebra
(ibid.). Because I is closed, it is the zero set of the ideal

a € Ker(O(G) — R(I)),

which is a Hopf ideal because (O(G),Ag) — (R(I"), Ar) is a homomorphism of Hopf
algebras (II, 5.2). The affine subgroup H of G with O(H) = O(G)/a C R(I") has H(k) =
I'. Clearly, it is the smallest subgroup of G with this property. When k is algebraically
closed and H is a smooth subgroup of G, then the group attached to I = H(k) is H
itself. 0o

REMARK 5.2 For any subgroup I" of G(k), the closure I" of I" in G(k) C |G| is a closed
subgroup of G(k).! The smallest affine subgroup H of G such that H(k) = I" is often
called the “Zariski closure” of I" in G.

REMARK 5.3 When k is not algebraically closed, not every smooth algebraic subgroup of
G arises from a closed subgroup of G (k). Consider, for example, the algebraic subgroup
Un C Gy, over Q. If n is odd, then p, (Q) = {1}, and the algebraic group attached to {1} is
the trivial group.

REMARK 5.4 Itis obvious from its definition that R(I") has no nonzero nilpotents. There-
fore the affine subgroup attached to a closed subgroup I of G (k) is reduced, and hence
smooth if k is perfect. In particular, no nonsmooth subgroup arises in this way.

DEFINITION 5.5 Let G be an algebraic group over a field k, and let £’ be a field containing
k. We say that a subgroup I" of G(k’) is dense in G if the only affine subgroup H of G
such that H(k") D I is G itself.

5.6 The map I' — H in (5.1) sets up a one-to-one correspondence between the subgroups
I' of G(k) such that I" = I" and the affine subgroups H of G such that H (k) is dense in
H. If H(k) is dense in H, then H is reduced, hence smooth when k is perfect (see 5.4).
When £k is algebraically closed, the affine subgroups H of G such that H (k) is dense in H
are exactly the smooth affine subgroups.

Tt is a general fact that the closure of a subgroup I" of a topological group is a subgroup. To see this, note
that for a fixed ¢ € I', the maps x — cx and x — x1are continuous, and hence are homeomorphisms because
they have inverses of the same form. For ¢ € I', we have I'c = I', and so "¢ = I". As c is arbitrary, this says
that - =T.Ford e I',dI' c I",andsod " C I". We have shown that I"-I" C I". Because x — x ! isa
homeomorphism, it maps I” onto (I""1)~. Therefore ' 1 = (Ir'"H~ =T.
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5.7 If I’ € G(k') is dense in G, then, for any field k” D k’, I' € G(k") is dense in G.

5.8 Tt follows from the proof of (5.1) that G (k) is dense in G if and only if
f€eO(G), f(P)=0forall P € G(k) = f =0. (63)

In other words, G (k) is dense in G if and only if no nonzero element of O(G) maps to zero
under all homomorphisms of k-algebras O(G) — k:

ﬂ Ker(u) = 0.

u:0(G)—k

5.9 For an affine algebraic variety V over a field k, any f € O(V) such that f(P) =0
for all V (k) is zero (Nullstellensatz; CA 11.5); better, any f € O(V) such that f(P) =0
for all P € V(k*P) is zero (AG 11.15). Therefore, if G is smooth, then G (k*°P) (a fortiori,
G (k™)) is dense in G.

5.10 If G(k) is finite, for example, if the field k is finite, and dimG > 0, then G (k) is
never dense in G.

PROPOSITION 5.11 Ifk is infinite, then G (k) is dense in G when G = G,, GL,, or SL,,.

PROOF. We use the criterion (5.8). Because k is infinite, no nonzero polynomial in k[ X1,..., Xz]
can vanish on all of k" (FT, proof of 5.18). This implies that no nonzero polynomial f can
vanish on a set of the form

D(h)E{aeck™ |h(a)#0}, h#0,
because otherwise A f would vanish on k”. As

GLy (k) = {a € k™ | det(a) # O,

this proves the proposition for GL,,.
The proposition is obvious for G4, and it can be proved for SL,, by realizing O(SL,,)
as a subalgebra of O(GL,). Specifically, the natural bijection

A,r— A-diag(r,1,...,1):SL,(R) x Gy (R) — GL,(R)
(of set-valued functors) defines an isomorphism of k-algebras
O(GL,) ~ O(SL,) ® O(Gp),

and the algebra on the right contains O(SL, ). Hence

m Ker(u) C m Ker(u) = 0.

u:O(SL,)—k u:0O(GL,)—k O
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PROPOSITION 5.12 Let G be an algebraic group over a perfect field k, and let I’ =
Gal(k®/k). Then I" acts on G(k¥), and H <> H (k) is a one-to-one correspondence
between the smooth affine subgroups of G and the closed subgroups of G (k%) stable under
r.

PROOF. Combine (5.1) with (V, 7.3). (More directly, both correspond to radical Hopf
ideals a in the k-bialgebra k%! ® O(G) stable under the action of I'; see AG 16.7, 16.8).o

ASIDE 5.13 Let k be an infinite field. We say that a finitely generated k-algebra has “enough maps
to k7 if (1),,. 4. Ker(u) = 0O (intersection over k-algebra homomorphisms A — k). We saw in the
proof of (5.11) that k[X1,..., X,]x has enough maps to k for any & # 0. Obviously, any subalgebra
of an algebra having enough maps to k also has enough maps to k. In particular, any subalgebra
of k[X1,...,Xy]n has enough maps to k. A connected affine variety V is said to unirational if
O(V) can be realized as a subalgebra k[X7,..., X,]; in such a way that the extension of the fields
of fractions is finite. Geometrically, this means that there is a finite map from an open subvariety
of A" onto an open subvariety of V. Clearly, if V is unirational, then O(}') has enough maps to
k. Therefore, if a connected algebraic group G is unirational, then G (k) is dense in G. So which
algebraic groups are unirational? In SGA 3, XIV 6.11 we find:

One knows (Rosenlicht) examples of forms of G, over a nonperfect field, which have
only finitely many rational points, and therefore a fortiori are not unirational. More-
over Chevalley has given an example of a torus over a field of characteristic zero which
is not a rational variety. On the other hand, it follows from the Chevalley’s theory of
semisimple groups that over an algebraically closed field, every smooth connected
affine algebraic group is a rational variety.

Borel 1991, 18.2, proves that a smooth connected algebraic group G is unirational if k is perfect or if
G is reductive. For a nonunirational nonconnected algebraic group, Rosenlicht gives the example of
the group of matrices (_"b Z) over R with a? + b? = % 1. For a nonunirational connected algebraic
group, Rosenlicht gives the example of the subgroup of G, x G, defined by Y? —Y =t X? over the
field k = ko(z) (¢ transcendental). On the other hand, if k[/a, v/b] has degree 4 over k, then the
norm torus® associated with this extension is a three-dimensional torus that is not a rational variety.

Proofs of these statements will be given in a future version of the notes.

ASIDE 5.14 When k is finite, only the finite affine subgroups of G arise as the Zariski closure of a
subgroup of G (k) (see 5.10). Nori (1987) has found a more useful way of defining the “closure” of
a subgroup I" of GL,(F ). Let X = {x € I' | x? = 1}, and let I""* be the subgroup of I" generated
by X (it is normal). For each x € X, we get a one-parameter affine subgroup

t > x" =exp(tlogx):A' — GL,,

where ) )
p—17 p—1(1-2z2)
exp(z) = Zi:o o and log(z) = —Z —.

i=1 1

Let G be the smallest algebraic subgroup of GL,, containing these subgroups for x € X. Nori shows
that if p is greater than some constant depending only on n, then I't = G(F,)*. If G is semisimple
and simply connected, then G(F,)* = G(F ), and so I' t is realized as the group of rational points
of the connected algebraic group G. The map I" + G sets up a one-to-one correspondence between
the subgroups I" of GL,(F,) such that I' = I' " and the affine subgroups of GL,p , generated by
one-parameter subgroups ¢ — exp(¢y) defined by elements y € M, (IF,) with y? =0.

2Let T = (Gm) k@bl k" The norm map defines a homomorphism 7" — Gy, and the norm torus is the
kernel of this homomorphism.
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ASIDE 5.15 (m056192) Rosenlicht’s subgroup Y? —Y =tX? of G, x G, (p # 2) and the sub-
group Y? =t X? of G, x G, are examples of algebraic groups G over k such that G (k) is not dense
in G (the first is smooth; the second is reduced but not smooth).

A smooth, connected unipotent group is said to be k-split if there is a filtration by k-subgroups
for which the successive quotients are isomorphic to G,. The examples in the above paragraph
are non-split unipotent groups. Any smooth connected k-split unipotent group U is even a rational
variety (in fact, k-isomorphic as a variety to A”), and so it is clear that U(k) is Zariski dense in U
when is infinite. More generally, let G be a smooth connected affine algebraic group over k and
assume that the unipotent radical of Gya is defined and split over k (both of these conditions can
fail). Then as a k-variety, G is just the product of its reductive quotient (G/R,,G) and its unipotent
radical (result of Rosenlicht). In particular, is G is unirational, and if k is infinite, then G (k) is dense
in G (George McNinch)

A necessary condition when k is imperfect: if G(k) is dense in G, then G4 is a smooth alge-
braic group over k. Proof: the regular locus of G4 is open and non-empty, so contains a rational
point. This point is then smooth. By translation, G4 is smooth at origin, hence smooth everywhere.
This implies that it is an algebraic group because it is geometrically reduced (Qing Liu).

ASIDE 5.16 Let k be a commutative ring. Waterhouse 1979, 1.2, p. 5 defines an affine group
scheme to be a representable functor from k-algebras to groups. He defines an affine group scheme
to be algebraic if its representing algebra is finitely generated (ibid. 3.3, p. 24) . Now assume that
k is a field. He defines an algebraic matrix group over k to be a Zariski-closed subgroup of SL,, (k)
for some n (ibid., 4.2, p. 29), and he defines an affine algebraic group to be a closed subset of k"
some n with a group law on it for which the multiplication and inverse are polynomial maps (ibid.
4.2, p. 29). Algebraic matrix groups and affine algebraic groups define (essentially the same) affine
group schemes.

Waterhouse 1979 This work

affine group scheme affine group

affine algebraic group scheme | affine algebraic group (or just algebraic group)

algebraic matrix group affine subgroup G of GL, x such that G(k) is dense in G

affine algebraic group algebraic group G such that G(k) is dense in G.

We shall sometimes use algebraic matrix group to mean an affine subgroup G of GL,,
such that G(k) is dense in G.

ASIDE 5.17 Before Borel introduced algebraic geometry into the theory of algebraic groups in a
more systematic way, Chevalley defined algebraic groups to be closed subsets of k" endowed with a
group structure defined by polynomial maps. In other words, he studied affine algebraic groups and
algebraic matrix groups in the above sense. Hence, effectively he studied reduced algebraic groups
G with the property that G (k) is dense in G.

Hochschild adopts a similar approach (Hochschild 1971a, 1981). In our language, he defines an
affine algebraic group over a field k to be a pair (G, A) where A is a finitely generated Hopf algebra
over k and G is a dense subgroup of the affine group defined by A4 (ibid. p.21, p.10).

ASIDE 5.18 In the literature one finds statements:

When k is perfect, any algebraic subgroup of GL,, defined by polynomials with coef-
ficients in k is automatically defined over k (e.g., Borel 1991, Humphreys 1975).

What is meant is the following:

When k is perfect, any smooth algebraic subgroup G of GL,, za such the subset G (k™)
of GL, (k%) is defined by polynomials with coefficients in k arises from a smooth
algebraic subgroup of GL,, .
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From our perspective, the condition on G (k) (always) implies that G arises from a reduced alge-
braic subgroup of GL,, x, which is smooth if k is perfect.

6 Normalizers; centralizers; centres

For a subgroup H of an abstract group G, we let Ng(H) (resp. Cg(H)) denote the nor-
malizer (resp. centralizer) of H in G, and we let ZG denote the centre of G.

In this section, we extend these notions to an affine subgroup H of an affine group G.
We say that an affine group G is locally free if O(G) is a locally free k-algebra (see p. 67).
When £ is a field, all affine groups are (locally) free.

For g € G(R), let & H be the functor of R-algebras

R ~g-H(R)-g~' (subset of G(R')).
Define N to be the functor of k-algebras
R~~{geG(R)|*H =H}.
Thus, for any k-algebra R,
N(R)={geG(R)|g-H(R)-g~' = H(R') for all R-algebras R’}
=G(R)N(),, Now)(H(R)).

PROPOSITION 6.1 If H is locally free, then the functor N is an affine subgroup of G.

PROOF. Clearly N(R) is a subgroup of G(R), and so it remains to show that N is repre-
sentable by a quotient of O(G). Clearly

g-H(R)-g"'=H(R) <= g-H(R) g~ CH(R)andg"'-H(R)-g C H(R),
and so, when we let G act on itself by conjugation,
N=Tg(H, H)NTg(H, H)™!
(notations as in V, §6). Theorem 6.9, of Chapter V, shows that T (H, H) is representable,

and it follows from (3.5) that N is representable by a quotient of O(G). o

ASIDE 6.2 In fact Ng(H) = Tg(H, H) if H is finitely presented, because then every injective

map Hr — Hp is bijective (Ax, James, Injective endomorphisms of varieties and schemes. Pacific
J. Math. 31 1969 1-7).

The affine subgroup N of G is called the normalizer Ng(H) of H in G. Clearly a
subgroup H of G is normal if and only if Ng(H) = G.

It is obvious from its definition that the formation of Ng (H) commutes with extension
of scalars: for every k-algebra k’,

Ng(H)p =~ Ng,, (Hy).

PROPOSITION 6.3 Assume that k is a field. If H is an affine subgroup of an algebraic
group G, and H(k') is dense in H for some field k' containing k, then

Ng (H) (k) = G(k) N N (H(K)).
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PROOF. Let g € G(k) N Nguy(H(k')). Because g € G(k), € H is an algebraic subgroup
of G, and so & H N H is an algebraic subgroup of H. Because g € NG (H(k')),

(gH) (k"y = H(K'),
and so 8 HNH) (k') = H(k'). As H(k') is dense in H, this implies that s H N H = H,
andso8 H = H. o

COROLLARY 6.4 Assume that k is a field. Let H be a smooth affine subgroup of a smooth
algebraic group G. It H(k*%P) is normal in G (k*%P), then H is normal in G.

PROOF. Because H is smooth, H(k*P) is dense in H, and so (6.3) shows that Ng (H ) (k*P) =
G(k*®P), and so Ng(H) = G. 0

6.5 The corollary is false without the smoothness assumptions, even with k? for k*P. For
example, let H be the subgroup of SL, in characteristic p # 0 such that

-l 1)

(so H >~ ap). Then H(k®) =1, but H is not normal in SL,.

pazO}

PROPOSITION 6.6 Assume that k is a field. Let H be an affine subgroup of an algebraic
group G. Letig denote the inner automorphism of G defined by g € G(k); if G(k) is dense
inG andig(H) = H forall g € G(k), then H is normal in G.

PROOF. Let N = Ng(H) C G. If ig(H) = H, then g € N(k). The hypotheses imply that
G(k) C N(k),andso N =G. o

Let H be an affine subgroup of an affine group G, and let N be the normalizer of H.
Each n € N(R) defines a natural transformation i,
h—nhn~':H(R') - H(R)

of H regarded as a functor from the category of R-algebras to sets, and we define C to be
the functor of k-algebras
R~{neN(R)|i, =1idg}.

Thus,
C(R) = G(R)N( ), Cor)(H(R)).

PROPOSITION 6.7 If H is locally free, then the functor C is an affine subgroup of G.

PROOF. We have to show that C is representable. Let G act on G x G by
g(g1.82) = (81.8828 ). £.81.82 € G(R),
and embed H diagonally in G x G,
H—GxG, h+ (hh)forhe H(R).

Then
C =TgxG(H,H),

which is a closed subfunctor of G (V, 6.1). o
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The affine subgroup C of G is called the centralizer Cg(H) of H in G. It is obvious
from its definition that the formation of Cg (H ') commutes with extension of the base field:
for every k-algebra k’,

Co(H)p = Cg,, (Hy).

PROPOSITION 6.8 Assume that k is a field. If H is an affine subgroup of an algebraic
group G, and H (k') is dense in H for some field k' D k, then

Cg(H) (k) = G(k) N Cry (H(K)).
PROOF. Let n € G(k) N Cgry(H(k')). According to (6.3), n € Ng(H)(k). The maps

in and idg coincide on an affine subgroup of H, which contains H(k’), and so equals H .
Therefore n € Cg(H) (k). a)

COROLLARY 6.9 Assume that k is a field. Let H be a smooth affine subgroup of a smooth
algebraic group G. If H(k*%P) is central in G (k*°P), then H is central in G.

PROOF. Because H is smooth, H (kP) is dense in H, and so (6.8) shows that Cg (H ) (kP) =

G(k%P),and so Cg(H) = G. a)

The centre ZG of an affine group G is defined to be Cg(G). If G is locally free, then
it is an affine subgroup of G. If k is a field, G is algebraic, and G (k') is dense in G, then

ZG(k) = G(k)N Z(G(k")).
Let Aut(G) be the functor
R ~ Aut(GR).

The action of G on itself by inner automorphisms defines a homomorphism of functors
G — Aut(G), whose kernel is the functor ZG.

6.10 Even when G and H are smooth, Cg(H ) need not be smooth. For example, it is
possible for Cg(H) to be nontrivial without Cg (H ) (k') being nontrivial for any field k’
containing k. To see this, let G be the functor

R~ Rx R*

with the multiplication (a,u)(b,v) = (a + bu?,uv); here 0 # p = char(k). This is an
algebraic group because, as a functor to sets, it is isomorphic to G, x G,,. For a pair
(a,u) € Rx R*, (a,u)(b,v) = (b,v)(a,u) for all (b,v) if and only if u? = 1. Therefore,
the centre of G is jip, and so ZG (k") = 1 for all fields k' containing k. Another example
is provided by SL,, over a field of characteristic p. The centre of SL, is u,, which is not
smooth.

EXAMPLE 6.11 For a k-algebra R, the usual argument shows that the centre of GL, (R) is
the group of nonzero diagonal matrices. Therefore

Z(GL,) =G,, (embedded diagonally).
More abstractly, for any finite-dimensional vector space V,

Z(GLy) =G, (a € Gy(R) actson Vg as v — av).

)G
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EXAMPLE 6.12 Let G = GL,, over a field k. For an integer N, let Hy be the subfunctor

R~ Hy(R) = {diag(ay.....an) € GLy(R) |al =---=all =1}.

n

of G. Then Hy =~ (un)", and so it is an affine subgroup of G. For N sufficiently large
Ce(HN) =Dy

(group of diagonal matrices) (see (XIV, 6.4)). We consider two cases.

(a) k =Qand N odd. Then Hy (k) = {1}, and

Cok)(Hn (k) = GLy (k) # D (k) = Co (Hn) (k).

(b) k is algebraic closed of characteristic p # 0 and N is a power of p. Then Hy (k) =1
and

Co)(Hn (k)) = GLy (k) # Dy (k) = Co (Hy) (k).

An affine subgroup H of an affine group G is said to normalize (resp. centralize) an
affine subgroup N of G if H(R) normalizes (resp. centralizes) N(R) for all k-algebras R;
equivalently, if H C Ng(N) (resp. H C Cg(N)).

7 Quotient groups; surjective homomorphisms

What does it mean for a homomorphism of algebraic groups G — Q to be surjective? One
might guess that it means that G(R) — Q(R) is surjective for all R, but this condition is
too stringent. For example, it would say that x — x":G,, — G,, is not surjective even
though x > x": Gy, (k) — Gy, (k) is surjective whenever k is algebraically closed. In fact,

Gm — G, is surjective according to the following definition.

DEFINITION 7.1 A homomorphism G — Q of affine groups is said to be surjective (and
Q is called a quotient of G) if the homomorphism O(Q) — O(G) is faithfully flat.

A surjective homomorphism is also called a quotient map.

PROPOSITION 7.2 Letu: H — G be a homomorphism of affine groups. If u is surjective,
then so also is uy,: Hyr — Gy for every k-algebra k’. Conversely, if uy: is surjective for
one faithfully flat k -algebra k', then u is surjective.

PROOF. Because k — k' is faithfully flat, the map O(G) — O(H) is faithfully flat if and
only if X’ ®; O(G) — k' ®; O(H) is faithfully flat (see CA §9). o

PROPOSITION 7.3 A homomorphism of affine groups that is both injective and surjective
is an isomorphism.

PROOF. A faithfully flat map is injective (CA 9.6). Therefore, the map on coordinate rings
is both surjective and injective, and hence is an isomorphism. 0

THEOREM 7.4 Letk be a field. The following conditions on a homomorphism G — Q are
equivalent:
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(a) G — Q is surjective, i.e., O(Q) — O(G) is faithfully flat;

(b) O(Q) — O(G) is injective;

(c) forevery k-algebra R and g € Q(R), there exists a faithfully flat R-algebra R’ and a
g € G(R’) mapping to the image of ¢ in Q(R’):

G(R') —— Q(R) Jg — *
G(R) — O(R) q-

PROOF. (a)=(c): Let ¢ € Q(R). Regard g as a homomorphism O(Q) — R, and form the
tensor product R' = O(G) ® () R:

faithfully flat

0(G) «—— 0(0Q)
g=1®qJ q// Jq (64)
/

R =0(G) Qo) R R

Then R’ is a faithfully flat R-algebra because O(G) is a faithfully flat O(H )-algebra (apply
CA 9.7). The commutativity of the square in (64) means that g € G(R’) maps to the image

q' of g in Q(R').

(c)=(b): Consider the “universal” element idp(g) € Q(O(Q)). If G — Q is surjective,
there exists a g € G(R’) with R’ faithfully flat over O(Q) such that g and idp(g) map to
the same element of Q(R’), i.e., such that the diagram

O(G) «—— 0(9)

Jg JidO(Q)
faithfully flat

R «— O(Q)

commutes. The map O(Q) — R’, being faithfully flat, is injective (CA 9.6), which implies
that O(Q) — O(G) is injective.
(b)=-(a): According to (VI, 11.1) O(Q) — O(G) is faithfully flat. o

The condition (c) says that every g € Q(R) lifts to G after a faithfully flat extension.
The proof of (a)=(c) is valid for k a ring.
COROLLARY 7.5 Every homomorphism H — G of affine groups over a field factors into

H—->H -G

with H — H' surjective and H' — G injective.

PROOF. The homomorphism O(G) — O(H) factors into
O(G) - O(H') — O(H). -
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The affine group H’ in the corollary is called the image of the homomorphism H — G.

PROPOSITION 7.6 Assume that k is a field. Let G — Q be a homomorphism of algebraic
groups. If G — Q is a quotient map, then G(k¥) — Q(k¥) is surjective; the converse is
true if Q is smooth.

PROOF. Let g € Q(k™). For some finitely generated k-algebra R, the image of ¢ in
O (R) lifts to an element g of G(R). Zariski’s lemma (CA 11.1) shows that there exists a
k?-algebra homomorphism R — k¥, and the image of g in G(k?) maps to g € Q (k%):

G(R) —— G(k¥) g gpu
Q) —— Q(R) —— 0(k*) ¢ qR q

id
N —

For the converse, we may suppose that k is algebraically closed. Recall (I, 3.13) that
an element f of O(Q) is a family (fg)g with fgr a map Q(R) — R. Because Q is
smooth, O(Q) is reduced, and so f is determined by f;, (CA 11.8). As G(k) — Q(k) is

surjective, f is determined by the composite G (k) — QO (k) & k,and so O(Q) — O(G)
is injective. O

More generally, a homomorphism u: G — H of algebraic groups over a field is surjec-
tive if, for some field kX’ containing k, the image of G(k’) in H(k’) is dense in H (see IX,
3.3 below).

7.7 The smoothness condition in the second part of the proposition is necessary. Let k be
a field of characteristic p # 0, and consider the homomorphism 1 — «, where 1 denotes
the trivial algebraic group. The map 1(k) — u, (k) is {1} — {1}, which is surjective,
but 1 — « is not a quotient map because the map on coordinate rings is k[X]/(X?) — k,
which is not injective.

THEOREM 7.8 Let G — Q be a quotient map with kernel N. Then every homomorphism
G — Q' whose kernel contains N factors uniquely through Q :

N—GC——0Q

0

PROOF. Note that, if g and g’ are elements of G(R) with the same image in Q(R), then
g 'g’ lies in N and so maps to 1 in Q’(R). Therefore g and g’ have the same image in
Q’(R). This shows that the composites of the homomorphisms

GxoG=G— Q'
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are equal. Therefore, the composites of the homomorphisms
O(G) ®o(0) O(G) = O(G) < O(Q")

are equal. The subring of O(G) on which the two maps coincide is O(Q) (CA 9.6), and
so the map O(Q’) — O(G) factors through uniquely through O(Q) <> O(G). Therefore
G — Q' factors uniquely through G — Q. o

COROLLARY 7.9 If 0:G — Q and 0’:G — Q' are quotient maps with the same kernel,
then there is a unique homomorphism u: Q — Q' such that u o 0 = 6’; moreover, u is an
isomorphism.

PROOF. From the theorem, there are unique homomorphisms u: Q — Q' and u’: Q' — Q
such thatuof = 0" and u’ 06’ = 6. Now u’ ou = idg, because both have the property that
B o6 = 6. Similarly, uou’ = idg/, and so u and v’ are inverse isomorphisms. o

DEFINITION 7.10 A surjective homomorphism G — Q with kernel N is called the quo-
tient of G by N, and Q is denoted by G/N .

When it exists, the quotient is uniquely determined up to a unique isomorphism by
the universal property in (7.8). We shall see later (VIII, 19.4) that quotients by normal
subgroups always exist when k is a field.

DEFINITION 7.11 A sequence
l1>N—->G—>0—1

is exact if G — Q is a quotient map with kernel N.

PROPOSITION 7.12 Assume that k is a field. If
l1>N—->G—>0—1

is exact, then
dimG =dim N +dim Q.

PROOF. For any homomorphism u: G — Q of abstract groups, the map
(n,g+> (ng,g):Ker(u) xG — GxpG

is a bijection — this just says that two elements of G with the same image in Q differ by
an element of the kernel. In particular, for any homomorphism u: G — Q of affine groups
and k-algebra R, there is a bijection

Ker(u)(R) X G(R) — (G X0 G) (R),
which is natural in R. Therefore N x G >~ G x¢ G, and so

ON)®O(G) ~ O(G xg G).

3This duplicates (58), p. 83.
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Recall that the dimension of an algebraic group G has the following description: accord-
ing to the Noether normalization theorem (CA 5.11), there exists a finite set S of ele-
ments in O(G) such that k[S] is a polynomial ring in the elements of S and O(G) is
finitely generated as a k[S]-module; the cardinality of S is dimG. Since O(G xg G) =
O(G) ®o(g) O(G), it follows from this description that

dim(G x o G) = 2dim G —dim Q.

Therefore 2dim G —dim Q = dim N + dim G, from which the assertion follows.
[Need to explain this. If O(Q) = k[X1,..., Xm] and O(G) = k[X1,..., Xn], n = m,
then the tensor product is a polynomial ring in

Xm+1®1L,....Xn® 1,1 Xppt1,...,.1® Xy,
over k[X1,..., X;]; therefore, it is a polynomial ring in
m+m—m)+mn—m)=2n—m,

symbols over k, as required. In the general case, we can assume that k is algebraically
closed and that Q and G are reduced and connected. Let k(Q) be the field of fractions
of O(Q). Then dim Q is the transcendence degree of k(Q) over Q, and similarly for
dim G. Now the statement follows from the fact that k(G x ¢ G) is the field of fractions of
k(G) ®k(0)k(G).] o

ASIDE 7.13 Proposition 7.12 can also be proved geometrically. First make a base extension to k%
For a surjective map ¢: G — Q of irreducible algebraic schemes, the dimension of the fibre over
a closed point P of Q is equal dim(G) —dim Q for P in a nonempty open subset of Q (cf. AG
10.9b). Now use homogeneity (VI, §5) to see that, when G — Q is a homomorphism of algebraic
group schemes, all the fibres have the same dimension.

ASIDE 7.14 A morphism u: A — B in a category A is said to be an epimorphism if Hom(B,T) —
Hom(A, T) is injective for all objects T'.

It is obvious from Theorem 7.4 that a surjective homomorphism of affine groups is an epimor-
phism. The converse is true for groups (MacLane 1971, Exercise 5 to I 5), but it is false for affine
groups. For example, the embedding

e -1 )

is a nonsurjective epimorphism (any two homomorphisms from GL, that agree on B are equal).*

“4This follows from the fact that GL, /B ~ P!. Let f, f/ be two homomorphisms GL, — G. If f|B =
f'|B, then g — f'(g)- f(g)~! defines a map P! — G, which has image 1g because G is affine and Pl s
complete (see AG 7.5).

Alternatively, in characteristic zero, one can show that any homomorphism of B N SL, has at most one
extension to SLy because any finite dimensional representation of sl can be reconstructed from the operators
hand y. Specifically, if hv = mv and y™T1v = 0, then xv = 0; if hv = mv and u = y™ v, then xy" v can be
computed as usual using that [x, y] = h.
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8 Existence of quotients

PROPOSITION 8.1 Let G be an affine algebraic group over a field k, and let H be an
affine subgroup of G. Among the surjective homomorphism G — Q zero on H, there is a
universal one.

PROOF. For any finite family (G N Qi)ier of surjective morphisms such that H C
Ker(g;) all i, let Hy = ();¢; Ker(g;). According to (3.3), there exists a family for which
Hj is minimal. For such a family, I claim that the map from G to the image of (¢;): G —
[lic; Qi is universal. If it isn’t, then there exists a homomorphism ¢: G — Q containing
H in its kernel but not Hy. But then Hy¢,y = Hy NKer(g) is properly contained in Hy .o

Later (VIII, 17.5), we shall show that, when H is normal and k is a field, the kernel of
the universal homomorphism G — Q is exactly H.

9 Semidirect products

DEFINITION 9.1 An affine group G is said to be a semidirect product of its affine sub-
groups N and Q, denoted G = N x @, if N isnormal in G and the map (n,q) —nq: N(R) x
O (R) — G(R) is a bijection of sets for all k-algebras R.

In other words, G is a semidirect product of its affine subgroups N and Q if G(R) is a
semidirect product of its subgroups N(R) and Q(R) for all k-algebras R (cf. GT 3.7).
For example, let T, be the algebraic group of upper triangular matrices, so

Tn(R) = {(a,'j) S GLn(R) | ajj = 0 fori > ]}
Then T, is the semidirect product of its (normal) subgroup U, and its subgroup D,.

PROPOSITION 9.2 Let N and Q be affine subgroups of an affine group G. Then G is the
semidirect product of N and Q if and only if there exists a homomorphism G — Q whose
restriction to Q is the identity map and whose kernel is N .

PROOF. =-: By assumption, the product map is a bijection of functors N x Q — G. The
composite of the inverse of this map with the projection N x Q@ — Q has the required
properties.

«<: Let 9: G — Q be the given homomorphism. For each k-algebra R, ¢(R) realizes
G(R) as a semidirect product G(R) = N(R) x Q(R) of its subgroups N(R) and Q(R). o

Let G be an affine group and X a functor from the category of k-algebras to sets. Recall
V, §6 that an action of G on X is a natural transformation 6: G x X — X such that each
map G(R) x X(R) — X(R) is an action of the group G(R) on the set X(R). Now let N
and Q be algebraic groups and suppose that there is given an action of Q on N

(q.n) = Or(q.n): Q(R) x N(R) — N(R)
such that, for each ¢, the map n — 0g(q,n) is a group homomorphism. Then the functor

R~ N(R) xg, Q(R)
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(cf. GT 3.9) is an affine group because, as a functor to sets, itis N x Q, which is represented
by O(N)® O(G). We denote it by N xg Q, and call it the semidirect product of N and
O defined by 6.

9.3 When k is a perfect field, Geq is an affine subgroup of G (see VI, 6.3), but it need not

be normal. For example, over a field k of characteristic 3, let G = w3 x (Z/27Z)y, for the
(unique) nontrivial action of (Z/27Z)j on p3; then Greq = (Z/27), which is not normal in
G (see SGA 3 VI, 0.2).

EXAMPLE 9.4 Let k be a field of characteristic 3. There is a unique nontrivial action of the
constant affine group (Z/27Z); on i3, and we let G = 3 % (Z/27Z);. The reduced group
Gieq is the subgroup (Z/2Z)y of G, which is not normal in G.

EXAMPLE 9.5 Over a field of characteristic p, there is an obvious action of G,, on ¢, and
hence an action of u , on & . The semi-direct product is a noncommutative finite connected
affine group of order p2.

10 Smooth algebraic groups

PROPOSITION 10.1 Quotients and extensions of smooth algebraic groups over a field are
smooth.

PROOF. Let Q be the quotient of G by the affine subgroup N. Then Qja is the quotient
of Gpa by Npa. If G is smooth, O(Gya) is reduced; as O(Qra) C O(Gpa), it also is
reduced, and so Q is smooth. For extensions, we (at present) appeal to algebraic geometry:
let W — V be a regular map of algebraic varieties; if V' is smooth and the fibres of the map
are smooth subvarieties of W with constant dimension, then W is smooth tba... o

10.2 The kernel of a homomorphism of smooth algebraic groups need not be smooth. For
example, in characteristic p, the kernels of x > x?: G, — Gy, and x = xP: G, — G, are
not smooth (they are i1, and «, respectively).

11 Algebraic groups as sheaves

Some of the above discussion simplifies when regard affine groups as sheaves. Throughout
this section, k is a field.

PROPOSITION 11.1 Let F be a functor from the category of k-algebras to sets. If F is
representable, then

(F1) forevery finite family of k-algebras (R;); e, the canonical map F([ [; R;) = [[; F(R;)
is bijective;
(F2) for every faithfully flat homomorphism R — R’ of k -algebras, the sequence

F(R)— F(R) = F(R ®g R

is exact (i.e., the first arrow realizes F(R) as the equalizer of the pair of arrows).
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PROOF. (F1). For any k-algebra A, it follows directly from the definition of product that
Hom(A,[];c; Ri) >~ [];e; Hom(4, R;),
(F2). If R — R’ is faithfully flat, then it is injective, and so
Hom(A, R) — Hom(4, R)
is injective for any k-algebra A. According to (CA 9.5), the sequence
R—>R = R®rR
is exact, and it follows that
Homy 1o (A, R) — Homy_4,(A, R") = Homy y,(4, R' ®R R')

is exact. o

A functor satisfying the conditions (F1) and (F2) is said to be a sheaf for the flat topol-

Ogy5 .

PROPOSITION 11.2 A functor F':Alg;, — Set is a sheaf if and only if it satisfies the fol-
lowing condition:

(S) for every k-algebra R and finite family (R;);ey of k-algebras such that R — []; R; is
faithfully flat, the sequence
F(R) = [lier F(R) = [ ,inerxr F(Ri ®k Riv)

is exact.
PROOF. Easy exercise (cf. Milne 1980, IT 1.5). o

We sometimes use (S1) to denote the condition that F(R) — [[;c; F(R;) is injective
and (S2) for the condition that its image is subset on which the pair of maps agree. [Define
presheaf and separated sheaf.]

PROPOSITION 11.3 For any functor F:Alg; — Set, there exists a sheaf a F and a natural
transformation F' — a F that is universal among natural transformations from F to sheaves.

PROOF. For a,b € F(R), set a ~ b if a and b have the same image in F(R’) for some
faithfully flat R-algebra R’. Then ~ is an equivalence relation on F(R), and the functor
R ~~ F(R)/~ satisfies (S1). Moreover, any natural transformation from F to a sheaf will
factor uniquely through F — F/ ~.

Now let F be a functor satisfying (S1). For any k-algebra R, define

F'(R) = limKer(F(R') = F(R' ®g R')).

where R’ runs over the faithfully flat R-algebras. One checks easily that F’ is a sheaf, and
that any natural transformation from F to a sheaf factors uniquely through F — F’. O

SStrictly, for the fpqc (fidélement plat quasi-compacte) topology.



108 VIIL. Group Theory: Subgroups and Quotient Groups.

The sheaf a F is called the associated sheaf of F'.

[The functors Sheaves ~~ separated presheaves ~~» presheaves have left adjoints. Given
apresheaf P, define P(R) = P(R)/ ~ where a ~ b if there exists a faithfully flat R-algebra
R’ such that a and b have the same image in P(R’). Then P is a separated presheaf. Given
a separated presheaf P, define (a P)(R) to be the set of equivalence classes of pairs (R’,a)
where a € P(R’) has the same image under the maps P(R’) — P(R' ®g R’) defined by
R— R ®rR']

PROPOSITION 11.4 Let S be a sheaf, and let F be a subfunctor of S. If

S(R) - UR’ a faithfully flat R-algebra (S(R) n F(R/))

(intersection inside S(R')), then S is the sheaf associated with F .

PROOF. Obviously any natural transformation F — F’ with F’ a sheaf extends uniquely
to S. 0

Let P be the category of functors Alg;, — Set, and let S be the full subcategory of P
consisting of the sheaves.

PROPOSITION 11.5 The inclusion functor i:S — P preserves inverse limits; the functor
a:P — S preserves direct limits and finite inverse limits.

PROOF. By definition Hom(a(—),—) >~ Hom(—,i(—)), and so a and i are adjoint functors.
This implies (immediately) that i preserves inverse limits and a preserves direct limits. To
show that a preserves finite inverse limits, it suffices to show that it preserves finite products
and equalizers, which follows from the construction of a. o

PROPOSITION 11.6 Let G — Q be a surjective homomorphism of affine groups with ker-
nel N. Then Q represents the sheaf associated with the functor

R~ G(R)/N(R).

PROOF. Let P be the functor R ~ G(R)/N(R). Then P commutes with products, and we
shall show:

(a) For any injective homomorphism R — R’ of k-algebras, the map P(R) — P(R’) is
injective.
(b) Let
P'(R) = h_r)nKer(P(R’) = P(R'®rR)
R
where the limit is over all faithfully flat R-algebras; then P’ ~ Q.

For (a), we have to prove that
N(R) = N(R')NG(R) (intersection inside G(R")).
For some index set 7, N(R) is the subset of R! defined by some polynomial conditions

fj(...,X,',...)=O



12. Terminology 109

and N(R’) is the subset of R’/ defined by the same polynomial conditions. But if an
element of R satisfies the conditions when regarded as an element of R'Z, then it already
satisfies the conditions in R? (because R — R’ is injective).

For (b), consider the diagram

K(R') — P(R) = PR ®rR)

l |

Q(R) — Q(R) = QR'®rR)

where K(R’) is the equalizer of the top pair of maps — we know that Q (R) is the equalizer
of the bottom pair of maps. For any k-algebra R’, the map P(R’) — Q(R’) is injective,
and so the two vertical arrows induce an injective homomorphism K(R’) — Q(R). When
we pass to the limit over R’, it follows directly from the definition of “surjective’ (see 7.1)
that this map becomes surjective. O

NOTES (a) Explain why it is useful to regard the affine groups as sheaves rather than presheaves.
(b) Explain the set-theoretic problems with (11.3) (limit over a proper class), and why we don’t
really need the result (or, at least, we can avoid the problems). See Waterhouse 1975.

12 Terminology

From now on, “subgroup” of an affine group will mean “affine subgroup”. Thus, if G is
an affine (or algebraic) group, a subgroup H of G is again an affine (or algebraic) group,
whereas a subgroup H of G(k) is an abstract group.

13 Exercises

EXERCISE VII-1 Let A and B be subgroups of the affine group G, and let A B be the sheaf
associated with the subfunctor R ~~ A(R) - B(R) of G.

(a) Show that AB is representable by O(G)/a where a is the kernel of homomorphism
O(G) - O(A) ® O(B) defined by the map a,b — ab: A x B — G (of set-valued

functors).
(b) Show that, for any k-algebra R, an element G(R) lies in (AB) (R) if and only if its

image in G(R’) lies in A(R’)- B(R’) for some faithfully flat R-algebra R’, i.e.,
— / . /
(AB)(R) =[], G(R)N (A(R)- B(R)).

EXERCISE VII-2 Let A, B, C be subgroups of an affine group G such that A is a normal
subgroup of B and B normalizes C. Show:

(a) C N A isanormal subgroup of C N B;
(b) CA is anormal subgroup of CB.

EXERCISE VII-3 (Dedekind’s modular laws). Let A, B, C be subgroups of an affine group
G such that A is a subgroup of B. Show:

(a) BNAC = A(BNC);
(b) if G = AC, then B = A(BNC).






CHAPTER VI I I

Representations of Affine Groups

One of the main results in this chapter is that all algebraic groups over fields can be realized
as subgroups of GL,, for some n. At first sight, this is a surprising result, because it says that
all possible multiplications in algebraic groups are just matrix multiplication in disguise.
In this chapter, we often work with algebraic monoids rather than groups since this
forces us to distinguish between “left” and “right” correctly. Note that for a commutative
ring R, the only difference between a left module and a right module is one of notation: it

is simply a question of whether we write rm or mr (or better nr1). In this chapter, it will
sometimes be convenient to regard R-modules as right modules, and write V' ® R instead
of Ry V.

Starting with §7, k is a field.

1 Finite groups

We first look at how to realize a finite group G as a matrix group. Let k be a field. A
representation of G on a k-vector space V' is a homomorphism of groups G — Auty_j;,(V),
or, in other words, an action G x V' — V of G on V in which each y € G acts k-linearly.
Let X x G — X be a right action of G on a finite set X. Define V' to be the k-vector space
of maps X — k, and let G act on V according to the rule:

(gf)x)= f(xg) forgeG, feV,xelX.

This defines a representation of G on V, which is faithful if G acts effectively on X. The
vector space V' has a canonical basis consisting of the maps that send one element of X to
1 and the remainder to 0, and so this gives a homomorphism G — GL, (k) where 7 is the
order of X . For example, for the symmetric group S, acting on {1,2,...,n}, this gives the
map o — 1(0):S, — GLy (k) in p.11. When we take X = G, the vector space V is the k-
algebra O(G) of maps G — k, and the representation is called the regular representation.

111
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2 Definition of a representation

Let V be a k-module. For a k-algebra R, we let

V(IR)=V ®R, (R-module)
Endy (R) = Endg.in(V(R)), (monoid under composition)
Auty (R) = Autgin(V(R)), (group under composition).

Then R ~~ Endy (R) is a functor from the category of k-algebras to monoids and R ~~
Auty (R) is a functor from the category of k-algebras to groups. With the terminology of
(I, 42), Auty = Endy;. When V is finitely generated and projective, these functors are
representable (IV, 1.6), and so Endy is an affine monoid and Auty is an affine group in this
case.

Let G be an affine monoid or group over k. A linear representation of G on a k-module
V is a natural transformation r: G — Endy of monoid-valued functors. In other words, it
is a family of homomorphisms of monoids

rr:G(R) = Endgin(V(R)), R ak-algebra, (65)

such that, for every homomorphism R — R’ of k-algebras, the diagram

G(R) —%5 Endgin(V(R))

| l

G(R)) 2 Bndgrg (V(R))

commutes. When G is an affine group, r takes values in Auty and is a natural transforma-
tion of group-valued functors. A linear representation is said to be finite-dimensional if V
is finite-dimensional as a k-vector space, and it is faithful if all the homomorphisms rg are
injective.

When £ is a field and W is a subspace of V/, then W(R) is a subspace of V(R) for all
R, and we say that W is a subrepresentation if rg(g)(W(R)) C W(R) for all k-algebras
R and all g € G(R).

A homomorphism of linear representations (V,r) — (V',r’) is a k-linear map u: V —

V'’ such that
u(R) ,
V(R) =25 v/(R)

er(g) lr;gg)

R
vR) 2 yi(r)
commutes for all g € G(R) and all k-algebras R.
We write ' also for the functor R ~» V(R) defined by V. Then a linear representation
of G on V can also be defined as an action of G on V,

GxV =V, (66)

such that each g € G(R) acts R-linearly on V(R).

When V = k", Endy is the monoid R ~~ (M, (R), %) and Auty = GL,. A linear
representation of an affine monoid (resp. group) G on V is a homomorphism G — (M, x)
(resp. G — GLp).
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EXAMPLE 2.1 Let G = G, and let k be a field. Let V be a finite-dimensional k-vector
space, and let pg,...,p;,... be a sequence of endomorphisms V such that all but a finite
number are zero. For t € R, let

rR@) =), pit' €End(V(R)),

sorr((v®c) =Y pi(v)Rct!. If

{ po = idy
i+j

.. 67)
piop; = (T )piy; alli,j=>0, (

then
rr(t+t)=rr@)+rgr(t’) forallt,t’ € R,

and so rg is a representation. We shall see later (6.4) that all finite-dimensional repre-
sentations of G, are of this form. Note that (67) implies that p; o p; = (i + 1)pj+1, and
so p§ = n!p,. When k has characteristic zero, this implies that p; is nilpotent and that
pn = p/n!, and so

rr(t) =Y (p11)"/n! = exp(pit);

hence the finite-dimensional representations of G are just the pairs (V, p1) with p; a nilpo-
tent endomorphism of V.1 When k has nonzero characteristic, there are more possibilities.
See Abe 1980, p. 185.

EXAMPLE 2.2 Let G = GL,, and let M,, denote the vector space of all n x n matrices with
entries in k. The actions

(P,A) — PAP':G(R) x M,(R) - M,(R)

define a linear representation of G on M,,. The orbits of G(k) acting on M, (k) are the
similarity classes, which are represented by the Jordan matrices when k is an algebraically
closed field.

EXAMPLE 2.3 There is a unique linear representation r of G on O(G) (regarded as a k-
module) such that

(8f)r(x) = fr(xg), forallg € G(R), [ € O(G), x € G(R). (63)
This is called the regular representation. In more detail: the formula (68) defines a map
G(R) x O(G) - R® O(G), which extends by linearity to a map G(R) X R® O(G) —
R® O(G).
3 Terminology

From now on, “representation” will mean “linear representation”.

ILet k be a ring of characteristic zero (i.e., containing Q). Then the same argument shows that the repre-
sentations of G, on k-modules (not necessarily finitely generated) are the pairs (V, p;) where p1 is a locally
nilpotent endomorphism of V (i.e., nilpotent on every finitely generated submodule). Cf. sx108817.
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4 Comodules

Let (A,m,e) be a k-algebra, not necessarily commutative. A left A-module is a k-vector
space V' together with a k-linear map u: A ® V' — V such that the diagrams

vy < Asv v < AV

Tu Tm@V H Te@V (69)

AQ® ~
AQV < AQARQV V «—— k®V
commute. On reversing the directions of the arrows, we obtain the notion of comodule over
a coalgebra.
DEFINITION 4.1 Let (C, A, €) be a k-coalgebra. A right C-comodule’ is a k-linear map
p:V — V ® C (called the coaction of C on V') such that the diagrams

v 2, vec v —2 L. vecC

N I R

®C ~
vec 225 vecec  V —s Vek
commute, i.e., such that

{(V®A)0p = (p®C)op
(V®e)op = V.

A homomorphism u:(V,p) — (V’,p’) of C-comodules is a k-linear map u:V — V' such

that the diagram
v s v

bl

u®C
VeC — V'®C
commutes. A comodule is said to be finite-dimensional if it is finite-dimensional as a k-
vector space.

EXAMPLE 4.2 (a) The pair (C, A) is a right C-comodule (compare (15), p. 30, with (70)).
More generally, for any k-module V,

VRATVRC--VRCKC

is a right C-comodule (called the free comodule on V). When V is free, the choice of a
basis for V realizes (V ® C,V ® A) as a direct sum of copies of (C, A):

VA
vec 224 vececC

bk
cn 2, (ceo)

21t would be more natural to consider left comodules, except that it is right comodules that correspond
to left representations of monoids. Because we consider right comodules we are more-or-less forced to write
V ® R where elsewhere we write RQ V.
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(b) Let (V1, p1) and (V>2, p2) be comodules over coalgebras Cy and C; respectively. The

map
P1®p2

ViV, —= Vi QCi QN QC, 211 Vo®C1 ® Cy
provides V7 ® V, with the structure of a C; ® Cp-comodule.
(c) Let (V, p) be a right C-comodule, and let u: C — C’ be a homomorphism of coal-

gebras. The map
Veu

v vec S vec
provides V' with the structure of a right C’-comodule.
(d) Let V be a k-vector space, and let p: V — V' ® C be a k-linear map. Choose a basis
(ei)iey for V, and write
P(ej)=zei®cij, cij €C, (71)
iel
(finite sum, so, for each j, almost all ¢;;’s are zero). Then (V, p) is a right comodule if and
only if3
AlCij) = Lier Cik @ Cj % alli,jel. (72)
€(cij) = &ij
For a module V over an algebra A, there is a smallest quotient of A, namely, the image
of A in Endg (V'), through which the action of A on V factors. In the next remark, we
show that for a comodule V' over a coalgebra C, there is a smallest subcoalgebra Cy of C
through which the co-action of C on V factors.

REMARK 4.3 Assume that & is a field, and let (V, p) be a C-comodule.

(a) When we choose a k-basis (¢;);ey for V, the equations (72) show that the k-
subspace spanned by the ¢;; is a subcoalgebra of C, which we denote Cy. Clearly, Cy
is the smallest subspace of C such that p(V) C V ® Cy, and so it is independent of the
choice of the basis. When V is finite dimensional over k, so also is Cy .

(b) Recall that for a finite-dimensional k-vector space V,

HOl’I’lk_]in(V, V& C) ~ HOI’I’Ik_]in(V X VV, C)

If p <> p’ under this isomorphism, then
p)=) . e®c = pfwef)=) _ flee.

In particular, p’(e; ® e;") = ¢;; (notation as in (71)). Therefore Cy is the image of p": V ®
VvV = C.

(c) If (V,p) is a sub-comodule of (C,A), then V C Cy. To see this, note that the
restriction of the co-identity € of C to V is an element €y of V'V and that p'(v @ €y) = v

3The first equality can be written symbolically as

(A(cij)) = (cir) ® (ck;j)-
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for all v € V because

pllej@ey) =) _ elejci

= (e ®idc)A(e))

= (idc ®€)A(e;) (by (15), p. 30)
- Zie] ejelcij)

=e¢j (by (72)).

REMARK 4.4 Assume that k is a field. Recall (II, §3) that the linear dual of a coalgebra
(C,A,¢)is an algebra (CVY, AY,€Y) (associative with identity). Let V be a k-vector space,
and let p: V — V ® C be a k-linear map. Define u to be the composite of

C\/
VoV =B VeV eC~VeC ol L2 vek~V

where ev:CY ® C — k is the evaluation map. One can check that (V, p) is a right C-
comodule if and only if (V, i) is a left CY-module. When C and V are finite-dimensional,
p > [ is a bijection

Homk_lin(V, %4 X C) ~ Homk_lin (CV (024 V, V),

and so there is a one-to-one correspondence between the right C-comodule structures on
V and the left CY-module structures on V. In the general case, not every C-module
structure arises from a C-comodule structure, but it is known which do (Dascilescu et al.
2001, 2.2; Sweedler 1969, 2.1).

Assume that C is flat over k (i.e., as a k-module), and let (V, p) be a C-comodule. If
W is a k-submodule V, then W ® C is a k-submodule of V ® C, and we say that W is a
subcomodule of V if p(W) C W ® C. Then (W, p|W) is a C-comodule.

PROPOSITION 4.5 Assume that k is a field. Every comodule (V, p) is a filtered union of its
finite-dimensional sub-comodules.

PROOF. As a finite sum of (finite-dimensional) sub-comodules is a (finite-dimensional)
sub-comodule, it suffices to show that each element v of V' is contained in a finite-dimensional
sub-comodule. Let (¢;);c7 be a basis for C as a k-vector space, and let

p) =) vi®e, vieV,
(finite sum, i.e., only finitely many v; are nonzero). Write
A(el-)zzjkrijk(ej ®6k), V,'jkEk.

‘We shall show that
poR) =3, rijic (v ®e)) (73)

from which it follows that the k-subspace of V' spanned by v and the v; is a subcomodule
containing v. Recall from (70) that

(V®A)op=(p®C)op.
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On applying each side of this equation to v, we find that
Zi,j,k rijk(vi®e; ey) = Zk p(vr) ®er (inside V®C ® C).

On comparing the coefficients of 1 ® 1 ® e in these two expressions, we obtain (73). g

COROLLARY 4.6 Assume that k is a field. A coalgebra C is a union of its sub-coalgebras
Cy, where V runs over the finite-dimensional sub-comodules of C .

PROOF. For any finite-dimensional sub-comodule V of C,
VcCyccC

(see 4.3), and so this follows from the proposition. O

ASIDE 4.7 When k is a noetherian ring, every comodule V over a flat k-coalgebra C is a filtered
union of finitely generated subcomodules (Serre 1993, 1.4). The proof depends on the following
lemma:

Let W be a k-submodule V, and let W° be the set v € V such that p(v) €e W ® C;
then W° is a subcomodule of V.

Now W*° C W because

we L ((idy ®€) o0 p) (W) C (idy @) (W &C) = W,

and it is clear that W° the largest comodule contained in W.

Granted this, let W be a finitely generated k-submodule of V. It suffices to show that W
is contained in a finitely generated subcomodule of V. As p(W) is a finitely generated over k,
there exists a finitely generated k-submodule W) of V' such that p(W) C W; ® C. Now W[ is a
subcomodule contained in W, hence finitely generated (because k is noetherian), and it obviously
contains W.

ASIDE 4.8 Now let k be an arbitrary ring, but assume that C is projective as a k-module. Let W be a
k-submodule of a C-comodule V', and let (W) C V be the image of the k-module homomorphisms

wecv S vececy 'y

Then c¢(W) is the smallest subcomodule of V' containing W, and it is a finitely generated k-
submodule if W is (SGA 3, VI, 11.8). The hypothesis “projective” in this statement can not be
replaced by “flat” (ibid. 11.10.1).

S The category of comodules

Let (C, A, ¢) be a flat coalgebra over k. With the obvious definitions, the standard isomor-
phism theorems (cf. IX, 1.1, 1.2, 1.3, 1.4 below) hold for comodules over C. For example,
if (W, pw) is a sub-comodule of (V, py ), then the quotient vector space V/ W has a (unique)
comodule structure py, w for which (V, py) — (V/W, py;w) is a homomorphism. In par-
ticular, the sub-comodules are exactly the kernels of homomorphism of comodules. The
category of comodules over C is abelian and the forgetful functor to k-vector spaces is
exact.
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Now assume that k is a field. A bialgebra structure (m,e) on C defines a tensor prod-
uct structure on the category of comodules over C: when (V1,p1) and (V3,p2) are C-
comodules, V7 ® V5 has a natural structure of a C ® C-comodule (see 4.2b), and the homo-
morphism of coalgebras m:C ® C — C turns this into a C-comodule structure (see 4.2c).

The tensor product of the empty family of comodules is the trivial comodule (k,k 5 C ~
k ® C). The forgetful functor preserves tensor products.
Assume that V' is finite dimensional. Under the canonical isomorphisms

Homk_hn(V, V& C) ~ HOl’l’lk_lin(V ® VV, C) ~ HOl’l’lk_hn(VV, C® VV), (74)

aright coaction p of C on V corresponds to left coaction p’ of C on VV. When C is a Hopf
algebra, the inversion S can be used to turn p’ into a right coaction pV, namely, define p¥
to be the composite
/ VVes
v aevY Lvves -2 vvea. (75)
The pair (VV,pY) is called the dual or contragredient of (V,p). The forgetful functor
preserves duals.

SUMMARY 5.1 Let C be a coalgebra over a field k.

¢ The finite-dimensional comodules over C form an abelian category Comod(C); the
forgetful functor to vector spaces is exact.

¢ A bialgebra structure on C provides Comod(C') with a tensor product structure; the
forgetful functor preserves tensor products.

o A Hopf algebra structure on C provides Comod(C) with a tensor product structure
and duals; the forgetful functor preserves duals.

6 Representations and comodules

A comodule over a bialgebra (A,m,e, A, ¢) is defined to be a comodule over the coalgebra
(A,A,¢).

PROPOSITION 6.1 Let G be an affine monoid over k, and let V' be a k-module. There is
a natural one-to-one correspondence between the linear representations of G on V' and the
O(G)-comodule structures on V.

We give two independent proofs of the proposition. The first is very simple, but assumes
that V' is free and makes use of the choice of a basis.
Proof of Proposition 6.1 in the case that V' is free

The choice of a basis (¢;);e7 for V identifies Endy with a matrix algebra, and natural
transformations 7: G — Endy with matrices (7;);, j)erx1 of elements of O(G):

rR(g):(rin(g))i’jel’ g€G(R)

(recall that O(G) = Nat(G, A')). Moreover, r is a homomorphism of affine monoids if and
only if

(rij) r (€8) = Xker i) R (&) (rij) g (&), allg.g' € G(R), i.jel,  (76)
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and (r;;)r(1) =6;; (i, j € I). On the other hand, to give a k-linear map p: V — V @ O(G)
is the same as giving a matrix (7;;);,jes of elements of O(G),

plej) =2 icrei®rij,
Moreover, p is a co-action if and only if
A(rij) = rertik ®ryj,alli, j €1, 77
and €(r;j) = 6;; (i, j € I). (see (72), p. 115). But
A(rij)r(g.8") = (rij) g (g &)

and
Ckerrik®rij) r(8.8) = Yper i) R (€) - (rij) g ()

(see p. 47), and so r is a homomorphism if and only if p is a co-action. Therefore
r<(rij)<p

gives a one-to-one correspondence between the linear representations of G on V' and the
O(G)-comodule structures on V.

SUMMARY 6.2 Let V = k" with its canonical basis (e;);cs; a matrix (r;;);, jes of elements
of O(G) satistying

A(rij) = D kerTik ®Tkj

alli,jel,
e(rij) = &ij /

defines a coaction of O(G) on V by
plej) = icrei ®rij,
and a homomorphism r: G — GL, by

r(g) = (rij(g))i,jer,
such that 7* is the homomorphism O(GL,) — O(G) sending X;; to r;;.

Proof of Proposition 6.1 in general

We construct a canonical correspondence between the representations and the comodule
structures. In Proposition 6.8 we show that, when a basis has been chosen, the correspon-
dence becomes that described above.
Let A = O(G). We prove the following more precise result:

Let r:G — Endy be a representation; the “universal” element a = id4 in

G(A) ~ Homy _y,(A, A) maps to an element of Endy (A4) =4 End 4.4in(V(A))

whose restriction to V' C V(A) is a comodule structure p:V — V @ A on V.

Conversely, a comodule structure p on V' determines a representation r such

that, for R a k-algebra and g € G(R), the restriction of rg(g): V(R) — V(R)

toV C V(R)is

vV
V2 ved B veR.

These operations are inverse.
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Let V be a k-module, and let r: G — Endy be a natural transformation of set-valued
functors. Let g € G(R) = Homy_4,(4, R), and consider the diagram:

v U1

Vg
V————V®A———>V®R

pdéfrA% lm(a) Jrzz(g)
14

®g
VA —>VQ®R

The k-linear map p determines rg(g) because r 4(a) is the unique A-linear extension of p
to V' ® A and rg(g) is the unique R-linear map making the right hand square commute.
Thus the map p determines the natural transformation r. Moreover, the diagram can be
used to extend any k-linear map p:V — V ® A to a natural transformation r of set-valued
functors, namely, for g € G(R) = Homy_,,(A, R) and define rg(g) to be the linear map
V(R) — V(R) whose restriction to V is (V' ® g) o p. Thus,

rr(g)(v®c) =V ®g)(cp(v)), forallge G(R),veV,ceR. (78)

In this way, we get a one-to-one correspondence r <> p between natural transformations of
set-valued functors r and k-linear maps p, and it remains to show that r is a representation
of G if and only if p is a comodule structure on V.

Recall that the identity element 1G) of G(k) is A s k. To say that rp(1g)) =
idy g means that the following diagram commutes,

v U1

v L v ed 3

VRA——— > VRk
€

v U1 Ve
\ JV@k

VA — VK
V®e

i.e., that the right hand diagram in (70) commutes.
Next consider the condition that rg(g)rg(h) = rr(gh) for g,h € G(R). By definition

(see (10)), gh is the map

A h
AL A0 ¥R

and so rg(gh) acts on V as

VeA VR(g.h
VA VA A Ve a4 L2 e R, (79)

On the other hand, rg(g)rg(h) acts as

Vh ®R V®(g,id
VA ea " ver PR ve 4o R L2EY ok,

i.e., as

®A VR(g,h
VL, vedPlve a4 2% v or. (80)

The maps (79) and (80) agree for all g, / if and only if the first diagram in (70) commutes.
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Complements

EXAMPLE 6.3 Recall (4.2) that, for every k-bialgebra A, the map A:4 - AR A is a
comodule structure on A. When A = O(G), this comodule structure on A corresponds to
the regular representation of G on O(G) (2.3).

EXAMPLE 6.4 Assume that k is a field, and let p: V — V ® O(G,) be a finite-dimensional
O(G,)-comodule. The k-vector space O(G,) ~ k[X] has basis 1, X, X 2 ... and so we can
write

p)=D pi®X, veV.

As pis k-linear, so also is each map v — p; (v), and as the sum is finite, for each v, p; (v) is
zero except for a finite number of i. As V is finite-dimensional, this means that only finitely
many of the p; are nonzero. It follows that the representations constructed in (2.1) form a
complete set.

PROPOSITION 6.5 Assume that k is a field. Let r:G — Endy be the representation corre-
sponding to a comodule (V, p). A subspace W of V is a subrepresentation if and only if it
is a subcomodule.

PROOF. Routine checking. o

PROPOSITION 6.6 Assume that k is a field. Every representation of G is a union of its
finite-dimensional subrepresentations.

PROOF. In view of (6.1) and (6.5), this is simply a restatement of Proposition 4.5. o

ASIDE 6.7 Let G be a flat affine group over a ring k (i.e., O(G) is flat as a k-module), and let
(V,r) be a representation of G. Let p be the corresponding O(G)-comodule structure on V, and let
W be a k-submodule of V. Because O(G) is flat, W @ O(G) C V ® O(G), and (W, p|W) is an
O(G)-comodule if p(W) C W ® O(G). When this is so, we call the corresponding representation
(W,r|W) of G a subrepresentation of (V,r). Therefore, when G is flat, there is a one-to-one corre-
spondence between subrepresentations of (V,r) and subcomodules of (V, p). When k is noetherian
and G is flat, every representation of G is a union of its finitely generated subrepresentations (4.7).

PROPOSITION 6.8 Let r:G — Endy be the representation corresponding to a comodule
(V,p). Assume that V is a free k-module, and choose a basis (e;);jcy for V. Write

plej) = Zi ei ®aij, aij € O(G). (81)
Then, for each g € G(R),

rR(g)(ej ®1) = Zie] ei ®glajj) = Zie] e; ®a;ir(g) (82)

(equality in V(R); recall that a;;g is a map G(R) — R and that rg(g) is a map V(R) —
V(R)).
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PROOF. According to (78),

rr(g)(e; ® 1) = (idy ®g)(p(e;))
= (idy ®g)(}_; ¢i ®aij)
=) ;e ®glaij)
=) ;e ®ajr(g).
In the last step, we used that g(f) = fr(g) for f € O(G) and g € G(R) (see 1, 3.13). g

COROLLARY 6.9 Let (G,r) be the representation corresponding to a comodule (V, p). As-
sume that V' is a free k-module, with basis (e;)iey. Then O(Endy ) is a polynomial ring
in variables X;; (i, j € 1) where X;; acts by sending an endomorphism of V' to its (i, j)th
matrix entry. The homomorphism O(Endy ) — O(G) defined by r sends X;; to a;; where
ajj is given by (81).

PROOF. Restatement of the proposition. O

COROLLARY 6.10 Let r:G — Endy be the representation corresponding to a comodule
(V,p). Let H be an affine subgroup of G, and let O(H) = O(G)/a. The following condi-
tions on a vector v € V are equivalent:

(a) for all k-algebras R and all g € H(R), rr(g)(vR) = vR;
b)) p(v) =v®1 mod V Qa.

PROOF. We may suppose that v # 0, and so is part of a basis (e;);es for V, say v =e;.
Let (aij)i,jer be as in (81); then (b) holds for e; if and only if a;; —§;; € a for all i. On
the other hand, (82) shows that (a) holds for e; if and only if the same condition holds on

(aif)- 0

We say that v € V is fixed by H if it satisfies the equivalent conditions of the corollary,
and we let VH denote the subspace of fixed vectors in V. If H(k) is dense in H, then
v e VH if and only if r(g)v = v for all g € H(k) (because there is a largest subgroup of G
fixing v).

LEMMA 6.11 Let G, r,V, p, and H be as in the corollary, and let R be a k-algebra. The
following submodules of V(R) are equal:

@ VA QR;

(b) {veV(R)|rr(g)(vr) = vg forall R-algebras R' and g € H(R')};

@ {wveVR)|pw)=v®]1 modV ®a® R}.

PROOF. Nothing in this section requires that k£ be a field (provided one assumes V' to be
free). Therefore the equality of the sets in (b) and (c) follows by taking k = R in Corollary
6.10. The condition

p()=v®1 modV ®a

is linear in v, and so if W is the solution space over k, then W ®; R is the solution space
over R. This proves the equality of the sets in (a) and (c). o

Need to fix this. In 6.10 we assume that v is part of a basis.!

For the remainder of this chapter, & is a field.
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7 The category of representations of G

Let G be an affine monoid over a field k, and let Rep(G) be the category of representations
of G on finite-dimensional k-vector spaces. As this is essentially the same as the category
of finite-dimensional O(G)-comodules (see 6.1), it is an abelian category and the forgetful
functor to k-vector spaces is exact and faithful.

The tensor product of two representations (V,r) and (V',r’) is defined to be (V ®
V,r@r') where (r ® )R (g) = rr(g) ® rg(g).

When G is a group, the contragredient (or dual) of a representation (V,r) is defined to
be (VV,rY) where,

(rg(@ ()W) = forr(g ), g€GR), [feV'(R), veV(R)

(more succinctly, (gf)(v) = f(g~ ).

PROPOSITION 7.1 Let (V,r) and (V',r’) be representations of G, and let p and p’ be the
corresponding comodule structures on V and V'. The comodule structures on V ® V' and
VY defined by r @ r’ and r" are those described in §5.

PROOF. Easy exercise for the reader. o

8 Affine groups are inverse limits of algebraic groups

It is convenient at this point to prove the following theorem.

THEOREM 8.1 Every affine monoid (resp. group) over a field is an inverse limit of its
algebraic quotients.

In particular, every affine monoid (resp. group) is an inverse limit of algebraic monoids
(resp. groups) in which the transition maps are quotient maps.

We prove Theorem 8.1 in the following equivalent form (recall that a k-bialgebra is said
to be finitely generated if it is finitely generated as k-algebra, II, 4.3).

THEOREM 8.2 Every bialgebra (resp. Hopf algebra) over field k is a directed union of its
finitely generated sub-bialgebras (resp. Hopf subalgebras) over k.

PROOF. Let A be a k-bialgebra. By (4.5), every finite subset of A is contained in a finite-
dimensional k-subspace V such that A(V) C V ® A. Let (e;) be a basis for V, and write
Alej) =) ;ei®aj;j. Then A(a;j) =) raix @ag; (see (72), p. 115), and the subspace L
of A spanned by the e; and a;; satisfies A(L) C L ® L. The k-subalgebra A’ generated by
L satisfies A(A") C A’ ® A’, and so it is a finitely generated sub-bialgebra of A. It follows
that A is the directed union A = J A" of its finitely generated sub-bialgebras.

Suppose that A4 has an inversion S. If A(a) =) _b; ®c;, then A(Sa) =Y Sc; ® Sb;
(Exercise I1-3b). Therefore, the k-subalgebra A" generated by L and SL satisfies S(A") C
A’, and so it is a finitely generated Hopf subalgebra of A. It follows that A is the directed
union of its finitely generated Hopf subalgebras. O

COROLLARY 8.3 Let B be a Hopf algebra over a field, and let A be a Hoptf subalgebra of
B. Then A and B are directed unions of finitely generated Hopf subalgebras A; and B;
such that A; C B;.
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PROOF. Since each finitely generated Hopf subalgebra of A is contained in a finitely gen-
erated Hopf subalgebra of B, this follows easily from the theorem. O

COROLLARY 8.4 Let A be a Hopf algebra over a field k. If A is an integral domain and its
field of fractions is finitely generated (as a field) over k, then A is finitely generated.

PROOF. Any finite subset S of A is contained in a finitely generated Hopf subalgebra A’ of
A. When S is chosen to generate the field of fractions of A4, then A’ and A have the same
field of fractions, and so they are equal (VI, 11.2). O

COROLLARY 8.5 A Hopf algebra over a field whose augmentation ideal is finitely gener-
ated is itself finitely generated.

PROOF. Let A be a Hopf algebra. If 14 is finitely generated, then there exists a finitely
generated Hopf subalgebra A’ of A containing a set of generators for /4. The inclusion
A" — A corresponds to a quotient map G — G’ whose kernel has Hopf algebra 4 ® 4/
A T4 ~AJI4A= AJI4 ~ k. Proposition VII, 1.1 shows that G ~ G’, and so A’ ~ A.q

PROPOSITION 8.6 Every quotient of an algebraic group over a field is itself an algebraic
group.

PROOF. We have to show that a Hopf subalgebra A of a finitely generated Hopf algebra
B is finitely generated. Because B is noetherian, the ideal 74 B is finitely generated, and
because B is flat over A, the map Iy ® 4 B > A®4 B ~ B is an isomorphism of /4 ® 4 B
onto 4 B. Therefore 14 ® B is a finitely generated as a B-module, and as B is faithfully
flat over A, this implies that 4 is finitely generated.* O

ASIDE 8.7 Proposition 8.6 does require proof, because subalgebras of finitely generated k-algebras
need not be finitely generated, even when k is a field. For example, the subalgebra k[X, XY, XY?2,..]
of k[X, Y] is not even noetherian. There are even subfields K of k(X7q,..., X,) containing k such
that K Nk[Xq,..., X,] is not finitely generated as a k-algebra (counterexamples to Hilbert’s four-
teenth problem; Nagata and others).

ASIDE 8.8 An affine group is said to be separable if it is an inverse limit of a countable collection
of algebraic quotients. This is a useful class of affine groups: countable inverse limits are easier to
work with than general inverse limits, and most naturally occurring affine groups are separable.

ASIDE 8.9 Theorem 8.1 is also true for nonaffine group schemes: every quasicompact group scheme
over a field k is a filtered inverse limit of group schemes of finite type over k (Perrin 1976).

4As a B-module, I 4 ® 4 B has a finite set of generators {¢] ® b1.,...,Ccm ® by}, and the map
(@i,....,am)— Zajc;:A™ — I 4

is surjective because it becomes surjective when tensored with B.
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9 Algebraic groups admit finite-dimensional faithful
representations

It is obvious that the regular representation (over any ring) is faithful: let g € G(R) and
suppose that r4(g) = 1; then fg/(x) = fr/(xg) for all R-algebras R’ and all x € G(R’),
which implies that g = 1.

We now assume that k is a field, and prove that every sufficiently large finite-dimensional
subrepresentation of the regular representation will be faithful.

THEOREM 9.1 For any algebraic group G, the regular representation of G has faithful
finite-dimensional subrepresentations; in particular, the regular representation itself is faith-
ful.

PROOF. Let A = O(G), and let V be a finite-dimensional subcomodule of A containing a
set of generators for A as a k-algebra. Let (e;)1<;<n be a basis for V', and write A(e;) =
> iei ®a;j. According to (6.9), the image of O(GLy) — A contains the a;;. But, because
€: A — k is a co-identity (see (15), p. 30),

ej = (€®idg)Ale;) = ) e(enai.

1

and so the image contains V; it therefore equals A. We have shown that O(GLy) — A is
surjective, which means that G — GLy is injective (VII, 2.1). [Variant: Ay D V (see 4.3c),
and so Ay = A; this implies that the representation on V is faithful. ] o

COROLLARY 9.2 Every affine group admits a faithful family of finite-dimensional repre-
sentations.

PROOF. Write G as an inverse limit G = LiLnieI G; of algebraic groups, and, for each
i € I, choose a faithful finite-dimensional representation (V;,r;) of G;. Each (V;,r;) can
be regarded as a representation of G, and the family is faithful. O

The theorem says that every algebraic group can be realized as an algebraic subgroup
of GL, for some n. This does not mean that we should consider only subgroups of GL;,
because realizing an algebraic group in this way involves many choices.

PROPOSITION 9.3 Let (V,r) be a faithful representation of an algebraic group G. Then V
is a union of its finite-dimensional faithtful subrepresentations.

PROOF. Let (¢;);er be a basis for V, and write p(e;) =) ;c;ei ®aij, a;j € A. Because
(V,r) is faithful, the k-algebra A is generated by the a;; (6.9). Because A is finitely gen-
erated as a k-algebra, only finitely many a;;’s are need to generate it, and so there exists a
finite subset J of I such that the a;;’s appearing in p(e ;) for some j € J generate A. Every
finite-dimensional subrepresentation of (V,r) containing {e; | j € J} is faithful. o

ASIDE 9.4 Does every flat affine group of finite type over a ring admit an injective homomorphism
into GL,, for some n? Apparently, this is not known even when k is the ring of dual numbers over
a field and G is smooth (mo022078, Brian Conrad). Using (4.7), one sees by the above arguments
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that a flat affine group scheme G of finite type over a noetherian ring k has a faithful representation
on a finitely generated submodule M of the regular representation. If M is flat over k, then it
is projective, and hence a direct summand of a free finitely generated k-module L, and so G —
GL,ank(z)- When k is a Dedekind domain and G is flat, the module M is torsion-free, and hence
automatically flat. Thus, every flat affine group scheme of finite type over a Dedekind domain admits
an embedding into GL,, for some n. As every split reductive group scheme over a ring k arises by
base change from a similar group over Z (Chevalley), such group schemes admit embeddings into
GL,,. Since every reductive group splits over a finite étale extension of the base ring (SGA 3), an
argument using restriction of scalars proves the statement for every reductive group (mo22078).

10 The regular representation contains all

Let (V,ry) be a representation of G. For v € V(R) and u € VY (R), let {(u,v) =u(v) € R.
For a fixed v € V and u € V'V, the maps

x> (u,ry(x)v):G(R) > R

are natural in R, and so define an element of O(G), i.e., there exists a ¢, (v) € O(G) such
that
du(V)R(X) = (u,ry(x)v) (in R) for all x € G(R).

Let A = O(G), and let r4 be the regular representation of G on A.

PROPOSITION 10.1 The map ¢,, is a homomorphism of representations (V,ry) — (A,r 4).

PROOF. We have to show that
(Pu)rorv(g) =ra(g)o(Pu)r
for all k-algebras R and all g € G(R). For any v € V(R) and x € G(R),

(LHS()) (x) = ¢ulry(g)v)r(x)
(u,ry (x)ry(g)v) (definition of ¢,,)

= {(u,ry(xg)v) (ry is a homomorphism)
= ¢u(V)Rr(xg) (definition of ¢y,)
= (ra(@)du())r(x) ((68),p. 113)
= (RHS(v)) (x),
as required. O

PROPOSITION 10.2 Ifuy,...,u, span V", then the k-linear map
v (u, (V). Py, (V) V — A" (83)
is injective.
PROOF. Note that ¢, (v)(1) = (u,v), and so the composite
V(R) -> A"(R) — R"
of (83) with the map “evaluate at 1” is

v ((ug,v),..., (Un,v)),

which is injective by our choice of the u;’s. O



11. Every faithful representation generates Rep(G) 127

Thus, V' embeds into a finite sum of copies of the regular representation. We give a
second proof of this.

PROPOSITION 10.3 Assume that G is a flat affine group over a ring k, and let (V, p) be a
representation of G. Let Vy denote V regarded as a k-module, and let Vo ® O(G) be the
free comodule on Vy (see 4.2). Then

oV =>1y®0(G)

is an injective homomorphism of representations.

PROOF. The coaction on Vo ® O(G) is
VoA Vo ®O(G) = Vo ® O(G) ® O(G).

The commutative diagram (see (70), p. 114)

1% LN Vo ® O(G)

lp J'V()@A
PRO(G)
VROG) —— VhR0O(G)Q® O(G)
says exactly that the map p:V — Vp ® O(G) is a homomorphism of comodules. It is
injective because its composite with idy ®e is injective (VIII, 4.1). O

11 Every faithful representation generates Rep(G)

Let (C,A,¢€) be a coalgebra over k, and let (V,p) be a comodule over C. Recall (4.3)
that Cy denotes the smallest subspace of C such that p(V) C V ® Cy. The space Cy is
a sub-coalgebra of C, and, for any basis (e;);es of V, it is spanned by the elements c;;
determined by the equation

ple =) . _ e®ci.
Note that
Cov, = Zi Cy,  (sum of subspaces of C).

Any Cy-comodule (W, py) can be regarded as a C -comodule with the coaction

w2 wecycwec.

LEMMA 11.1 Let (V,p) be a finite-dimensional C-comodule. Every finite-dimensional
Cy -comodule (considered as a C -comodule) is isomorphic to a quotient of a sub-comodule
of V™ for some n.

PROOF. We may replace C with Cy, and so assume that C is finite dimensional. Let
A = CV. Because of the correspondence between right C-comodule structures and left
A-module structures (4.4), it suffices to prove the following statement:

let A be a finite k-algebra and let V' be a finite-dimensional faithful left A-

module; then every finite-dimensional A-module W is isomorphic to a quotient

of a submodule of V" for some n.
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Every module W is isomorphic to a quotient of the free module A™ for some m, and
so it suffices to prove that A itself is isomorphic to a submodule of V" for some n. But if
e1,...,en span V as a k-vector space, then a — (aeq,...,ae,): A — V" is injective because
V' 1is faithful. o

Now assume that A4 is a bialgebra over k. Then the tensor product of two A-comodules
has a natural A-comodule structure (§5).

LEMMA 11.2 Let A be a bialgebra over k, and let V and V' be finite-dimensional A-
comodules. Then Ay gy = Ay - Ay.

PROOF. Choose k-bases (e;);er and (e});e;/ for V and V', and write
priej) =Y ei®aij. py(e)=> e ®aj;.
iel iel’
Then (e; ® e;7)(i.i")er 1’ is a basis for V ®; V', and
pvevi(e;j®ej) =3, /(e ®eir) ®(aij-aj ;)
(see §5). As
Ay =(aij |1,] €1)
AV/= (a,-j |i,j EI/)
AV®V/:<al]'a;/J/|l,J€I, i/,j/61/>,

the statement is clear. (Alternatively, note that Ay ® Ay~ is the sub-coalgebra attached to
the A ® A-comodule V ® V/, and that Ay gy is the image of this by the multiplication map
mARA—A.) o

Now assume that A is a Hopf algebra over k. Then the dual of an A-comodule has a
natural A-comodule structure (§5).
LEMMA 11.3 Let A be a Hopft algebra over k, and let S: A — A be its inversion. For any

finite-dimensional A-comodule (V,p), Ayv = SAy.

PROOF. Under the isomorphisms (74), the right co-action p:V — V ® A corresponds to
a left co-action p: VY — A® V"V, and Ay is also the smallest subspace of A such that
o'(VY)C Ay ® VV. It follows from the definition of p" (see (75)) that SAy is the smallest
subspace of A such that p¥V(VY) C V'V ® A. O

LEMMA 11.4 LetV be a finite-dimensional comodule over a k -bialgebra A. Then

D oo Aven C 4

is the smallest sub-bialgebra of A containing Ay and 1.

def

A(V) =

PrROOF. It follows from Lemma 11.2 that
Ayen = Ay -+ Ay (n factors),

and so it is clear that A(V') is the subalgebra of A generated by Ay and 1. O
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Note that A = |}, A(V) because A = |}, Ay (see 4.6).

LEMMA 11.5 Let V be a finite-dimensional comodule over a Hopf k-algebra A. Then
A(V @ V) is the smallest sub-bialgebra of A containing Ay and 1 and stable under S (in
other words, it is the smallest Hopf subalgebra of A containing Ay and 1).

PROOF. From Lemma 11.4, A(V @ V') is the smallest sub-bialgebra of A containing
Aygyv and 1. But

Aygyy = Ay + Ayv = Ay + SAy,

and so it is the smallest sub-bialgebra of A containing Ay, SAy, and 1. O

Let G be an algebraic group over k, and let A = O(G).

LEMMA 11.6 Let (V,r) be a finite-dimensional representation of G, and let (V, p) be the
corresponding A-comodule. The representation r is faithful if and only if A(V & V) = A.

PROOF. Choose a basis (¢;);es for V, and write p(e;) = > e; ® a;j. Then A(V & V) is
the smallest sub-bialgebra of A containing the a;; and 1 and stable under S (by 11.5). On
the other hand, the image of O(GLy) — O(G) = A is the k-subalgebra generated by the
ajj (6.9). As this image is a sub-bialgebra stable under S, we see that O(GLy ) — O(G) is
surjective (so r is faithful) if and only if A(V & V') = A. o

THEOREM 11.7 Let G — GLy be a representation of G. If V' is faithful, then every finite-
dimensional representation of G is isomorphic to a quotient of a sub-representation of a
direct sum of representations Q" (V & VV) .

PROOF. Let W be the direct sum of the representations X" (V & VV). By definition,
AV ®VY) = Aw. According to Lemma 11.1, every finite-dimensional Ay -comodule
is isomorphic to a quotient of a sub-comodule of W. When V is faithful, Ay = A. O

COROLLARY 11.8 Every simple G-module is a Jordan-Hélder quotient of Q" (V & V')
for some n.

PROOF. Immediate consequence of the theorem. o

We close this section with some remarks.

11.9 When M is an affine monoid with coordinate ring O(M) = A, we let My denote
the quotient affine monoid of M with coordinate ring A(V'). Similarly, when G is an affine
group, we let Gy denote the quotient affine group of G with coordinate ring A(V & V).
Both My and Gy act faithfully on V. Moreover,

M =limMy, G=limGy

because A = JA(V).
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11.10 Let (V,p) be a finite-dimensional comodule over a Hopf k-algebra A. Choose
a basis (e;);es for V and define the matrix (a;;) by p(e;) = Y ;cyei @a;j. Let §y =
det(a;;). Then §y is an invertible element of A, contained in A(}'), and

AWV ®VY) = A(V) [%} :

11.11 The quotient My of M is the smallest affine submonoid of Endy containing the
image of r, and the quotient Gy of G is the smallest affine subgroup of GLy containing
the image of r.

11.12 Letdet(V) = /\dimV V. Then every simple G-module is a Jordan-Holder quotient
of "V @™ det(V)V for some m,n.

11.13 It sometimes happens that O(Gy ) is a quotient of O(Endy ) (and not just of O(GLy)),
i.e., that A(V) = A(V @ V). This is the case, for example, if Gy is contained in SLy .
In this case, Theorem 11.7 and its corollary simplify: the tensor powers of VV @& V'V can be
replaced by those of V.

ASIDE 11.14 Our exposition of Theorem 11.7 follows Serre 1993.

12 Stabilizers of subspaces

PROPOSITION 12.1 Let G — GLy be a representation of G, and let W be a subspace of
V. The functor
R~ {g€G(R)|gWr =Wgj}

is a subgroup of G (denoted Gy, and called the stabilizer of W in G).

PROOF. Let (¢;);c; be a basis for W, and extend it to a basis (e;) y.;7 for V. Write
plej) =2 iesurei ®aij. aij € O(G).
Let g € G(R) = Homy_4,(O(G), R). Then (see 6.8)

gej = icyurei ®glaij).

Thus, g(W®R) C W ®Rifandonlyif g(a;;) =0for j € J,i € I. Asg(a;j) = (aij)r(g)
(see I, 3.13), this shows that the functor is represented by the quotient of O(G) by the ideal
generated by {a;; | j € J,i € I}. o

ASIDE 12.2 Let k be a ring (not necessarily a field). Let G x V' — V be a linear action of an affine
k-group G on a k-module V, and let W be a submodule of V. By definition, the functor

Gw =Tg(W,W).
If W is projective and finitely generated, then Sym(W) is a locally free k-module, and so Gy is

represented by a quotient of O(G) (see V, 6.9).

We say that an affine subgroup H of G stabilizes W if H C Gy, i.e., if iWg = Wg
for all k-algebras R and h € H(R).
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COROLLARY 12.3 Let H be an algebraic subgroup of G such that H (k) is dense in H. If
hW = W forallh € H(k), then H stabilizes W .

PROOF. As hW = W forall h € H(k), wehave (H NGw)(k) = H(k),andso HNGwy =
H. |

PROPOSITION 12.4 Let G actonV and V', and let W and W' be nonzero subspaces of V
and V'. Then the stabilizerof W @ W/ inV @ V' is Gw N Gw-.

PROOF. Clearly Gw N Gw’ C Gwgw-. Conversely, if g is an element of G(R) not in
Gw (R), then there exists a nonzero w € W such that gw ¢ Wpg. For any nonzero element
w’ of W', the element g(w @ w') = gw ® gw’ of Vg ® V}, is not in Wg ® W, and so
g ¢ Gwew (R). o

PROPOSITION 12.5 Let G — GLy be a representation of G, and let v € V. The functor

def

R~ Gy(R)={gc€G(R)|gw®1)=v®]1 (in Vp)}

is a subgroup of G (denoted G, and called the isotropy or stability group of v in G).

PROOF. If v =0, then G, = G and there is nothing to prove. Otherwise, choose a basis
(ei)ier for V with e;, = v for some ig € /. Write

plej) = icqurei ®aij. aij € O(G).
An element g € G(R) fixes v ® 1 if and only if

1 if i=ip

&(@io) =1 ) otherwise.

Therefore G, is represented by the quotient of O(G) by the ideal generated by {a;;, — ;i |
i€ I} O

DEFINITION 12.6 For a representation r: G — GLy of G,
yo = {veV|gv=uw(inVg) forall k-algebras R and g € G(R)}.

It is the largest subspace of V' on which the action of G is trivial. If p denotes the corre-
sponding coaction, then
Ve ={veV|pv)=v®l}.

SLet e and ¢’ be nonzero elements of V and V';if eQ e’ € Wg ® WI’e for some k-algebra R, then ee W
and e’ € W’. To see this, write V = W @ W1, so that

VeV =weVew eV

Lete =eg+eq witheg € W and e; € Wy. If ey #0,theney ®e’ £A0in Wi @ V' € (W1 ® V)R, and so
e®e ¢(WRV')pg.
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13 Chevalley’s theorem

THEOREM 13.1 (CHEVALLEY) Every subgroup of an algebraic group G is the stabilizer
of a one-dimensional subspace in a finite-dimensional representation of G.

PROOF. Let H be a subgroup of G, and let a be the kernel of O(G) — O(H). According
to (4.5), there exists a finite-dimensional k-subspace V' of O(G) containing a generating
set of a as an ideal and such that

A(V) CV®O(G).

Let W =anVin V. Let (¢;);cs be a basis for W, and extend it to a basis (e;) sy for V.
Let
Aej =) icsurei ®aij, aij € O(G).

As in the proof of 12.1, Gy is represented by the quotient of O(G) by the ideal a’ generated
by {a;; | j € J,i € I}. Because O(G) — O(H) is a homomorphism of coalgebras®

A(a) CKer(O(G)R0O(G) > O(H)®QO(H)) =0(G)®a+a® O(G),
€(a) =0.
The first of these applied to ¢, j € J, shows that a’ C a, and the second shows that
ej = (E,id)A(ej) = Zie] e(e,-)a,-j.
Asthe ej, j € J, generate a (as an ideal), so do the a;;, j € J, and so o =a. Thus H =

Gw . The next (elementary) lemma shows that W can be taken to be one-dimensional.

LEMMA 13.2 Let W be a finite-dimensional subspace of a vector space V, and let D =
D =AW w c AWy Letu be an automorphism of Vg for some k-algebra R. Then
uWg = Wg ifand only ifuDg = Dpg.

PROOF. Let (e;) ;e be a basis for W, and extend it to a basis (e;)yus of V. Let w =
/\jesej- For any k-algebra R,
Wr={veVgr|vAw =0 (in /\d+1 VR)}.
To see this, let v € Vi and write v = Zie]u[ a;eij,a; € R. Then
VAW =) jcraiei Ao Aeg Aej.

d+1 V', we see that

As the elements e; A---Aeg Aej, i € I, are linearly independent in /\
VAW=0 <= g; =0foralli € I.

Let u € GL(VR). If uWgr = Wg, then obviously (/\d u)(DR) = Dg. Conversely,
suppose that (/\d u)(DR) = DRg, so that (/\d u)w = cw for some ¢ € R*. When v € Wy,
vAw =0, and so

0= (/\d+1 u)(V AW) =uv A (/\d ww = c (uv) Aw),

which implies that uv € Wg. O

%We use the following elementary fact: for any subspace W of a vector space V, the kernel of V @ V —
V/IWQV/Wis VW + W Q V. To prove this, write V =W @ W’.
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COROLLARY 13.3 A subgroup H of an algebraic group G is the subgroup of G fixing a
vector in some finite-dimensional representation of G in each of the following two cases:

(a) all the representations of H are semisimple;
(b) a nonzero multiple of each character of H defined over k extends to a similar char-
acter of G.

PROOF. According to Chevalley’s theorem, H is the stabilizer of a line D in a finite-
dimensional representation V of G. Let DV be the dual of D with H acting contragre-
diently. If we can find a representation V' of G containing D" as an H -stable subspace,
then H will be the subgroup of G fixing any nonzero vectorin D@ DV C V@ V'

Certainly DV occurs as a quotient of V'V, and so, in case (a), it also occurs as a direct
summand of V'V (regarded as an H-module). In this case, we can take V' = V'V,

The action of H on D defines a character of H, which in case (b) extends to a character
of G. In this case, we can take V' = DV. O

14 Sub-coalgebras and subcategories

Let C be a coalgebra over k. As before, Comod(C') denotes the category of finite-dimensional
right C-comodules. Let D be a sub-coalgebra of C. Any D-comodule (V, p) becomes a
C-comodule with the coaction

v 2veDcvec.

In this way, we get an exact fully faithful functor Comod(D) — Comod(C). We let DV
denote the full subcategory of Comod(C') whose objects are isomorphic to a comodule in
the image of this functor.

DEFINITION 14.1 A full subcategory of an abelian category is replete if it is closed under
the formation of finite direct sums, subobjects, and quotient objects.

In particular, every object isomorphic to an object in a replete subcategory also lies in
the subcategory. A replete subcategory is an abelian category, and the inclusion functor is
exact.

THEOREM 14.2 The map D + DV is a bijection from the set of sub-coalgebras of C onto
the set of replete subcategories of Comod(C).

PROOF. Itis obvious that DV is replete. Let S be a replete subcategory of Comod(C), and
let
Cc(S) = ZV&S Cy  (sub-coalgebra of C).

To prove the theorem, we have to show that:

o C(DY) = D for all sub-coalgebras D of C, and

TLet v be a nonzero vector in D. Then

H C Gygyv CGpgpvy =GpNGpv =Gp =H.
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¢ C(S)Y = S for all replete subcategories S of Comod(C). o

The first statement follows from Corollary 4.6, and the second follows from Lemma 11.1.

PROPOSITION 14.3 Let A be a bialgebra over k.

(a) A sub-coalgebra D of A is a sub-bialgebra of A if and only if DV is stable under
tensor products and contains the trivial comodule.

(b) Assume A has an inversion S. A sub-bialgebra D is stable under S if and only if DV
is stable under the contragredient functor.

PROOF. (a) If D is a sub-bialgebra of A, then certainly D"V is stable under tensor products
and contains the trivial comodule (see §5). For the converse, recall that D = () Dy and that
Dy - Dy = Dygy’ (see 11.2), and so D is closed under products. Because DV contains
Vo =k, D contains Dy, = k.

(b) Use the formula Ayv = SAy (11.3). o

15 Quotient groups and subcategories

For an affine group G over k, Rep(G) denotes the category of finite-dimensional G-modules.
Let G — Q be a quotient of G. A representation r: 0 — GLy defines a representation
G—>0 AN GLy of G. We get in this way an exact fully faithful functor Rep(Q) —
Rep(G). The essential image of the functor consists of the representations of G containing
Ker(G — Q) in their kernel. We let OV denote this subcategory of Rep(G).

THEOREM 15.1 The map Q — QV is a bijection from the set of isomorphism classes of
quotients of G to the set of replete subcategories of Rep(G) closed under the formation of
tensor products (including the empty tensor product) and under passage to the contragredi-
ent.

PROOF. Obvious from (14.2), (14.3), and the dictionary between Hopf algebras and their
comodules and affine groups and their representations. O

16 Characters and eigenspaces

A character of an affine group G is a homomorphism G — G,. As O(G,,) = k[X,X!]
and A(X) = X ® X, we see that to give a character y of G is the same as giving an
invertible element a = a(y) of O(G) such that A(a) = a ® a; such an element is said to
be group-like. A one-dimensional representation L of G defines a character of G (because
GL; >~ Gy).

A character y: G — Gy, defines a representation of G on any finite-dimensional space
V: let g € G(R) act on Vg as multiplication by y(g) € R*. For example, y defines a
representation of G on V = k" by

x(8) 0
g , g£€G(R).

0 x(g)
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Let r: G — GLy be a representation of G. We say that G acts on V' through a character y
if

r(g)v=yx(g)vall g e G(R), v € Vpg.
More precisely, this means that the image of r is contained in the centre G, of GLy and is
the composite of

75 G,y GLy. (84)

More generally, we say that G acts on a subspace W of V through a character y if W
is stable under G and G acts on W through y. Note that this means, in particular, that
the elements of W are common eigenvectors for the g € G(k): if w € W, then for every
g € G(k), r(g)w is a scalar multiple of w. If G acts on subspaces W and W' through a
character y, then it acts on W + W’ through y. Therefore, there is a largest subspace V,, of
V on which G acts through y, called the eigenspace for G with character y.

LEMMA 16.1 Let (V,r) be a representation of G, and let (V, p) be the corresponding co-
module. For any character y of G,

Vy={veV]p)=v®a())

PROOF. Let W be a subspace of V. Then G acts on W through y if and only if p| W factors

as

X ®X—>w®a(y)
w Lowes, W®@(Gm)w_> W ® O(G). .

THEOREM 16.2 Letr:G — GL (V) be a representation of an algebraic group on a vector
space V. If V is a sum of eigenspaces, V = )_ Vy. then it is a direct sum of the
eigenspaces

XEE

V= @Xeg Vy.

PROOF. We first prove this when G is smooth. We may replace k with a larger field, and
so assume that k is algebraically closed. If the sum is not direct, there exists a finite subset
{x1,---»Xm}, m > 2, of Z and a relation

V4o, =0,v; € Vy,,v; #0. (85)
On applying g € G(k) to (85), we get a relation
X114+ Ym-1(8)vm—1+ fm(&)vm = 0. (86)

AS ym # xm—1 and G is smooth, there exists a g € G(k) such that y,,(g) # xm—-1(g2).
Multiply (86) by ym(g)~! and subtract it from (85). This will give us a new relation of the
same form but with fewer terms. Continuing in this fashion, we arrive at a contradiction.

For the proof of the general case, we shall make use of the elementary lemma XIV, 1.2,
which says that any set of units a in O(G) satisfying A(a) = a ® a is linearly independent.
From the relation (85), we get a relation

0=">"esPvi) =3 ;csvi ®alxi)
which contradicts the linear independence of the a(y;). O
In Chapter XV we shall show that when G is a split torus, V' is always a sum of the

eigenspaces V. In general, this will be far from true. For example, SL, has no nontrivial
characters.
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17 Every normal affine subgroup is a kernel

LEMMA 17.1 Letv and w be nonzero vectors in vector spaces V and W respectively, and
let u and 8 be endomorphisms of Vg and Wg for some k-algebra R. If v ® w is fixed by
u ® B, then there exists a c € R* such that u(v) = cv and B(w) = ¢~ ' w.

PROOF. Write
V=@weaeV, W=Wwaew.

Then
VW =@wew) & V)W & V'e(w) & VW',

where (v ®@ w) = (v) ® (w) # 0. Write
uv=av+v, Bw=bw+w', abecR, v/EVI/Q’ w/eWI’Q.

Then
B (vRw)=ab(v@w)+av@uw +v @bw+v' QW'

If u®B)(vRw) =vQ®w, thenab = 1 and
a(vew)=0=>b(V®w).
Asa,b € R* and v # 0 # w, this implies that w’ = 0 = v’, as required. O

LEMMA 17.2 For any normal subgroup N of an affine group G and representation (V,r)
of G, the subspace VN is stable under G.

PROOF. Let w € (VN)g and let g € G(R) for some k-algebra R. For any R-algebra R’
andn € N(R')

r(m)(r(g)w) =rng)w =r(gnyw =r(grmw =r(gw,

because n’ = g~ lng € N(R’). Therefore, r(g)w € (VN ), as required. o

LEMMA 17.3 Let G be an affine group over k, and let (V,r) be a representation of G. If
V' is a sum of simple subrepresentations, say V =) ;<; S; (the sum need not be direct),
then for any subrepresentation W of V , there is a subset J of I such that

V:W@@iEJS,-.

In particular, V' is semisimple.

PROOF. Let J be maximal among the subsets of / such the sum Sy e > jes Sj is direct
and W NSy =0. Iclaim that W 4+ S; =V (hence V is the direct sum of W and the S;
with j € J). For this, it suffices to show that each S; is contained in W + S ;. Because S;
is simple, S; N (W 4 Sy) equals S; or 0. In the first case, S; C W + S, and in the second
SyNS; =0and WN(Sy+ S;) =0, contradicting the definition of /. 0

LEMMA 17.4 Suppose that k is algebraically closed. Every normal subgroup of an alge-
braic group G over k occurs as the kernel of representation of G.
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PROOF. Let N be a normal subgroup of G. According to Chevalley’s theorem 13.1, N is
the stabilizer of a line L in a representation V' of G. Let N act on L through the character
x. After possibly replacing (V, L) with a second pair, we shall find a G-module U and
aline L’ in U such that N acts on L’ through y and L’ is a direct summand of U as an
N-module. Then UV contains a line LY on which N acts through the character y~!, and
L®LY C(V®UY)N. If an element u of G(R) acts trivially on (V ® UV)]I\{, then it acts
trivially on (L ® L") g, and so it stabilizes L g in Vg (by 17.1); hence u € N(R). Therefore
N is the kernel of the representation of G on (V @ U V)N.

It remains to construct U. Suppose first that G is smooth. In this case, we take U to
be the smallest G-stable subspace of V' containing L. The subspace ) gcGk) &L of V' is
stable under G (k), hence under G (12.3), and so equals U. According to Lemma 17.3, U
decomposes into a direct sum U = EB,-G 7 L; of lines L; stable under N, one of which can
be taken to be L.

If G is not smooth, then the characteristic of k is p # 0, and there exists an n such that
O(G)?" is areduced Hopf subalgebra of O(G) (see VI, 10.2). In this case, we replace V' by
V®P" and L by L®P" — Proposition 12.4 shows that N is still the stabilizer of L. Let G’
be the quotient of G such that O(G’) = O(G)?". Choose a basis (¢;);es for V containing
a nonzero element e of L. Write

ple)=e®a+ Ze'# eiPaj, aj1<€a=Ker(O(G)— O(N)). (87)

In replacing L with L®?" | we replaced the original a with a?”" | which now lies in O(G’).
Let L’ = (a) C O(G’), and consider the representation

G — G, — GLO(G’)

of G on O(G’). The character y of N corresponds to the element @ of O(N), where a is
the image of b in O(N) = O(G)/a (see (87)). As

A(a) =a®a mod O(G) ® O(G)/a,

N acts on the line L’ through the same character y. Because G’ is smooth, we can take U
to be the smallest G’-stable subspace of O(G’) containing L’, as in the paragraph above. o

THEOREM 17.5 Let N be a normal subgroup of an algebraic group G. The universal
surjective homomorphism G — Q containing N its kernel (see VII, 8.1) has kernel exactly
N.

PROOF. Lemma 17.4 show that, over some finite extension k’ of k, there exists a homo-
morphism Gy, — H with kernel Ny,. The kernel of G — I1y+/x H is N. From the universal
property of G — Q, we see that Ker(G — Q) C N, and hence the two are equal. o

COROLLARY 17.6 For any distinct normal subgroups N C N' of an affine group G, there
exists a representation of G on which N acts trivially but N acts nontrivially.

PROOF. Let O = G/N be the quotient of G by N, and let @ — GLy be a faithful repre-
sentation of . The composite G — Q — GLy is the required representation. O
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18 Variant of the proof of the key Lemma 17.4

LEMMA 18.1 Let (V,r) be a finite-dimensional faithful representation of an algebraic
group G, and let N be the kernel of the representation of G on VY ® V. Then

N(R) = {u € G(R) | there exists a ¢ € R such thatux = cv forallv € V}.

In other words, for any subgroup G of GLy, the subgroup of G acting trivially on
VY ® V is the subgroup acting on V' by scalars.

PROOF. Let (e;)1<i<n be a basis for V, and let e;; = ¢, ® e;. Let u be endomorphism of
Vg for some k-algebra R. A direct calculation shows that u(e;;) = e¢;; for all i, j if and
only if there exists a ¢ € R such that ue; = ce; forall i. o

LEMMA 18.2 Let G be an algebraic group, and let H be a subgroup of G. The following
are equivalent:

(a) H isnormalin G;

(b) for each representation V of G and k-character y of H, the subspace VX of V on
which H acts through y is stable under G;

(c) every H -isotypic component of a representation of G is stable under G.

PROOF. See André 1992, Lemma 1. (We sketch the proof of (a) = (b). For any g € G(k),
gV X = VE&X but the action of G on the set of k-characters of H is trivial, because G is
connected and the set is discrete. When G is smooth, this is shown in the proof of (XVI,
4.7).) 0

We now prove that every normal subgroup N of a connected algebraic group G occurs
as the kernel of a representation of G (without assumption on the field k). Let L be a line
in a representation V' of G such that Gy, = N. Then N acts on L through a character y.
Let W be the smallest G -stable subspace of V' containing L. Then W C VX by (18.2), and
so N is contained in the kernel H of G — GLwvgw. According to (18.1), H acts on W
through a k-character. In particular, it stabilizes L, and so H C N.

19 Applications of Corollary 17.6

LEMMA 19.1 Let Ny and N, be normal subgroups of an affine group G. If Rep(G)N' =
Rep(G)™2 then N| = N».

PROOF. If Ny # N;, then Corollary 17.6 shows that there exists a representation (V,r) of
G and av € V fixed by N; but not by Ny N,. Then V1 is an object of Rep(G)™! but not
of Rep(G)N2, which contradicts the hypothesis. 0

THEOREM 19.2 Let N be a normal subgroup of an affine group G, and let Q be a quotient
of G. Then N = Ker(G — Q) if and only if Rep(G)N = QV.
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PROOF. =: According to Theorem 7.8, Chapter VII, a representation r: G — GLy factors
through Q (and so lies in Q") if and only if 7 maps N to 1 (and so (V,r) lies in Rep(G)™).

«<: Let N’ be the kernel of G — Q. Then Rep(G)Y = 0V, and so Rep(G)N =
Rep(G)Y'. This implies that N = N'. o

COROLLARY 19.3 The map N — Rep(G)V is a bijection from the set of normal sub-
groups of G to the set of replete subcategories of Rep(G) closed under tensor products and
passage to the contragredient.

PROOF. Let S be a replete subcategory of Rep(G) closed under tensor products and pas-
sage to the contragredient. The S = QV for some quotient Q of G, well-defined up to
isomorphism, and the kernel N of G — Q is a normal subgroup of G. The maps S — N
and N — Rep(G)" are inverse. o

THEOREM 19.4 For any normal subgroup N of an affine group G, there exists a quotient
map with kernel N .

PROOF. The subcategory Rep(G)" of Rep(G) is replete and closed under tensor products
and passage to the contragredient. Therefore Rep(G)"Y = QV for some quotient Q of G,
and the Theorem 19.2 implies that N is the kernel of G — Q. 0

NOTES Add a discussion of the correspondence between normal subgroups of an affine group G
and the normal Hopf ideals in O(G) (Abe 1980, p. 179), and also of the correspondence between
normal Hopf ideals and Hopf subalgebras (ibid. 4.4.7, p. 207, in the case that k is algebraically
closed and the Hopf algebras are assumed to be reduced).

NOTES Add a discussion of the general theorem on the existence of quotients of group schemes
over artinian rings (SGA 3, VIy).






CHAPTER I X

Group Theory: the Isomorphism
Theorems

In this chapter, we show that the (Noether) isomorphism theorems in abstract group theory
hold also for affine groups. Throughout, & is a field.

1 Review of abstract group theory

For a group G (in the usual sense), we have the notions of subgroup, a normal subgroup, an
embedding (injective homomorphism), and of a quotient map (surjective homomorphism).
Moreover, there are the following basic results, which are often referred to collectively as
the isomorphisms theorems. !

1.1 (Existence of quotients). The kernel of a quotient map G — Q is a normal subgroup
of G, and every normal subgroup N of G arises as the kernel of a quotient map G — G/N.

1.2 (Homomorphism theorem). The image of a homomorphism u: G — G’ is a subgroup
uG of G’, and u defines an isomorphism from G/Ker(u) onto uG; in particular, every
homomorphism is the composite of a quotient map and an embedding.

1.3 (Isomorphism theorem). Let H and N be subgroups of G such that H normalizes N;
then H N is a subgroup of G, N is a normal subgroup of HN, H N N is a normal subgroup
of H, and the map

h(HNN)—hN:H/HNN — HN/N

is an isomorphism.

1.4 (Correspondence theorem). Let N be a normal subgroup of G. The map H — H/N
defines a one-to-one correspondence between the set of subgroups of G containing N and
the set of subgroups of G/N. A subgroup H of G containing N is normal if and only if
H/N is normal in G/ N, in which case the map

G/H — (G/N)/(H/N)

defined by the quotient map G — G/ N is an isomorphism.

I'Statements (1.2), (1.3), and (1.4) are sometimes called the first, second, and third isomorphism theorems,
but the numbering varies. In Noether 1927, the first isomorphism theorem is (1.4) and the second is (1.3).

141
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In this chapter, we shall see that, appropriately interpreted, all these notions and state-
ments extend to affine groups (in particular, to algebraic groups).

2 The existence of quotients

THEOREM 2.1 The kernel of a quotient map G — Q of affine groups over k is a normal
affine subgroup of G, and every normal affine subgroup N of G arises as the kernel of a
quotient map G — G/N.

PROOF. See Theorem 17.5, Chapter VIII. o

EXAMPLE 2.2 Let PGL, be the quotient of GL,, by its centre, and let PSL,, be the quotient
of SL,, by its centre:

The homomorphism SL;,, — GL,, — PGL,, contains p, in its kernel, and so defines a ho-
momorphism
PSL, — PGL,, . (88)

Is this an isomorphism? Note that
SLn(k)/ pn (k) = GLn (k) /Gm (k) (89)

is injective, but not in general surjective: not every invertible 7 X n matrix can be written
as the product of a matrix with determinant 1 and a scalar matrix (such a matrix has de-
terminant in k*™). Nevertheless, I claim that (88) is an isomorphism of algebraic groups.
In characteristic zero, this follows from the fact that (89) is an isomorphism when k = k&
(apply VII, 4.5 and 7.6). In the general case, we have to check the conditions (VII, 2.1a and
7.1).

Letq # 1 € PSL, (R). For some faithfully flat R-algebra R’, there exists a g € SL,,(R’)
mapping to ¢ in PSL, (R’). The image of g in GL, (R’) is not in G, (R’) (because g # 1);
therefore, the image of g in PGL, (R’) is # 1, which implies that the image of ¢ in PGL(R)
is # 1:

PSL,(R') —— PGL,(R’)

T Tinjective
PSL,(R) —> PGL,(R).

‘We have checked condition (VII, 2.1a).

Let ¢ € PGL, (R). For some faithfully flat R-algebra R’, there exists a g € GL,(R’)
mapping to g. If a o det(g) is an nth power, say a = t", then g = got with det(go) = 1,
and the image of g in GL,(R’)/G,,(R’) is in the image of SL, (R’)/u,(R’). Hence, the
image of ¢ in PGL, (R’) is in the image of PSL, (R’). If a is not an nth power in R’, we
replace R’ by the faithfully flat (even free) algebra R'[T']/(T" —a) in which it does become
an nth power. We have checked condition (VII, 7.1).
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3 The homomorphism theorem

A homomorphism u: G — G’ of affine groups defines a homomorphism u%: O(G’) - O(G)
of Hopf algebras, whose kernel a is a Hopf ideal in O(G’).? Thus

a={f e€O(G)| frR(ur(P)) =0 for all k-algebras R and all P € G(R)}.

The subgroup H of G’ corresponding to a (see VII, 3.2) is called the image of u (and often
denoted uG). Thus

H(R) = {g € G(R) | fr(g) =0for f €aj.

THEOREM 3.1 (Homomorphism theorem) For any homomorphism u:G — G’ of affine
groups, the kernel N of u is a normal subgroup of G, the image uG of u is a subgroup of
G’, and u factors in a natural way into the composite of a surjection, an isomorphism, and
an injection:

¢ —X ., @

Surjectivel Tinj ective

isomorphism
G/N 2PN 6.

If G is an algebraic group, then so also are G/N and uG.

PROOF. The factorization
O(G) < O(G")/a < O(G")
of u! defines a factorization
G—>uG—G’

of u into a surjection followed by an injection. As G — G/N and G — uG are both
quotient maps with kernel N, there is a unique isomorphism G/N — uG such that the
composite

G—G/N - uG

is G - uG (apply VII, 7.9).
The final statement follows from (VIII, 8.6). o

COROLLARY 3.2 For any k-algebra R,
uG)(R) = UR/ G(R)NImu(R)

where R’ runs over the faithfully flat R-algebras. Therefore uG represents the sheaf asso-
ciated with
R ~~ Im(u(R)).

Moreover, uG is the intersection of the subgroups H of G’ with the property that Imu(R) C
H(R) for all k-algebras R.

2In fact, we don’t need to use that a is a Hopf ideal, just that it is an ideal.
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PROOF. The map G — uG is a quotient map, and so the first statement follows from (VII,
11.6). If H is a subgroup of G’ such that H(R) D Imu(R) for all k-algebras R, then, for
any fixed k-algebra R,

H(R) D UR, G(R)NImu(R') = (uG)(R),

and so H D uG. o

COROLLARY 3.3 A homomorphism u:G — G’ of algebraic groups is surjective if, for
some field K containing k, the image of G(K) in G'(K) is dense in G’.

PROOF. As u(G(K)) C (uG)(K) C G'(K), the condition implies that uG = G. o

Let u:G — G’ be a homomorphism of algebraic groups. Then G (k) — (uG) (k™) is
surjective (see VII, 7.6), and so

wG) (k) = G'(k) N (uG) (k™)

= G’ (k) NIm(G (k™) uk) G' (k™).

4 The isomorphism theorem

Let H and N be algebraic subgroups of G such that H normalizes N. The natural ac-
tion of H(R) on N(R) defines an action 8 of H on N by group homomorphisms, and
multiplication defines a homomorphism

NN@H—)G.

We define NH = HN to be the image of this homomorphism. The following statements
are obvious from §3.

4.1 Forany k-algebra R, (H N)(R) consists of the elements of G(R) thatlie in H(R')N(R’)
for some finitely generated faithfully flat R-algebra R’. Therefore H N represents the sheaf
associated with the functor

R~ H(R)-N(R) C G(R).

Moreover, HN is the intersection of the subgroups G’ of G such that, for all k-algebras R,
G'(R) contains both H(R) and N(R).

4.2 We have
(HN)(k™) = H(k™)- N(k¥),

and so
(HN)(k) = G(k) N (H(k")- N(k™)).

4.3 Ttisnot true that (HN)(R) = H(R)N(R) for all k-algebras R. For example, consider
the algebraic subgroups SL, and Gy, (nonzero scalar matrices) of GL,. Then GL, =
SL;, -Gy, but a matrix A € GL, (R) whose determinant is not an nth power is not the product
of a scalar matrix with a matrix of determinant 1.
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THEOREM 4.4 (Isomorphism theorem) Let H and N be algebraic subgroups of the alge-
braic group G such that H normalizes N . The natural map

H/HNN — HN/N (90)

is an isomorphism.

PROOF. We have an isomorphism of group-valued functors
H(R)/(HNN)(R) —> H(R)N(R)/N(R) C (HN)(R)/N(R).

The statement now follows from (VII, 11.6), or by passing to the associated sheaves. O

EXAMPLE 4.5 Let G = GL,, H = SL,, and N = Gy, (scalar matrices in G). Then
N N H = uy (obviously), HN = GL, (by the arguments in 2.2), and (90) becomes the
isomorphism

SL, /pn — GL, /Gyy,.

EXAMPLE 4.6 The isomorphism theorem fails in the category of smooth algebraic groups.
Consider, for example, the subgroups H = G, (diagonal) and N = SL, of GL, over a
field of characteristic p. In the category of smooth algebraic groups, N N H = 1, and the
map H/HNN — HN/N is the homomorphism SL, — PGL,, which is an inseparable
isogeny of degree p — it is injective and surjective in the category of smooth algebraic
groups, but it is not an isomorphism.

5 The correspondence theorem

THEOREM 5.1 (Correspondence theorem). Let N be a normal algebraic subgroup of G.
The map H — H/N defines a one-to-one correspondence between the set of algebraic
subgroups of G containing N and the set of algebraic subgroups of G/N. An algebraic
subgroup H of G containing N is normal if and only if H/N is normal in G/ N, in which
case the map

G/H — (G/N)/(H/N) oD

defined by the quotient map G — G/ N is an isomorphism.

PROOF. The first statement follows from the fact that the analogous statement holds for
Hopf algebras (cf. Exercise 1I-6). For the second statement, note that the map

G(R)/H(R) — (G(R)/N(R))/(H(R)/N(R))

defined by the quotient map G(R) — G(R)/N(R) is an isomorphism. This isomorphism
is natural in R, and when we pass to the associated sheaves, we obtain the isomorphism
OD. O

ASIDE 5.2 Letq:G — G/ N be the quotient map. For any subgroup H of G, gH is a subgroup of
G/ N, which corresponds to H N . Deduce that if H’ is normal in H, then H’'N is normal in HN .

NOTES Need to discuss how much of the isomorphism theorems hold for smooth groups. Should
move the smoothness part of (XVII, 1.1) here.
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6 The Schreier refinement theorem

LEMMA 6.1 (BUTTERFLY LEMMA) Let H; D Nj and H, D N, be algebraic subgroups
of an algebraic group G with Ny and N, normal in H; and H,. Then N{(H; N N») and
N>(N1 N Hy) are normal algebraic subgroups of the algebraic groups N1(H; N Hy) and
N> (H» N Hy) respectively, and there is a canonical isomorphism of algebraic groups

Ni(HiNHy)  N»(HiNH>)
Ni(H1NN2) — Na(N1NH>)

PROOF. The algebraic group Hy N N, isnormal in H; N H, and so N1 (H1 N H>) is normal
in N1(H1 N N3) (see Exercise VII-2). Similarly, N (H, N Ny) is normal in N (H, N Hy).
The subgroup H; N H, of G normalizes N1(H1 N N3), and so the isomorphism Theo-
rem 4.4 shows that
HiNH, _(H1NHy)-Ni(H1NN>)
(HiNH))NN{(HiNNz) N1(Hi N N>)

As Hi NNy C Hy N Hy, we have that Hy N Hy = (Hy N Hy) (Hy N N3), and so

92)

Ni1-(HiNHy)= N1-(HyNH)-(Hy N N»).

The first of Dedekind’s modular laws (Exercise VII-3a) with A = H{ NN, B = Hi N H>,
and C = Np becomes
(Hy N H2) NNy (Hy N N2) = (Hy N N2)(Hy N Ha N Ny)
= (H1 N N2) (N1 N Hy).
Therefore (92) is an isomorphism

H{NH, NNI(HIHHZ)
(HiNN2)(N1NH) — Ni(HiNNz)

A symmetric argument shows that

HiNHy _ Na(Hi N Hy)
(HiNN2) (NN Hy) — Na(HaNNyp)'

and so
Ni(HiNH) Na(HiNHy)

Ni(HiNNz) — No(H N Ny)' O

A subnormal series in an affine group G is a finite sequence of subgroups, beginning
with G and ending with 1, such that each subgroup is normal in the preceding subgroup.

PROPOSITION 6.2 Let H be a subgroup of an affine group G. If
G=GoDG1D:--DGs={1}
is a subnormal series for G, then
H=HNGyDHNG; D---DHNG;={1}
is a subnormal series for H, and

HNG;/HNGi+1 > Gi/Gj+1.
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PROOF. Obvious. o

Two subnormal sequences

G=GyDG;D--DGs={l1}

G=HyD>DH;D--DH; ={l}
are said to be equivalent if s =t and there is a permutation 7 of {1,2,...,s} such that
Gi/Gi+1~ Hpiy/Hy(iy+1-

THEOREM 6.3 Any two subnormal series in an algebraic group have equivalent refine-
ments.

PROOF. Let G;j = Gi+1(H; N G;) and let H;; = H;j+1(G; N Hj). According to the
butterfly lemma
Gij/Gij+1~Hjj/Hjjt1,

and so the refinement (G;;) of (G;) is equivalent to the refinement (H ;) of (H;). 0

A subnormal series is a composition series if no quotient group G; has a proper non-
trivial normal subgroup.
THEOREM 6.4 For any two composition series

G=Go>Gy DD Gy =11}
G=HoD>DH|D--DH;={l},

s =t and there is a permutation w of {1,2,...,s} such that G;/G; 41 is isomorphic to
Hn(i)/Hn(i)+1 foreachi.

PROOF. Use that, for each i, only one of the quotients G; +1(H; N G;)/G;+1(H;+1NG;)
1s nontrivial o

An algebraic group is strongly connected if it has no finite quotient. An algebraic
group G with dimG > 0 is almost-simple if for every proper normal subgroup N we have
dim N < dimG. An almost-simple group is strongly connected.

THEOREM 6.5 Let G be a strongly connected algebraic group. There exists a subnormal
sequence
G=GoDG;D---DGs={1}

such that each G; is strongly connected and G; / G+ is almost-simple. If
G=HyoDH;D--DH; ={l}

is a second such sequence, then s = t and there is a permutation r of {1,2,...,s} such that
G;/Gj+1 is isogenous to Hy(;y/Hy(;)4+1 foreachi.
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7 The category of commutative algebraic groups

THEOREM 7.1 The commutative algebraic groups over a field form an abelian category.

PROOF. The Hom sets are commutative groups, and the composition of morphisms is bilin-
ear. Moreover, the product G; x G, of two commutative algebraic groups is both a product
and a sum of G; and G,. Thus the category of commutative algebraic groups over a field
is additive. Every morphism in the category has both a kernel and cokernel (VII, 4.1; VIII,
17.5), and the canonical morphism from the coimage of the morphism to its image is an
isomorphism (homomorphism theorem, 3.1). Therefore the category is abelian. o

COROLLARY 7.2 The finitely generated commutative co-commutative Hopf algebras over
a field form an abelian category.

ASIDE 7.3 Theorem 7.1 is generally credited to Grothendieck but, as we have seen, it is a fairly
direct consequence of allowing the coordinate rings to have nilpotent elements. See SGA 3, Vg4,
5.4; DG III §3, 7.4, p. 355.

Corollary 7.2 is proved purely in the context of Hopf algebras in Sweedler 1969, Chapter X VI,
for finite-dimensional commutative co-commutative Hopf algebras, and in Takeuchi 1972, 4.16, for
finitely generated commutative co-commutative Hopf algebras.

In the latest version of SGA 3, it is shown (VIy4, 5.4.2) that the category of commutative alge-
braic group schemes (not necessarily affine) over a field is abelian. It is then shown that the category
of affine commutative algebraic group schemes is thick in the full category, and so it also is abelian
(ibid. 5.4.3). Moreover, the category of all commutative affine groups (not necessarily algebraic)
over a field is abelian.

ASIDE 7.4 Let G be an algebraic group scheme over a field k. If G is affine, then every algebraic
subgroup scheme is affine, and every quotient of G by a normal algebraic subscheme is affine.
Moreover, every extension of an affine algebraic group scheme by an affine algebraic group scheme
is again an affine algebraic group scheme (SGA 3, VIp, 9.2(viii)).

8 Exercises

EXERCISE I[X-1 Let H and N be subgroups of the algebraic group G such that H normal-
izes N. Show that the kernel of O(G) — O(H N) is equal to the kernel of the composite

0(G) = O(6) & O(G) - O(H) & O(N).

ASIDE 8.1 As noted earlier, in much of the expository literature (e.g., Borel 1991, Humphreys
1975, Springer 1998), “algebraic group” means “smooth algebraic group”. With this terminology,
many of the results in this chapter become false.** Fortunately, because of Theorem 9.3, Chapter
VI, this is only a problem in nonzero characteristic. The importance of allowing nilpotents was

3For example, in the category of smooth groups, the homomorphism H/H NN — HN/N is a purely
inseparable isogeny of degree g where ¢ is the multiplicity of H N N in the intersection product H e N.

4The situation is even worse, because these books use a terminology based on Weil’s Foundations, which
sometimes makes it difficult to understand their statements. For example, in Humphreys 1975, p. 218, one finds
the following statement: “for a homomorphism ¢:G — G’ of k-groups, the kernel of ¢ need not be defined
over k. By this, he means the following: form the kernel N of gpa: Gra — Gl/cal (in our sense); then Nyeq need
not arise from a smooth algebraic group over k. Of course, with our (or any reasonable) definitions, the kernel
of a homomorphism of algebraic groups over k is certainly an algebraic group over k.
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pointed out by Cartier (1962) more than forty years ago, but, except for Demazure and Gabriel 1970
and Waterhouse 1979, this point-of-view has not been adopted in the expository literature. Contrast
our statement and treatment of the isomorphism theorems and the Schreier refinement theorem with
those in Barsotti 1955a and Rosenlicht 1956.






CHAPTER X

Categories of Representations
(Tannaka Duality)

A character of a topological group is a continuous homomorphism from the group to the
circle group {z € C | zZ = 1}. A finite commutative group G can be recovered from its group
GV of characters because the canonical homomorphism G — GV is an isomorphism.

More generally, a locally compact commutative topological group G can be recovered
from its character group because, again, the canonical homomorphism G — GYV is an
isomorphism (Pontryagin duality). Moreover, the dual of a compact commutative group
is a discrete commutative group, and so, the study of compact commutative topological
groups is equivalent to that of discrete commutative groups.

Clearly, “commutative” is required in the above statements, because every character
is trivial on the derived group. However, Tannaka showed that it is possible to recover a
compact noncommutative group from the category of its unitary representations.

In this chapter, we prove the analogue of this for algebraic groups. Initially, k is allowed
to be a commutative ring.

1 Recovering a group from its representations

Let G be an affine monoid with coordinate ring A. Recall that for the regular representation
r4:G — Endy, an element g of G(R) acts on f € A according to the rule:

(&f)r(x) = fR(x-g) all x € G(R). (93)

LEMMA 1.1 Let G be an affine monoid over a ring k, and let A = O(G) be its coordinate
ring. Let u be a k-algebra endomorphism of A. If the diagram

4 -2 Ae4

lu ll@u
A
A— ARA

commutes, then there exists a g € G(k) such thatu = r(g).
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PROOF. According to the Yoneda lemma, there exists a natural transformation ¢:G — G
of set-valued functors such that

uf)r(x) = fr(¢rx) all f € 4, x € G(R). (94)
The commutativity of the diagram says that, for f € A,
(Aou)(f) = ((1®u)oA)(f).
On evaluating this at (x, y) € G(R) x G(R), we find that!
fR(PR(x-y)) = fR(x-PRY).
As this holds for all f € A4,
Pr(x-y) =x-¢r(y). allx,y € G(R).

On setting y = e in the last equation, we find that ¢ g (x) = x - g with g = ¢r(e). Therefore,
for f € Aand x € G(R),

(€] (93) def
Wf)r(x) = fr(x-g) = (gf)r(x) = (ra(g) fIr(X).
Hence u =r4(g). O
THEOREM 1.2 Let G be a flat affine monoid (or group) over a noetherian ring k, and let R
be a k-algebra. Suppose that, for each representation (V,ry) of G on a finitely generated

k-module V', we are given an R-linear map Ay : Vg — Vg. If the family (Ay) satisfies the
conditions,

(a) for all representations V, W,

Avew = Ay @ Aw,

(b) Ay is the identity map (here 1 = k with the trivial action)

'Here are the details. We shall need the formulas (p.- 47)
(Af)R(x,y) = fr(x-y)for f € A
(/1® f2)r(x.y) = (S1)R(X)-(f2)R(Y) for f1, 2 € A
For x,y € G(R),

(LHS)R(x,y) = (Aou)(/)R(x.y) = (Auf)R(x.y) = uf)R(x-y) = fR(PR(x"Y)).
Let Af =) fi ® gj; then

(RHS)g (x,y) = ((1@u) o (3_; fi ® &) g (x.3) = (X2; fi ®ugi) g (x,»)
=3 fir(x)- (ugi)R(y)
=2 fir(x)-&R(PRY)
=(X; fi®gi) g (x.0rY)
= (Af)rR(x,$RY)
= fR(x-9RY).
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(¢) for all G-equivariant maps u:V — W,
AW OUR =UROAY,

then there exists a unique g € G(R) such that Ay = ry(g) forall V.

PROOF. Under our hypotheses, every representation V' of G is a union of its finitely gener-
ated representations, V = Uie 1 Vi (see VIII, 6.7). It follows from (c) that

Av|VinV; =/\Vimvj =/\Vj|Vl'ﬂVj

for all i, j € I.Therefore, there is a unique R-linear endomorphism Ay of Vg such that
Ay |W = Aw for every finitely generated subrepresentation W C V. The conditions (a,b,c)
will continue to hold for the enlarged family.

Let A= O(G)R, and let A 4: A — A be the R-linear map corresponding to the regular
representation 7 of G on A. The map m: A ® A — A is equivariant” for the representations
r ®r and r, which means that A 4 is a k-algebra homomorphism. Similarly, the map A: A —
A ® A is equivariant for the representations r on A and 1 ® r on A ® A, and so the diagram
in (1.1) commutes with u replaced by A 4. Now Lemma 1.1, applied to the affine monoid
G R over R, shows that there exists a g € G(R) such A 4 = r(g).

Let (V,ry) be a finitely generated representation of G, and let V denote the underlying
k-module. There is an injective homomorphism of representations

oV = 1y®0(G)

(VIII, 10.3). By definition A and r(g) agree on O(G), and they agree on V by condition
(b). Therefore they agree on Vo ® O(G) by (a), and so they agree on V' by (c).

This proves the existence of g. It is unique because the regular representation is faithful
(VIIL, §9). o

Remarks

1.3 Each g € G(R) of course defines a family as in the theorem. Thus, from the category
Rep(G) of representations of G on finitely generated k-modules we can recover G(R)
for all R, and hence the group G itself. For this reason, Theorem 1.2 is often called the
reconstruction theorem.

1.4 Let (Ay) be a family satisfying the conditions (a,b,c) of Theorem 1.4. When G is an
affine group (rather than just a monoid), each Ay is an isomorphism, and the family satisfies
the condition Ayv = (Ay)Y (because this is true of the family (ry (g))).

1.5 Let wg be the forgetful functor Repg(G) — Modg, and let End® (wg) be the set of
natural transformations A:wg — wgr commuting with tensor products — the last condition
means that A satisfies conditions (a) and (b) of the theorem. The theorem says that the

2Here are the details. For x € G(R),

(r(g)om) (f ® f)(x) = (r(@)([fNx) = (ff)(xg) = f(xg)- f'(xg)
(mor(g)®r(@) (f ® f)(x) = ((r(g) ) (r(e) f)(x) = f(xg)- f'(xg).
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canonical map G(R) — End® (wg) is an isomorphism. Now let End® (w) denote the func-
tor R ~» End® (wg); then G ~ End®(w). When G is an affine group, this can be written
G ~ Aut®(w).

1.6 When £ is a Dedekind domain, it suffices to consider representations on finitely gen-
erated projective k-modules in the theorem (because every finitely generated submodule of
O(G) is projective). In fact, the theorem holds for finitely generated free k-modules.

1.7 Assume that k is a Dedekind domain and that G is a flat affine group over k. A ho-
momorphism u: V — W of finitely generated projective k-modules corresponds to a tensor
u' € VV®W, and u is G-equivariant if and only if u’ is fixed by G. Let H be a flat
affine subgroup of G. It follows from the theorem that, for each k-algebra R, H(R) is the
subgroup of G(R) of elements fixing all tensors in all representations of G fixed by H.

1.8 Suppose that k is an algebraically closed field, and that G is reduced, so that O(G) can
be identified with a ring of k-valued functions on G (k). It is possible to give an explicit de-
scription description of O(G) in terms of the representations of G. For each representation
(V,ry) of G (over k) and u € V'V, we have a function ¢, on G(k),

Pu(g) = (u.ry(g)) € k.

Then ¢, € O(G), and every element of O(G) arises in this way (cf. Springer 1998, p.39,
and Exercise 1I-2).

1.9 Suppose that k is a field. In (1.7), instead of all representations of G, it suffices to
choose a faithful representation V' and take all quotients of subrepresentations of a direct
sum of representations of the form ®”(V @ V') (by VIII, 11.7).

1.10 In general, we can’t omit “quotients of” from (1.9).> However, we can omit it if some
nonzero multiple of every homomorphism H — G, extends to a homomorphism G — G,
(VIIL, 13.3).

2 Application to Jordan decompositions

In this section, we require k to be a field.

The Jordan decomposition of a linear map

In this subsection, we review some linear algebra.

Recall that an endomorphism « of a vector space V is diagonalizable if V has a basis of
eigenvectors for «, and that it is semisimple if it becomes diagonalizable after an extension
of the base field k. For example, the linear map x > Ax:k" — k™ defined by an n x n
matrix A is diagonalizable if and only if there exists an invertible matrix P with entries in k

3Consider for example, the subgroup B = {(§ %)} of GL, acting on V = k x k and suppose that a vector
ve (V@ VV)® s fixed by B. Then g — gv is a regular map GLy /B — (V & VV)®” of algebraic varieties
(not affine). But GL, /B ~ P!, and so any such map is trivial. Therefore, v is fixed by GL5, and so B’ = B.
Cf VII, 7.14.
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such that PAP ™! is diagonal, and it is semisimple if and only if there exists such a matrix
P with entries in some field containing k.

From linear algebra, we know that « is semisimple if and only if its minimum polyno-
mial mqy (T) has distinct roots; in other words, if and only if the subring k[«] ~ k[T']/ (mq(T))
of Endy (V') generated by « is étale.

Recall that an endomorphism « of a vector space V is nilpotent if o' = 0 for some
m > 0, and that it is unipotent if idy —« is nilpotent. Clearly, if « is nilpotent, then its
minimum polynomial divides 7" for some m, and so the eigenvalues of « are all zero, even
in k¥, From linear algebra, we know that the converse is also true, and so « is unipotent if
and only if its eigenvalues in k2! all equal 1.

Let o be an endomorphism of a finite-dimensional vector space V over k. We say that
« has all of its eigenvalues in k if the characteristic polynomial P, (7T) of « splits in k[ X]:

Po(T) = (T —a)"' (T —a,)", a;<k.
For each eigenvalue a of « in k, the primary space* is defined to be:
Véi={veV|(@—a¥v=0 N sufficiently divisible’}.

PROPOSITION 2.1 Ifw has all of its eigenvalues in k, then V is a direct sum of its primary
spaces:
— a;
V=@, ve.

PROOF. Let P(T) be a polynomial in k[T'] such that P(«) = 0, and suppose that P(T') =
Q(T)R(T) with Q and R relatively prime. Then there exist polynomials a(7T) and b(T)
such that

a(T)O(T)+b(T)R(T) = 1.

Forany v eV,
a(@)Q(a)v +b(@)R(@)v =, (95)

which implies immediately that Ker(Q (o)) NKer(R(«)) = 0. Moreover, because Q (o) R(x) =
0, (95) expresses v as the sum of an element of Ker(R(«)) and an element of Ker(Q(«)).
Thus, V is the direct sum of Ker(Q(«)) and Ker(P (x)).

On applying this remark repeatedly, we find that

V =Ker(T —a;)"' ®@Ker((T —a)"?--- (T —a,)"")=---= @i Ker(T —a;)™,

as claimed. o

THEOREM 2.2 Let V be a finite-dimensional vector space over a pertect field. For any
automorphism o of V', there exist unique automorphisms oy and oy, of V' such that

(a) a =oago0y =0y oy, and

4This is Bourbaki’s terminology (LIE VI, §1); “generalized eigenspace” is also used.
4By this I mean that there exists an Ny such that the statement holds for all positive integers divisible by
Ny, i.e., that N is sufficiently large for the partial ordering

M <N <= M divides N.
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(b) oy is semisimple and oy, is unipotent.

Moreover, each of ag and oy, is a polynomial in «.

PROOF. Assume first that o has all of its eigenvalues in k, so that V' is a direct sum of
the primary spaces of «, say, V = @, ; -, V% where the a; are the distinct roots of Py.

Define a; to be the automorphism of V' that acts as a; on V% for each i. Then «j is a

.. . def _ . .
semisimple automorphism of V', and o, = @ o I commutes with o (because it does on

each V%) and is unipotent (because its eigenvalues are 1). Thus o« and o, satisfy (a) and
(b).

Because the polynomials (7" —a;)" are relatively prime, the Chinese remainder theo-
rem shows that there exists a Q(T') € k[T] such that

O(T)=a; mod (T —a;)", i=1,....m.

Then Q(w) acts as a; on V4 for each i, and so oy = Q(«), which is a polynomial in «.
Similarly, a;! € k[], and so oy, o oa; ! € ko]

It remains to prove the uniqueness of «g and «,,. Let @ = B0 B, be a second decom-
position satisfying (a) and (b). Then B, and B, commute with «, and therefore also with o
and o, (because they are polynomials in e). It follows that B; oy is semisimple and that
ay B, ! is unipotent. Since they are equal, both must equal 1. This completes the proof in
this case.

In the general case, because k is perfect, there exists a finite Galois extension k’ of k
such that « has all of its eigenvalues in k’. Choose a basis for V', and use it to attach matrices
to endomorphisms of V and k€’ ® V. Let A be the matrix of «. The first part of the proof
allows us to write A = AgAq = AqAs with A5 a semisimple matrix and A, a unipotent
matrix with entries in k’; moreover, this decomposition is unique.

Let o € Gal(k'/ k), and for a matrix B = (b;;), define 0B to be (0b;;). Because A has
entries in k, 04 = A. Now

A= (04s)(04a)

is again a decomposition of A into commuting semisimple and unipotent matrices. By
the uniqueness of the decomposition, 6As = Ag and 04y, = Agq. Since this is true for all
o € Gal(K/k), the matrices Ag and A, have entries in k. Now o = o5 0 oty,, where oy and
oy, are the endomorphisms with matrices As and A, is a decomposition of « satisfying (a)
and (b).

Finally, the first part of the proof shows that there exist a; € k” such that

As=ap+a1A+-+ay_1 A" (n =dimV).
The a; are unique, and so, on applying o, we find that they lie in k. Therefore,
as =ag+ara+--+ap_10" 1 € klal.

Similarly, ay, € k|o]. o
The automorphisms o5 and o, are called the semisimple and unipotent parts of o, and
o = as 9] au - au 9] as

is the (multiplicative) Jordan decomposition of «.
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PROPOSITION 2.3 Letw« and B be automorphisms of vector spaces V and W over a pertect
field, and let ¢: V — W be a linear map. If poa = fo g, thenpoay = Bs0¢@ and p oy, =
Paoy.

PROOF. It suffices to prove this after an extension of scalars, and so we may suppose that
both o and B have all of their eigenvalues in k. Recall that g acts on each primary space
Ve, a € k, as multiplication by a. As ¢ obviously maps V¢ into W%, it follows that
@oas = Bsog. Similarly, poa;! = Bl op, and so poay = By 0. o

COROLLARY 2.4 Every subspace W of V stable under « is stable under «s and oy, and
a|W = ag|W oay|W is the Jordan decomposition of | W.

PROOF. It follows from the proposition that W is stable under o and o, and it is obvious
that the decomposition o|W = s |W ooy | W has the properties to be the Jordan decompo-
sition. u]

PROPOSITION 2.5 For any automorphisms « and B of vector spaces V and W over a per-
fect field,

(@®PB)s =as ® Bs
(@ ®B)a =y ® PBa.

PROOF. It suffices to prove this after an extension of scalars, and so we may suppose that
both o and B have all of their eigenvalues in k. Forany a,b € k, V2 Q@ WP C (V @4 W)??,
and so oy ® B and (¢ ® B)s both act on V,, ®; W, as multiplication by ab. This shows that
(¢ ®B)s = as ® Bs. Similarly, (Ols_1 ®ﬁs_l) = (« ®13)s_1’ and so (@ ® B)og = ay ® Pa. O

2.6 Let k be a nonperfect field of characteristic 2, so that there exists an a € k that is

not a square in k, and let M = (2 (1,) In the algebraic closure of k, M has the Jordan

decomposition
- (§ 2 )

These matrices do not have coefficients in k, and so, if M had a Jordan decomposition
in M (k), it would have two distinct Jordan decompositions in M (k?), contradicting the
uniqueness.

Infinite-dimensional vector spaces

Let V be a vector space, possibly infinite dimensional, over a perfect field k. An endomor-
phism « of V is locally finite if V is a union of finite-dimensional subspaces stable under
«. A locally finite endomorphism is semisimple (resp. locally nilpotent, locally unipotent)
if its restriction to each stable finite-dimensional subspace is semisimple (resp. nilpotent,
unipotent).

Let o be a locally finite automorphism of V. By assumption, every v € V is contained
in a finite-dimensional subspace W stable under o, and we define a(v) = (x|W)s(v).
According to (2.2), this is independent of the choice of W, and so in this way we get a
semisimple automorphism of V. Similarly, we can define «,,. Thus:

)G



158 X. Categories of Representations (Tannaka Duality)

THEOREM 2.7 For any locally finite automorphism o« of V', there exist unique automor-
phisms ag and o, such that

(a) o =oago00y = 0y oay, and
(b) oy is semisimple and oy, is locally unipotent.

For any finite-dimensional subspace W of V stable under o,
a|W = (as|W)o(au|W) = (| W) o (as|W)

is the Jordan decomposition of a|W .

Jordan decompositions in algebraic groups

Finally, we are able to prove the following important theorem.

THEOREM 2.8 Let G be an algebraic group over a perfect field k. For any g € G(k)
there exist unique elements g, g, € G(k) such that, for all representations (V,ry) of G,

rv(gs) =rv(g)s and ry (gu) = ry (g)u. Furthermore,
8 = 8s8u = 8uls- (96)

PROOF. In view of (2.3) and (2.5), the first assertion follows immediately from (1.2) ap-
plied to the families (ry (g)s)yv and (ry(g)y)yv. Now choose a faithful representation ry .
Because

rv(g) =rv(gs)rv(gu) = rv(gu)rv(gs),
(96) follows. |

The elements g and g, are called the semisimple and unipotent parts of g, and g =
258y is the Jordan decomposition of g.

2.9 To check that a decomposition g = gsgy is the Jordan decomposition, it suffices to
check that r(g) = r(gs)r(gy) is the Jordan decomposition of r(g) for a single faithful
representation of G.

2.10 Homomorphisms of groups preserve Jordan decompositions. To see this, let u: G —
G’ be a homomorphism and let g = g5 gy, be a Jordan decomposition in G (k). For any rep-
resentation :G’ — GLy, ¢ ou is a representation of G, and so (pou)(g) = ((pou)(gs))-
((pou)(gy)) is the Jordan decomposition in GL(V'). If we choose ¢ to be faithful, this
implies that u(g) = u(gs) - u(gy) is the Jordan decomposition of u(g).

NOTES Our proof of the existence of Jordan decompositions (Theorem 2.8) is the standard one,
except that we have made Lemma 1.1 explicit. As Borel has noted (1991, p. 88; 2001, VIII 4.2,
p. 169), the result essentially goes back to Kolchin 1948, 4.7.
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3 Characterizations of categories of representations

Pontryagin duality has two parts. First it shows that a locally compact abelian group G can
be recovered from its dual G V. This it does by showing that the canonical map G — GV is
an isomorphism. Secondly, it characterizes the abelian groups that arise as dual groups. For
example, it shows that the duals of discrete abelian groups are exactly the compact abelian
groups, and that the duals of locally compact abelian groups are exactly the locally compact
abelian groups.

In Theorem 1.2 we showed how to recover an algebraic group G from its “dual” Rep(G)
(reconstruction theorem). In this section, we characterize the categories that arise as the
category of representations of an algebraic or affine group (description or recognition theo-
rem).

Throughout this section, k is a field.

Categories of comodules

An additive category C is said to be k-linear if the Hom sets are k-vector spaces and com-
position is k-bilinear. Functors of k-linear categories are required to be k-linear, i.e., the
maps Hom(a,b) — Hom(Fa, Fb) defined by F are required to be k-linear.

For example, if C is k-coalgebra, then Comod(C) is a k-linear category. In fact,
Comod(C) is a k-linear abelian category (VIII, §5), and the forgetful functor w: Comod(C) —
Vecy, is exact, faithful, and k-linear. The next theorem provides a converse to this statement.

THEOREM 3.1 Let C be an essentially small® k-linear abelian category, and let w:C —
Vecy, be an exact faithful k -linear functor. Then there exists a coalgebra C such that C is
equivalent to the category of C -comodules of finite dimension.

The proof will occupy the rest of this section.

Because w is faithful, w(idy) = w(0) if and only if idy = 0, and so w(X) is the zero
object if and only if X is the zero object. It follows that, if w(u) is a monomorphism
(resp. an epimorphism, resp. an isomorphism), then so also is u. For objects X, Y of C,
Hom(X,Y) is a subspace of Hom(wX,®Y ), and hence has finite dimension over k.

For monomorphisms X 5 Y and X’ <> Y with the same target, we write x < x’ if
there exists a morphism X — X’ (necessarily unique) giving a commutative triangle. The
lattice of subobjects of Y is obtained from the collection of monomorphisms by identifying
two monomorphisms x and x’ if x < x” and x’ < x. The functor @ maps the lattice of
subobjects of Y injectively’ to the lattice of subspaces of @Y . Hence X has finite length.

Similarly @ maps the lattice of quotient objects of Y injectively to the lattice of quotient
spaces of wY .

For X in C, we let (X ) denote the full subcategory of C whose objects are the quotients
of subobjects of direct sums of copies of X. For example, if C is the category of finite-
dimensional comodules over a coalgebra C, then (X)) is the category of finite-dimensional
comodules over Cx (see VIII, 11.1).

6 A category is essentially small if it is locally small and it admits a set of representatives for its isomorphism
classes of objects.
"If w(X) = w(X"), then the kernel of

(i/):XxX/—>Y

projects isomorphically onto each of X and X’ (because it does after @ has been applied).
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Let X be an object of C, and let S be a subset of w(X). The intersection of the subob-
jects Y of X such that w(Y') D S is the smallest subobject with this property — we call it
the subobject of X generated by S.

An object Y is monogenic if it is generated by a single element, i.e., there exists a
y € w(Y) such that

Y'cY,yewl') = Y =Y.

Proof in the case that C is generated by a single object

In the next three lemmas, we assume that C = (X') for some X.

LEMMA 3.2 For every monogenic object Y of C,

dimg w(Y) < (dimg o(X))?.

PROOF. By hypothesis, there are maps Y Pl Y1 < X™. Let y; be an element of w(Y7)
whose image y in w(Y) generates Y, and let Z be the subobject of Y; generated by y1. The
image of Z in Y contains y and so equals Y. Hence it suffices to prove the lemma for Z,
i.e., we may suppose that ¥ C X for some m. We shall deduce that ¥ — X ™’ for some
m’ < dimy w(X), from which the lemma follows.

Suppose that m > dimg w(X). The generator y of Y liesin w(Y) C w(X™) = w(X)™.
Let y = (¥1,...,¥m) in o(X)™. Since m > dim; w(X), there exist a; € k, not all zero,
such that > a;y; = 0. The a; define a surjective morphism X" — X whose kernel N
is isomorphic to X"~ 13 As y € w(N), we have Y C N, and so Y embeds into X"~
Continue in this fashion until ¥ ¢ X™" with m’ < dimy w(X). o

As dimy w(Y') can take only finitely many values when Y is monogenic, there exists a
monogenic P for which dimy w(P) has its largest possible value. Let p € w(P) generate
P.

LEMMA 3.3 (a) The pair (P, p) represents the functor .
(b) The object P is a projective generator for C, i.e., the functor Hom(P,—) is exact and
faithful.

PROOF. (a) Let X be an object of C, and let x € w(X); we have to prove that there exists
a unique morphism f: P — X such that w( f) sends p to x. The uniqueness follows from
the fact p generates P (the equalizer E of two f’s is a subobject of P such that w(E)
contains p). To prove the existence, let O be the smallest subobject of P x X such that
w(Q) contains (p,x). The morphism Q — P defined by the projection map is surjective
because P is generated by p. Therefore,

dimg 0(Q) = dimg (P),

but because dimy (w( P)) is maximal, equality must hold, and so Q — P is an isomorphism.
The composite of its inverse with the second projection Q — X is a morphism P — X
sending p to x.

......

of N onto X1, because w(A) is an isomorphism w(N) — w(X)" 1.
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(b) The object P is projective because w is exact, and it is a generator because w is
faithful. o

Let A = End(P) — itis a k-algebra of finite dimension as a k-vector space (not neces-
sarily commutative) — and let 2¥ be the functor X ~» Hom(P, X).

LEMMA 3.4 The functor h* is an equivalence from C to the category of right A-modules of
finite dimension over k. Its composite with the forgetful functor is canonically isomorphic
to w.

PROOF. Because P is a projective generator, 1¥ is exact and faithful. It remains to prove
that it is essentially surjective and full.

Let M be aright A-module of finite dimension over k, and choose a finite presentation
for M,

A" 4" S M 0
where u is an m x n matrix with coefficients in A. This matrix defines a morphism P™ —
P" whose cokernel X has the property that #¥ (X) ~ M. Therefore h? is essentially
surjective.
We have just shown that every object X in C occurs in an exact sequence
P" L Pt X 0.
Let Y be a second object of C. Then
Hom(P™,Y) ~ hf (Y)™ ~ Hom(4™,h* (Y)) ~ Hom(h* (P™),h? (Y)).
and the composite of these maps is that defined by 4% . From the diagram

0 —— Hom(X,Y) —— Hom(P")Y) —— Hom(P™)Y)

1 : :

0 —— Hom(h?(X),h? (Y)) —— Hom(4",h*(Y)) —— Hom(4A™,hf(Y))

we see that Hom(X,Y) — Hom(h? (X),h* (Y)) is an isomorphism, and so A ¥ is full.
For the second statement,

o(X) ~ Hom(P, X) ~ Hom(h¥ (P),h? (X)) = Hom(4, 1T (X)) ~ h? (X). 5

As A is a finite k-algebra, its linear dual C = AV is a k-coalgebra, and to give a right
A-module structure on a k-vector space is the same as giving a left C-comodule structure
(see VIII, 4.4). Together with (3.4), this completes the proof in the case that C = (X ). Note
that

AL End(P) ~ End(h?) ~ End(w),
and so
C ~End(w)",

i.e., the coalgebra C is the k-linear dual of the algebra End(w).
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EXAMPLE 3.5 Let A be a finite k-algebra (not necessarily commutative). Because A is
finite, its dual A" is a coalgebra (II, §3), and we saw in (VIII, 4.4) that left A-module
structures on k-vector space correspond to right A¥-comodule structures. If we take C to
be Mod(A), w to the forgetful functor, and X to be A regarded as a left A-module, then

End(w|(X))Y ~ AY,

and the equivalence of categories C — Comod(A4") in (3.6) simply sends an A-module V' to
V with its canonical AY-comodule structure. This is explained in detail in (3.9) and (3.10).

Proof in the general case

We now consider the general case. For an object X of C, let Ay = End(w|(X)), and let
Cx = AYy. Foreach Y in (X), Ax acts on w(Y) on the left, and so w(Y) is a right Cx-
comodule; moreover, Y ~» w(Y) is an equivalence of categories

(X) — Comod(Cy).
Define a partial ordering on the set of isomorphism classes of objects in C by the rule:
[X] = [Y]if {(X) C(Y).

Note that [X],[Y] <[X & Y], so that we get a directed set, and that if [X] < [Y'], then restric-
tion defines a homomorphism Ay — Ay. When we pass to the limit over the isomorphism
classes, we obtain the following more precise form of the theorem.

THEOREM 3.6 Let C be an essentially small k -linear abelian category and let w:C — Vecy
be a k-linear exact faithful functor. Let C(w) be the k-coalgebra li_r)n[X] End(w|(X))". For

each object Y in G, the vector space w(Y') has a natural structure of a right C (w)-comodule,
and the functor Y ~~ w(Y') is an equivalence of categories C — Comod(C (w)).

ASIDE 3.7 Let C be a k-linear abelian category with a tensor product structure (cf. 3.13). A coal-
gebra in C is an object C of C together with morphisms A:C — C ® C and €: C — k such that the
diagrams (15), p.30, commute. Similarly, it is possible to define the notion of a C-comodule in C.
Assume that there exists an exact faithful k-linear functor to Vecy preserving tensor products, and
that C admits duals and a generator X . Then there exists a coalgebra C in C together with a coaction
of C on each object of C such that, for every exact faithful k-linear functor w to Vecy preserving
tensor products, w(C) ~ End(w)" (as coalgebras) and w preserves the comodule structures. More-
over, the tensor product makes C into a bialgebra in C, which is a Hopf algebra. In fact, we can take
C=X"®X)".

ASIDE 3.8 For the proof of Theorem 3.6, we have followed Serre 1993, 2.5. For a slightly different
proof, see Deligne and Milne 1982, §2, or Saavedra Rivano 1972. It is also possible to deduce it
from Grothendieck’s theorem on the pro-representability of right exact functors.

Categories of comodules over a bialgebra

Let C be a coalgebra over k. We saw in (VIII, §5), that a bialgebra structure on C defines
a tensor product structure on Comod(C), and that an inversion on C defines duals. In this
section we prove the converse: a tensor product structure on Comod(C) defines a bialgebra
structure on C, and the existence of duals implies the existence of an inversion.
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3.9 Let A be a finite k-algebra (not necessarily commutative), and let R be a commutative
k-algebra. Consider the functors

Mod(A) —*— Vec(k) —%, Mod(R).
forget V~~R@irV

For M € ob(Mod(A)), let My = w(M). An element A of End(¢g o w) is a family of R-
linear maps
AMIR®k Moy — R®j My,

functorial in M. An element of R ®; A defines such a family, and so we have a map
u:R®; A — End(¢row),

which we shall show to be an isomorphism by defining an inverse 8. Let B(1) = A4(1®1).
Clearly f ou = id, and so we only have to show u o 8 = id. The A-module A ®; My is a
direct sum of copies of A, and the additivity of A implies that A ygp, = A4 ®idp,. The
map a ®m +— am: A Qi My — M is A-linear, and hence

R®p A®r My —— R M
lAA®idMO l)LM
R®p A®r My —— R M
commutes. Therefore
Av(d®@m)=A4(1)@m=uoBA))y(1®@m)forl@me RR M,
ie.,uof =id.
3.10 Let C be a k-coalgebra, and let w be the forgetful functor on Comod(C). When C

is finite over k, to give an object of Comod(C) is essentially the same as giving a finitely
generated module over the k-algebra A = CV (VIII, 4.4), and so (3.9) shows that

C ~ End(w)".

In the general case,
~ |1 ~ |1 \%
Cx~ h_r)nCX ~ h_I>nEnd(a)c|(X)) . 97)
[x] (X1

Let u:C — C’ be a homomorphism of k-coalgebras. A coaction V — V ® C of C on
V defines a coaction V — V ® C’ of C’ on V by composition with idy ®u. Thus, u defines
a functor F:Comod(C) — Comod(C") such that

wc'oF =wc. (98)

LEMMA 3.11 Every functor F:Comod(C) — Comod(C’) satisfying (98) arises, as above,
from a unique homomorphism of k -coalgebras C — C’.
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PROOF. The functor F' defines a homomorphism

H_r)nEnd(wc/ {FX)) — li_rI)lEnd(a)C {X)),
[X] [X]

and h_r)n[X] End(wc’|(F X)) is a quotient of h_l‘I)l[Y] End(wc|(Y')). On passing to the duals,

we get a homomorphism
. \4 . \4
limEnd(wc [(X))" — limEnd(wc/|(Y))

and hence a homomorphism C — C’. This has the required property. o

Let C be a coalgebra over k. Recall (I, 2.3) that C ® C is again a coalgebra over k. A
coalgebra homomorphism m:C ® C — C defines a functor

¢™:Comod(C) x Comod(C) — Comod(C)

sending (V, W) to V ® W with the coaction

® VW
vew " veceaweC~vewecelC 2" VveweC

(cf. VIIL, 4.2b, §5).

PROPOSITION 3.12 The map m +— ¢™ defines a one-to-one correspondence between the
set of k-coalgebra homomorphisms m:C ® C — C and the set of k-bilinear functors

¢:Comod(C) x Comod(C) — Comod(C)

such that ¢ (V,W) =V ® W as k-vector spaces.

(a) The homomorphism m is associative (i.e., the diagram in (14), p.29, commutes) if
and only if the canonical isomorphisms of vector spaces

URVRW)—H URV)QW:UR(VRIW)>(URQV)QW

are isomorphisms of C -comodules for all C-comodules U, V, W.
(b) The homomorphism m is commutative (i.e., m(a,b) = m(b,a) for all a,b € C) if
and only if the canonical isomorphisms of vector spaces

VRIWHHWRUV:VRIW ->WRV

are isomorphisms of C -comodules for all C -comodules W,V .

(c) There is an identity map e:k — C (i.e., a k-linear map such that the right hand
diagram in (14) p.29, commutes) if and only if there exists a C -comodule U with
underlying vector space k such that the canonical isomorphisms of vector spaces

UQV~V VU

are isomorphisms of C -comodules for all C -comodules V.



3. Characterizations of categories of representations 165

PROOF. The pair (Comod(C) x Comod(C),w ® w), with (0 @ w)(X,Y) = o(X) Qw(Y)
(as a k-vector space), satisfies the conditions of (3.6), and 1_ir_)nEnd(a) Ro|{(X,Y))Y =
C ®C. Thus

(Comod(C) x Comod(C),wc ® wc) ~ (Comod(C ® C),wcec),

and so the first statement of the proposition follows from (3.11). The remaining statements
involve only routine checking. o

Let w: A — B be a faithful functor. We say that a morphism wX — wY lives in A if it
lies in Hom(X,Y) C Hom(w X, ®Y).
For k-vector spaces U, V, W, there are canonical isomorphisms

duywURVRW)—>UV)®W, uvew)> u®v)w
v UQV —-VRU, URV = VR U.

THEOREM 3.13 Let C be an essentially small k -linear abelian category, and let ®:C x C —

C be a k-bilinear functor. Let w:C — Vecy, be a k-linear exact faithful functor such that

@ 0o(XRY)=w(X)Qw(Y) forall X,Y;
(b) the isomorphisms ¢y x,wY,0z and ¢ux oy live in C forall X, Y, Z;
(c) there exists an (identity) object 1 in C such that w(1) = k and the canonical isomor-
phisms
(1) Quw(X) ~w(X) ~w(X)Rw(l)

live in C.

Let C(w) =limEnd(w|(X))", so that @ defines an equivalence of categories C — Comod(C (w))
(Theorem 3.6). Then C(w) has a unique structure (m, e) of a commutative k -bialgebra such

that ® = ¢™ and w(1) = (k — C(w) ~ k ® C(w)).

PROOF. To give a bialgebra structure on a coalgebra (A, A, €), one has to give coalgebra
homomorphisms (7, ) such that m is commutative and associative and e is an identity map
(I1, 4.2; 11, §9). Thus, the statement is an immediate consequence of Proposition 3.12. g

Categories of representations of affine groups

THEOREM 3.14 Let C be an essentially small k -linear abelian category, let ®:CxC — C
be a k-bilinear functor. Let @ be an exact faithful k -linear functor C — Vecy, satisfying the
conditions (a), (b), and (c) of (3.13). For each k-algebra R, let G(R) be the set of families

(Av)veob(c): Av € Endpr.jinear(@(V)R),
such that

o Ayew = Ay ® Aw forall V,W € ob(C),
¢ Ay = idy(n) for every identity object of 1 of C, and
o Awow()Rr = w(u)goAy forall arrows u in C.

Then G is an affine monoid over k, and w defines an equivalence of tensor categories,
C — Rep(G).

When w satisfies the following condition, G is an affine group:
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(d) for any object X such that w(X) has dimension 1, there exists an object X~ in C
suchthat X ® X! ~ 1.

PROOF. Theorem 3.13 allows us to assume that C = Comod(C) for C a k-bialgebra, and
that ® and w are the natural tensor product structure and forgetful functor. Let G be the
affine monoid corresponding to C. Using (3.9) we find that, for any k-algebra R,

End(w)(R) £ End(¢g 0 @) = limHomy_j (Cx, R) = Homyjin (C, R).
Anelement A € Homy_j;,(Cx, R) corresponds to an element of End(w)(R) commuting with
the tensor structure if and only if A is a k-algebra homomorphism; thus

End® (@)(R) = Homy5(C. R) = G(R).

We have shown that End® () is representable by the affine monoid G = Spec C and that
w defines an equivalence of tensor categories

C — Comod(C) — Repy (G).

On applying (d) to the highest exterior power of an object of C, we find that End® (w) =
Aut®(w), which completes the proof. D

REMARK 3.15 Let (C,w) be (Repg (G),forget). On following through the proof of (3.14)
in this case one recovers Theorem 1.2: End® (w©) is represented by G.

EXAMPLE 3.16 Let G be a connected complex Lie group, and let C be the category of an-
alytic representations of G on finite-dimensional complex vector spaces. With the obvious
functors ®:C x C — C and w:C — Vecc, this satisfies the hypotheses of Theorem 3.13,
and so is the category of representations of an affine group A(G). Almost by definition,
there exists a homomorphism P: G — A(G)(C) such that, for every analytic representation
(V, p) of G, there exists a unique representation (V,p) of A(G) such that p = po P. The
group A(G) is sometimes called the Hochschild-Mostow group (for a brief exposition of
the work of Hochschild and Mostow, see Magid, Andy, Notices AMS, Sept. 2011, p.1089;
should add more on the history of these things).

NOTES Add discussion of how much of this section extends to base rings k. (Cf. mo3131.) See
Schiappi 2011, arXiv:1112.5213 and the references therein.

4 Homomorphisms and functors

Throughout this section, k is a field. A homomorphism f:G’ — G of affine groups over k
defines an exact faithful functor

(V,r) ~ (V,ro f):Rep(G) — Rep(G’),

which we denote w/. For example, if G’ is the trivial group, then o’ is the forgetful
functor wg.
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PROPOSITION 4.1 A homomorphism f:G — Q of affine groups is surjective if and only
ifw! is fully faithful and every subobject of an object in the essential image® of o/ is also
in the essential image.

PROOF. If f is a quotient map, then w” identifies Rep(Q) with the full subcategory
of Rep(G) of representations r:G — GLy factoring through Q. It is therefore obvi-
ous that @/ has the stated properties. Conversely, the hypotheses imply that o/ defines
an equivalence of Rep(Q) with a full subcategory of Rep(G), and that its restriction to
(X) — (w/ (X)) is an equivalence for each object X of Rep(Q); in particular,

End(wg|(X))" ~ End(wg|{w’ (X)))".

Now
O(Q) = lim, . Bnd(wo|(X)” ~ lim . End(wg| (@ (X))
Clim, End(wg|(Y)” = 0(G),

where X (resp. Y') runs over a set of representatives for the isomorphism classes of objects
in Rep(Q) (resp. Rep(G)). Because O(Q) — O(G) is injective, it is faithfully flat (VI,
11.1), and so G — Q is a quotient map. o

REMARK 4.2 When Rep(G) is semisimple, the second hypothesis in the proposition is
superfluous: f:G — Q is a quotient map if and only if ol is fully faithful. (Let X be in
the essential image, and let Y be a subobject of X ; because Rep(G) is semisimple, there
exists an endomorphism u of X such that uX = Y'; because o’/ is fully faithful, u lives in

Rep(Q).)

PROPOSITION 4.3 A homomorphism f: H — G of affine groups is injective if and only if
every object of Rep(H) is a subquotient of an object in the essential image of w’.

PROOF. Let C be the strictly full subcategory of Rep(H ') whose objects are subquotients
of objects in the essential image of w” . The functors
Rep(G) — C — Rep(H)
correspond to homomorphisms of k-bialgebras
OG)—~>C — O(H).

An argument as in the proof of Proposition 4.1 shows that C — O(H) is injective. More-
over,
End(@g|(0” (X)) — End(wg (X))

is injective for every object X of Rep(G), and so O(G) — C is surjective:
O(G) » C — O(H).
If f is injective, then O(G) — O(H) is surjective and it follows that C = O(H), and

so C = Rep(H). Conversely, if C = Rep(H), then C = O(H) and O(H) — O(G) is
surjective. O

9Recall that the essential image of a functor consists of the objects isomorphic to an object in the actual
image.
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Let f: H — G be an injective homomorphism of affine algebraic groups. Let (V,r)
be a faithful representation of G. Then ol (V,r) = (V,ro f) is a faithful representation
of H, and so every finite-dimensional representation of H is isomorphic to a quotient of

®m
a subrepresentation of a direct sum of representations (a)f V.ry®wl (V, r)V) (VIII,
11.7). This gives another proof of the sufficiency.



CHAPTER X I

The Lie Algebra of an Affine Group

The Lie algebra of an affine group is a linear approximation to the group. It holds a sur-
prisingly large amount of information about the group, especially in characteristic zero, and
especially for semisimple algebraic groups.

Throughout this chapter, k is a field (for the present).

1 Definition of a Lie algebra

DEFINITION 1.1 A Lie algebra' over a field k is a vector space g over k together with a
k-bilinear map

[.lgxg—g
(called the bracket) such that
(a) [x,x]=0forall x €g,
®) [x.[y.z]l + [y [z.x]] + [z, [x.y]| = O forall x, y,z € g.

A homomorphism of Lie algebras is a k-linear map u:g — g’ such that

u([x,y]) = [u(x),u(y)] forallx,y €g.

A Lie subalgebra of a Lie algebra g is a k-subspace s such that [x, y] € s whenever x,y € s
(i.e., such that [s,s] C s).

Condition (b) is called the Jacobi identity. Note that (a) applied to [x + y,x + y] shows
that the Lie bracket is skew-symmetric,

[x,y] = —[y,x], forall x,y € g, (99)

and that (99) allows the Jacobi identity to be rewritten as

[, [y, 2l) =[x, ], 21 + [y, [x, 2]] (100)

'Bourbaki LIE, Historical Notes to Chapter I to IIT writes:

The term “Lie algebra” was introduced by H. Weyl in 1934, in his work of 1925, he had used the
expression “infinitesimal group”. Earlier mathematicians had spoken simply of the “infinitesi-

mal transformations X f,..., X, f7 of the group, which Lie and Engel frequently abbreviated
by saying “the group X1 f,..., X, f”.

169
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or
[, y]. 2] = [, [y, 2]l = [y, [x. 2]] (101)
An injective homomorphism is sometimes called an embedding, and a surjective homo-

morphism is sometimes called a quotient map.
We shall be mainly concerned with finite-dimensional Lie algebras.

EXAMPLE 1.2 For any associative k-algebra A, the bracket [a,b] = ab — ba is k-bilinear.
It makes A into a Lie algebra because [a,a] is obviously 0 and the Jacobi identity can be
proved by a direct calculation. In fact, on expanding out the left side of the Jacobi identity
for a,b,c one obtains a sum of 12 terms, 6 with plus signs and 6 with minus signs; by
symmetry, each permutation of a, b, c must occur exactly once with a plus sign and exactly
once with a minus sign. When A is the endomorphism ring Endy,_;;, (V') of a k-vector space
V, this Lie algebra is denoted gly, and when A = M, (k), it is denoted gl,,. Let e;; be the
matrix with 1 in the i th position and 0 elsewhere. These matrices form a basis for gl,,, and

leij,eirjr] =8 ireijr—dijreirj  (8;j = Kronecker delta).

EXAMPLE 1.3 Let A be a k-algebra (not necessarily associative). A derivation of A is a
k-linear map D: A — A such that

D(ab) = D(a)b+aD(b) foralla,b € A.

The composite of two derivations need not be a derivation, but their bracket

def

[D.E]¥DoE—EoD

is, and so the set of k-derivations A — A is a Lie subalgebra Dery (A) of gl4.

EXAMPLE 1.4 For x € g, let adgx (or adx) denote the map y > [x, y]:g — g. Then adyx
is a k-derivation because (100) can be rewritten as

ad(x)[y,z] = [ad(x)y. z] +[y.ad(x)z].

In fact, adg is a homomorphism of Lie algebras g — Der(g) because (101) can be rewritten
as

ad([x, y])z = ad(x)(ad(y)z) —ad(y)(ad(x)z).
The kernel of ady: g — Derg (g) is the centre of g,

def
z(g) = {x e g|[x.g] = 0}.
The derivations of g of the form ad x are said to be inner (by analogy with the automor-
phisms of a group of the form inn g).

2 The isomorphism theorems

An ideal in a Lie algebra g is a subspace a such that [x,a] € a forall x e gand a € a
(i.e., such that [g,a] C a). When a is an ideal, the quotient vector space g/a becomes a Lie
algebra with the bracket

[x+a,y+a =[x, y]+a

The following statements are straightforward consequences of the similar statements for
vector spaces.
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2.1 (Existence of quotients). The kernel of a homomorphism g — q of Lie algebras is an
ideal, and every ideal a is the kernel of a quotient map g — g/a.

2.2 (Homomorphism theorem). The image of a homomorphism u: g — g’ of Lie algebras
is a Lie subalgebra ug of g, and u defines an isomorphism of g/ Ker(u) onto ug; in partic-
ular, every homomorphism of Lie algebras is the composite of a surjective homomorphism
with an injective homomorphism.

2.3 (Isomorphism theorem). Let h and a be Lie subalgebras of g such that [, a] C a; then
b+ ais a Lie subalgebra of g, h N a is an ideal in b, and the map

x+hNar>x+a:h/pna—(BH+a)/a

is an isomorphism.

2.4 (Correspondence theorem). Let a be an ideal in a Lie algebra g. The map h — h/a is
a one-to-one correspondence between the set of Lie subalgebras of g containing a and the
set of Lie subalgebras of g/a. A Lie subalgebra h) containing a is an ideal if and only if h/a
is an ideal in g/a, in which case the map

g/b— (g/a)/(H/a)

is an isomorphism

3 The Lie algebra of an affine group

Let G be an affine group over a field k, and let k[¢] be the ring of dual numbers:

def

k[e] = k[X1/(X?).
Thus k[¢] = k @ ke as a k-vector space and £2 = 0. There is a homomorphism
w:kle] —k, n(a+eb)=a.
DEFINITION 3.1 For an affine group G over k,

Lie(G) = Ker(G(k[¢]) — G(k)).

Following a standard convention, we often write g for Lie(G), h for Lie(H ), and so on.

EXAMPLE 3.2 Let G = GL,, and let I,, be the identity n X n matrix. An n X n matrix A
gives an element /,, + A of M, (k[e]), and
(In+eA)(Ip—eA) = Iy;

therefore I, + ¢A € Lie(GL,). Clearly every element of Lie(GL,) is of this form, and so

the map
def

A E(A) =1, +¢A: M, (k) — Lie(GL,)
is a bijection. Note that
E(A)E(B)=(n+eA)(I, +¢eB)
=1I,+e(A+ B)
= E(A+ B).
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In the language of algebraic geometry, Lie(G) is the tangent space to |G| at 1g (see CA
§18).

PROPOSITION 3.3 Let Ig be the augmentation ideal in O(G), i.e., [ = Ker(e: O(G) —
k). Then
Lie(G) ~ Homy_i,(Ig /1 k). (102)

PROOF. By definition, an element x of Lie(G) gives a commutative diagram

O(G) —— kl¢]

bk

and hence a homomorphism /g — Ker(w) >~ k on the kernels. That this induces an iso-
morphism (102) is proved in CA 18.9. O

From (102), we see that Lie(G) has the structure of k-vector space, and that Lie is a
functor from the category of algebraic groups over k to k-vector spaces.

THEOREM 3.4 There is a unique way of making G ~~ Lie(G) into a functor to Lie algebras
such that Lie(GL,) = gl,, (as Lie algebras).

Without the condition on Lie(GL,), we could, for example, take the bracket to be zero.
It is clear from the definition of the Lie algebra of an affine group that an injective family
of homomorphisms of affine groups defines an injective family of homomorphisms of Lie
algebras. Since every affine group admits a faithful family of finite-dimensional represen-
tations, the uniqueness assertion is clear. The existence assertion will be proved later in this
chapter.

REMARK 3.5 Ifa #0,thena + be = a(1 + f—le) has inverse a =1 (1 — %8) in k[€], and so
kle]* ={a+be|a #0}.

An element of Lie(G) is a k-algebra homomorphism u: O(G) — k[e] whose composite
with & > 0 is €. Therefore, elements of O(G) not in the kernel m of € map to units in k[¢],
and so u factors uniquely through the local ring O(G)y,. This shows that Lie(G) depends
only on O(G)y,. In particular, Lie(G°) =~ Lie(G).

REMARK 3.6 There is a more direct way of defining the action of k on Lie(G): an element
¢ € k defines a homomorphism of k-algebras

uc klel > kle], uc(a+eb)=a+ceb
such that 7 ou, = 7, and hence a commutative diagram

Gkle) 22 Gke)

lG(n) lG(ﬂ)

Gy —s Gk),
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which induces a homomorphism of groups Lie(G) — Lie(G). For example, when G =
GLVH
Guc)E(A) =Guc)(In+eA)=1,+ceA = E(cA).

This defines a k-vector space structure on Lie G, which agrees that given by (102).

NOTES The definition (3.1) is valid for any functor G: Alg; — Grp. See DG 11, §4, 1, p. 200.

4 Examples

4.1 By definition
Lie(SL,) = {I + Ae € M, (k[e]) | det({ + Ae) = 1}.
When we expand det(/ + cA) as a sum of n! products, the only nonzero term is
[T= (I 4eaii) =14+e) 7 aii,
because every other term includes at least two off-diagonal entries. Hence
det(/ +eA) = 1+ etrace(A)
and so
sly & Lie(SLy) = {1 + ¢4 | trace(A4) = 0}
~{A e My (k) | trace(A) = 0}.

For n x n matrices A = (a;;) and B = (b;;),

trace(AB) = Z aijbj; = trace(BA). (103)

1<i,j<n

Therefore [A, B] = AB — BA has trace zero, and sl,, is a Lie subalgebra of gl,,.

4.2 Recall that T, (resp. U, resp. D) is the group of upper triangular (resp. upper
triangular with 1s on the diagonal, resp. diagonal) invertible matrices. As

14+ecq1 &C12 EC1n—1 EC1n
0 1+ecrpy .- &Con—1 gCon
Lie(T,) = : : : : :
0 0 o l4echn—1n—1  €Cn—1n
0 0 . 0 14+ecun
we see that
by &ef Lie(T,) >~ {(cij) | ¢cij =0ifi > j} (upper triangular matrices).
Similarly,
1y &f Lie(Un) > {(cij) | cij =0if i > j} (strictly upper triangular matrices)
def

0, = Lie(D,) = {(cij) | cij =0ifi # j} (diagonal matrices).

These are Lie subalgebras of gl,,.
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4.3 Assume that the characteristic # 2, and let O,, be orthogonal group:
O, ={AcGL,|A"-A=1} (A" = transpose of A).
For I +¢A € M, (k[¢]),
(I4+cA) -(I+eA)=(1+eA")-(I +eA)=1+:sA" +¢A,
and so

Lie(O,) ={I +sA € My(k[e]) | A"+ A =0}
~{A e My,(k) | A is skew symmetric}.

Similarly, Lie(SOy,) consists of the skew symmetric matrices with trace zero, but obviously
the second condition is redundant, and so

Lie(SO,) = Lie(0,).

This also follows from the fact that SO,, = O}, (see 3.5).

4.4 Let G be a finite étale algebraic group: this means that O(G) is a separable k-algebra,
and that every quotient of O(G) is separable (XII, 2.1, 2.4). The only separable subalgebra
of k[e] is k, and so G(k[e]) = G (k) and Lie(G) = 0. This also follows from the fact that

Lie(G) = Lie(G°) = Lie(1) =0

(see 3.5).

4.5 Let k have characteristic p # 0, and let G = «p, so that o, (R) ={r € R | r? =0}
(see IV, 1.5). Then o (k) = {0} and v, (k[e]) = {ae | a € k}. Therefore,

Lie(ap) ={ac|a €k} ~k.

Similarly,
Lie(up) ={l+ac|ack} ~k.
As the bracket on a one-dimensional Lie algebra must be trivial, this shows that «,, and

have the same Lie algebra.

4.6 Let V be a vector space over k. Every element of V(¢) o kle] ®p V can be written
uniquely in the form x + ey with x,y € V, i.e.,, V(e) = V ®d¢eV. The k[e]-linear maps
V(e) — V(e) are the maps u + &8, u, B € Endg_j;,(V), where

(u+ef)(x +ey) =ulx)+e(y) + p(x)). (104)

To see this, note that Endg ;,(V (¢)) >~ M2 (Endy i, (V)), and that € acts as (9 ) € Mo (Endi (V).

[ R[]

_ { (z O) e Mz(Endk(V))} .

u

B

(o)

Endy [¢]4in(V(€)) = { G ) € M>(Endg (V))
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It follows that
GLy (k[g]) = {u + &B | u invertible}

and that
Lie(GLy) = {idy +cu |u € End(V)} ~ End(V) = gly.

4.7 Let V be a finite-dimensional k-vector space, and let D4(V') denote the algebraic
group R ~» Homy_j;,(V, R) (see IV, 1.6). Then

Lie(Dq(V)) >~ Homy i (V. k) = VY

(as a k-vector space). Similarly,
Lie(V,) >~ V.

4.8 Let ¢:V xV — k be a k-bilinear form, and let G be the subgroup of GLy of u
preserving the form, i.e., such that

G(R) ={u € GLy(R) | ¢p(ux,ux") = ¢(x,x’) forall x,x" € V(R)}.
Then Lie(G) consists of the endomorphisms id +&u of V(¢) such that
p((id+eu)(x +ey), (id+eu)(x" +ey") = p(x + ey, x" +ey’), allx,y.x'.y eV.
The left hand side equals
dp(x+ey+eux,x'+ey +e-ux’)=¢(x+ey,x' +ey')+e(pux,x’)+ ¢(x,ux’)),
and so

Lie(G) ~ {u € Endgjjn (V) | ¢ (ux,x") + ¢ (x,ux’) =0all x,x" € V}.

4.9 Let G be the unitary group defined by a quadratic extension K of k (IV, 1.11). The
Lie algebra of G consists of the A € M,,(K) such that

(I +eA)*(I +eA)=1

i.e., such that
A+ A4=0.

Note that this is not a K-vector space, reflecting the fact that G is an algebraic group over
k,not K.

4.10 Let M be a commutative group, written multiplicatively. The functor
R ~~»Hom(M, R*) (homomorphisms of abstract groups)

is an affine group over k (see XIV, §3). On applying the functor Hom(M, —) to the split-
exact sequence of commutative groups

a—>1+ae e—>0

0 k kle]* k> 0,
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we find that
Lie(G) ~ Hom(M, k) ~ Hom(M,Z) Q7 k.

A split torus 7 is an affine group of the form D(M) with M finitely generated. For such a
group,

def

X(T) =Hom(T,Gp) ~ M,
and so

Lie(T) >~ Hom(X(T),Z) ®z k
Homy, y;,(Lie(T),k) ~ k ®z X(T).

5 Description of Lie(G) in terms of derivations

DEFINITION 5.1 Let A be a k-algebra and M an A-module. A k-linear map D: A — M is
a k-derivation of A into M if

D(fg)=f-D(g)+g-D(f) (Leibniz rule).

For example, D(1) = D(1x 1) = D(1) + D(1) and so D(1) = 0. By k-linearity, this
implies that
D(c) =0forall ¢ € k. (105)

Conversely, every additive map A — M satisfying the Leibniz rule and zero on & is a k-
derivation.
Let u: A — kle] be a k-linear map, and write

u(f) =uo(f)+eur(f).

Then
u(fg) =u(fHu(g)

if and only if

uo(fg) =uo(f)uo(g) and
ur(fg) =uo(fHui(g) +uo(g)ur(f).

The first condition says that u¢ is a homomorphism A — k and, when we use 1 to make
k into an A-module, the second condition says that 1 is a k-derivation A — k.

Recall that O(G) has a co-algebra structure (A,€). By definition, the elements of
Lie(G) are the k-algebra homomorphisms O(G) — k|[g] such that the composite

0
OG) % k[e] =5 k
is €, i.e., such that ug = €. Thus, we have proved the following statement.

PROPOSITION 5.2 There is a natural one-to-one correspondence between the elements of
Lie(G) and the k-derivations O(G) — k (where O(G) acts on k through €), i.e.,

Lie(G) ~ Derg (O(G), k). (106)

The correspondence is € +&D <> D, and the Leibniz condition is

D(fg) =€(f)-D(g)+e€(g)-D(f) (107)
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6 Extension of the base field

PROPOSITION 6.1 For any field K containing k, Lie(Gg) >~ K ®; Lie(G).

PROOF. We use the description of the Lie algebra in terms of derivations (106). Let e; be a
basis for O(G) as a k-vector space, and let

ejej = Za,-jkek, ajjk € k.

In order to show that a k-linear map D: A — k is a k-derivation, it suffices to check the
Leibniz condition on the elements of the basis. Therefore, D is a k-derivation if and only
if the scalars ¢; = D(e;) satisfy

Zkaifkck =e€(ej)cj+e(ej)ci

for all 7, j. This is a homogeneous system of linear equations in the ¢;, and so a basis for
the solutions in & is also a basis for the solutions in K (see the next lemma).
(Alternatively, use that

Lie(G) ~ Homy_i,(Ig /1. k)

and that /6, ~ K ® Ig.) |
LEMMA 6.2 Let S be the space of solutions in k of a system of homogeneous linear equa-

tions with coefficients in k. Then the space of solutions in any k-algebra R of the system
of equations is R @y, S.

PROOF. The space S is the kernel of a linear map

0>8S—>V 5w,

Tensoring this sequence with R gives a sequence

idp ®
0> R®,S >RV 23 Ry W,

which is exact because R is flat. Alternatively, for a finite system, we can put the matrix of
the system of equations in row echelon form (over k), from which the statement is obvious.n

REMARK 6.3 Let G be an affine group over k. For a k-algebra R, define
9(R) = Ker(G(R[e]) - G(R))

where R[] = k[e] ®x R ~ R[X]/(X?). Then, as in (5.2), g(R) can be identified with the
space of k-derivations A — R (with R regarded as an A-module through ¢), and the same
proof shows that

g(R) ~ R®y g(k) (108)

where g(k) = Lie(G). In other words, the functor R ~~ g(R) is canonically isomorphic to
ga-
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7 The adjoint map Ad: G — Aut(g)

For any k-algebra R, we have homomorphisms

R%R[E]LR, i(a)=a+¢0, nm(a+eb)=a, mwoi=idg.

For an affine group G over k, they give homomorphisms
G(R) > G(R[g]) = G(R), moi =idg(r)

where we have written i and 7 for G(i) and G (). Let g(R) = Ker(G(R]¢]) N G(R)),
so that

g(R) =~ R®y g(k)
(see 6.3). We define
Ad: G(R) — Aut(g(R))

by

Ad(g)x =i(g)-x-i(g)~". g€G(R), xeg(R)CG(R[e).

The following formulas hold:
Ad(g)(x +x') = Ad(g)x +Ad(g)x’, g€ G(R), x,x €g(R)
Ad(g)(cx) = c(Ad(g)x). ge€G(R), ceR, xeg(R).

The first is clear from the definition of Ad, and the second follows from the description of

the action of ¢ in (3.6). Therefore Ad maps into Autg_n (g(R)). All the constructions are
clearly natural in R, and so we get a natural transformation

Ad:G — Aut(gq)

of group-valued functors on Algy,.
Let f:G — H be a homomorphism of affine groups over k. Because f is a functor,
the diagrams

G(R[s]) —Z— G(R) G(R[e]) «—— G(R)
lf(R[S]) lf(R) lf(R[s]) lf(R)
H(R[e]) —— H(R) H(R[]) «—— H(R)

commute. Thus f defines a homomorphism of functors

Lie(f):ga = ba.
and the diagrams
GRR) x  g(R) ——g(R)

\Lf \LLie(f) TLie(f)

H(R) x  bh(R) —— g(R)

commute for all R, i.e.,

Lie(f)(Adg(g)-x) = Adm(f(g))-x. ge€G(R). xeg(R). (109)
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8 First definition of the bracket

The idea of the construction is the following. In order to define the bracket [, ]:gx g — g,
it suffices to define the map ad: g — gly, ad(x)(y) = [x, y]. For this, it suffices to define a
homomorphism of affine groups ad: G — GL, or, in other words, an action of G on g. But
G acts on itself by inner automorphisms, and hence on its Lie algebra.

In more detail, in the last section, we defined a homomorphism of affine groups

Ad:G — GL,.
Specifically,
Ad(g)x =i(g)-x-i(g)”", g€G(R), xeg(R)CG(Re]).
On applying the functor Lie to the homomorphism Ad, we obtain a homomorphism of
k-vector spaces

. . (4.6)
ad:LieG — LieGLy >~ Endg_iy(g).

DEFINITION 8.1 For a,x € Lie(G),

[a,x] = ad(a)(x).
LEMMA 8.2 For G = GL,, the construction gives [A, X] = AX — XA.

PROOF. An element / + ¢A € Lie(GL,) acts on M,,(k[]) as
X+eY > +eA)(X+eY)I —eA)=X+eY +e(AX — XA).

On comparing this with (4.6), we see that ad(A) acts as id +eu where u(X) = AX — XA.o

LEMMA 8.3 The construction is functorial in G, i.e., the map Lie G — Lie H defined by a
homomorphism of affine groups G — H is compatible with the two brackets.

PROOF. This follows from (109). |

Because the bracket [4, X] = AX — XA on gl,, satisfies the conditions in (VIII, 1.1) and
every algebraic G can be embedded in GL,, (VIII, 9.1), the bracket on Lie(G) makes it into
a Lie algebra. This completes the first proof of Theorem 3.4.

9 Second definition of the bracket

Let A = O(G), and consider the space Dery (A, A) of k-derivations of A into A (with A
regarded as an A-module in the obvious way). The bracket

D,.D1¥ DoD' —D'oD

of two derivations is again a derivation. In this way Dery (4, A) becomes a Lie algebra.
Let G be an affine group. A derivation D:O(G) — O(G) is left invariant if

AoD = (id®D)o A. (110)
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If D and D’ are left invariant, then
Ao[D,D'l=Ao(DoD'—D"oD)

= (id®(D o D")—id®(D’ o D))

= (id®[D,D'])o A
and so [D, D] is left invariant.
PROPOSITION 9.1 The map D + € o D:Dery (O(G),O(G)) — Deri (O(G), k) defines an
isomorphism from the subspace of left invariant derivations onto Dery (O(G), k).
PROOF. If D is a left invariant derivation O(G) — O(G), then

D= (i[d®e)oAoD "2 (i[d®e) o (id®D)o A = (id® (o D))o A,

and so D is determined by € o D. Conversely, if d:O(G) — k is a derivation, then D =
(id®d) o A is a left invariant derivation O(G) — O(G). o

Thus, Lie(G) is isomorphic (as a k-vector space) to the space of left invariant deriva-
tions O(G) — O(G), which is a Lie subalgebra of Der (O(G), O(G)). In this way, Lie(G)
acquires a Lie algebra structure, which is clearly natural in G.

It remains to check that, when G = GL,, this gives the bracket [A, B] = AB — BA (left
as an exercise for the present).

10 The functor Lie preserves fibred products

PROPOSITION 10.1 For any homomorphisms G — H < G’ of affine groups,

Lie(G xg G') ~ Lie(G) xie(sr) Lie(G). (111)

PROOF. By definition (V, §2),
(Gxu G')(R)=G(R)xgr) G'(R), R ak-algebra.
Therefore,

Lie(G XH G/) = Ker (G(k[s]) X H(k[e]) G/(k[{-)]) — G(k) X H (k) G/(k))
={(g,g") € G(k[g]) x G'(k[e]) | g.&" have the same image in H (k[¢]), G(k), and G'(k)}
= Ker(G(k[e]) — G(K)) X prgeep Ker (G (k[e]) — G (k)
= Lie(G) Xyem) Lie(G). O

EXAMPLE 10.2 Let k be a field of characteristic p # 0. There are fibred product diagrams:

id

Hp — Gm k —— k
| ooray e B [0
G ——— G, xGy, k —— kxk.

x+—>(1,x) c(0,¢)
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EXAMPLE 10.3 Recall (VII, 4.1) that the kernel of a homomorphism u: G — H of affine
groups can be obtained as a fibred product:

Ker(u) —— {1y}
G —“. H
Therefore (111) shows that
Lie(Ker(u)) = Ker(Lie(u)).

In other words, an exact sequence of affine groups 1 - N — G — H gives rise to an exact
sequence of Lie algebras
0 —LieN — LieG — Lie H.

For example, the exact sequence (cf. 10.2)

p
15w, x> (x,x) Gy % Gy x,»)>»?,x/y) Gy % G

gives rise to an exact sequence

0 Kk x—(x,x) kak ,»)=>(0,x—y) kak.

EXAMPLE 10.4 Let H and H' be affine subgroups of an affine group G. The affine sub-
group H N H' with (H N H')(R) = H(R) N H'(R) (inside G(R)) is the fibred product of
the inclusion maps, and so

Lie(HNH') = Lie(H)NLie(H') (inside Lie(G)).
More generally,
Lie(ﬂl_el H;) = ﬂiel Lie H; (inside Lie(G)) (112)

for any family of affine subgroups H; of G.
For example, the homomorphisms in (10.2) realize G, in two ways as subgroups of
Gm x Gy, which intersect in 1 p, and so

Lie(up) = Lie(G,;) NLie(G,,)  (inside Lie(Gy x Gi)).

10.5 The examples 10.2—-10.4 show that the functor Lie does not preserve fibred products, ®
left exact sequences, or intersections in the category of smooth affine groups. =

10.6 The sequence

P
15 up x—(x,x) Gy %Gy x,2)=>07,x/y) Gy X Gy — 1

is exact in the category of affine groups over k, but

0k x—=(x,x) kak (x,y)~(0,x—y) kak -0

is not exact, and so the functor Lie is not right exact.
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11 Commutative Lie algebras

A Lie algebra g is said to be commutative (or abelian) if [x,y] = 0 for all x,y € g. Thus,
to give an commutative Lie algebra amounts to giving a finite-dimensional vector space.

If G is commutative, then Lie(G) is commutative. This can be seen directly from the
first definition of the bracket because the inner automorphisms are trivial if G is commu-
tative. Alternatively, observe that if G is a commutative subgroup of GL,, then Lie(G) is
a commutative subalgebra of Lie(GL,). More generally, for a connected algebraic affine
group G,

Lie(ZG) C 3(9).

with equality if k has characteristic zero (tba).

Recall that an endomorphism u of a vector space V is said to be diagonalizable if V
has a basis of eigenvectors, and that it is semisimple if it becomes diagonalizable after an
extension of the base field k. Note that a nilpotent semisimple endomorphism is zero. If u
is semisimple, then its restriction to any subspace W such that ulW C W is also semisimple.

PROPOSITION 11.1 A Lie algebra is commutative if all of its elements are semisimple.

PROOF. We may suppose that k is algebraically closed. Let x be an element of such a Lie
algebra.. We have to show that ad(x) = 0. If not, ad(x) will have a nonzero eigenvalue, say,
ad(x)(y) = cy, ¢ # 0, y # 0. Then ad(y)(x) = —ad(x)(y) = —cy # 0, but ad(y)*(x) =
—c[y,y] = 0. Thus, the restriction of ad(y) to the subspace spanned by x and y is nonzero,
nilpotent, and semisimple, which is a contradiction. o

12 Normal subgroups and ideals

A normal algebraic subgroup N of an affine group G is the kernel of a quotient map G —
O (see VIII, 17.5); therefore, Lie(N) is the kernel of a homomorphism of Lie algebras
LieG — Lie Q (see 10.3), and so is an ideal in Lie G. Of course, this can also be proved
directly.

13 Algebraic Lie algebras

A Lie algebra is said to be algebraic if it is the Lie algebra of an affine algebraic group. A
sum of algebraic Lie algebras is algebraic. Let g = Lie(G), and let ) be a Lie subalgebra
of g. The intersection of the algebraic Lie subalgebras of g containing [ is again algebraic
(see 10.4) — it is called the algebraic envelope or hull of 1.

Let b be a Lie subalgebra of gly. A necessary condition for f to be algebraic is that the
semisimple and nilpotent components of each element of h (as an endomorphism of gly)
lie in fh. However, this condition is not sufficient, even in characteristic zero.

Let § be a Lie subalgebra of gly over a field k of characteristic zero. We explain how to
determine the algebraic hull of . For any X € b, let g(X) be the algebraic hull of the Lie
algebra spanned by X. Then the algebraic hull of § is the Lie subalgebra of gl generated
by the g(X), X € b. In particular, b is algebraic if and only if each X is contained in an
algebraic Lie subalgebra of ). Write X as the sum S + N of its semisimple and nilpotent
components. Then g(N) is spanned by N, and so it remains to determine g(X) when X is
semisimple. For some finite extension L of k, there exists a basis of L ® V' for which the



14. The exponential notation 183

matrix of X is diag(uy,...,u,). Let W be the subspace M, (L) consisting of the matrices
diag(ay,...,a,) such that

Ziciu,- =0,c; el = Ziciai =0,

i.e., such that the a; satisfy every linear relation over L that the u; do. Then the map
gly > LQgly >~ Mp(L)

induces maps
9(X) = Leg(X) =W,

which determine L ® g(X). See Chevalley 1951 (also Fieker and de Graaf 2007 where it is
explained how to implement this as an algorithm).

13.1 The following rules define a five-dimensional solvable Lie algebra g = @, -; o5 kx;: ®
T =
[x1,x2] = x5,[x1,X3] = x3, [x2, X4] = X4, [x1,X4] = [x2,x3] = [x3,x4] = [x5,0] =0
(Bourbaki LIE, I, §5, Exercise 6). For every injective homomorphism g < gly, there exists
an element of g whose semisimple and nilpotent components (as an endomorphism of V')
do not lie in g (ibid., VI, §5, Exercise 1). It follows that the image of g in gly is not the Lie
algebra of an algebraic subgroup of GLy (ibid., VII, §5, 1, Example).
13.2 The functor G ~~ Lie(G) is not full. For example ®
5=

End(Gm) = Z G k = End(Lie(Gyp)).

For another example, let k be an algebraically closed field of characteristic zero, and let
G = G, x Gy, with the product (a,u)(b,v) = (a + ub,uv). Then

Lie(G) = Lie(G,) x Lie(G,) = ky + kx

with [x, y] = y. The Lie algebra morphism Lie(G) — Lie(G,) such that x > y, y — 0
is surjective, but it is not the differential of a homomorphism of algebraic groups because
there is no nonzero homomorphism G, — G,.

NOTES Need to prove the statements in this section (not difficult). They are important for the
structure of semisimple algebraic groups and their representations.

14 The exponential notation

Let S be an R-algebra, and let a be an element of S such that a> = 0. There is a unique
R-algebra homomorphism R[e] — S sending ¢ to a. Following DG, II §4, 3.7, p.209, we
denote the image of x € Lie(G)(R) under the composite

Lie(G)(R) — G(R[¢]) = G(S)
by e?*. For example, x = ¢*¥ in G(R]e]). For x, y € Lie(G)(R),

e@XHY) — 8X,aY  (in G(S)).
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The action of @ € R on x € Lie(G)(R) is described by
DX = o2@x) iy G(R[e])).
If f:G — H is a homomorphism of algebraic groups and x € Lie(G)(R), then
(%) = e Lie(f)(x))
The adjoint map Ad is described by
ge g =" A®Y  (in G(R[e)),
(g € G(R), x € Lie(G)(R)). Moreover,
Ad(e®*) =id+ead(x) (in Autgin(Lie(G)(R)).
Let x,y € Lie(G)(R) and let a,b € S be of square 0. Then
@%by g=axo=by — pablx ] (in G(S))

(ibid. 4.4).

15 Arbitrary base rings

Now let k be a commutative ring, and let k[¢] = k[X]/(X?). For any smooth affine group
G over k, define g = Lie(G) to be

Lie(G) = Ker(G(k[¢]) 25 G (k).
This is a finitely generated projective k-module, and for any k-algebra R,
Lie(GR) = R®g.

Therefore, the functor R ~~ Lie(GR) is equal to g4. The action of G on itself by inner
automorphisms defines an action of G on g, and, in fact, a homomorphism

Ad:G — GL4
of affine groups over k. On applying the functor Lie to this, we get the adjoint map
ad:g — Homy_jiy (g, 9)-
Now we can define a bracket operation on g by
[x.y] = ad(x)y.

Equipped with this bracket, g is a Lie algebra over k. Most of the material in this section
extends to smooth affine groups over rings.

NOTES Should rewrite the chapter for k a ring.
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NOTES (mo84255) If you are interested in PBW for Lie algebras over rings, here is a nice (and well
written) paper: P.J. Higgins, Baer Invariants and the Birkhoff-Witt theorem, J. of Alg. 11, 469-482,
(1969). (Grinberg)

There is a joke definition of a Lie algebra, due to my adviser John Moore, that is relevant.
His definition of a Lie algebra over a commutative ring R is that it is a module L with a bracket
operation such that there exists an associative R-algebra A and a monomorphism L — A of R-
modules that takes the bracket operation to the commutator in A. The point is to try to build in the
PBW and dodge the question of which identities characterize Lie algebras. It is equivalent to the
usual definition when R is a field, as one sees by proving PBW using only the standard identities,
but not so over a general commutative ring.

Even over a field (char # 2 for simplicity) there is an interesting contrast with the definition
of a Jordan algebra. There the analogue of the commutator is 1/2(ab + ba). One writes down the
identities this satisfies and defines a Jordan algebra to be a vector space that satisfies the identities.
But Jordan algebras do not generally embed in associative algebras (those that do are called special).
(Peter May)

16 More on the relation between algebraic groups and their Lie
algebras

In Chapter VI, we defined the dimension of an affine algebraic group G to be the dimension
of the associated algebraic scheme |G |.

16.1 We list some alternative descriptions of dimG-.

(a) According to the Noether normalization theorem (CA 5.11), there exists a finite set
S of elements in O(G) such that k[S] is a polynomial ring in the elements of S and
O(G) is finitely generated as a k[S]-module. The cardinality of S is dimG.

(b) Let G° be the identity component of G (see XIII, 3.1). The algebraic variety |G°| is
irreducible, and so O(G°)/M is an integral domain (XIII, 3.2). The transcendence
degree of its field of fractions is dimG.

(c) Let m be a maximal ideal of O(G). The height of m is dimG.

PROPOSITION 16.2 For an affine algebraic group G, dimLie G > dim G, with equality if
and only if G is smooth.

PROOF. Because Lie(Gya) =~ Lie(G) ®; k¥ (see 6.1), we may suppose k = k. According
to (3.3),
Lie(G) ~ Homy_ji, (m/m? k)

where m = Ker(O(G) SN k). Therefore, dimLie(G) > dim G, with equality if and only if
the local ring O(G ), is regular (VI, 7.3), but O(G ), is regular if and only if G is smooth
(VL 8.2). o

EXAMPLE 16.3 We have
dimLieG, = 1 = dimG,
dimLiea, = 1> 0 =dima,
dimLieSL, = n?>—1=dimSL,.
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PROPOSITION 16.4 If
1> N—->G—>0—1

is exact, then
dimG =dim N +dim Q.

PROOF. See VII, 7.12. O

Applications
PROPOSITION 16.5 Let H be a smooth affine algebraic subgroup of a connected affine
algebraic group G. If Lie H = Lie G, then G is smooth and H = G.

PROOF. We have
) (162) .. . R O
dimH = dimLie H =dimLieG > dimG.
Because H is a subgroup of G, dim H < dimG (see VI, 8.1). Therefore
dim H = dimLie(G) = dimG,
and so G is smooth (16.2) and H = G (see VI, 8.1). o
COROLLARY 16.6 Assume char(k) = 0 and that G is connected. A homomorphism H —
G is a surjective if Lie H — Lie G is surjective.
PROOF. We know (VIII, 17.5) that H — G factors into
H—>H-—>G

with H — H surjective and H — G injective. Correspondingly, we get a diagram of Lie
algebras

Lie H — Lie H — LieG.
Because H — G is injective, Lie H — Lie G is injective (10.3). If Lie H — Lie G is surjec-
tive, then Lie H — Lie G is an isomorphism. As we are in characteristic zero, H is smooth
(VL 9.3), and so (16.5) shows that H = G. O

COROLLARY 16.7 Assume char(k) = 0. If
1> N->G—->0—1

is exact, then
0 — Lie(N) — Lie(G) — Lie(Q) — 0

1S exact.

PROOF. The sequence 0 — Lie(N) — Lie(G) — Lie(Q) is exact (by 10.3), and the equal-
ity

dimG " dim N +dim Q
implies a similar statement for the Lie algebras (by 16.2, as the groups are smooth). This
implies (by linear algebra) that Lie(G) — Lie(Q) is surjective. o



16. More on the relation between algebraic groups and their Lie algebras 187

COROLLARY 16.8 The Lie algebra of G is zero if and only if G is étale; in particular, a
connected affine algebraic group with zero Lie algebra is trivial.

PROOF. We have seen that the Lie algebra of an étale group is zero (4.4). Conversely, if
Lie G = 0 then G has dimension 0, and so O(G) is a finite k-algebra; moreover, I/ (2; =0,
which implies that O(G) is étale. O

COROLLARY 16.9 In characteristic zero, a homomorphism G — H of connected affine
algebraic groups is an isogeny if and only if Lie(G) — Lie(H ) is an isomorphism.

PROOF. Apply (16.6), (16.7), and 16.8). o

16.10 The smoothness and connectedness assumptions are necessary in (16.5) because

Lie(ap) = Lie(G,) but ap # G4 and
Lie(SO;,,) = Lie(Oy,) but SO, # O,,.

The same examples show that the characteristic and connectedness assumptions are neces-
sary in (16.6). The characteristic assumption is necessary in (16.7) because

x+—>xP
0—=ap—>Gs — Gz—0

is exact, but the sequence
0 — Lieap — LieG, — LieG, — 0

is
0>k >k >k —0,

which is not exact.

THEOREM 16.11 Assume that char(k) = 0 and that G is connected. The map H +— Lie H
from connected affine algebraic subgroups of G to Lie subalgebras of Lie G is injective and
inclusion preserving.

PROOF. Let H and H’ be connected algebraic subgroups of G. Then (see 10.4)
Lie(H N H') = Lie(H) NLie H').

If Lie(H) = Lie(H'), then
Lie(H) = Lie(H N H') = Lie(H’),

and so (16.5) shows that
H=HNH =H' O

) )
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EXAMPLE 16.12 Let k be a field of characteristic zero, and consider GL,, as an algebraic
group over k. According to VIII, 9.1, every algebraic group over k can be realized as a
subgroup of GL, for some n, and, according to (16.11), the algebraic subgroups of GL,
are in one-to-one correspondence with the algebraic Lie subalgebras of gl;. This suggests
two questions: find an algorithm to decide whether a Lie subalgebra of gl, is algebraic
(i.e., arises from an algebraic subgroup)?; given an algebraic Lie subalgebra of gl,,, find an
algorithm to construct the group. For a recent discussion of these questions, see, de Graaf,
Willem, A. Constructing algebraic groups from their Lie algebras. J. Symbolic Comput. 44
(2009), no. 9, 1223-1233.3

PROPOSITION 16.13 Assume char(k) = 0. Letu,v be homomorphisms of affine algebraic
groups G — H. IfLie(u) = Lie(v) and G is connected, then u = v.

PROOF. Let A denote the diagonal in G x G — it is an algebraic subgroup of G x G
isomorphic to G. The homomorphisms u and § agree on the algebraic group

GEANGxgG.

The hypothesis implies Lie(G’) = Lie(A), and so G’ = A. o

Thus, when char(k) = 0, the functor G ~~ Lie(G) from connected algebraic groups to
Lie algebras is faithful and exact. It is not fully faithful, because

End(G,) = Z # k = End(Lie(Gy,)).
Moreover, it is trivial on étale algebraic groups.

16.14 Even in characteristic zero, infinitely many nonisomorphic connected algebraic
groups can have the same Lie algebra. For example, let g be the two-dimensional Lie
algebra (x,y | [x,y] = y), and, for each nonzero n € N, let G, be the semidirect product
Gg % Gy, defined by the action (¢,a) — t"a of G, on G,. Then Lie(Gy,) = g for all n, but
no two groups G, are isomorphic.

However, there is the following theorem: let k be an algebraically closed field; for every
algebraic Lie algebra g over k, there exists a connected affine algebraic group G? with
unipotent centre such that Lie(G?) = g; if g’ is a second algebraic Lie algebra over k, then
every isomorphism g — ¢’ is the differential of an isomorphism G% — GY. In particular,
G is uniquely determined up to isomorphism, and Aut(G?) = Aut(g) (Hochschild 1971b).
Exercise: prove this by identifying which subcategory of Rep(g) is equal to Rep(G?).

Representations

A representation of a Lie algebra g on a k-vector space V' is a homomorphism p: g — gly .
Thus p sends x € g to a k-linear endomorphism p(x) of V, and

p([x.y]) = p(x)p(y) — p(y)p(x).

2See §13.

3de Graaf (ibid.) and his MR reviewer write: “A connected algebraic group in characteristic 0 is uniquely
determined by its Lie algebra.” This is obviously false — for example, SL, and its quotient by {£/} have
the same Lie algebra. What they mean (but didn’t say) is that a connected algebraic subgroup of GL; in
characteristic zero is uniquely determined by its Lie algebra as a subalgebra of glj,.
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We often call V' a g-module and write xv for p(x)(v). With this notation

[x. y]v = x(yv) = y(xv). (113)

A representation p is said to be faithful if it is injective. The representation x — adx:g —
gl is called the adjoint representation of g (see 1.4).
Let W be a subspace of V. The stabilizer of W in g is

aw Elxeg|xW C WL

It is clear from (113) that gy is a Lie subalgebra of g.
Let v € V. The isotropy algebra of v in g is

gvdéf{xeglxv=0}.

It is a Lie subalgebra of g. The Lie algebra g is said to fix v if g = gy, i.e., if gv = 0.

Let r:G — GLy be a representation of G on a k-vector space V. Then Lie(r) is a
representation of Lie(G) on V. Recall (VIII, 12.1) that, for any subspace W of V, the
functor

R~ Gy (R) = {g e G(R) | g(W®R) =W @R}

is an affine subgroup of G, called the stabilizer of W in G .

PROPOSITION 16.15 For any representation G — GLy and subspace W C V,

LieGw = (LieG)w.

PROOF. By definition, Lie Gy consists of the elements id+cu of G(k[e]), u € End(V),
such that
(id+eu)(W +eW) C W +eW,

(cf. 4.6), i.e., such that u(W) C W. a)

COROLLARY 16.16 IfW is stable under G, then it is stable under Lie(G), and the converse
is true when char(k) = 0 and G is connected.

PROOF. To say that W is stable under G means that G = Gy, but if G = Gy, then
LieG = LieGw = (Lie G)y , which means that W is stable under Lie G. Conversely, to
say that W is stable under Lie G, means that Lie G = (LieG)w . Butif LieG = (LieG)w,
then Lie G = Lie Gy, which implies that Gy = G when char(k) = 0 and G is connected
(16.5). o






CHAPTER XI I

Finite Affine Groups

In this chapter, we allow k to be a commutative ring. As usual, unadorned tensor products
are over k.

1 Definitions

DEFINITION 1.1 An affine group G over k is finite (resp. flat, resp. finite locally free) if
O(G) is finitely generated (resp. flat, resp. finitely generated and projective) as a k-module.

In particular, a finite affine group is algebraic.
According to (CA 10.4) an affine group G over k is finite and locally free if and only if
O(G) satisfies the following equivalent conditions:

¢ O(G) is finitely generated and projective as a k-module;

o O(G) is finitely presented as a k-module and O(G),, is a free ky-module for all
maximal ideals m of k;

o there exists a finite family ( f;);es of elements of k generating the ideal & and such
that, for all i € I, the k s,-module O(G) ¢, is free of finite rank;

¢ O(G) is finitely presented and flat as a k-module;

¢ (k an integral domain) O(G) is finitely presented and dimy,) (M Qg k(p)) is the
same for all prime ideals p of k (here k(p) is the field of fractions of k /p).

In general, if G is finite and locally free, the function
p = dimg ) M @ k(m):spm(k) — N

is locally constant (because of the third condition above). It is called the order of G over
k. When k is noetherian, “finite flat” is equivalent to “finite locally free” (because “finitely
generated” is equivalent to “finitely presented”).

When £ is a field, flatness is automatic, and an affine group G over k is finite if and
only if dimg O(G) is finite (and dimy O(G) is then the order of G over k).

DEFINITION 1.2 An affine group G over a field is profinite if its algebraic quotients are
finite.

Thus, an affine group over a field is profinite if and only if it is an inverse limit of finite
affine groups (VIII, 8.1). A profinite affine group is algebraic if and only if it is finite.

191
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DEFINITION 1.3 A homomorphism of affine groups over a field is an isogeny if its kernel
and cokernel are both profinite.

As the kernel and cokernel of a homomorphism of algebraic groups over a field are
algebraic, such a homomorphism is an isogeny if and only if its kernel and cokernel are
finite.

PROPOSITION 1.4 An algebraic group G over a field is finite if and only if there exists a
finite-dimensional representation (V,r) such that every finite-dimensional representation of
G is isomorphic to a subrepresentation of V" for some n > 0.

PROOF. If G is finite, then the regular representation X of G is finite-dimensional, and
(VIII, 10.3) says that it has the required property. Conversely if, with the notations of (X,
§3), Repr(G) = (X), then G = Spec B where B is the linear dual of the finite k-algebra
Ax = End(w). o

Recall (p.147) that an algebraic group over a field is strongly connected if it has no
nontrivial finite quotient.

COROLLARY 1.5 An algebraic group G over a field is strongly connected if and only fif,
for every representation V' on which G acts nontrivially, the tull subcategory of Rep(G) of
subquotients of V*, n > 0, is not stable under Q.

PROOF. An algebraic group G is strongly connected if and only if there is no non-trivial
epimorphism G — G’ with G’ finite. According to (VIII, 15.1), this is equivalent to
Repy (G) having no non-trivial subcategory of the type described in (1.4). O

PROPOSITION 1.6 An algebraic group G over a field k is finite if and only if G (k™) is
finite.

PROOF. Let A = O(G). If A is finite, then G (k) = Homy_yieebra (4, k&' is obviously finite.
Conversely, if Homk_algebm(A,kal) is finite, then A has only finitely many maximal ideals
my,...,m,, the nilradical ¢ of A4 equals (), m;, and A/91 >~ [[ A/m; (Chinese remainder
theorem). Each quotient A/m; is finite-dimensional over k by Zariski’s lemma (CA 11.1),
and so A/ is finite-dimensional as a k-vector space. Because the ideal 91 is finitely gen-
erated, 1° = 0 for some integer s, and each quotient space 9 /9 T1 is finite-dimensional.
Therefore A is a finite k-algebra. O

ASIDE 1.7 Let G be a finite flat affine group over an integral domain k. If k is a Dedekind domain,
then O(G)req is flat over k, but probably not in general otherwise (mo61570). Moreover, O(G) ®
O(G) need not be reduced, so the Hopf algebra structure on O(G) need not pass to the quotient.

NOTES In SGA 3 a finite group scheme over a scheme S is defined to be a group scheme f:G — S
such that f is a finite map. When S is affine, say, S = Spec(k), this agrees with our definition.
Similarly our definition of “finite locally free” agrees with SGA 3 (cf. DG I, §5, 1.1, p.127). Our
definition of “isogeny” agrees with that in DGV, §3, 1.6, p. 577.
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2 Ktale affine groups

Unless we say otherwise, k is a field in this section.

Etale algebras over a field

DEFINITION 2.1 An algebra A over a field k is diagonalizable if it is isomorphic to the
product algebra k" for some n, and it is étale if L ® A is diagonalizable for some field L
containing k.!

Let k be a field, and let A be a finite k-algebra. For any finite set S of maximal ideals
in A, the Chinese remainder theorem (CA 2.12) shows that the map A — [],,cg A/m is
surjective with kernel (),,c g m. In particular, |S| < [A:k], and so A has only finitely many
maximal ideals. If S is the set of all maximal ideals in A, then ﬂme s mis the nilradical 2
of A (CA 11.8), and so A/ is a finite product of fields.

PROPOSITION 2.2 The following conditions on a finite k-algebra A are equivalent:

(a) A is étale;
(b) L ® A is reduced for all fields L containing k;
(c) A is a product of separable field extensions of k.

PROOF. (a)=(b). Let L be a field containing k. By hypothesis, there exists a field L’
containing k such that L’ ® A4 is diagonalizable. Let L” be a field containing (copies of)
both L and L’ (e.g., take L” to be a quotient of L ® L’ by a maximal ideal). Then L” ® A =
L"®p L' ® A is diagonalizable, and the map L ® A — L” ® A defined by the inclusion
L — L” is injective, and so L ® A4 is reduced.

(b)=(c). Themapar>a®1: A - L ® A is injective, and so if L ® A is reduced, then
so also is A. The discussion above shows that it is a finite product of fields. Let kK’ be one
of the factors of A. If k" is not separable over k, then k has characteristic p # 0 and there
exists an element u of k” whose minimum polynomial is of the form f(X?) with f € k[X]
(see FT 3.6, et seq.). Let L be a field containing k such that all the coefficients of f are pth
powers in L. Then

L®klu] ~ L (k[X]/(f(XP)) =~ LIX]/(f(XP)),

which is not reduced because f(X?)isa pth powerin L[X]. Hence L ® A is not reduced.
(c)=(a). We may suppose that A itself is a separable field extension of k. From the

primitive element theorem (FT 5.1), we know that A = k[u] for some u. Because k[u] is

separable over k, the minimum polynomial f(X) of u is separable, which means that

f(X)= H(X—Mi), u; #uj fori # j,
in a splitting field L for f. Now
L®A~LQK[X]/(f)=~L[X]/(f).
and, according to the Chinese remainder theorem (CA 2.12),
LIX1/(f) =[], LIX)/(X —ui) = Lx---x L. .

IThis is Bourbaki’s terminology, Bourbaki A, V §6.
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COROLLARY 2.3 Let k*P be a separable closure of k. A k-algebra A is étale if and only
if k5P ® A is diagonalizable.

PROOF. The proof that (c) implies (a) in (2.2) shows that L ® A is diagonalizable if certain
separable polynomials split in L. By definition, all separable polynomials split in k%P, g

PROPOSITION 2.4 Finite products, tensor products, and quotients of diagonalizable (resp.
étale) k -algebras are diagonalizable (resp. étale).

PROOF. This is obvious for diagonalizable algebras, and it follows for étale algebras.

COROLLARY 2.5 The composite of any finite set of étale subalgebras of a k-algebra is
étale.

PROOF. Let A; be étale subalgebras of B. Then A;--- A, is the image of the map
a1Q--Qap—>ai--an: A1 Q- Q@ Ay > B,

and so is a quotient of A1 ®--- @ Aj. ]

PROPOSITION 2.6 If A is étale over k, then k' ® A is étale over k' for every field k' con-
taining k.

PROOF. Let L be such that L ® A ~ L™, and let L’ be a field containing (copies of) both
L and k’. Then
Loy (k@A) ~L'®@A~L'®, LeA~L & L™~ (L)". o

Classification of the étale algebras over a field

Let k5P be a separable closure of k. If k is perfect, for example, of characteristic zero, then
k5P is an algebraic closure of k. Let I" be the group of k-automorphisms of k%P, For any
subfield K of k*%P, finite and Galois over k, an easy Zorn’s lemma argument” shows that

o—0o|K:I' - Gal(K/k)
is surjective. Let X be a finite set with an action of I,
I'xX — X.

We say that the action is continuous if it is continuous for the discrete topology on X and
the Krull topology on I". Because X is finite, this is equivalent to saying that it factors
through I — Gal(K / k) for some subfield K of k*°P finite and Galois over k.

For an étale k-algebra A, let

F(A) = Homy_yg(4,k*P).

2Let 09 € Gal(K/k). Apply Zorn’s lemma to the set of all pairs (E,u) where E is a subfield of k%P
containing k and u is homomorphism E — k*P whose restriction to K is 0g.
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Then I" acts on F(A) through its action on k*°P:

va)=y(f(@). yel,feF(A),acA.

The images of all homomorphisms A — k*°P lie in some finite Galois extension of k, and
so the action of I" on F(A) is continuous.

THEOREM 2.7 The map A ~» F(A) defines a contravariant equivalence from the category
étale of k-algebras to the category of finite sets with a continuous action of I".

PROOF. This is a restatement of the fundamental theorem of Galois theory (FT §3), and is
left as an exercise to the reader (the indolent may see Waterhouse 1979, 6.3). o

2.8 We sketch the proof of the theorem. Let k = k*P. For any étale k-algebra A, there is
a canonical isomorphism

a®c|—>(aa~c)geF(A):l€®A—>I€F(A), (114)

where

KF = Hom(F(A).k) =] | ke, ko =k.

oceF(A)

In other words, E_F (4) is a product of copies of k indexed by the elements of F'(4). When
we let I" act on k ® A through its action of k and on k¥4 through its actions on both k
and F(A),

@) =y(f(y~ o). yel. fiF(4)—k oecF(A),
then the (114) becomes equivariant. Now:

(a) for any étale k-algebra A, 3
A= (koA
(b) for any finite set S with a continuous action of I", (k$)T is an étale k-subalgebra of
kS, and B
F((kS)T) ~ 8.

Therefore, A ~~ F(A) is an equivalence of categories with quasi-inverse S kS$HT.

2.9 Suppose that A is generated by a single element, say, A = k[u] >~ k[X]/(f(X)). Then
A is étale if and only if f(X) has distinct roots in k. Assume this, and choose f(X) to
be monic. A k-algebra homomorphism A — k*°P is determined by the image of u, which
can be any root of f in k*P. Therefore, F'(A) can be identified with the set of roots of f in
k5P, Suppose F(A) decomposes into r orbits under the action of I", and let fi,..., fr be
the monic polynomials whose roots are the orbits. Then each f; is fixed by I", and so has
coefficients in k (FT 7.8). It follows that f = fj--- f, is the decomposition of f into its
irreducible factors over k, and that

AT, KXV (X))

is the decomposition of A into a product of fields.
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Etale affine groups over a field

Let k be afield. An affine group G over k is étale if O(G) is an étale k-algebra; in particular,
an étale affine group is finite (hence algebraic).’

2.10 Recall (VI, 8.3) that an algebraic group G over k is smooth if and only if k¥ ® O(G)
is reduced. Therefore, a finite affine group G over k is étale if and only if it is smooth. If
k has characteristic zero, then every finite affine group is étale (VI, 9.3). If k is perfect of
characteristic p # 0, then O(G)?" is a reduced Hopf algebra for some r (VI, 10.2); as the
kernel of the map x > x?":O(G) — O(G)P" has dimension a power of p, we see that a
finite affine group of order » is étale if p does not divide n.

Let A be the category of étale k-algebras. The functor G ~» O(G) is an equivalence
from the category of étale affine groups over k to the category of group objects in the
category AP (see II, §6). As G(k*P) = Homy_,4(O(G),k*P), Theorem 2.7 shows that
G ~ G(k*%P) is an equivalence from the category of étale affine groups over k to the cate-
gory of groups in the category of finite continuous I"-sets. Clearly, a group in the category
of finite sets with a continuous action of I" is nothing but a finite group together with a
continuous action of I" by group homomorphisms.

THEOREM 2.11 The functor G ~~ G(k*P) is an equivalence from the category of étale
algebraic groups over k to the category of finite groups endowed with a continuous action
of I'.

Let K be a subfield of k%P containing k, and let I"’ be the subgroup of I" consisting of
the o fixing the elements of K. Then K is the subfield of k5P of elements fixed by I'’ (see
FT 7.10), and it follows that G(K) is the subgroup G (k*P) of elements fixed by I"’.

Examples

For an étale algebraic group G, the order of G is the order of the (abstract) group G (k).

Since Aut(X) = 1 when X is a group of order 1 or 2, there is exactly one étale algebraic
group of order 1 and one of order 2 over any field k& (up to isomorphism).

Let X be a group of order 3. Such a group is cyclic and Aut(X) = Z/27. Therefore
the étale algebraic groups of order 3 over k correspond to homomorphisms I" — Z /27
factoring through Gal(K / k) for some finite Galois extension K of k. A separable quadratic
extension K of k defines such a homomorphism, namely,

o—o|K:I' > Gal(K/k) ~7/27Z

and all nontrivial such homomorphisms arise in this way (see FT §7). Thus, up to isomor-
phism, there is exactly one étale algebraic group GX of order 3 over k for each separa-
ble quadratic extension K of k, plus the constant group Gg. For Gg, Go(k) has order 3.
For GX, GK (k) has order 1 but GK(K) has order 3. There are infinitely many distinct
quadratic extensions of Q, for example, Q[v—1], Q[v2], Q[v/3], ..., Q[/P], ... Since
w3(Q) = 1 but u3(Q[¥/1]) = 3, 3 must be the group corresponding to Q[v/1].

3 Algebraic geometers will recognize that an affine group G is étale if and only if the morphism of schemes
|G| — Speck is étale.
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Finite étale affine groups over ring
We sketch the theory over an arbitrary commutative ring k.

DEFINITION 2.12 A k-algebra A is étale if it is flat of finite presentation as a k-module
and k(p) ® A is étale over the field k(p) for all prime ideals p in k (here k(p) is the field of
fractions of k /p).

Assume that Speck is connected, and choose a homomorphism x from & into a separa-
bly closed field £2. For a finite étale k-algebra A, let F(A) denote the set Homy_y, (4, £2).
Then A ~ F(A) is a functor. The automorphism group I" of F is a profinite group, which
is called the fundamental group 1 (Speck,x) of Speck. It acts on each set F(A), and the
functor F is a contravariant equivalence from the category of finite étale k-algebras to the
category of finite sets with a continuous action of I" (see my Lectures on Etale Cohomology,
§3, or Murre 1967).

An affine group G over k is étale it O(G) is an étale k-algebra. As in the case that k is
a field, the functor

G~ G(82)

is an equivalence from the category of étale affine groups over k to the category of finite
groups endowed with a continuous action of I".

NOTES EGA IV 17.3.1 defines a morphism of schemes to be étale if it is locally of finite presenta-
tion and formally étale. For a morphism of affine schemes, this agrees with our definition (cf. ibid.
17.3.2 (ii)).

3 Finite flat affine p-groups

Recall that the augmentation ideal /¢ of an affine group G is the kernel of €: O(G) — k.

PROPOSITION 3.1 Let G be a finite affine group over a field k of characteristic p # 0, and

suppose that x? = 0 for all x € Ig. For every basis x1,...,X, Oflg/lz, the monomials
xpeex, 0<mp<p

form a basis for O(G) as a k-vector space (and so [O(G):k] = p").
PROOF. Omitted for the moment (see Waterhouse 1979, 11.4). o

The proposition says that O(G) ~ k[X1,...,X,]/(X?,...,XF). This generalizes.

THEOREM 3.2 Let G be a finite group scheme over a perfect field k of characteristic
p # 0 such that |G| is connected. For any basis x1,...,x, of Ig/I2, there exist integers
e1,...,ep > 1 such that

O(G) ~k[X1..... X, 1/ (XP" ... XP").

r

PROOF. Omitted for the moment (see Waterhouse 1979, 14.4). o

Let k be nonperfect, and let a € k ~ k?. The subgroup G of G, x G, defined by

the equations xP? =0, yP = ax? is finite and connected, but O(G) is not a truncated
polynomial algebra, i.e., (3.2) fails for G (Waterhouse 1979, p. 113).
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Classification of finite commutative affine groups over a perfect field (Dieudonné
modules)

Let k be a perfect field of characteristic p. Finite affine groups over k of order prime to
p are étale (2.10), and so are classified in terms of the Galois group of k& (2.11). In this
subsection, we explain the classification of commutative finite affine groups over k of order
a power of p (which we call finite affine p-groups ).

Let W be the ring of Witt vectors with entries in k. Thus W is a complete discrete
valuation ring with maximal ideal generated by p = plw and residue field k. For example,
ifk =), then W = Z,. The Frobenius automorphism o of W is the unique automorphism
such that ca = a? (mod p).

THEOREM 3.3 There exists a contravariant equivalence G ~~ M(G) trom the category of
commutative finite affine p-groups to the category of triples (M, F,V) in which M is a
W -module of finite length and F and V are endomorphisms of M satistying the following
conditions (c e W, m e M ):

F(c-m)=o0c-Fm
V(iocc-m)=c-Vm
FV =p-.idy = VF.
The order of G is p'en&hM(G)) - For any perfect field k' containing k, there is functorial
isomorphism

M(Gy) =~ W(k') @wxy M(G).

PROOF. The proof is quite long, and will not be included. See Demazure 1972, Chap. III,
or Pink 2005. o

For example:

M(Z/pZ)=W/pW, F=0, V=0;
M(up)=W/pW, F=0, V=pol
M(apy)=W/pW, F=0, V=0.

Let D = Wg[F, V] be the W-algebra of noncommutative polynomials in F" and V over
W, subject to the relations:

o F.-c=oc-F,allc e W,
o oc-V=V-c,allceW,;
o FV=p=VF.

To give a triple (M, F, V') as in the theorem is the same as giving a D-module of finite
length over W. The module M(G) attached to a commutative finite affine p-group G is
called the Dieudonné module of G.

The theorem is very important since it reduces the study of commutative affine p-groups
over perfect fields to semi-linear algebra. There are important generalizations of the theo-
rem to Dedekind domains, and other rings.
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4 Cartier duality

In this section, we allow k to be a ring.

The Cartier dual as a Hopf algebra

If (A,m,e, A,¢€) is a bi-algebra over k and A is finitely generated and projective as a k-
module, then (AY, AV, €Y, m",eV) is also a k-bialgebra (see 11, §3 and II, Proposition 4.2).
If moreover (A, m, e, A, €) is commutative (resp. co-commutative), then (4Y, AY,e¥,m",e")
is co-commutative (resp. commutative).

The coordinate ring O(G) of a commutative finite locally free affine monoid is a com-
mutative co-commutative bi-algebra, and so its dual O(G)V is also the coordinate ring of a
commutative finite locally free algebraic monoid GV, called the Cartier dual of G

O(G) = (A,m,e,Ae) < (AY, AV, eV, m",e¥) = O(GY).

LEMMA 4.1 If O(G) is a Hopf algebra, then so also is O(G") (and so GV is an affine
group).

PROOF. More precisely, we show that if S is an inversion for O(G), then SV is an inversion
for O(G). Condition (a) of the Definition II, 4.4 is obviously self-dual. For (b) we have
to show that SV is an algebra homomorphism. For this we have to check that AY o (SY ®
SY)=SYoAY,or, equivalently, that Ao S = (S ® S) o A. In other words, we have to check
that the diagram at left below commutes. This corresponds (under a category equivalence)
to the diagram at right, which commutes precisely because G is commutative (the inverse
of a product is the product of the inverses):

OG) —25 0(G)®OG) G <™ GxG

ls lS®S va Tinvxinv
0G) —2 0(G)®0G) G <2 GxG.

(Alternatively, we could appeal to the unproven (II, 4.5), which says that condition (b) is
superfluous. We had to use the commutativity of G in the above proof of condition (b)
because we checked it in the form SV (ab) = SV (a)SY (b).) O

The functor G ~~ GV is a contravariant equivalence from the category of commutative
finite locally free affine groups to itself, and (GY)Y ~ G.

The Cartier dual as a functor

In this subsection, we describe the functor defined by the Cartier dual G of a commutative
finite locally free affine group G.

For k-algebra R, let Hom(G, G;,)(R) be the set of homomorphisms of u: Gg — G,r
of affine groups over R. This becomes a group under the multiplication

(u1-u2)(g) = u1(g)-u2(g), g€ G(R'), R an R-algebra.

In this way,
R ~~ Hom(G,Gp)(R)

becomes a functor Alg;, — Grp.
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THEOREM 4.2 There is a canonical isomorphism
G ~ Hom(G,G,,)

of functors Alg; — Grp.

PROOF. Let R be a k-algebra. We have
G(R) = Homg 14(O(G), R) = Homp 1in(O(G), R) = O(G ). (115)

The multiplication in O(G) corresponds to comultiplication in O(G"), from which it fol-
lows that the image of (115) consists of the group-like elements in O(GY)g. On the other
hand, we know that Hom(G 3, G,,) also consists of the group-like elements in O(GY)g
(VIIL §16). Thus,

G(R) ~Hom(G",Gp)(R).

This isomorphism is natural in R, and so we have shown that G ~ Hom(G",G,,). To
obtain the required isomorphism, replace G with GV and use that (GY)Y ~ G. o

NOTES For more on Cartier duality, see Pink 2005, §24, and the notes on Cartier duality on Ching-
Li Chai’s website

EXAMPLE 4.3 Let G = «p, sothat O(G) = k[X]/(X?) =k[x]. Let1,y,y2,...,yp—1 be
the basis of O(GY) = O(G)Y dualto 1,x,...,xP~!. Then y’ =i!y;; in particular, y? = 0.
In fact, G¥ >~ «p, and the pairing is

a,b — exp(ab):ap(R) xap(R) - R

where 5 )
. ab  (ab) (ab)P~
exp(ab) = 1+F+ 7 W

The category of finite locally free affine groups over a ring

Let FL(k) denote the category of finite locally free affine groups over a ring k. When k is
a field, then FL (k) has most of the good properties of the category of groups; in particular,
the category of commutative finite affine groups over a field is abelian. See Chapter IX.
When £ is not a field, the situation is much more complicated. For example, let k = Z
and consider the homomorphism u:(Z/27),; — (j42)7 corresponding to the map of rings

T+ (1,-1):Z[T]/(T?>=1) = ZxZ.

This is both a monomorphism and an epimorphism in L (k), but it is not an isomorphism.
The kernel of u in the category of finite affine groups over k has trivial fibre over all primes
ideals of Z except (2), where it has fibre is ;. The kernel of u in FL(k) is zero, but the
kernel of the base change of u to F5 is Z/27Z.

The main positive result is the following theorem of Grothendieck.
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THEOREM 4.4 Let G be a finite locally free affine group over k, and let G x X — X be
an action of G on a functor X in Alg;c/. Assume that X is representable and that the natural
transformation

(g, X))~ (g,8x):GxX > XxX

is closed (see V, §6). Then there exists a representable functor G\ X and a morphism
u: X — G\ X such that

(a) u is constant on the orbits of G, and every natural transformation X — Y of repre-

sentable functors with this property factors uniquely through u;

(b) X is finite and locally free over G\ X ;

(c) for every k-algebra R, G(R)\X(R) — (X\G)(R) is injective (in other words, the
map from the naive quotient to the genuine quotient is injective);

(d) if G and X are represented by A and B respectively, then G\ X is represented by the

equalizer of the map b — 1 ® b: B — A ® B with the map defined by u.

PROOF. See Tate 1997, 3.4, for a discussion of the theorem. See also Mumford, Abelian
Varieties, 111, §12. (The proof will be included in the next version — it is about 6 pages.) o

As a corollary, one sees that quotients of affine groups by normal finite locally free
affine groups exist as affine groups, and have the expected properties.

For a homomorphism of finite locally free affine groups whose kernel is locally free,
everything works as expected: the kernel, cokernel, image, and co-image exist, and the map
from the co-image to the image is an isomorphism.

In general, the category of finite locally free commutative affine groups over a ring k is
exact but not abelian (see mo7688, especially the answer of Laurent Fargues).

ASIDE 4.5 The theory of finite locally free affine groups is extensive. See Tate 1997 for a short
introduction.

5 Exercises

In the exercises, k is a field.

EXERCISE XII-1 Show that A is étale if and only if there are no nonzero k-derivations
D:A — k. [Regard A as a left A-module by left multiplication. Let A be a k-algebra and
M an A-module. A k -derivation is a k-linear map D: A — M such that

D(fg)=f-D(g)+g-D(f) (Leibnizrule).]

EXERCISE XII-2 How many finite algebraic groups of orders 1,2, 3,4 are there over R (up
to isomorphism)?

EXERCISE XII-3 Let G be the constant algebraic group over k defined by a finite commu-
tative group I". Let n be the exponent of I", and assume that k contains n distinct nth roots
of 1 (so, in particular, n is not divisible by the characteristic of k). Show that the Cartier
dual of G is the constant algebraic group defined by the dual group Hom(/I",Q/Z).

EXERCISE XII-4 If k has characteristic p # 0, show that o) ~ a, and (Z/pZ); ~ up
(hence ,u;f ~ (Z/pZ)y) (here (Z/ pZ)i, 1 p, and o are the groups in (IV, 1.3), (IV, 1.4),
and (IV, 1.5)).






CHAPTER XI I I

The Connected Components of an
Algebraic Group

Recall that a topological space X is connected if it is not the union of two disjoint nonempty
open subsets. This amounts to saying that, apart from X itself and the empty set, there is
no subset of X that is both open and closed. For each point x of X, the union of the
connected subsets of X containing x is again connected, and so it is the largest connected
subset containing x — it is called the connected component of x. The set of the connected
components of the points of X is a partition of X by closed subsets. Write 7ro(X) for the
set of connected components of X.

In a topological group G, the connected component of the neutral element is a closed
normal connected subgroup G° of G, called the neutral (or identity) component of G.
Therefore, the quotient 79(G) = G/G° is a separated topological group. For example,
GL>(R) has two connected components, namely, the identity component consisting of the
matrices with determinant > 0 and another connected component consisting of the matrices
with determinant < 0.

In this chapter, we discuss the identity component G° of an algebraic affine group and
the (étale) quotient group o (G) of its connected components. Throughout, k is a field.

1 Idempotents and connected components

Throughout this section, A is a commutative ring. An element e of A is idempotent if

e? = e. For example, 0 and 1 are both idempotents — they are called the trivial idempo-
tents. Idempotents ey,...,e, are orthogonal if e;e; = 0 for i # j. A sum of orthogonal
idempotents is again idempotent. A finite set {eq,...,e,} of orthogonal idempotents is
complete if e; 4+ --- + ¢, = 1. Every finite set of orthogonal idempotents {eq,...,e,} can

be completed by adding the idempotent e = 1 —(e1 +--- +ey).
If A= A; x---x A, (direct product of rings), then the elements

e1=(1,0,...),e2 = (0,1,0,...), ..., en = (0,...,0,1)

form a complete set of orthogonal idempotents. Conversely, if {e1,...,e,} is a complete set
of orthogonal idempotents in A, then Ae; becomes a ring with the addition and multiplica-
tion induced by that of A (but with the identity element ¢;), and A >~ Ae; x--- X Aey.

203
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LEMMA 1.1 The space spec A is disconnected if and only if A contains a nontrivial idem-
potent.

PROOF. Let e be a nontrivial nilpotent, and let f = 1 —e. For a prime ideal p, the map
A — A/p must send exactly one of e or f to a nonzero element. This shows that spec A
is a disjoint union of the sets' D(e) and D( f), each of which is open. If D(e) = spec 4,
then e would be a unit (CA 2.2), and hence can be cancelled from ee = e to give e = 1.
Therefore D(e) # spec A, and similarly, D( f) # spec A.

Conversely, suppose that spec A is disconnected, say, the disjoint union of two nonempty
closed subsets V' (a) and V(b). Because the union is disjoint, no prime ideal contains both
aand b,andsoa+b=A4. Thusa+b =1 forsomea caand beb. Asabeanb,
all prime ideals contain ab, which is therefore nilpotent (CA 2.5), say (ab)” = 0. Any
prime ideal containing a” contains a; similarly, any prime ideal containing " contains b;
thus no prime ideal contains both @™ and »™, which shows that (a”,b™) = A. Therefore,
1 =ra™ + sb™ for some r,s € A. Now

(ra™)(sb™) =rs(ab)™ =0,
(ra™? = (ra™)(1 —sb™) = ra™,
(sb™)% = sb™
ra™ 4+sb™ =1,
and so {ra™,sb™} is a complete set of orthogonal idempotents. Clearly V(a) C V(ra™)

and V(b) C V(sb™). As V(ra™) NV (sb™) = @, we see that V(a) = V(ra™) and V(b) =
V(sb™), and so each of ra™ and sb™ is a nontrivial idempotent. o

PROPOSITION 1.2 Let{eq,...,e,} be acomplete set of orthogonal idempotents in A. Then
specA = D(ey)U...U D(ep)

is a decomposition of spec A into a disjoint union of open subsets. Moreover, every such
decomposition arises in this way.

PROOF. Let p be a prime ideal in A. Because A/p is an integral domain, exactly one of the
e;’s maps to 1 in A/p and the remainder map to zero. This proves that spec A4 is the disjoint
union of the sets D(e;).

Now consider a decomposition

specA=UU...uU,

each U; open. We use induction on # to show that it arises from a complete set of orthogonal
idempotents. When n = 1, there is nothing to prove, and when n > 2, we write

specA=U U (U U...UUy).

The proof of the lemma shows that there exist orthogonal idempotents eq, €] € A such that
e1+e;=1and
Uy = D(e1)
Uy U...uU, = D(e}) = spec Ae].

I'The set D(e) consists of the prime ideals of A nor containing e, and V(a) consists of all prime ideals
containing a.
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By induction, there exist orthogonal idempotents e», ..., e, in Ae] such thate, +---+e, =
ey and U; = D(e;) for i =2,...,n. Now {eq,...,e,} is a complete set of orthogonal
idempotents in A such that U; = D(e;) for all i. o

1.3 Recall that a ring A is said to be Jacobson if every prime ideal is an intersection of
maximal ideals, and that every finitely generated algebra over a field is Jacobson (see CA
12.3 et seq.). In a Jacobson ring, the nilradical is an intersection of maximal ideals. When
A is Jacobson, “prime ideal” can be replaced by “maximal ideal” and “spec” with “spm”
in the above discussion. In particular, for a Jacobson ring A, there are natural one-to-one
correspondences between

¢ the decompositions of spm(A) into a finite disjoint union of open subspaces,
¢ the decompositions of A into a finite direct products of rings, and
¢ the complete sets of orthogonal idempotents in A.

Now consider aring A = k[X1,..., X,]/a. When k is an algebraically closed field,
spm A ~~ the zero set of a in k"

as topological spaces (Nullstellensatz, CA 11.6), and so spm A4 is connected if and only if
the zero set of a in k" is connected.

LEMMA 1.4 Let A be a finitely generated algebra over a separably closed field k. The
number of connected components of spm A is equal to the largest degree of an étale k-
subalgebra of A (and both are finite).

PROOF. Because spm A is noetherian, it is a finite disjoint union of its connected compo-
nents, each of which is open (CA 12.12). Let E be an étale k-subalgebra of A. Because k
is separably closed, E is a product of copies of k. A decomposition of E corresponds to
a complete set (e;)1<;<m of orthogonal idempotents in E, and m = [E:k]. Conversely, a
complete set (e;)1<;<m of orthogonal idempotents in A defines an étale k-subalgebra of A
of degree m, namely, ) _ke;. Thus the statement follows from (1.3). O

LEMMA 1.5 Let A be a finitely generated k -algebra. Assume that k is algebraically closed,
and let K be an algebraically closed field containing k. If spm A is connected, so also is
spmAg.

PROOF. Write A = k[X1,...,X,]/q, so that Ax = K[Xq,...,X,]/b where b is the ideal
generated by a. By assumption, the zero set V(a) of a in k" is connected, and it lies in the
zero set V(b) of b in K”. As the closure of a connected set is connected, it suffices to show
that 1/(b) is the Zariski closure of V(a). For this it suffices to show that if an element f of
K[X1,...,Xy] is zero on V(a), then it is zero on V(b). Choose a basis (a;);ey for K over
k, and write

f= Ziaif,- (fi ek[X1,...,X,], finite sum).

As f is zero on V(a), so also is each f;. By the Strong Nullstellensatz (CA 11.7), some
power of f; lies in a C b. Hence each f; is zero on V(b), and so f is zero on V(b). o
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LEMMA 1.6 Let A and B be finitely generated algebras over an algebraically closed field
k. If spm A and spm B are connected, then so also is spm A ® B.

PROOF. Because of the Nullstellensatz, we can identify spm A ® B with spm A x spm B (as
a set). For m; € spm A, the k-algebra homomorphisms

B>~(A/m)®B« AQ®B

give continuous maps

losed
n— (mp,n):spm(B) >~ spm(A/m; @ B) i spm(A ® B) >~ spm(A) x spm(B).

Similarly, for n, € spm B, we have continuous maps

losed
m e (m,ny):spm(A4) >~ spm(4A® B/ny) i spm(A ® B) ~ spm(A4) x spm(B).

The images of spm A and spm B in spm(A) x spm(B) intersect in (my,ny) and are con-
nected, which shows that (mj,n;) and (m;,n;) lie in the same connected component of
spm A x spm B for all n; € spm(B) and m;, € spm(A). O

ASIDE 1.7 On C”" there are two topologies: the Zariski topology, whose closed sets are the zero
sets of collections of polynomials, and the complex topology. Clearly Zariski-closed sets are closed
for the complex topology, and so the complex topology is the finer than the Zariski topology. It
follows that a subset of C” that is connected in the complex topology is connected in the Zariski
topology. The converse is false. For example, if we remove the real axis from C, the resulting space
is not connected for the complex topology but it is connected for the topology induced by the Zariski
topology (a nonempty Zariski-open subset of C can omit only finitely many points). Thus the next
result is a surprise:

If V' C C" is closed and irreducible for the Zariski topology, then it is connected for
the complex topology.

For the proof, see Shafarevich 1994, VII 2.

2 Ktale subalgebras

Let A be a finitely generated k-algebra. An étale k-subalgebra of A will give an étale k-
subalgebra of the same degree of A;a (XII, 2.6), and so its degree is bounded by the number
of connected components of spm Aza (1.4). The composite of two étale subalgebras of A4 is
étale (XTI, 2.5), and so there is a largest étale k-subalgebra g (A) of A, containing all other
étale subalgebras.

Let K be a field containing k. Then K ® 7¢(A) is an étale K-subalgebra of K ® A4 (see
XII, 2.6). We shall need to know that it is the largest étale subalgebra.

PROPOSITION 2.1 Let A be a finitely generated k -algebra, and let K be a field containing
k. Then
K®]T()(A) = JT()(K® A)

PROOF. We first prove the statement with K = k%P, It follows from (XII, 2.8) that the map

B—k**®B



2. Ftale subalgebras 207

is a bijection from the set of étale k-subalgebras of A to the set of étale k*P-algebras of
k%P ® A stable under the action of I' = Gal(k*P/ k); its inverse is B — B! Because it is
the (unique) largest étale k*°P-algebra in k5P ® A, mo(k*P ® A) is stable under the action
of I'. The étale k-subalgebras (A4) and 7o (k*P ® A)T correspond to the étale ksP-
subalgebras k5P ® o (A) and 7o (k*P ® A) respectively. As k*P ® mo(A) C mo(k*P ® A),
we have o (A4) C mo(k*P ® A)T'; hence mo(A) = 7o (kP ® A)T" (maximality of ¢ (4)),
and so k5P @ o (A) = mo (k5P ® A).

We next prove the statement when k = k%P and K = k. If K # k, then k has charac-
teristic p # 0 and K is purely inseparable over it. Let ey,..., e, be a basis of idempotents
for 1o(A® K). Write e; = >_a; @ c; witha; € A and ¢; € K. For some r, all the elements
clpr lie in k, and then ej’r = Zalpr ®cl.pr €A. Bute; = ej.’r, and so mp(A ® K) has a
basis in A.

We now prove the statement when k and K are both algebraically closed. We may
suppose that A4 is not a product of k-algebras, and so has no nontrivial idempotents. We
have to show that then A ® K also has no nontrivial idempotents, but this follows from 1.5.

Finally, we prove for a general K. Let K be an algebraic closure of K, and let k¥ be
the algebraic closure of k in K. If K ® mo(A) is not the largest étale subalgebra of K ® A,
then K¥ ®@ m9(A4) = K¥ ® ¢ K ® mo(A) is not the largest étale subalgebra of K* ® A, but
this contradicts the above statements. o

COROLLARY 2.2 Let A be a finitely generated k -algebra. The degree [o(A): k] of mo(A)
is equal to the number of connected components of spm(k? ® A).

PROOF. We have
[o(A):k] = [k* @ mo(A): k"] = [mo (k™ ® A):k™],

and so this follows from 1.4. o

Let A and A’ be finitely generated k-algebras. Then mo(A4) ® mo(A’) is an étale subal-
gebra of A ® A’ (see XII, 2.4). We shall need to know that it is the largest étale subalgebra.

PROPOSITION 2.3 Let A and A’ be finitely generated k -algebras. Then
mo(A® A') = mo(A4) ® wo(A").

PROOF. As mo(A) ® mo(A") C mo(A ® A”), we may suppose that k is algebraically closed
(2.1), and we may replace each of 4 and A’ with a direct factor and so suppose that o (A4) =
1 = mg(A”). We then have to show that 7¢g(4 ® A”) = 1, but this follows from 1.6. o

ASIDE 2.4 Let V be an algebraic variety over a field k, and let 7o(Vgsr) be the set of connected
components of V over k*P. Then mo(Viser) is a finite set with an action of Gal(k*P/k), and so
defines an étale k-algebra B (XII, 2.7). Let 7o(V) = spm B. Then (V) is an algebraic variety,
(finite and) étale over k, and there is a canonical morphism V — (V) of algebraic varieties whose
fibres are connected.” For a projective variety, this is the Stein factorization of the morphism V —
Spmk (cf. Hartshorne 1977, 111, 11.5). For an affine variety V = spm A, wo (V) = spm(mo(A4)).

2More precisely, let m be a point of spm (o (V)), and let k(m) be the residue field at m (finite extension of
k). Then the fibre over m is a geometrically connected algebraic variety over k(m).
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3 Algebraic groups

In this section, G is an affine algebraic group with coordinate ring A = O(G). The map

A:A —> A® A is a k-algebra homomorphism, and so sends mg(A4) into mo(4A ® A) =
mo(A) ® mo(A). Similarly, S: A — A sends mg(A) into mo(A), and we can define € on
1o (A) to be the restriction of € on A. Therefore m¢(A) is a Hopf subalgebra of A.

DEFINITION 3.1 Let G be an algebraic group over a field k.

(a) The group of connected components 7y(G) of G is the quotient algebraic group
corresponding to the Hopf subalgebra 7o (O(G)) of O(G).
(b) The identity component G° of G is the kernel of the homomorphism G — 7o(G).

PROPOSITION 3.2 The following four conditions on an algebraic group G are equivalent:

(a) the étale affine group 7wo(G) is trivial;

(b) the topological space spm(O(G)) is connected;
(c) the topological space spm(QO(G)) is irreducible;
(d) the ring O(G) /I is an integral domain.

PROOF. (b)=>(a). Condition (b) implies that 7o ((O(G)) has no nontrivial idempotents (see
1.3), and so is a field. The existence of the k-algebra homomorphism €: O(G) — k then
implies that 7o (O(G)) = k.

(¢)=(b). Trivial.

(d)<(c). In general, spm A is irreducible if and only if the nilradical of A is prime (see
11, §1).

(a)=(d). If mo(G) is trivial, so also is 7o (Gga) (Lemma 2.1). Write spm O(Gya) as a
union of its irreducible components. By definition, no irreducible component is contained in
the union of the remainder. Therefore, there exists a point that lies on exactly one irreducible
component. By homogeneity (VI, 5.1), all points have this property, and so the irreducible
components are disjoint. As spm O(Gya) is connected, there must be only one, and so G
is irreducible. Let 91 be the nilradical of O(Gja) — we have shown that O(Gya)/ is
an integral domain. The canonical map O(G) — k¥ ® O(G) ~ O(Gya) is injective, and
remains injective after we have passed to the quotients by the respective nilradicals, and so
O(G) /M is an integral domain. o

DEFINITION 3.3 An affine algebraic group is connected if it satisfies the equivalent con-
ditions of the proposition.

Thus an algebraic group G is connected if and only if it has no nontrivial étale quotient.
PROPOSITION 3.4 The fibres of the map |G| — |mo(G)| are the connected components of

the topological space |G|.

PROOF. The connected components of |G| and the points of |7¢(G)| are both indexed by
the elements of a maximal complete set of orthogonal idempotents. O

PROPOSITION 3.5 Every homomorphism from G to an étale algebraic group factors uniquely
through G — 7o (G).
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PROOF. Let G — H be ahomomorphism from G to an étale algebraic group H. The image
def

of O(H) in O(G) is étale (see XII, 2.4), and so is contained in 79 (O(G)) = O(woG). o

PROPOSITION 3.6 The subgroup G° of G is connected, and every homomorphism from a
connected algebraic group to G factors through G° — G.

PROOF. The homomorphism of k-algebras €: O(w9G) — k decomposes O(7wpG) into a
direct product
O(moG) =k x B.

Let e = (1,0). Then the augmentation ideal of O(oG) is (1 —e), and
O(G) =eO(G)x (1-e)O(G)

with eO(G) ~ O(G)/(1—e)O(G) = O(G®) (see VII, 4.1). Clearly, k = m9(eO(G)) =~
70(O(G®)). Therefore 719G ° = 1, which implies that G° is connected.
If H is connected, then the composite H — G — mo(G) has trivial image. O

PROPOSITION 3.7 The subgroup G° is the unique connected normal affine subgroup of G
such that G/ G° is étale.

PROOF. The subgroup G° is normal with étale quotient by definition, and we have shown
it to be connected. Suppose that H is a second normal algebraic subgroup of G. If G/H is
étale, then (by (a)) the homomorphism G — G/H factors through 7(G), and so we get a
commutative diagram

1 G° G 710G —— 1
I |
1 H G G/H —— 1

with exact rows. The similar diagram with each * replaced with %(R) gives, for each k-
algebra R, an exact sequence

1 - G°(R) = H(R) — (m9G) (R). (116)
Since this functorial in R, it gives a sequence of algebraic groups
1 - G°— H — noG.

The exactness of (116) shows that G° is the kernel of H — oG . This map factors through
woH, and so if mg H = 1, its kernel is H : therefore G° ~ H. o

Proposition 3.7 says that, for any algebraic group G, there is a unique exact sequence
1->G°—G—mo(G)—1

such that G° is connected and 7o (G) is étale. This is sometimes called the connected-étale
exact sequence.

The next proposition says that the functors G ~» 719G and G ~~ G° commute with
extension of the base field.
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PROPOSITION 3.8 For any field extension k’ D k,
70(Gir) = mo(G)pr
(Gr)® = (G®)xr-

In particular, G is connected if and only if Gy is connected.
PROOF. As O(Gy/) ~ O(G) ®y k', this follows from (2.1). o

PROPOSITION 3.9 For any algebraic groups G and G’,

7T0(G X G,) il ]T()(G) X]To(G,)
(GxGN° ~G°xG"”.

In particular, G X G’ is connected if and only if both G and G’ are connected.

PROOF. The coordinate ring O(G x G') ~ O(G) ® O(G’), and so the first isomorphism
follows from (2.3). o

REMARK 3.10 Let G be an algebraic group over k. For any field k’ containing k, Propo-
sition 3.8 shows that G is connected if and only if G/ is connected. In particular, if an
algebraic group G over a field is connected, then so also is Gpa. In other words, a con-
nected algebraic group is geometrically connected. This is false for algebraic varieties: for
example,

X?4+Y?=0

is connected over R (even irreducible), but becomes a disjoint union of the two lines
X+£iY =0
over C — the ring R[X,Y]/(X? 4 Y?) is an integral domain, but
CIX,Y]/(X?+Y?) ~C[X.Y]/(X+iY)xC[X,Y]/(X —iY).

The reason for the difference is the existence of the homomorphism €: O(G) — k (the neu-
tral element of G(k)). An integral affine algebraic variety V over a field k is geometrically
connected if and only if k is algebraically closed in O(V'), which is certainly the case if
there exists a k-algebra homomorphism O(V) — k (AG 11.5).

PROPOSITION 3.11 Let
l1>N—->G—>0—1

be an exact sequence of algebraic groups. If N and Q are connected, so also is G; con-
versely, if G is connected, so also is Q.

PROOF. Assume N and Q are connected. Then N is contained in the kernel of G —
mo(G), so this map factors through G — Q (see VII, 7.8); therefore it factors through
wo(Q) = 1. Conversely, since G maps onto o (Q), it must be trivial if G is connected. o
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Examples

3.12 Let G be finite. When k has characteristic zero, G is étale, and so G = my(G) and
G° = 1. Otherwise, there is an exact sequence

1> G°— G —mp(G) = 1.

When k is perfect, the homomorphism G — 7¢(G) has a section, and so G is a semidirect
product
G =G° xmo(G).

To see this, note that the homomorphism Geq — 7¢(G) is an isomorphism because both
groups are étale and it is an isomorphism on k®-points:

Grea(k™) = G(k™) => 70(G) (k™).

The groups G, GL,, T}, (upper triangular), Uy, (strictly upper triangular), D, are connected
because in each case O(G) is an integral domain. For example,

k[Tn] = k[GLn]/(Xij | i>j),

which is isomorphic to the polynomial ring in the symbols X;;, 1 <i < j < n, with the
product X1 --- Xy, inverted.

3.13 For the group G of monomial matrices (IV, 1.12), mo(O(G)) is a product of copies
of k indexed by the elements of S;,. Thus, 710G = S, (regarded as a constant algebraic
group, and G° = D,,.

3.14 The group SL;, is connected. As we noted in the proof of (VII, 5.11), the natural
isomorphism of set-valued functors

A,r— A-diag(r,1,...,1):SL,(R) X Gy (R) — GL,(R)
defines an isomorphism of k-algebras
O(GL,) ~ O(SL,) ® O(Gp),

and the algebra on the right contains O(SL,,). In particular, O(SL,) is a subring of O(GL,),
and so it is an integral domain.

3.15 Assume char(k) # 2. For any nondegenerate quadratic space (V,q), the algebraic
group SO(q) is connected. It suffices to prove this after replacing k with k%, and so we
may suppose that g is the standard quadratic form X 12 +-+-+ X2, in which case we write
SO(g) = SO,,. The latter is shown to be connected in Exercise XIII-4 below.

The determinant defines a quotient map O(q) — {£1} with kernel SO(¢q). Therefore
0(q)° = SO(gq) and ¢(O(q)) = {£1} (constant algebraic group).

3.16 The symplectic group Sp,,, is connected (for some hints on how to prove this, see
Springer 1998, 2.2.9).
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ASIDE 3.17 According to (1.7) and (3.2), an algebraic group G over C is connected if and only if
G(C) is connected for the complex topology. Thus, we could for example deduce that GL,, over C
is a connected algebraic group from knowing that GL, (C) is connected for the complex topology.
However, it is easier to deduce that GL, (C) is connected from knowing that GL,, is connected (of
course, this requires the serious theorem stated in (1.7)).

3.18 An algebraic group G over R may be connected without G(R) being connected for
the real topology, and conversely. For example, GL; is connected as an algebraic group,
but GL, (R) is not connected for the real topology, and w3 is not connected as an algebraic
group, but u3(R) = {1} is certainly connected for the real topology.

3.19 In characteristic zero, an algebraic group is connected if and only if it is strongly
connected (XII, 2.10).

4 Affine groups

Let G be an affine group, and write it as the inverse limit G = lir_niel G; of its family
(Gi)ieg of algebraic quotients (see VIIIL, 8.1). Define
G = 1<£niel G/,
JT()G = Llrlliel 7'[0G[.

ASIDE 4.1 For a smooth group scheme G of finite presentation over a scheme S, there is a unique
open subgroup scheme G° of G such that (G°); = (G)° for all s € S. See SGA 3, VI, 3.10,
p.355. However, even when G is affine over S, G° need not be affine over S.

NOTES Discuss connectedness over a base ring (or scheme). The useful condition is not that G be
connected as a scheme, but that its fibres be connected.

5 Exercises

EXERCISE XIII-1 Show that if 1 - N — G — Q — 1 is exact, so also is mo(N) —
7o(G) — mo(Q) — 1. Give an example to show that 779(N ) — 70(G) need not be injective.

EXERCISE XIII-2 What is the map O(SL,) — O(GL,) defined in example 3.14?
EXERCISE XIII-3 Prove directly that 79 (O(0y)) = k x k.

EXERCISE XIII-4 (Springer 1998, 2.2.2). Assume k has characteristic # 2. For any k-
algebra R, let V(R) be the set of skew-symmetric matrices, i.e., the matrices A such that
Al = —A.

(a) Show that the functor R — V(R) is represented by a finitely generated k-algebra A,
and that A is an integral domain.

(b) Show that A — (I, + A)~' (I, — A) defines a bijection from a nonempty open subset
of SO, (k™) onto an open subset of V (k).

(c) Deduce that SO,, is connected.

2
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EXERCISE XIII-5 Let A be a product of copies of k indexed by the elements of a finite
set S. Show that the k-bialgebra structures on A are in natural one-to-one correspondence
with the group structures on 5.

EXERCISE XIII-6 Let G be a finite affine group. Show that the following conditions are
equivalent:

(a) the k-algebra O(Greq) is étale;

(b) O(Gred) @ O(Greq) is reduced,;

(¢) Greq is a subgroup of G;

(d) G isisomorphic to the semi-direct product of G° and 779G

EXERCISE XIII-7 Let k be a nonperfect field of characteristic 2, so that there exists an

a € k that is not a square. Show that the functor R ~~ G(R) 4 {x € R| x* = ax?} becomes

a finite commutative algebraic group under addition. Show that G (k) has only one element
but 19(G) has two. Deduce that G is not isomorphic to the semi-direct product of G° and
70(G). (Hence XIIT-6 shows that O(G) /Dt is not a Hopf algebra.)

EXERCISE XIII-8 Let k be a field of characteristic p. Show that the extensions
0—>up—>G—>7%Z/pZ—0

with G a finite commutative algebraic group are classified by the elements of k> /k*? (the
split extension G = j1, X Z/ pZ corresponds to the trivial element in k> / k7). Show that
Geq is not a subgroup of G unless the extension splits.

6 Where we are

As discussed in the first section, every affine algebraic group has a composition series with
the quotients listed at right:

affine G
| finite étale
connected G°
| semisimple
solvable .
| torus
unipotent .
| unipotent
{1}

We have constructed the top segment of this picture. Next we look at tori and unipotent
groups. Then we study the most interesting groups, the semisimple ones, and finally, we
put everything together.






CHAPTER X I V

Groups of Multiplicative Type; Tori

In this chapter we study the affine groups that become diagonalizable over an extension
field. Through £ is a field.
We state for reference:

Gm(R) = R* OGp) =k[X, X7 AX)=X®X eX)=1 SX)=Xx"1
pn(R)={L€R|E" =1} Olun) = xiopy =kla] AW =x®x e)=1 S@x)=x""

For an algebraic group G over a field k,

X(G) =Hom(G,G,) (meaning homomorphisms over k)
X*(G) = HOm(Gksep, Gmksep).

[Need to prove somewhere: a smooth connected algebraic group is a torus if and only
if all the elements of G (k) are semisimple.]

1 Group-like elements

DEFINITION 1.1 Let A = (A4, A,¢€) be a k-coalgebra. An element a of A is group-like if
A(@) =a®a and €(a) = 1.

LEMMA 1.2 The group-like elements in A are linearly independent.

PROOF. If not, it will be possible to express one group-like element e as a linear combina-
tion of other group-like elements e; # e:

e=y ;cie, ci€k. 117)
We may even suppose that the e¢; occurring in the sum are linearly independent. Now
Ale)=e®e =3, ;cicje;®e;
Ale) =3 ciA(e)) =) ;ciei ®e;.
The e; ® e are also linearly independent, and so this implies that

cici=c; alli
cic; =0 ifi #j.

215
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We also know that

ele) =1
ele) =) ciele;) =) c;.

On combining these statements, we see that the ¢; form a complete set of orthogonal idem-
potents in the field k, and so one of them equals 1 and the remainder are zero, which
contradicts our assumption that e is not equal to any of the e;. O

Let A be a k-bialgebra. If ¢ and b are group-like elements in A, then

A(ab) = A(a)A(b) = (a®a)(b®b) =ab®@ab
e(ab) =¢e(a)e(b) =1

because A and € are k-algebra homomorphisms. Therefore the group-like elements form a
submonoid of (4, x).
Let A be a Hopf algebra, and let a € A. If a is group-like, then

1= (eoe)(a) "2 (multo (S ®idg) 0 A)a) = S(a)a,

and so a is a unit in A with a~! = S(a). Conversely, if a is a unit in A4 such that A(a) =
a ®a, then

a = ((e,idg) 0 A)(a) = e(a)a,

and so €(a) = 1. Thus the group-like elements of A are exactly the units such that A(a) =
a®a.

ASIDE 1.3 We have just seen that the group-like elements in a Hopf algebra over a field are in-
vertible. Conversely, if the group-like elements in a commutative or cocommutative bialgebra are
invertible, then the bialgebra admits an inversion, but this is false for a general bialgebra. See
mo86197.

2 The characters of an affine group

Recall that a character of an affine group G is a homomorphism y:G — Gy,. To give a
character y of G is the same as giving a homomorphism of k-algebras O(G,,) — O(G)
respecting the comultiplications, and this is the same as giving a unit a(y) of O(G) (the
image of X) such that A(a(y)) = a(y) ® a(y). Therefore, y <> a(y) is a one-to-one cor-
respondence between the characters of G and the group-like elements of O(G).

For characters y, y’, define

1+ x:G(R) — R

by
x+ 1)@ =x@-x (.

Then y + y’ is again a character, and the set of characters is an commutative group, denoted
X(G). The correspondence y <> a(y) between characters and group-like elements has the
property that

a(x+x)=alx)-a()).
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ASIDE 2.1 Recall (I, 3.13) that an element f of O(G) can be regarded as a natural transformation
f:G — Al. Suppose that

f(lg) =1, for 1 the identity element in G(R), and
f&xy)= f(x)f(y), forx,ye€ G(R), R ak-algebra.

Then f(R) takes values in R* C A!'(R) and is a homomorphism G(R) — R*. In other words, f is
a character of G. One can see directly from the definitions that the condition (118) holds if and only
if f is group-like.

(118)

3 The affine group D(M)

Let M be a commutative group (written multiplicatively), and let k[M] be the k-vector
space with basis M. Thus, the elements of k[M | are finite sums

Zia,-m,-, a; Ek, m; € M.

When we endow k[M ] with the multiplication extending that on M,

(Zi aiml-) (Z/ bjl’lj) = Zi,j aibjminj,

then k[M] becomes a k-algebra, called the group algebra of M . 1t becomes a Hopf algebra
when we set

Am)y=m@m, em)=1, Sm)=m"" (meM)
because, for m an element of the basis M,

MdRA)(AMm) =mR(mOm) =(mm)dm = (A®id)(A(m)),
(e®id)(A(m)) =1Q@m, (d®e)(A(m)) =m®1,
(multo (S ®id))(m @m) =1 = (multo id®S))(m Qm)

(see also II, 4.6). Note that k[M] is generated as a k-algebra by any set of generators for
M, and so it is finitely generated if M is finitely generated.

EXAMPLE 3.1 Let M be a cyclic group, generated by e.

(a) Case e has infinite order. Then the elements of k[M] are the finite sums Y ;. a;e’
with the obvious addition and multiplication, and A(e) = e ®e, €(e) =1, S(e) =
e~ !, Therefore, k[M] ~ k[G,].

(b) Case e is of order n. Then the elements of k[M] are sums a9 +aije+---+an—1e
with the obvious addition and multiplication (using e” = 1), and A(e) = e®e, e(e) =
1, and S(e) = e" 1. Therefore, k[M] =~ k[in].

n—1

EXAMPLE 3.2 Recall that if W and V' are vector spaces with bases (e;);cs and (f}) jes,
then W ®j V' is a vector space with basis (¢; ® f;),j)erxs- Therefore, if My and M are
commutative groups, then

(my,mp) < m1 @moy:k[My x M3] < k[M1] ® k[M>]

is an isomorphism of k-vector spaces, and one checks easily that it respects the Hopf k-
algebra structures.
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PROPOSITION 3.3 For any commutative group M, the functor D(M)
R ~»Hom(M, R™) (homomorphisms of groups)

is an affine group, with coordinate ring k[M]. When M is finitely generated, the choice of
a basis for M determines an isomorphism of D(M) with a finite product of copies of G,
and various (LS.

PROOF. To give a k-linear map k[M] — R is the same as giving a map M — R. The map
k[M] — R is a k-algebra homomorphism if and only if M — R is a homomorphism from
M into R*. This shows that D(M) is represented by k[M], and it is therefore an affine

group.
A decomposition of commutative groups

M~Z7& - PLOL/mZ& - DL/n,7Z,
defines a decomposition of k-bialgebras
KIM] ~ k(G ® -+ @ k[Con @ K[t @ -+ @ K[jtn, ]

(3.1,3.2). Since every finitely generated commutative group M has such a decomposition,
this proves the second statement. O

LEMMA 3.4 The group-like elements of k[ M are exactly the elements of M .

PROOF. Lete € k[M] be group-like. Then
e=> cje; forsomec; €k,e; € M.

The argument in the proof of Lemma 1.2 shows that the ¢; form a complete set of orthogonal
idempotents in k, and so one of them equals 1 and the remainder are zero. Therefore e = ¢;
for some i. o

Thus
X(D(M)) =M.

The character of D(M) corresponding to m € M is

def S f(m)
- 5

D(M)(R) € Hom(M, R®) R*E Gm(R).

SUMMARY 3.5 Let p be the characteristic exponent' of k. Then:

D(M) is algebraic

D(M) is connected

D(M) is algebraic and smooth

D(M) is algebraic, smooth, and connected

M is finitely generated
M has only p-torsion
M is finitely generated and has no p-torsion

—
—
—
<= M is free and finitely generated.

I"The characteristic exponent of a field k is p if k has characteristic p # 0, and it is 1 if k has characteristic
z€ero.



4. Diagonalizable groups 219

We noted above that D(M) is algebraic if M is finitely generated. If M is not finitely
generated, then D (M) is an infinite product of nontrivial groups, and so can’t be algebraic.
The affine group D(Z) = G, is connected and smooth. Let n = n’ x p™ where n’ is prime
to p. Then D(Z/n7Z) = pp’ X p pm; the finite affine group - is étale (hence smooth), and
it is nonconnected if n” # 1; the finite affine group p pm is connected, and it is nonsmooth
if p™ #£ 1.
Note that
D(M)°® = D(M/{prime-to- p torsion}
D(M)eq = D(M/{p-torsion}
D(M).; = D(M/{torsion}.

ASIDE 3.6 When M is an additive commutative group, it is more natural to define k[M] to be the
vector space with basis the set of symbols {¢” | m € M }. The multiplication is then ¢ - ¢ = ™"
and the comultiplication is A(e™) = e™ ® ™.

4 Diagonalizable groups

DEFINITION 4.1 An affine group G is diagonalizable if the group-like elements in O(G)
span it as a k-vector space.

THEOREM 4.2 An affine group G is diagonalizable if and only if it is isomorphic to D(M)
for some commutative group M .

PROOF. The group-like elements of kK[M] span it by definition. Conversely, suppose the
group-like elements M span O(G). Lemma 1.2 shows that they form a basis for O(G) (as
a k-vector space), and so the inclusion M — O(G) extends to an isomorphism k[M] —
O(G) of vector spaces. That this isomorphism is compatible with the bialgebra structures
(m,e, A,€) can be checked on the basis elements m € M, where it is obvious. o

ASIDE 4.3 When we interpret the characters of G as elements of O(G) satisfying (118), we can
say that G is diagonalizable if and only if O(G) is spanned by characters.

THEOREM 4.4 (a) The functor M ~~ D(M) is a contravariant equivalence from the cat-
egory of commutative groups to the category of diagonalizable affine groups (with quasi-
inverse G ~ X(G)).
(b) If

1M ->M->M'—-1

is an exact sequence of commutative groups, then
1—-DM"y— DM)—DM')—1

is an exact sequence of affine groups.
(c) Subgroups and quotient groups of diagonalizable affine groups are diagonalizable.

PROOF. (a) Certainly, we have a contravariant functor

D:{commutative groups} ~~ {diagonalizable groups}.
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We first show that D is fully faithful, i.e., that
Hom(M, M’y — Hom(D(M'), D(M)) (119)

is an isomorphism for all M, M’. It sends direct limits to inverse limits and direct sums
to products, and so it suffices to prove that (119) is an isomorphism when M and M’ are
cyclic. If, for example, M and M’ are both infinite cyclic groups, then

Hom(M,M') = Hom(Z,Z) ~ Z,
Hom(D(M'), D(M)) = Hom(G,Gp) ={X' |i € Z} ~ Z,

and (119) is an isomorphism. The remaining cases are similarly easy.

Theorem 4.2 shows that the functor is essentially surjective, and so it is an equivalence.

(b) The map k[M'] — k[M] is injective, and so D(M) — D(M’) is a quotient map
(by definition). Its kernel is represented by k[M ]/ I [as:], Where I[ps/] is the augmentation
ideal of k[M'] (see VII, 4.1). But Ixpr is the ideal generated the elements m — 1 for
m € M', and so k[M]/ Ixp is the quotient ring obtained by putting m = 1 forallm € M.
Therefore M — M" defines an isomorphism k[M]/ Ixprq — k[M"].

(c) If H is a subgroup of G, then O(G) — O(H) is surjective, and so if the group-like
elements of O(G) span it, the same is true of O(H ).

Let D(M) — Q be a quotient map, and let H be its kernel. Then H = D(M") for
some quotient M of M. Let M’ be the kernel of M — M”. Then D(M) — D(M') and
D(M) — Q are quotient maps with the same kernel, and so are isomorphic (VII, 7.9).

ASIDE 4.5 Our definition of a diagonalizable group agrees with that in SGA 3, VIII 1.1: a group
scheme is diagonalizable if it is isomorphic to a scheme of the form D (M) for some commutative
group M.

Diagonalizable representations

DEFINITION 4.6 A representation of an affine group is diagonalizable if it is a sum of
one-dimensional representations.

According to VIII, 17.3, a diagonalizable representation is a direct sum of one-dimensional
representations.
Recall that D, is the group of invertible diagonal n x n matrices; thus

Dy >~ Gy x -+ X Gy >~ D(Z).
——
n copies
A finite-dimensional representation (V,r) of an affine group G is diagonalizable if and
only if there exists a basis for V' such that r(G) C D,,. In more down-to-earth terms, the

representation defined by an inclusion G C GL,;, is diagonalizable if and only if there exists
an invertible matrix P in My (k) such that, for all k-algebras R and all g € G(R),

* 0
PgP™ e
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A character y: G — Gy, defines a representation of G on any finite-dimensional space
V: let g € G(R) act on Vg as multiplication by y(g) € R*. For example, y defines a
representation of G on k" by

x(g) 0
g '

0 x(&)

Let (V,r) be a representation of G. We say that G acts on V through y if

r(g)v=yx(g)val geG(R),veVg.

This means that the image of r is contained in the centre G, of GLy and that r is the
composite of

G %5 G,y GLy.

Let p: V — V ® O(G) be the coaction defined by r. Then G acts on V' through the character
x if and only if
o(v)=v®a(y), allvel.

When V is 1-dimensional, GLy = G, and so G always acts on V' through some character.

Let (V,r) be a representation of G. If G acts on subspaces W and W' through the
character y, then it acts on W + W’ through the character y. Therefore, for each y € X(G),
there is a largest subspace V) (possibly zero) such that G acts on V) through y. We have
(VI 16.1)

Vy=1eV]pl)=va());.

THEOREM 4.7 The following conditions on an affine group G are equivalent:

(a) G is diagonalizable;

(b) every finite-dimensional representation of G is diagonalizable;
(c) every representation of G is diagonalizable;

(d) for every representation (V,r) of G,

V= @XEX(T) Vy.

PROOF. (a)=(c): Let p:V — V ® O(G) be the comodule corresponding to a representa-
tion of G (see VIII, 6.1). We have to show that V' is a sum of one-dimensional representa-
tions or, equivalently, that V' is spanned by vectors u such that p(u) € (u) ® O(G).

Let v € V. As the group-like elements form a basis (e;);ey for O(G), we can write

p(V) =D icrui®ei. ui €V
On applying the identities (p. 114)

(idy ®A4)op = (p®idg)op
(idy ®€)op = idy.

to v, we find that

Ziui Qe Qe = Zl. p(u;) ®e;
v=>u;.
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The first equality shows that
pui) =u; ®e; € (u;) ® A,

and the second shows that the set of u;’s arising in this way span V.

(c)=(a): In particular, the regular representation of G is diagonalizable, and so O(G) is
spanned by its eigenvectors. Let f € O(G) be an eigenvector for the regular representation,
and let y be the corresponding character. Then

f(hg) = f(h)y(g) forh,g e G(R), R ak-algebra.

In particular, f(g) = f(e)x(g), and so f is a multiple of y. Hence O(G) is spanned by its
characters.

(b)=(c): As every representation is a sum of finite-dimensional subrepresentations
(VIII, 9.3), (b) implies that every representation is a sum of one-dimensional subrepresen-
tations.

(¢)=(b): Trivial.

(c)=(d): Certainly, (c) implies that V = er x(G) Vx> and Theorem 16.2, Chapter
VIII, implies that the sum is direct.

(d)=(c): Clearly each space V) is a sum of one-dimensional representations. O

NOTES Part of this section duplicates VIII, §16.

NOTES An affine group G is diagonalizable if and only if Rep(G) is semisimple and every simple
object has dimension 1 (equivalently, the tensor product of two simple objects in simple). Explain
that to give a representation of D(M) on V is the same as giving a gradation on V' (for a base ring,
see CGP A.8.8.). Explain that the categories of representations of diagonalizable affine groups are
exactly the neutral tannakian categories graded by some commutative group M, and the Tannaka
dual is D(M). See also the last chapter.

Split tori

4.8 A split torus is an algebraic group isomorphic to a finite product of copies of G,.
Equivalently, it is a connected diagonalizable algebraic group. Under the equivalence of
categories M ~» D(M) (see 4.4a), the split tori correspond to free commutative groups M
of finite rank. A quotient of a split torus is again a split torus (because it corresponds to a
subgroup of a free commutative group of finite rank), but a subgroup of a split torus need
not be a split torus. For example, i, is a subgroup of G, (the map u,, — G, corresponds
to Z — 7/ nZ).

EXAMPLE 4.9 Let T be the split torus G, X Gp,. Then X(T') >~ Z & Z, and the character
corresponding to (m1,my) € Z® 7 is

(t1.12) > 11115 2: T(R) = G (R).

A representation V' of 7" decomposes into a direct sum of subspaces V(| m,), (m1,m2) €
Z x Z, such that (t1,12) € T(k) acts on Vi, m,) as 1] '£5'>. In this way, the category
Rep(T) acquires a gradation by the group Z x Z.
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S Groups of multiplicative type

DEFINITION 5.1 An affine group G is of multiplicative type if Gy is diagonalizable.

Let M be an commutative group, and let I" = Gal(k*P/ k). A continuous action of I’
on M is a homomorphism I" — Aut(M) such that every element of M is fixed by an open

subgroup of I, i.e.,
_ Gal(k™/ K)
M = I IK M

where K runs through the finite Galois extensions of k contained in k*P.
For an affine group G, we define

X*(G) = Hom(Gksep, Gm)

LEMMA 5.2 The canonical action of I' on X *(G) is continuous.

PROOF. When G is algebraic, X *(G) is finitely generated, and each of its generators is de-
fined over a finite separable extension of k; therefore the action factors through Gal(K/k)
for some finite Galois extension K of k. In the general case, every homomorphism Ggsep —
Gm factors through an algebraic quotient of G, and so X *(G) = | X*(Q) with Q alge-
braic. o

THEOREM 5.3 The functor X* is a contravariant equivalence from the category of affine
groups of multiplicative type over k to the category of commutative groups with a contin-
uous action of I'. Under the equivalence, short exact sequences correspond to short exact
sequences.

PROOF. To give a continuous semilinear action of I" on k*P[M] is the same as giving a
continuous action of I" on M (because M is the set of group-like elements in k**P[M] and
M is a k*P-basis for k*P[M]), and so this follows from Theorem 4.4 and Proposition 7.3,
Chapter V. O

Let G be a group of multiplicative type over k. For any K C k*%P,
G(K) = Hom(X *(G), k*P) T

where [k is the subgroup of I" of elements fixing K, and the notation means the G(K)
equals the group of homomorphisms X *(G) — k*P* commuting with the actions of I'k.

EXAMPLE 5.4 Take k = R, so that I" is cyclic of order 2, and let X*(G) = Z. Then
Aut(Z) = 7 = {£1}, and so there are two possible actions of I" on X *(G).

(a) Trivial action. Then G(R) = R*, and G ~ G,,.
(b) The generator ¢ of I" acts on Z as m +— —m. Then G(R) = Hom(Z,C*)!" consists
of the elements of C* fixed under the following action of ¢,

1z=z"1,

Thus G(R) = {z € C* | zz = 1}, which is compact.



224 XIV. Groups of Multiplicative Type; Tori

EXAMPLE 5.5 Let K be a finite separable extension of k, and let T be the functor R ~~
(R®y K)*. Then T is the group of multiplicative type corresponding to the I"-module
ZHomi (K-k*?) (families of elements of Z indexed by the k-homomorphisms K — k*¢P).

ASIDE 5.6 SGA 3, IX 1.1, defines a group scheme to be of multiplicative type if it is locally di-
agonalizable group for the flat (fpqc) topology. Over a field k, this amounts to requiring the group
scheme to become diagonalizable over some field extension of k. Because of Theorem 5.11 below,
this is equivalent to our definition.

Tori

DEFINITION 5.7 A torus is an algebraic group T such that Tjsep is a split torus.

In other words, the tori are the algebraic groups 7" of multiplicative type such that
X*(T) is torsion free.

PROPOSITION 5.8 For a torus T, there exist (unique) subtori T1, ..., T, such that

o T =TTy,
o T; NTj is finite for all i # j, and
o X*(T;)q is a simple I"-module for all i.

PROOF. Let I' = Gal(k*?/ k). Because X *(T) is finitely generated, I" acts on it through a
finite quotient. Therefore Maschke’s theorem (GT 7.4) shows that X *(7)q is a direct sum
of simple I"-modules, say,

X*(T)o=V1&&V.

Let M; be the image of X*(T') in V;. Then there is an exact sequence
0—>X*(T)—> M;x--xM, - F —0

of continuous I"-modules with F finite. On applying the functor D, we get an exact se-
quence of algebraic groups of multiplicative type

0— D(F)— D(M;)x--xD(M,;)—T — 0.
Take T; = D(M;). 0

A torus is anisotropic if X(T) =0, i.e., X*(T)T" =0.

COROLLARY 5.9 Every torus has a largest split subtorus T and a largest anisotropic subtorus
T,. The intersection Ty N Ty, is finite and T - T, = T .

PROOF. In fact Ty is the product of the 7; in the proposition such that I" act trivially on
X*(T;) and Ty is the product of the remainder. o
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Representations of a group of multiplicative type

When G is a diagonalizable affine group, Rep(G) is a semisimple abelian category whose

simple objects are in canonical one-to-one correspondence with the characters of G. When

G is of multiplicative type, the description of Rep(G) is only a little more complicated.
Let k°°P be a separable closure of k, and let I = Gal(kP/ k).

THEOREM 5.10 Let G be an affine group of multiplicative type. Then Rep(G) is a semisim-
ple abelian category whose simple objects are in canonical one-to-one correspondence with
the orbits of I' acting on X *(G).

PROOF. It suffices to prove this in the case that G is algebraic, and so we may suppose that
G is split by a finite Galois extension §2 of k with Galois group I". Let I” act on O(G o) ~
22 ® O(G) through its action on £2. By a semilinear action of I" on a representation (V, )
of Ggo, we mean a semilinear action of I” on V such that yp = p where p is the coaction
of O(G) on V. It follows from Proposition 7.2, Chapter V, that the functor V' ~~ Vg from
Repy (G) to the category of objects of Repg (Gg) equipped with a semilinear action of I”
is an equivalence of categories.

Let V be a finite-dimensional representation of G, equipped with a semilinear action

of I". Then
V= GBxeX(GQ) £

An element y of I' acts on V' by mapping V), isomorphically onto V),,. Therefore, as a
representation of G equipped with a semilinear action of I", V' decomposes into a direct
sum of simple objects corresponding to the orbits of I” acting on X(Gg). As these are also
the orbits of I" acting on X *(Gys») >~ X(Gg), the statement follows. O

Criteria for an affine group to be of multiplicative type

Recall that if C is a finite-dimensional cocommutative coalgebra over k, then its linear
dual CV is a commutative algebra over k (II, §3). We say that C is coétale if C" is étale.
More generally, we say that a cocommutative coalgebra over k is coétale if every finite-
dimensional subcoalgebra is coétale (cf. VIII, 4.6).

THEOREM 5.11 The following conditions on an affine group G over k are equivalent:

(a) G is of multiplicative type (i.e., G becomes diagonalizable over k*°P);
(b) G becomes diagonalizable over some field K D k;

(¢) G is commutative and Hom(G,G,) = 0;

(d) G is commutative and O(G) is coétale.

PROOF. (a)=-(b): Trivial.
(b)=(c): Clearly

Hom(G,G,) >~ {f € OG) |A(f/)=fR1+1® f}.
The condition on f is linear, and so, for any field K D k,

Hom(Gg,Gag) >~ Hom(G,G,) ® K.
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Thus, we may suppose that G is diagonalizable. If u:G — G, is a nontrivial homomor-

phism, then
1 u(g)
o= (o ")

is a nonsemisimple representation of G, which contradicts (4.7).

(¢)=(d): We may assume that k is algebraically closed. Let C be finite-dimensional
subcoalgebra of O(G), i.e., a finite-dimensional k-subspace such that A(C) C C ® C. Let
A = CV. Then A is a finite product of local Artin rings with residue field k (CA 15.7).
If one of these local rings is not a field, then there exists a surjective homomorphism of
k-algebras

A—kle], €2=0.

This can be written x — (x,a) + (x,b)e for some a,b € C with b # 0. For x,y € A,
(xy.a)+ (xy.b)e = (xy,Aa) + {(x ® y, Ab)e

and

((x,a) + (x,b)e) ((y,a) + (y,b)e = (x,a)(y.a) + ((x,a)(y,b) + (x,b){y.a)) e
=(x®y,a)+{x®y,a®b+bRb)e.

It follows that

Aa=aQa
Ab=a®b+b®a.

On the other hand, the structure map k — A is (¢|C)V, and so €(a) = 1. Therefore a is a
group-like element of O(G), and so it is a unit (see §1). Now

Aba™HY)=Ab-Aa ' =(@Rb+b®a)(a ' ®a™h)
=1®ba ' +ba '®1,

and so Hom(G, G,) # 0, which contradicts (c). Therefore A is a product of fields.

(d)=(a): We may suppose that k is separably closed. Let C be a finite-dimensional
subcoalgebra of O(G), and let A = CV. By assumption, A is a product of copies of k. Let
ai,...,an be elements of C such that

x> ((x,ar),....(x,ay)): A —> k"

is an isomorphism. Then {ai,...,a,} spans C and the argument in the above step shows
that each a; is a group-like element of C. As O(G) is a union of its finite-dimensional
subcoalgebras (VIII, 4.6), this shows that O(G) is spanned by its group-like elements. g

COROLLARY 5.12 An affine group G is of multiplicative type if and only if Gya is diago-
nalizable.

PROOF. Certainly, Gja is diagonalizable if G is of multiplicative type, and the converse
follows the theorem. O
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COROLLARY 5.13 A smooth commutative group G is of multiplicative type if and only if
G (k) consists of semisimple elements.

PROOF. We may replace k with k%. Let (V,r) be a faithful finite-dimensional repre-
sentation (V,r) of G. If G is of multiplicative type, there exists a basis for V' such that
r(G) C Dy; from this it follows that the elements of G (k) are semisimple. Conversely, if
the elements of G(k®) are semisimple, hence diagonalizable, we know from linear algebra
that there exists a basis for V' such that (rG)(k¥) C D, (k™). Therefore r(G) C D,. o

ASIDE 5.14 The condition “commutative” is unnecessary. If G(k®) consists of semisimple ele-
ments, then the same is true of Lie(G), which is therefore commutative (XI, 11.1). It follows that G
is commutative if k has characteristic zero. In nonzero characteristic, the proofs in the literature are
more elaborate (Kohls 2011, 3.1).

COROLLARY 5.15 A commutative affine group G is of multiplicative type if and only if
Rep(G) is semisimple.

PROOF. We saw in 5.10 that Rep(G) is semisimple if G is of multiplicative type. Con-
versely, if Rep(G) is semisimple, then Hom(G,G,) = 0, and so G is of multiplicative

type. o
ASIDE 5.16 In nonzero characteristic, the groups of multiplicative type are the only algebraic

groups whose representations are all semisimple.” In characteristic zero, the reductive groups also
have semisimple representations (see X VII, 5.4).

6 Rigidity
Later (see the proof of XVII, Theorem 5.1) we shall need the following result.

THEOREM 6.1 Every action of a connected affine group G on an algebraic group H of
multiplicative type is trivial.

Clearly, it suffices to prove the theorem for an algebraically closed base field k.

PROOF OF THE THEOREM WHEN H IS FINITE.

When H = u,, an action of G on H is a natural transformation

G — Aut(un) C Hom(uy, n) ~ Hom(uy,, Gy) ~ Z/nZ

(see XII, §4), which is trivial, because G is connected. A similar argument proves the
theorem when H is finite (hence a finite product of groups of the form wy).

2More precisely, for an algebraic group over a field k of characteristic p # 0, Rep(G) is semisimple if and
only if G° is of multiplicative type and G/G° has order prime to p (Nagata’s theorem, DG IV §3 3.6, p. 509;
Kohls 2011).
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PROOF OF THE THEOREM IN THE CASE THAT G IS SMOOTH.

We shall use that G(k) is dense in G. We may suppose that H is a torus 7. The kernel
of x > x"™:T — T is a product of copies of s, and so G acts trivially on it. Because
of the category equivalence T ~~ X(T), it suffices to show that g € G(k) acts trivially
on the X(T), and because g acts trivially on the kernel of m:T — T it acts trivially on
X(T)/mX(T). We can now apply the following elementary lemma.

LEMMA 6.2 Let M be a finitely generated commutative group, and let u: M — M be a
homomorphism such that

MLM

! !

id
M/mM —— M/mM
commutes for all m. Then u = id.

PROOF. We may suppose that M is torsion-free. Choose a basis e; for M, and write
u(e;) =) ;aije;,a;; € Z. The hypothesis is that, for every integer m,
(aij) =1, modm,

i.e., that m|a;; fori # j and m|a;; — 1. Clearly, this implies that (a;;) = I,. o

PROOF OF THE THEOREM IN THE GENERAL CASE.
This doesn’t use the smooth case.

LEMMA 6.3 Let V be a k-vector space, and let M be a finitely generated commutative
group. Then the family of homomorphisms

VRkM]|—>VQk[M/nM], n=>2,
is injective.
PROOF. An element f of VV ® k[M] can be written uniquely in the form

f= ZmeM Jm®@m, fmeV.

Assume f #0,andlet [ ={m € M | f,, # 0}. As I is finite, for some n, the elements
of I will remain distinct in M/nM , and for this n, the image of f in V ®y k[M/nM] is
nonzero. o

As k is algebraically closed, the group H is diagonalizable. We saw above, that G acts
trivially on Hj for all n. Let H = D(M) with M a finitely generated commutative group.
Then O(H) = k[M] and O(Hy) = k[M/nM]. Let

p:k[M] — O(G) ® k[M]

give the action. We have to show that p(x) = 1 ® x for each x € k[M], but this follows
from the fact that G acts trivially on H, for all n > 2, and the family of maps

O(G) @k k[M] = O(G) @ k[M/nM], n=2,

is injective.
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Density of the torsion points

PROPOSITION 6.4 Let T be an algebraic group of multiplicative type, and let T,, be the
kernel of n:T — T. Let u:T — T be a homomorphism whose restriction to T, is the
identity map for all n. Then u is the identity map.

PROOF. It suffices to show that X*(u): X*(T) — X™*(T) is the identity map, but the
hypothesis says that X *(u) induces the identity map on the quotient X*(7')/nX*(T) =
X*(Ty) for all n, and so this follows from Lemma 6.2. o

7 Smoothness

LEMMA 7.1 Let H and G be algebraic groups over aring R, and let Ry denote the quotient
of R by an ideal I of square zero. If H is of multiplicative type, then every homomorphism
uo: Hr, — GR, lifts to a homomorphism u: H — G; if u’ is a second lift, then u’ =
inn(g) ou for some g € Ker(G(R) — G(Ry)).

PROOF. The proof uses Hochschild cohomology H” (G, V'), which is defined for any rep-
resentation (V,r) of an algebraic group G. The lemma is a consequence of the following
statements:

Let G and H be algebraic groups over R, let Ry = R/I with 1% = 0, and let
* ~ %0 denote base change R — Ry.

¢ The obstruction to lifting a homomorphism ug: Hyp — Gg to R is a class
in H2(Hy,Lie(Go) ® I); if the class is zero, then the set of lifts modulo
the action of Ker(G(R) — G(Rp)) by conjugation is a principal homo-
geneous space for the group H ' (Hy,Lie(Go) ® I).

o If G is diagonalizable, then H"(G,V) = 0 for n > 0 (DG, II, §3, 4.2,
p195). O

PROPOSITION 7.2 Let G be an algebraic group over a field k, acting on itself by conjuga-
tion, and let H and H' be subgroups of G. If G is smooth and H is of multiplicative type,
then the transporter T (H, H') is smooth.

PROOF. We use the following criterion:
An algebraic scheme X over a field k is smooth if and only if, for all k-algebras
R and ideals 7 in R such that /2 = 0, the map X(R) — X(R/I) is surjective
(DG, §4,4.6,p.111).

We may replace k with its algebraic closure. Let gg € Tg(H, H')(Rp). Because G is
smooth, g lifts to an element g € G(R). On the other hand, because H is of multiplicative
type, the homomorphism

inn(go): Ho — H|,

lifts to a homomorphism u: H — H’ (see 7.1). The homomorphisms
inn(g):H - G
uH— H — G

both lift inn(gg): Hy — Gy, and so u = inn(g’g) for some g’ € G(R) (see 7.1). Now g’'g
is an element of Tg (H, H')(R) lifting go. o
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COROLLARY 7.3 Let H be a subgroup of an algebraic group G. If G is smooth and H is
of multiplicative type, then Ng (H) and Cg (H) are both smooth.

PROOF. In fact,

Ng(H)=Tg(H,H)
Co(H)=Texc(H,H)

(cf. the proofs of VII, 6.1, 6.7). o

8 Group schemes

Add a brief summary of SGA 3, VIII, IX, X.

9 Exercises
EXERCISE XIV-1 Show that the functor
C ~ {group-like elements in C ® k*P}

is an equivalence from the category of coétale finite cocommutative k-coalgebras to the
category of finite sets with a continuous action of Gal(k*P/ k). (Hint: use XII, 2.7.)

EXERCISE XIV-2 Show that Aut(in,) >~ (Z/mZ)* (constant group defined by the group
of invertible elements in the ring Z/mZ). Hint: To recognize the elements of Aut(i,)(R)
as complete systems of orthogonal idempotents, see the proof of (1.2).

EXERCISE XIV-3 Let k’/k be a cyclic Galois extension of degree n with Galois group I”
generated by o, and let G = (G ) g/ k-

(a) Show that X*(G) ~ Z[I'] (group algebra Z + Zo +--- 4+ Zo" =1 of I).
(b) Show that

ay daz ... dadp

anp aip ... an

End['(X*(G)) = . : . a; €7

a2 a3 o al



CHAPTER XV

Unipotent Affine Groups

Recall that an endomorphism of a finite-dimensional vector space V' is unipotent if its char-
acteristic polynomial is (7 — 1)4™V" For such an endomorphism, there exists a basis of V
relative to which its matrix lies in

1 % % ... %
0 1 = *
[Un(k)déf 0 0 1 *
00 0 - 1

Let G be an algebraic group over a perfect field k. We say that g € G(k) is unipotent if
r(g) is unipotent for all finite-dimensional representations (V,r) of G. It suffices to check
that r(g) is unipotent for some faithful representation (V,r), or that g = gy, (see X, 2.8).

By definition, a smooth algebraic group G over a field k is unipotent if the elements of
G (k) are all unipotent. However, not all unipotent groups are smooth, and so we adopt
a different definition equivalent to requiring that the group be isomorphic to a subgroup of
U,.

Throughout this chapter, & is a field. We remind the reader that “algebraic group” means
“affine algebraic group”.

1 Preliminaries from linear algebra

LEMMA 1.1 Let G — GL(W) be a simple linear representation of an abstract group G
on a finite-dimensional vector space W over an algebraically closed field k. Let G act on
End(W) by the rule:

W) =g(f(w)), geG. feEndW), weW.

Then every nonzero G -subspace X of End(W) contains an element fo: W — W such that
fo(W) has dimension one.

PROOF. We may suppose that X is simple. Then the k-algebra of G-endomorphisms of X
is a division algebra, and hence equals k (Schur’s lemma, GT 7.24, 7.29). For any w € W,
the map ¢y,

fefw):X—->Ww

231
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is a G-homomorphism. As X ## 0, there exists an f € X and a wog € W such that f(wg) #
0. Then @y, # 0, and so it is an isomorphism (because X and W are simple). Let fop € X
be such that ¢y, ( fo) = wo.

Letw € W. Then @1;(} 0@y is a G-endomorphism of X, and so ¢y, = ¢(w)¢y,, for some
¢(w) € k. On evaluating this at fy, we find that fo(w) = ¢(w)wo, and so fo(W) C {(wo).o

PROPOSITION 1.2 Let V be a finite-dimensional vector space, and let G be a subgroup of
GL(V) consisting of unipotent endomorphisms. Then there exists a basis of V' for which G
is contained in U,,.

PROOF. It suffices to show that VG = 0, because then we can apply induction on the di-
mension of V' to obtain a basis of V with the required property'.

Choose a basis (e;)1<i<n for V. The condition that a vector v = Y _a;e; be fixed by
all g € G is linear in the a;, and so has a solution in k" if and only if it has a solution in
(k®)™ 2 Therefore we may suppose that k is algebraically closed.

Let W be a nonzero subspace of V' of minimal dimension among those stable under G.
Clearly W is simple. For each g € G, Tryy(g) = dim W, and so

Trw (g(g' —1)) = Trw (gg') — Trw (g) = 0.

LetU ={f € End(W) | Trw(gf) =0 forall g € G}. If G acts nontrivially on W, then U
is nonzero because (g’ — 1)|W € U for all g’ € G. The lemma then shows that U contains
an element fy such that fo(I¥) has dimension one. Such an fy has Try fo # 0, which
contradicts the fact that fo € U. We conclude that G acts trivially on W. O

2 Unipotent affine groups

DEFINITION 2.1 An affine group G is unipotent if every nonzero representation of G has
a nonzero fixed vector (i.e., a nonzero v € V such that p(v) = v ® 1 when V is regarded as
a O(G)-comodule).

Equivalently, G is unipotent if every simple object in Rep(G) is trivial. We shall see
that the unipotent algebraic groups are exactly the algebraic groups isomorphic to affine
subgroups of U,, for some n. For example, G, and its subgroups are unipotent.

I'We use induction on the dimension of V. Let e1,...,e;, be a basis for V6. The induction hypothesis
applied to G acting on V/ V9 shows that there exists a basis em+1,--..ep for V/ VY such that

u(@m+i) =C1i@m+1 -+ +ci—1,i€m+i—1+&p+; foralli <n—m.

Letey+; = em+i + VG with em+i € V. Theney,..., ey, is abasis for V relative to which G C Uy, (k).
2For any representation (V,r) of an abstract group G, the subspace VG of V is the intersection of the
kernels of the linear maps
vi>guv—u:V =V, geG.

It follows that (V ®l€)Gl? ~ VY ®k,and so

(Vek)%k £0 = VY 0.
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PROPOSITION 2.2 An algebraic group G is unipotent if and only if, for every finite-dimensional
representation (V,r) of G, there exists a basis of V for which the image of G is contained
inU,.

PROOF. =>: This can be proved by induction on the dimension of V' (see footnote 1).
«<: Ifeq,...,ey, is such a basis, then (e1) is fixed by G. O

DEFINITION 2.3 A Hopf algebra A is said to be coconnected if there exists a filtration
Co C Cy C Cy C -+ of A by subspaces C; such that’

Co =k, Urzo C, = A, and A(C;) C Zogsr Ci®Cr_i. (120)

THEOREM 2.4 The following conditions on an algebraic group G are equivalent:

(a) G is unipotent;
(b) G is isomorphic to an algebraic subgroup of U, for some n;
(¢) the Hopf algebra O(G) is coconnected.

PROOF. (a)=(b). Apply Proposition 2.2 to a faithful finite-dimensional representation of
G (which exists by VIII, 9.1).

(b)=(c). Every quotient of a coconnected Hopf algebra is coconnected because the
image of a filtration satisfying (120) will still satisfy (120), and so it suffices to show that
O(U,) is coconnected. Recall that O(U,) ~ k[X;; |i < j], and that

AXij))=Xi; 1 +1®X;; + Z Xir ® Xyj.
i<r<j

Assign a weight of j —i to X;;, so that a monomial | | Xl.nj’j will have weight ) "n;; (j —i),
and let C, be the subspace spanned by the monomials of weight < r. Clearly, Co = k,
U;>0Cr = A, and C;C; C C;4;. It suffices to check the third condition in (120) on the
monomials. For the X; j itis obvious. We proceed by induction on weight of a monomial.
If the condition holds for monomials P, Q of weights r, s, then A(PQ) = A(P)A(Q) lies

mn
(> cec—) (X crec-,)c Yy (G ®C—iCsy)
- Zci+j ® Crqs—i—j-

(¢)=(a). Now assume that O(G) is a coconnected Hopf algebra, and let p: V' — V ®
O(G) be a comodule. Then V is a union of the subspaces

Vi={veV]|pl)eVCl

If Vy contains a nonzero vector v, then p(v) = v’ ® 1 for some vector v’; on applying €, we
find that v = v/, and so v is fixed. We complete the proof by showing that

VrZO — Vr+1:0-

3This definition is probably as mysterious to the reader as it is to the author. Basically, it is the condition
you arrive at when looking at Hopf algebras with only one group-like element (so the corresponding affine
group has only one character). See Sweedler, Moss Eisenberg. Hopf algebras with one grouplike element.
Trans. Amer. Math. Soc. 127 1967 515-526.
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By definition, p(Vy4+1) C V ® Cr+1, and so
(d®A)p(Vr41) CV® Zi Ci®Cr_i.

Hence V;4; mapstozeroin V® A/Cr ® A/ C,. We now use that (id®A)op = (p®id)op.
The map V — V ® A/C, defined by p is injective because V, = 0, and on applying p ® id
we find that V — (V ® A/C;) ® A/ C, is injective. Hence V41 = 0. o

NOTES The exposition of 2.4 follows Waterhouse 1979, 8.3.
COROLLARY 2.5 Subgroups, quotients, and extensions of unipotent groups are unipotent.

PROOF. If G is isomorphic to a subgroup of U, then so also is a subgroup of G.

A representation of a quotient of G can be regarded as a representation of G, and so has
a nonzero fixed vector if it is nontrivial and G is unipotent.

Suppose that G contains a normal subgroup N such that both N and G/N are unipotent.
For any representation (V,r) of G, the subspace V¥ is stable under G (see VIII, 17.2), and
so it defines a representation of G/N. If V £ 0, then VN #£ 0, and so V¢ = (VN)G/N +
0. O

COROLLARY 2.6 Let G be an algebraic group. If G is unipotent, then all elements of G (k)
are unipotent, and the converse is true when G (k) is dense in G .

PROOF. Let G be unipotent, and let (V,r) be a finite-dimensional representation of V. For
some basis of V, the r(G) C U, and so r(G(k)) C U, (k); in particular, the elements of
r(G(k)) are unipotent. For the converse, choose a faithful representation G — GLy of
G and let n = dim V. According to Proposition 1.2, there exists a basis of V' for which
G(k) C U, (k). Because G (k) is dense in G, this implies that G C U,. o

2.7 For an algebraic group G, even over an algebraically closed field k, it is possible for all
elements of G (k) to be unipotent without G being unipotent. For example, in characteristic
p, the algebraic group u , has u, (k™) = 1, but it is not unipotent.

COROLLARY 2.8 Letk’ be a field containing k. An algebraic group G over k is unipotent
if and only if Gy is unipotent.

PROOF. If G is unipotent, then O(G) is coconnected. But then k' ® O(G) is obviously
coconnected, and so G- unipotent. Conversely, suppose that G- is unipotent. For any
representation (V,r) of G, the subspace V¢ of V is the kernel of the linear map

v p(v)—v LV -V RO(G).

It follows that
(V ®k/)Gk/ ~ VG ®k,,

and so G G
(V®k/) K£0 = V7 #£0. O
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COROLLARY 2.9 Let G be an algebraic group over k. If G is unipotent, then 7o(G) has
order a power of the characteristic exponent of k; in particular, G is connected if k has
characteristic zero.

PROOF. We may assume that k is algebraically closed. A representation of 779(G) can be
regarded as a representation of G. Therefore, every representation of the finite group 79(G)
is unipotent. This implies that 7¢(G) has order a power of the characteristic exponent of k
(Maschke’s theorem, GT 7.4). O

For example, if k has characteristic p # 0, then (Z/ pZ); is unipotent* (but not con-
nected).

EXAMPLE 2.10 Let k be a nonperfect field of characteristic p # 0, and let a € k \ kP.
The affine subgroup G of G, x G, defined by the equation

Y?P=X—-aX?

becomes isomorphic to G, over k[a%], but it is not isomorphic to G, over k. To see this,
let C be the complete regular curve whose function field k(C) is the field of fractions of
O(G). The inclusion O(G) — k(C) realizes G as an open subset of C, and one checks

1
that the complement consists of a single point whose residue field is k[a?]. For G = G,
the same construction realizes G as an open subset of P! whose complement consists of a
single point with residue field k.

COROLLARY 2.11 A smooth algebraic group G is unipotent if G (k™) consists of unipotent
elements.

PROOF. If G(k™) consists of unipotent elements, then Gy is unipotent (2.6), and so G is
unipotent (2.8). o

2.12 A unipotent group need not be smooth. For example, in characteristic p, the sub-
group of U, consisting of matrices ((1) ‘1’) with a? = 0 is not smooth (it is isomorphic to

ap).

COROLLARY 2.13 An algebraic group is unipotent if and only if it admits a subnormal
series whose quotients are isomorphic to affine subgroups of G,.

PROOF. The group U, has a subnormal series whose quotients are isomorphic to G, — for
example, the following subnormal series

1 % * % 1 0 % =% 1 0 0 =%

Uy = 0 1 *x =x 5 01 0 =« 5 01 00 51
0 0 1 =x 0010 0 010
0 0 0 1 0 0 0 1 0 0 0 1

has quotients G, X G4 X Gg, G4 X G4, G,. Therefore any affine subgroup of U, has a
subnormal series whose quotients are isomorphic to affine subgroups of G, (see IX, 6.2).
For the converse, note that G, is unipotent, and so we can apply (2.5). O

4To give a representation of (Z/pZ); on a k-vector space V is the same as giving an endomorphism 1 of
V of order p. The characteristic polynomial of such an u is X? —1 = (X — 1)?.
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COROLLARY 2.14 Every homomorphism from a unipotent algebraic group to an algebraic
group of multiplicative type is trivial.

PROOF. A nontrivial homomorphism U — H over k gives rise to a nontrivial homomor-
phism over k. Over an algebraically closed field, every algebraic group H of multiplica-
tive type is a subgroup of G}, for some n (because every finitely generated commutative
group is a quotient of Z" for some 1), and so it suffices to show that Hom(U, G,) = 0 when
U is unipotent. But a homomorphism U — Gy, is a one-dimensional representation of G,
which is trivial by definition. O

COROLLARY 2.15 The intersection of a unipotent affine subgroup of an algebraic group
with an affine subgroup of multiplicative type is trivial (i.e., maps to 1)

PROOF. The intersection is unipotent (2.5), and so the inclusion of the intersection into the
group of multiplicative type is trivial. O

For example, U, N, = 1 (which, of course, is obvious).

PROPOSITION 2.16 An algebraic group G is unipotent if and only if every nontrivial affine
subgroup of it admits a nonzero homomorphism to G,.

PROOF. It follows from (2.13) that every nontrivial unipotent algebraic group admits a
nontrivial homomorphism to G,. But every affine subgroup of a unipotent algebraic group
is unipotent (2.5).

For the converse, let G be the kernel of a nontrivial homomorphism G — G,. If
Gy # 1, let G, be the kernel of a nontrivial homomorphism G; — G,. Continuing in
this fashion, we obtain a subnormal series whose quotients are affine subgroups of G, (the
series terminates in 1 because the topological space |G| is noetherian and only finitely many
G; can have the same underlying topological space). Now apply (2.13). O

COROLLARY 2.17 Every homomorphism from a group of multiplicative type to a unipo-
tent algebraic group is trivial.

PROOF. Let u:T — U be such a homomorphism. If u7 # 1, then it admits a nontrivial
homomorphism to G, but this contradicts the fact that uT is of multiplicative type (XIV,
5.11). o

EXAMPLE 2.18 Let k be a nonperfect field characteristic p. For every finite sequence
ao,...,am of elements of k with ag # 0 and n > 1, the affine subgroup G of G, x G4
defined by the equation

Y =aoX +a 1 X+ +amXx?”
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is a form® of G, and every form of G, arises in this way (Russell 1970, 2.1; or apply 4.1).
Note that G is the fibred product

G —— Gy

l laop +ota, FP"
Fﬂ
Gqg — Gg.

In particular, G is an extension of G, by a finite subgroup of G, (so it does satisfy 2.13).
There is a criterion for when two forms are isomorphic (ibid. 2.3). In particular, any form
becomes isomorphic to G, over a purely inseparable extension of k.

DEFINITION 2.19 A unipotent algebraic group is said to be split if it admits a subnormal
series whose quotients are isomorphic to G, (and not just subgroups of G).6

Such a group is automatically smooth (VII, 10.1) and connected (XIII, 3.11).
PROPOSITION 2.20 Every smooth connected unipotent algebraic group over a perfect field
is split.

PROOF. tba (cf. Borel 1991, 15.5(ii)). o

In particular, every smooth connected unipotent algebraic group splits over a purely
inseparable extension.

Although the definition of “unipotent” applies to all affine groups, we have stated most
of the above results for algebraic groups. The next statement shows how to extend them to
affine groups.

PROPOSITION 2.21 (a) An inverse limit of unipotent affine groups is unipotent.
(b) An affine group is unipotent if and only if all of its algebraic quotients are unipotent.

PROOF. Obvious from the definitions. o

3 Unipotent affine groups in characteristic zero

Let HX,Y)=),.0H"(X.,Y) denote the Hausdorff series. Recall (IV, 1.6) that, for a
finite-dimensional vector space V', V; denotes the algebraic group R ~» R ®y V.

PROPOSITION 3.1 Let G be a unipotent algebraic group. Then

exp(x) -exp(y) = exp(h(x.y)) (121)

for all x,y € gr and k-algebras R.

51.e., becomes isomorphic to G, over an extension of k.

6Cf. SGA3, XVII, 5.10: Let k be a field and G an algebraic k-group. Following the terminology introduced
by Rosenlicht (Questions of rationality for solvable algebraic groups over nonperfect fields. Ann. Mat. Pura
Appl. (4) 61 1963 97-120), we say that G is “k-résoluble” if G has a composition series whose successive
quotients are isomorphic to Gy ...
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PROOF. We may identify G with a subgroup of GLy for some finite-dimensional vector
space V. Then g C gly, and, because G is unipotent, g is nilpotent. Now (121) holds in G
because it holds in GLy . o

THEOREM 3.2 Assume char(k) = 0.
(a) For any finite-dimensional nilpotent Lie algebra over k, the maps

(x,9) = >0 H"(x,9):9(R) x g(R) — g(R)

(R a k-algebra) make g, into a unipotent algebraic group over k.

(b) The functor g ~~ g, is an equivalence from the category of finite-dimensional nilpo-
tent Lie algebras over k to the category of unipotent algebraic groups, with quasi-inverse
G ~ Lie(G).

PROOF. Omitted for the moment (see ALA, I1 §4; DG IV §2 4.5, p. 499; Hochschild 1971a,
Chapter 10). O

COROLLARY 3.3 Every Lie subalgebra of gly formed of nilpotent endomorphisms is al-
gebraic.

See the discussion XI, §13.

REMARK 3.4 In the equivalence of categories in (b), commutative Lie algebras (i.e., finite-
dimensional vector spaces) correspond to commutative unipotent algebraic groups. In other
words, U ~~ Lie(U) is an equivalence from the category of commutative unipotent algebraic
groups over a field of characteristic zero to the category of finite-dimensional vector spaces,
with quasi-inverse V ~ V.

Miscellaneous results on unipotent groups (moved from Lie algebras)

LEMMA 3.5 Let U be a unipotent subgroup of an algebraic group G. Then G/U is iso-
morphic to a subscheme of an affine scheme.

PROOF. Let (V,r) be a representation of G such that U is the stabilizer of a line L in V.
As U is unipotent, it acts trivially on L, and so LY = L. For any nonzero x € L, the map
g > gx is an injective regular map G/U — V,. Cf. DG, 1V, 2 2.8, p. 489. O

LEMMA 3.6 For any connected algebraic group G, the quotient Ker(Ad: G — GL,)/ZG
is unipotent .

PROOF. We may suppose that k is algebraically closed. Let O, = O(G), (the local ring
at the identity element), and let m, be its maximal ideal. Then G acts on k-vector space
O/m.L+! by k-algebra homomorphisms. By definition, Ker(Ad) acts trivially on m,/m2,
and so it acts trivially on each of the quotients mé /mé“. Let C, be the centralizer of

O(G)./m"*!in G. Clearly Ker(Ad)/C; is unipotent, and C, = ZG for r sufficiently
large. Cf. DG IV 2 2.12, p. 490. ]
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PROPOSITION 3.7 Let G be a smooth connected algebraic group over an algebraically
closed field k. If G contains no subgroup isomorphic to G,, then it is unipotent.

PROOF. Let (V,r) be a faithful representation of G, and let F be the variety of maximal
flags in V. Then G acts on V, and according to AG 10.6, there exists a closed orbit, say
Gd ~ G/U. Then U is solvable, and so, by the Lie-Kolchin theorem XVI, 4.7, U2, C T,
for some choice of basis. By hypothesis, U;; N, = 0, and so U, is unipotent. Now
G/ UZ, is affine and connected, and so its image in F is a point. Hence G = U_2,. Cf. DG,

IV, 2, 3.11, p. 496. o

COROLLARY 3.8 Let G be a smooth connected algebraic group. The following conditions
are equivalent:

(a) G is unipotent;

(b) The centre of G is unipotent and Lie(G) is nilpotent;

(c) For every representation (V,r) of G, Lier maps the elements of Lie(G) to nilpotent
endomorphisms of V;

(d) Condition (c) holds for one taithful representation (V,r).

PROOF. (a)=-(c). There exists a basis for V' such that G maps into Uy, (see 2.2).

(c)=(d). Trivial.

(a)=(b). Every subgroup of a unipotent group is unipotent (2.5), and G has a filtration
whose quotients are isomorphic to subgroups of G, (2.13).

(d)=(a). We may assume that k is algebraically closed (2.8). If G contains a subgroup
H isomorphic to G, then V = @, o, Vi where h € H(k) acts on V,, as h”. Then x €
Lie(H) acts on V}, as nx, which contradicts the hypothesis.

(b)=(a). If the centre of G is unipotent, then the kernel of the adjoint representation
is an extension of unipotent groups, and so it is unipotent (2.5). Suppose that G contains a
subgroup H isomorphic to G,,. Then H acts faithfully on g, and its elements act semisim-
ply, contradicting the nilpotence of g.

Cf. DG, 1V, 2 3.12, p. 496. a]

4 Group schemes

Add a brief summary of SGA 3 XVII and Tits 1967 etc..

ASIDE 4.1 The unipotent algebraic groups over a field of characteristic p # 0 are more complicated
than in characteristic zero. However, those isomorphic to a subgroup of G/, for some n are classified
by the finite-dimensional k[F]-modules (polynomial ring with Fa = a? F). See DG 1V §3, 6.6 et
seq., p- 521.

ASIDE 4.2 We compare the different definitions of unipotent in the literature.

(a) In SGA 3, XVII 1.3, an algebraic group scheme G over a field k is defined to be unipotent
if there exists an algebraically closed field k containing k such that Gz admits a composition
series whose quotients are isomorphic to algebraic subgroups of G,. It is proved ibid. 2.1
that such a group is affine, and so 2.8 and 2.13 show that this definition is equivalent to our
definition.
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(b)

(©

(d)

In DG 1V, §2, 2.1, p. 485, a group scheme G over a field is defined to be unipotent if it is
affine and every nontrivial affine subgroup H admits a nontrivial homomorphism H — G,.
Statement 2.16 shows that this is equivalent to our definition. (They remark that an algebraic
group scheme satisfying the second condition is automatically affine. However, the constant
group scheme (Z) ;. satisfies the second condition but is not affine.)

In Conrad et al. 2010, A.1.3, p. 393, a group scheme U over a field is defined to be unipotent
if it is affine of finite type and Uga admits a finite composition series over k% with successive
quotients isomorphic to a k*-subgroup of G,. This is equivalent to our definition, except that
we don’t require the group scheme to be algebraic.

In Springer 1998, p. 36, a linear algebraic group is defined to be unipotent if all its elements
are unipotent. Implicitly, the group G is assumed to be a smooth affine algebraic group over
an algebraically closed field, and the condition is that all the elements of G (k) are unipotent.
For such groups, this is equivalent to our definition because of (2.6) (but note that not all
unipotent algebraic groups are smooth).

ASIDE 4.3 Unipotent groups are extensively studied in Tits 1967. For summaries of his results, see
Oesterlé 1984, Chap. V, and Conrad et al. 2010 IV Appendix B. ( A unipotent group is said to be
wound if every map of varieties A! — G is constant. Every smooth unipotent algebraic group G
has a unique largest split affine subgroup Gy, called the split part of G. It is normal in G, and the
quotient G/ Gy is wound. The formation of Gy commutes with separable extensions.)



CHAPTER X V I

Solvable Affine Groups

Let G be an abstract group. Recall that the commutator of x,y € G is

[x,y]=xyx"'y 7= (xy)(rx) 7

Thus, [x,y] =1 if and only if xy = yx, and G is commutative if and only if every com-
mutator equals 1. The (first) derived group G’ (or DG) of G is the subgroup generated by
commutators. Every automorphism of G maps commutators to commutators, and so G’ is
a characteristic subgroup of G (in particular, it is normal). In fact, it is the smallest normal
subgroup such that G/ G’ is commutative.

The map (not a group homomorphism)

(xl,y1,---,xn,y;1) = [xl,y1]"'[xnsyn]:G2n — G

has image the set of elements of G that can be written as a product of at most # commutators,
and so DG is the union of the images of these maps. Note that the map G2"~2? — G factors
through G?* — G,

(xlay1,---,xn—1»J7n—1) = (xl»yl’---,xn—l,yn—l,la 1) = [xl,)’l]"'[xn—l’yn—l]-
A group G is said to be solvable if the derived series
G>DGDOD*GD -

terminates with 1. For example, if n > 5, then S, (Symmetric group on 7 letters) is not
solvable because its derived series S, D A, terminates with A4,,.
In this chapter we extend this theory to algebraic groups. Throughout, k is a field.

1 Trigonalizable affine groups

DEFINITION 1.1 An affine group G is trigonalizable' if every nonzero representation of
G has a one-dimensional subrepresentation. In terms of the associated comodule (V, p),
this means that there exists a nonzero v € V such that p(v) = v ® a, some a € O(G).

Equivalently, G is trigonalizable if every simple object in Rep(G) is one-dimensional.

'T follow Borel 1991, p. 203, and DG IV §2 3.1. Other names: triangulable (Waterhouse 1979, p. 72);
triagonalizable.

241
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PROPOSITION 1.2 An algebraic group G is trigonalizable if and only if, for every finite-
dimensional representation (V,r) of G, there exists a basis of V such that the image of G
is contained in T,.

PROOF. =>: This can be proved by induction on the dimension of V.
& Ifey,..., e, is such a basis, then (e;) is stable by G. o

The next theorem says that trigonalizable algebraic groups are exactly the algebraic
groups isomorphic to affine subgroups of T, for some n; diagonalizable and unipotent
groups are both trigonalizable, and every trigonalizable group is an extension of one by the
other.

THEOREM 1.3 The following conditions on an algebraic group G are equivalent:

(a) G is trigonalizable;

(b) G is isomorphic to an affine subgroup of T}, for some n;

(c) there exists a normal unipotent atfine subgroup U of G such that G/ U is diagonaliz-
able.

PROOF. (a)=(b). Apply Proposition 1.2 to a faithful finite-dimensional representation of
G (which exists by VIII, 9.1).

(b)=(c). Embed G into T, and let U = U, N G. Then U is normal because U, is
normal in T, and it is unipotent by XV, 2.4.

(c)=(a). Let U be as in (c), and let (V,r) be a nonzero representation of G. Because
U is normal in G, the subspace VU of V is stable under G (VIIL, 17.2), and so G/ U acts
on VY. Because U is unipotent, VY # 0, and because G/ U is diagonalizable, it is a sum
of one-dimensional subrepresentations. O

COROLLARY 1.4 Subgroups and quotients of trigonalizable algebraic groups are trigonal-
izable.

PROOF. If G is isomorphic to a subgroup of T, then so also is every affine subgroup of
G. If every nontrivial representation of G has a stable line, then the same is true of every
quotient of G (because a representation of the quotient can be regarded as a representation
of G). O

COROLLARY 1.5 If an algebraic group G over k is trigonalizable, then so also is Gy for
every extension field k'.

PRrROOF. If G C T}, then the same is true of G. o

PROPOSITION 1.6 (a) An inverse limit of trigonalizable affine groups is trigonalizable.
(b) An affine group is trigonalizable if and only if all of its algebraic quotients are
trigonalizable.

PROOF. Obvious from the definitions. o
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THEOREM 1.7 Let G be a trigonalizable algebraic group, and let U be a normal unipotent
subgroup such that G/ U is diagonalizable. Then the exact sequence

1-U—-G—G/U—1

splits in each of the following cases: k is algebraically closed; k has characteristic zero; k
is perfect and G/ U is connected; U is split.

PROOF. See DG IV §2 3.5, p. 494; SGA 3, XVIIL, 5.1.1. (We won’t use this.) o

ASIDE 1.8 In DG IV §3 3.1, a group scheme G over a field is defined to be trigonalizable if it is
affine and has a normal unipotent subgroup U such that G/ U is diagonalizable. Because of Theorem
1.3, this is equivalent to our definition.

2 Commutative algebraic groups

Smooth commutative algebraic groups are geometrically trigonalizable

Let u be an endomorphism of a finite-dimensional vector space V over k. If all the eigen-
values of u lie in k, then there exists a basis for V relative to which the matrix of u lies
in

0 * ... =x

Tn(k) = . .

0 0 - =
We extend this elementary statement to sets of commuting endomorphisms.
LEMMA 2.1 Let V be a finite-dimensional vector space over an algebraically closed field
k, and let S be a set of commuting endomorphisms of V. There exists a basis of V for
which S is contained in the group of upper triangular matrices, i.e., a basis ey, ..., e, such

that
u({er,...,e;)) C {e1,...,e;) foralli. (122)

In more down-to-earth terms, let S be a set of commuting 7 X n matrices; then there
exists an invertible matrix P such that PAP ! is upper triangular forall 4 € S.

PROOF. We prove this by induction on the dimension of V. If every u € S is a scalar
multiple of the identity map, then there is nothing to prove. Otherwise, there exists an
u € S and an eigenvalue a for u such that the eigenspace V,; # V. Because every element
of S commutes with u, V, is stable under the action of the elements of S: for 8 € S and
x eV,
u(Bx) = Bux) = pax) = a(px).

The induction hypothesis applied to S acting on V, and V/V, shows that there exist bases
e1,...,em for Vg and ey, 1,..., e, for V/V, such that

u({ey,...,ei)) C (e1,...,e;) foralli <m

U({em+1s---r€m+i)) C{(€m+1,...,8m+i) foralli <n—m.

Letey+i = em+i + Vg, with ey, ; € V. Then ey, ..., ey, is a basis for V satisfying (122). o
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PROPOSITION 2.2 Let V be a finite-dimensional vector space over an algebraically closed
field k, and let G be a smooth commutative affine subgroup of GLy . Then there exists a
basis of V for which G is contained in T, .

PROOF. According to the lemma, there exists a basis of V for which G(k) C T, (k). Now
G N'T, is a subgroup of G such that (G NT,)(k) = G(k). As G(k) is dense in G (see VII,
5.9), this implies that G N T, = G, and so G C T,. o

Decomposition of a smooth commutative algebraic group

DEFINITION 2.3 Let G be an algebraic group over a perfect field k. An element g of G(k)
is semisimple (resp. unipotent) if g = g5 (resp. g = g,) with the notations of X, 2.8.

Thus, g is semisimple (resp. unipotent) if r(g) is semisimple (resp. unipotent) for one
faithful representation (V,r) of G, in which case r(g) is semisimple (resp. unipotent) for
all representations r of G (X, 2.9).

Theorem 2.8, Chapter X, shows that

G(k) = G(k)s x G(k)y (cartesian product of sets) (123)

where G(k)s (resp. G(k)y) is the set of semisimple (resp. unipotent) elements in G (k).
However, this will not in general be a decomposition of groups, because Jordan decompo-
sitions do not respect products, for example, (gh), # guhy in general. However, if G is

commutative, then

multiplication
GxG —

is a homomorphism of groups, and so it does respect the Jordan decompositions (X, 2.10).
Thus, in this case (123) realizes G (k) as a product of subgroups. We can do better.

PROPOSITION 2.4 Every smooth commutative algebraic group G over a perfect field is a
direct product of two affine subgroups

G~ Gy xGg

such that Gy, (k*) = G(k¥), and Gy(k*) = G (k™). The decomposition is unique: in fact,
G, is the largest unipotent affine subgroup of G and Gy is the largest affine subgroup of G
of multiplicative type.

PROOF. Because of the uniqueness, if the decomposition exists over k., it will be stable
under the action of Gal(k/k), and so will arise from a decomposition over k. Hence
we may assume that k = k. First note that the subgroups ID,, and U, of T, have trivial
intersection, because

D (R)NUx(R) = {1} (inside Ty (R))

for all R (alternatively, apply X1V, 2.15).
On applying (2.2) to a faithful representation of G, we obtain an embedding G — T,
for some n. Let Gy = G N, and G, = G NU,. Because G is commutative,

GsxGy — G (124)
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is a homomorphism with kernel Gz N Gy,. Because D, N U, = 1 as algebraic groups, G5 N
G, =1, and so (124) is injective; because G5 (k)Gy (k) = G(k) and G is smooth, (124) is
surjective (VII, 7.6); therefore it is an isomorphism.

That G,, is unipotent follows from XV, 2.11; that Gy is of multiplicative type follows
from XTIV, 5.13. For any other unipotent affine subgroup U of G, the map U — G/ G,, >~ Gy
is trivial (XV, 2.14), and so U C Gy; similarly any other affine subgroup of multiplicative
type is contained in Gy. O

REMARK 2.5 Let G be a smooth algebraic group over an algebraically closed field k (not
necessarily commutative). In general, G (k)s will not be closed for the Zariski topology.
However, G(k), is closed. To see this, embed G in GL, for some n. A matrix A is
unipotent if and only if its characteristic polynomial is (T — 1)”. But the coefficients of
the characteristic polynomial of A are polynomials in the entries of A, and so this is a
polynomial condition.

Decomposition of a commutative algebraic group
THEOREM 2.6 Let G be a commutative algebraic group over a field k.

(a) There exists a largest affine subgroup G5 of G of multiplicative type; this is a char-
acteristic subgroup (in the weak sense) of G, and the quotient G/ G is unipotent.

(b) If k is perfect, there exists a largest unipotent affine subgroup G, of G, and G =
G x Gy,. This decomposition is unique.

PROOF. (a) Let Gy be the intersection of the affine subgroups H of G such that G/H is
unipotent. Then G/Gs — [[G/H is injective, and so G/Gy is unipotent (XV, 2.5). A
nontrivial homomorphism Gy — G, would have a kernel H such that G/H is unipotent
(XV, 2.5); but Gy ¢ H, so this would contradict the definition of Gs. Therefore Gy is of
multiplicative type (XIV, 5.11). If H is a second affine subgroup of G of multiplicative
type, then the map H — G/ Gy is trivial (XV, 2.17), and so H C Gy. Therefore Gy is the
largest affine subgroup of G of multiplicative type. From this description, it is clear that
uGy = Gy for every automorphism u of G.

(b) Assume k is perfect. Then it suffices to show that G = T x U with T of multi-
plicative type and U unipotent because, for any other unipotent affine subgroup U’ of G,
the map U’ — G/U ~ T is zero (XV, 2.14), and so U’ C U similarly any other subgroup
T' of multiplicative type is contained in T'; therefore T (resp. U) is the largest subgroup
of multiplicative type (resp. unipotent subgroup), and so the decomposition is unique if it
exists. When G is smooth, this is proved in (2.4). In the general case, one proves, by
considering the cases U = G4, «ap, Z/ pZ, that the exact sequence

1->Gs—>G—->U—>1

(over k) splits (see DG 1V, §3, 1.1, p.502). o

ASIDE 2.7 In fact, Gy is characteristic in the strong sense, but this requires a small additional
argument (DG 1V, §2, 2.4, p. 486; §3, 1.1, p. 501); in general, G,, is not (ibid. IV §3, 1.2).
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REMARK 2.8 It is necessary that k be perfect in (b). Let k be a separably closed field of
characteristic p, and let G = (G, )’k Where k’ is an extension of k of degree p (necessar-
ily purely inseparable). Then G is a commutative smooth connected algebraic group over
k. The canonical map G,, — G realizes G, as Gy, and the quotient G/Gy, is unipotent.
Over k¥, G decomposes into (G, )ga X (G/Gp)ga, and so G is not reductive. However, G
contains no unipotent subgroup because G (k) = k’* has no p-torsion, and so G,, = 1. See
XVII, 6.1.

NOTES Should complete the proof of (2.6), and derive (2.4) as a corollary.

3 The derived group of an algebraic group

Let G be an algebraic group over a field k.
DEFINITION 3.1 The derived group DG (or G’ or G¥") of G is the intersection of the

normal algebraic subgroups N of G such that G/N is commutative.

PROPOSITION 3.2 The quotient G/DG is commutative (hence DG is the smallest normal
subgroup with this property).

PROOF. Because the affine subgroups of G satisfy the descending chain condition (VII,
3.3), DG = N1 N...N N, for certain normal affine subgroups N, ..., N, such that G/N;
is commutative. The canonical homomorphism

G —-> G/Nyx---xG/N,
has kernel Ny N...N N,, and so realizes G/DG as an affine subgroup of a commutative

algebraic group. O

We shall need another description of DG, which is analogous to the description of the
derived group as the subgroup generated by commutators. As for abstract groups, there
exist maps of functors

G?>’->G*> ... > G >G.

Let I, be the kernel of the homomorphism O(G) — O(G?") of k-algebras (not Hopf
algebras) defined by G2 — G. Then

LHhD>LD>-DIp D
and we let I = () 1.

PROPOSITION 3.3 The coordinate ring of DG is O(G)/1.

PROOF. From the diagram of set-valued functors

G2n X G2n SN G4n
| | |
G x ¢ ™M ¢
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we get a diagram of k-algebras

0G)/In ® 0G)/In < O(G)/I2n

I I [

0G) ® 0G) & 0G)
(because O(G)/ I, is the image of O(G) in O(G*") ). It follows that
A:0(G) - O(G)/ I R0(G)/1

factors through O(G) — O(G)/ 1, and defines a Hopf algebra structure on O(G)/ I, which
corresponds to the smallest algebraic subgroup G’ of G such that G’(R) contains all the
commutators for all R. Clearly, this is also the smallest normal subgroup such that G/ G’ is
commutative. a]

COROLLARY 3.4 Forany field K Dk, DGx = (DG)k.
PROOF. The definition of / commutes with extension of the base field. O
COROLLARY 3.5 If G is connected (resp. smooth), then DG is connected (resp. smooth).

PROOF. The algebraic group G is connected (resp. smooth) if and only if Ga is connected
(resp. smooth), and so we may suppose that k is algebraically closed. Then G is connected
(resp. smooth) if and only if O(G) has no nontrivial idempotents (resp. nilpotents). If
O(G)/I had a nontrivial idempotent (resp. nilpotent), then so would O(G)/ I, for some
n, but (by definition) the homomorphism of k-algebras O(G)/ I, — O(G?") is injective.
If G is connected (resp. smooth), then so also is G2, and so O(G?") has no nontrivial
idempotents (resp. nilpotents). O

COROLLARY 3.6 Let G be a smooth algebraic group. Then O(DG) = O(G)/ I, for some
n, and (DG) (k") = D(G (k")) for every separably closed field k’ containing k.

PROOF. We may suppose that G is connected. As G is smooth and connected, so also is
G?" (111, 2.2; XIII, 3.9). Therefore, each ideal I, is prime, and a descending sequence of
prime ideals in a noetherian ring terminates. This proves the first part of the statement (CA
16.5).

Let V,, be the image of G2"(k’) in G(k’). Its closure in G(k') is the zero-set of I,,.
Being the image of a regular map, V}, contains a dense open subset U of its closure (CA
12.14). Choose n as in the first part, so that the zero-set of I, is DG (k’). Then

U-U ' CV,-V, CVan CD(GKK)) = Um Vi C DG(K).

It remains to show that U -U~! = DG (k’). Let g € DG(k’). Because U is open and dense
DG(k'), sois gU ™!, which must therefore meet U, forcing g to liein U - U. O

COROLLARY 3.7 The derived group DG of a connected algebraic group G is the unique
smooth affine subgroup such that (DG )(k*P) = D(G (k*P)).
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PROOF. The derived group has these properties by (3.5) and (3.6), and it is the only affine
subgroup with these properties because (DG )(k*P) is dense in DG. o

3.8 For an algebraic group G, the group G (k) may have commutative quotients without
G having commutative quotients, i.e., we may have G (k) # D(G(k)) but G = DG. This is
the case for G = PGL,, over nonperfect separably closed field of characteristic p dividing
n.

ASIDE 3.9 For each k-algebra R, the group (DG)(R) consists of the elements of G(R) that lie in
D(G(R")) for some faithfully flat R-algebra R’.

Commutator groups

For subgroups H; and H» of an abstract group G, we let (Hy, H») denote the subgroup of
G generated by the commutators [h1, /] = hlhzhl_lhgl with b1 € Hy and hy € H>.

PROPOSITION 3.10 Let Hy and H» be smooth connected affine subgroups of a smooth
connected algebraic group G. Then there is a (unique) smooth connected affine subgroup

(Hy, H,) of G such that (Hy, H) (k™) = (Hy (k¥), Hy (k™).

PROOF. Consider the natural transformation
(hi,ha,...; /l,h/z,...) — [hl,h/l][hz,h/z]---:H{’ x H} — G.

Let I, be the kernel of the homomorphism O(G) — O(H{ x H}) of k-algebras defined by
the natural transformation, and let / = () 1,. As before, O(G)/I inherits a Hopf algebra
structure from O(G), and the affine subgroup H of G with O(H) = O(G)/1 is such that
H (k™) = (H1(k"), Ha (k™). o

ASIDE 3.11 For each k-algebra R, the group (Hy, Hy)(R) consists of the elements of G(R) that
lie in (H1(R'), H>(R")) for some faithfully flat R-algebra R’.

4 Solvable algebraic groups

Write DG for the second derived group D(DG), D3G for the third derived group D(D?G),
and so on.

DEFINITION 4.1 An algebraic group G is solvable if the derived series
G>DGDOD*GD -

terminates with 1.

LEMMA 4.2 An algebraic group G is solvable if and only if it admits a subnormal series
G=GyDG1D---DGy,=1 (125)

whose quotients G; / G;4+1are commutative.
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PROOF. If G is solvable, then the derived series is such a sequence. Conversely, given a
sequence as in (125), G D DG, so G, D D?G, ...,50 G, D D"G. Hence D"G =1. ¢

A sequence of algebraic subgroups (125) such that G; 1 is normal in G; for each i and
G;/Gj41 is commutative is called solvable series.

PROPOSITION 4.3 Subgroups, quotients, and extensions of solvable algebraic groups are
solvable.

PROOF. Obvious. O

EXAMPLE 4.4 Let G be a finite group, and let (G); be the algebraic group such that
(G)r(R) = G for all k-algebras R with no nontrivial idempotents. Then D(G); = (DG )y,
D?(G); = (D?G)y, and so on. Therefore (G)j is solvable if and only if G is solvable.
In particular, the theory of solvable algebraic groups includes the theory of solvable finite
groups, which is already quite complicated. For example, all finite groups with no element
of order 2 are solvable (Feit-Thompson theorem).

EXAMPLE 4.5 The group T}, of upper triangular matrices is solvable. For example, the
subnormal series

* k% 1 = 1 0 x
T; = 0 * = ) 0 1 D 010 D1
0 0 =x* 0 0 1 0 0 1
has quotients G, X Gy, X Gy, G4 X Gy, and G,.

More generally, the functor

R~ Go(R) £ {(aij) | a;; = 1 forall i}
is an algebraic subgroup of T, because it is represented by O(T,)/(T11 —1,...,Tpn —1).
Similarly, there is an algebraic subgroup G, of Go of matrices (a;;) such that a;; = 0 for
0 < j —i <r. The functor

(al'j) — (a1’r+2,..- »Air+i+1, )

is a homomorphism from G, onto G4 x G, X --- with kernel G, 1. Thus the sequence of
algebraic subgroups
T,DGyDGyD-DGy={1}

exhibits T, as a solvable group.

Alternatively, we can work abstractly. A flag in a vector space V' is a set of subspaces
of V, distinct from {0} and V, ordered by inclusion. When we order the flags in V by
inclusion, the maximal flags are the families {V1,...,V,—1} with dimV; =i, n =dimV,
and

Vi CVyoa.

For example, if (e;)1<i<n is a basis for V, then we get a maximal flag by taking V; =
(e1,....¢€;).

Let F = {V1,...,Vy—1} be a maximal flag in V, and let T be the algebraic subgroup
of GLy such that T(R) consists of the automorphisms preserving the flag, i.e., such that
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u(V; ® R) C V; ® R for all k-algebras R. When we take F to be the maximal flag in k"
defined by the standard basis, G = T,,. Let G¢ be the algebraic subgroup of G of u acting
as id on the quotients V; / V;_;; more precisely,

Go = Ker(G — [ [GLy, v,

Then Gy is a normal algebraic subgroup of T with quotient isomorphic to GJ;,. Now de-
fine G, to be the algebraic subgroup of G¢ of elements u acting as id on the quotients
Vi/Vi—r—1. Again, G4+ is a normal algebraic subgroup of G, with quotient isomorphic
to a product of copies of G.

EXAMPLE 4.6 The group of n x n monomial matrices is solvable if and only if n < 4
(because S, is solvable if and only if n < 4; GT 4.33).

The Lie-Kolchin theorem

THEOREM 4.7 Let G be a subgroup of GLy . If G is connected, smooth, and solvable, and
k is algebraically closed, then it is trigonalizable.

PROOF. It suffices to show that there exists a basis for V' such that G(k) C T, (k) (because
then (G N'Ty) (k) = G(k), and so G NT, = G, which implies that G C T). Also, it suffices
to show that the elements of G (k) have a common eigenvector, because then we can apply
induction on the dimension of V' (cf. the proof of 2.1). We prove this by induction on the
length of the derived series G. If the derived series has length zero, then G is commutative,
and we proved the result in (2.2).

Let N = DG. Its derived series is shorter than that of G, and so we can assume that the
elements of N have a common eigenvector, i.e., for some character y of N, the space V)
(for N) is nonzero. Therefore the sum W of the nonzero eigenspaces V, for N is nonzero.
According to (VIIL, 16.2), the sum is direct, W = & V., and so the set {V} of nonzero
eigenspaces for N is finite.

Let x be a nonzero element of V), for some y, and let g € G(k). Forn € N(k),

ngx =g(g 'ng)x =g-x(¢g 'ng)x = x(g " 'ng)-gx

The middle equality used that N is normal in G. Thus, gx lies in the eigenspace for the
character y8 = (n > y(g~'ng)) of N. This shows that G (k) permutes the finite set {V}}.

Choose a y such that V) # 0, and let H C G (k) be the stabilizer of V.. Then H consists
of the g € G(k) such that y8 = y, i.e., such that

x(n) = y(g " ng) forall n € N(k). (126)

Clearly H is a subgroup of finite index in G (k), and it is closed for the Zariski topology on
G (k) because (126) is a polynomial condition on g for each n. Therefore H = G(k), oth-
erwise its cosets would disconnect G (k). This shows that W = V,, and so G(k) stabilizes
V.

An element n € N(k) acts on V), as the homothety x — x(n)x, x(n) € k. But each
element n of N (k) is a product of commutators [x, y] of elements of G (k) (see 3.6), and
so n acts on Vy as an automorphism of determinant 1. But the determinant of x — y(n)x
is y(n)%™Vx, and so the image of y:G — Gy, is finite. Because N is connected, this
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shows that N(k) in fact acts trivially? on V. Hence G(k) acts on V,, through the quotient
G(k)/N(k), which is commutative. In this case, we know there is a common eigenvalue
2.1). o

4.8 All the hypotheses in the theorem are needed (however, if k is algebraically closed
and G is solvable, then the theorem applies to G ;, which is a subgroup of G with the same
dimension).

CONNECTED: The group G of monomial 2 x 2 matrices is solvable but not trigonalizable.
The only common eigenvectors of D, (k) C G(k) are e; = () and e = (9), but the
monomial matrix ((1) (1)) interchanges e and e5, and so there is no common eigenvec-
tor for the elements of G (k).

SMOOTH: (Waterhouse 1979, 10, Exercise 3, p. 79.) Let k have characteristic 2, and let G
be the affine subgroup of SL; of matrices (¢ §) such thata? = 1 =d? and b =0 =
c?. There is an exact sequence

a0 ab (b, d)
0 7% a'—>(0a) G (C d>'_)a ‘ Uy XUy —> 1.

Moreover, iy C ZG, and so G is connected and solvable (even nilpotent), but no line
is fixed in the natural action of G on k2. Therefore G is not trigonalizable.
SOLVABLE: As T, is solvable (4.5) and a subgroup of a solvable group is obviously solv-
able, this condition is necessary.
k ALGEBRAICALLY CLOSED: If G(k) C T, (k), then the elements of G (k) have a common
eigenvector, namely, e; = (10 ... 0)". Unless k is algebraically closed, an endomor-
phism need not have an eigenvector, and, for example,

{(_ZZ) ‘ a,b eR, a2+b2=1}

is an commutative algebraic group over R that is not trigonalizable over R.

5 Structure of solvable groups

THEOREM 5.1 Let G be a connected solvable smooth algebraic group over a perfect field
k. There exists a unique connected normal affine subgroup G, of G such that

(a) Gy, is unipotent, and
(b) G/G,, is of multiplicative type.

The formation of G,, commutes with change of the base field.
PROOF. When G is commutative

G =Gy xGg

where Gy, is the largest unipotent affine subgroup of G and Gy is the largest affine subgroup
of G of multiplicative type (see 2.4). As Gy, is a quotient of G, it is connected, and so this
proves the existence of Gy, in this case.

2In more detail, the argument shows that the character y takes values in jtm C G, where m = dim Vy. If
k has characteristic zero, or characteristic p and p }Jm, then uy, is étale, and so, because N is connected, y
is trivial. If p|m, the argument only shows that y takes values in i ,r for p” the power of p dividing m. But
ppr (k) =1, and so the action of N(k) on V is trivial, as claimed.
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We next prove the existence of G,, when k is algebraically closed. Embed G into T,
for some n, and construct

1 Un Ty D, 1
[
1 Gu G T 1

where T is the image of G in D, and G, = U, N G. Certainly G, is a normal affine
subgroup of G satisfying (a) and (b), and it remains to show that it is connected. As G/ Gy,
is commutative, DG C Gy, and there is an exact sequence

1-Gy,/DG - G/DG - T — 1.
Clearly, G, /DG ~ (G/DG),, and now
(G/DG)y, DG connected — G, connected

(X1, 3.11).

For the uniqueness, use that G, is the largest unipotent affine subgroup of G: if U is a
unipotent affine subgroup of G, then the composite U — G — G/ Gy, is trivial (XV, 2.14),
and so U C Gy,.

When k is only perfect, the uniqueness of (Gga ), implies that it is stable under I" =
Gal(k¥/ k), and hence arises from a unique algebraic subgroup G, of G (VII, 5.12), which
clearly has the required properties.

The formation of G,, commutes with extension of scalars, because, for any field X’ D k,
the affine subgroup (Gy,); of Gy has all the required properties (XIII, 3.8; XV, 2.8). ¢

6 Split solvable groups

DEFINITION 6.1 A solvable algebraic group is split if it admits subnormal series whose
quotients are G, or Gy,.

Such a group is automatically smooth (VII, 10.1) and connected (XIII, 3.11). This

agrees with our definition of split unipotent group. Any quotient of a split solvable group is
again a split solvable group.

7 'Tori in solvable groups

PROPOSITION 7.1 Let G be a smooth connected solvable group over an algebraically
closed field. If T and T’ are maximal tori in G, then T’ = gTg~! for some g € G(k).

PROOF. Omitted for the present (cf. Springer 1998, 6.3.5). O

PROPOSITION 7.2 The centralizer of any torus in a smooth connected solvable group G is
connected.

PROOF. Omitted for the present (cf. Springer 1998, 6.3.5). =



8. Exercises 253

8 Exercises

EXERCISE XVI-1 Give a geometric proof that G connected implies DG connected. [Show
that the image of connected set under a continuous map is connected (for the Zariski topol-
ogy, say), the closure of a connected set is connected, and a nested union of connected sets
is connected sets is connected; then apply the criterion (XIII, 3.2).]

EXERCISE XVI-2 Show that an algebraic group G is trigonalizable if and only if there
exists a filtration Co C C; C C, C --- of O(G) by subspaces C; such that Cy is spanned by
group-like elements, | J,.,Cr = A, and A(C;) C Y <, Ci ® Cr—; (Waterhouse 1979,
Chap. 9, Ex. 5,p.72). o






CHAPTER XVI I

The Structure of Algebraic Groups

Throughout this chapter, k is a field.

1 Radicals and unipotent radicals

Let G be an algebraic group over k.

LEMMA 1.1 Let N and H be affine subgroups of G with N normal. If H and N are solv-
able (resp. unipotent, resp. connected, resp. smooth), then HN is solvable (resp. unipotent,
resp. connected, resp. smooth).

PROOF. We use the exact sequence

1 N HN —— HN/N —— 1.

Because H is solvable, so also is its quotient H/H N N ; hence HN/N is solvable, and H N
is solvable because it is an extension of solvable groups (XVI, 4.3). The same argument
applies with “solvable” replaced by “unipotent” (use XV, 2.5), or by “connected” (use XIII,
3.11), or by “smooth” (use VII, 10.1). o

PROPOSITION 1.2 Let G be a smooth algebraic group over a field k.

(a) There exists a largest' smooth connected normal solvable subgroup of G (called the
radical RG of G).

(b) There exists a largest smooth connected normal unipotent subgroup (called the unipo-
tent radical R,,G of G).

PROOF. (a) Let R be a maximal smooth connected normal solvable subgroup of G. If H is
another such subgroup, then RH is also has these properties (1.1), and so RH = R; hence
H CR.

(b) Same as (a). o

IRecall that “largest” means “unique maximal”.

255
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The formation of the radical and the unipotent radical each commute with separable
extensions of the base field: let K be a Galois extension of k with Galois group I"; by
uniqueness, RGg is stable under the action of I', and therefore arises from a subgroup
R'G of G (by V, 7.3); now (RG)g C RGg, and so RG C R'G; as RG is maximal,
RG = R'G,and so (RG)g = (R'G)g = RGk.

PROPOSITION 1.3 Let G be a smooth algebraic group over a perfect field k. For any
extension field K of k,

RGg = (RG)k and RyGg = (RuG)k.

Moreover, R,G = (RG), (notations as in XVI, 5.1).
PROOF. See the above discussion. o

DEFINITION 1.4 Let G be a smooth algebraic group over a field k. The geometric radical
of G is RGya, and the geometric unipotent radical of G is R, Ga.

2 Definition of semisimple and reductive groups

DEFINITION 2.1 Let G be an algebraic group over a field k.

(a) G is semisimple if it is smooth and connected and its geometric radical is trivial.

(b) G is reductive if it is smooth and connected and its geometric unipotent radical is
trivial.

(c) G is pseudoreductive if it is smooth and connected and its unipotent radical is trivial.

Thus
semisimple = reductive =—> pseudoreductive.

For example, SL;, SOy, and Sp,, are semisimple, and GL,, is reductive (but not semisim-
ple). When k is perfect, Ry Gra = (Ry G )ya, and so “reductive” and “pseudoreductive” are
equivalent.

PROPOSITION 2.2 Let G be a smooth connected algebraic group over a perfect field k.
(a) G is semisimple if and only if RG = 1.
(b) G isreductive if and only if R,G =1 (i.e., G is pseudoreductive).

PROOF. Obvious from (1.3). o

PROPOSITION 2.3 Let G be a smooth connected algebraic group over a field k.

(a) If G is semisimple, then every smooth connected normal commutative subgroup is
trivial; the converse is true if k is perfect.

(b) If G is reductive, then every smooth connected normal commutative subgroup is a
torus; the converse is true if k is perfect.
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PROOF. (a) Suppose that G is semisimple, and let H be a smooth connected normal com-
mutative subgroup of G. Then Hia C RGra = 1, and so H = 1. For the converse, we
use that RG and DG are stable for any automorphism of G. This is obvious from their
definitions: RG is the largest connected normal solvable algebraic subgroup and DG is the
smallest normal algebraic subgroup such that G/DG is commutative. Therefore the chain

G D RG D D(RG) D D*(RG)D---D>D"(RG) D 1,

is preserved by every automorphism of G, and, in particular, by the inner automorphisms
defined by elements of G (k). This remains true over k2, and so the groups are normal in G
by (VII, 6.6). As D" (RG) is commutative, it is trivial.

(b) Let H be a smooth connected normal commutative subgroup of G; then Hpa C
RGpa, which has no unipotent subgroup. Therefore H is a torus. For the converse, we
consider the chain

G O R,G D D(R,G) D D*(R,G) D ---DD"(R,G) D 1.

Then D" (R, G) is a commutative unipotent subgroup, and so is trivial. o

A smooth connected algebraic group G is pseudoreductive but not reductive if it con-
tains no nontrivial normal smooth unipotent affine subgroup but Ga does contain such a
subgroup.

REMARK 2.4 If one of the conditions, smooth, connected, normal, commutative, is dropped,
then a semisimple group may have such a subgroup:

Group subgroup smooth? | connected? | normal? | commutative?
SLy, char(k) #2 | Z/27Z = {£1} | yes no yes yes
SLy, char(k) =2 | uz no yes yes yes
SL, U, = {((1) ’f)} yes yes no yes
SL, xSL, {1} xSL, yes yes yes no

In the first two rows, the affine subgroup consists of the diagonal matrices of square 1.

PROPOSITION 2.5 Let G be a smooth connected algebraic group over a perfect field. The
quotient group G/RG is semisimple, and G/ R, G is reductive.

PROOF. One sees easily that R(G/RG) =1 and R, (G/R,,G) = 1. o

EXAMPLE 2.6 Let G be the group of invertible matrices (4 &) with A of size m x m and

C of size n x n. The unipotent radical of G is the subgroup of matrices ((I) l;) The quotient
of G by R, G is isomorphic to the reductive group of invertible matrices of the form (‘g g )

i.e., to GL,, x GL,,. The radical of this is G, x G,,.

PROPOSITION 2.7 Let G be a connected algebraic group, and let U be a normal unipotent
subgroup of G. Then U acts trivially on every semisimple representation of G.
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PROOF. Let (V,r) be a semisimple representation of G, and let W be the largest subspace
of V on which U acts trivially. As U is normal, W is stable under G (VIII, 17.2). Let W’
be a G-complement to V. If W’ # 0, then W'V £ 0, and U acts trivially on W + W'V,
contradicting the maximality of W. Hence W = V. O

COROLLARY 2.8 Let G be a smooth connected algebraic group. If G has a semisimple
faithful representation, then it is reductive.

PROOF. A normal unipotent subgroup of G acts trivially on a faithful representation of G,
and therefore is trivial. o

The proposition shows that, for a smooth connected algebraic group G,

RuG C ﬂ(V,r) semisimple Ker(r)'

In (5.4) below, we shall prove that, in characteristic zero, R, G is equal to the intersection
of the kernels of the semisimple representations of G; thus G is reductive if and only if
Rep(G) is semisimple. This is false in nonzero characteristic.

ASIDE 2.9 In SGA 3, XIX, it is recalled that the unipotent radical of a smooth connected affine
group scheme over an algebraically closed field is the largest smooth connected normal unipotent
subgroup of G (ibid. 1.2). A smooth connected affine group scheme over an algebraically closed
field is defined to be reductive if its unipotent radical is trivial (ibid. 1.6). A group scheme G over
a scheme S is defined to be reductive if it is smooth and affine over S and each geometric fibre
of G over S is a connected reductive group (2.7). When S is the spectrum of field, this definition
coincides with our definition.

3 The canonical filtration on an algebraic group

THEOREM 3.1 Let G be an algebraic group over a field k.

(a) G contains a unique connected normal subgroup G° such that G/ G° is an étale alge-
braic group.

(b) Assume that k is perfect; then G contains a largest smooth subgroup.

(c) Assume that k is perfect and that G is smooth and connected; then G contains a
unique smooth connected normal solvable subgroup N such that G/ N is a semisim-
ple group.

(d) Assume that k is perfect and that G is smooth connected and solvable; then G con-
tains a unique connected unipotent subgroup N such that G/ N is of multiplicative

type.

PROOF. (a) See XIII, 3.7.

(b) Because k is perfect, there exists a subgroup Greq of G with O(Geq) = O(G)/N
(see VI, 6.3). This is reduced, and hence smooth (VI, 8.3b). This is the largest smooth
subgroup of G because O(Greq) is the largest reduced quotient of O(G).

(c) The radical RG of G has these properties. Any other smooth connected normal
solvable subgroup N of G is contained in RG (by the definition of RG), and if N # RG
then G/ N is not semisimple.

(c) See XVI, 5.1. o
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NOTES Perhaps (or perhaps not):

(a) Explain the connected components for a nonaffine algebraic group, at least in the smooth
case. Also discuss things over a ring k.

(b) Explain the Barsotti-Chevalley-Rosenlicht theorem.
(c) Explain anti-affine groups.

(d) Explain what is true when you drop “smooth” and “perfect”, and maybe even allow a base
ring.

4 The structure of semisimple groups

An algebraic group is simple (resp. almost-simple) if it is smooth, connected, noncom-
mutative, and every proper normal subgroup is trivial (resp. finite). For example, SL;, is
almost-simple for n > 1, and PSL, = SL, /u, is simple. A simple algebraic group can not
be finite (because smooth connected finite algebraic groups are trivial, hence commutative).

Let N be a smooth subgroup of an algebraic group G. If N is minimal among the
nonfinite normal subgroups of G, then it is either commutative or almost-simple; if G is
semisimple, then it is almost-simple.

An algebraic group G is said to be the almost-direct product of its algebraic subgroups
Gi1,...,Gy if the map

(g1,....87) > g1 gr:G1 X+ xGr > G

is a surjective homomorphism with finite kernel. In particular, this means that the G; com-
mute and each G; is normal in G.

PROPOSITION 4.1 Let G be a simple algebraic group over an algebraically closed field.
Then the group of inner automorphisms of G has finite index in the full group of automor-
phisms of G.

The usual proof of this shows that Aut(G) = Inn(G) - D where D is group of automor-
phisms leaving stable a maximal torus and a Borel subgroup containing the torus. It uses
the conjugacy of Borel subgroups and the conjugacy of maximal tori in solvable groups,
and then shows that D/ D NInn(G) is finite by letting it act on the roots. In short, it is not
part of the basic theory. Unless, I find a more elementary proof, I’ll defer the proof to the
next chapter.

THEOREM 4.2 A semisimple algebraic group G has only finitely many almost-simple nor-
mal subgroups G1,...,G,, and the map

(g1,....8r) > g1 8r:G1 X+ xGr > G (127)

is surjective with finite kernel. Each smooth connected normal algebraic subgroup of G is
a product of those G; that it contains, and is centralized by the remaining ones.

In particular, an algebraic group is semisimple if and only if it is an almost-direct prod-
uct of almost-simple algebraic groups. The algebraic groups G; are called the almost-
simple factors of G.
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PROOF. When k has characteristic zero, this is proved most easily using Lie algebras (see
LAG). In the general case, we let G1,G», ..., G, be distinct smooth subgroups of G, each
of which is minimal among the nonfinite normal subgroups of G. Fori # j, (G;,G;) is a
smooth connected normal subgroup of G contained in each of G; and G; (see XVI, 3.10),
and so it is trivial. Thus, the map

u:Gyx---xGr > G

is a homomorphism of algebraic groups, and H 4 G1--- G, is a smooth connected normal
subgroup of G. The kernel of u is finite, and so

dimG > Zf (dimG;.
1=

This shows that r is bounded, and we may assume that our family contains them all. It then
remains to show that H = G. For this we may assume that k = k. Let H' = Cg(H). The
action of G on itself by inner automorphisms defines a homomorphism

G(k) —> Aut(H)

whose image contains Inn(H) and whose kernel is H'(k) (which equals H,,(k)). As
Inn(H) has finite index in Aut(H) (see 4.1), this shows that (G/H - H,,)(k) is finite,
and so the quotient G/ (H - H;) is finite. As G is connected and smooth, it is strongly
connected, andso G = H - H/ ;; in fact, G = H - H3,.

Let N be a smooth subgroup of H;,, and assume that N is minimal among the nonfinite
normal subgroups of H/o;. Then N is normal in G (because G = H - H' and H centralizes
H'), and so it equals one of the G;. This contradicts the definition of H, and we conclude

that H'°, = 1. O

red

COROLLARY 4.3 All nontrivial smooth connected normal subgroups and quotients of a
semisimple algebraic group are semisimple.

PROOF. Any such group is an almost-product of almost-simple algebraic groups. O

COROLLARY 4.4 If G is semisimple, then DG = G, i.e., a semisimple group has no com-
mutative quotients.

PROOF. This is obvious for almost-simple algebraic groups, and hence for any almost-
product of such algebraic groups. O

Simply connected semisimple groups

(This section need to be rewritten.) An semisimple algebraic group G is simply connected
if every isogeny G’ — G is an isomorphism.

Let G be a simply connected semisimple group over a field k, and let I" = Gal(k*P/ k).
Then Gysep decomposes into a product

Gksep :GIX"'XGr (128)



5. The structure of reductive groups 261

of its almost-simple subgroups G;. The set {Gq,...,G;} contains all the almost-simple
subgroups of G. When we apply o € I to (128), it becomes

Gksep :OGksep :UGl X"'XUGr

with {oG1,...,0G,} apermutation of {G1,...,G,}. Let Hy,..., Hg denote the products of
G; in the different orbits of I". Then 0 H; = H;, and so H; is defined over k (V, 7.3), and

G = Hy x---x Hy

is a decomposition of G into a product of its almost-simple subgroups.
Now suppose that G itself is almost-simple, so that I" acts transitively on the G; in
(128). Let
A={O’€F|O’G1=G1},

and let K = (k>P)4.

PROPOSITION 4.5 We have G =~ (G1) g/ (restriction of base field).

PROOF. We can rewrite (128) as

Gksep = l_[Ulesep

where o runs over a set of cosets for A in I'. On comparing this with (V, 5.7), we see that
there is a canonical isomorphism

Gkscp = ((GI)K/k)ksep .

In particular, it commutes with the action of I”, and so is defined over k (see V, 7.3). o

The group G; over K is geometrically almost-simple, i.e., it is almost-simple and re-
mains almost-simple over K.

PROPOSITION 4.6 Every representation of a semisimple algebraic group over a field of
characteristic zero is semisimple.

PROOF. Omitted for the moment. O

5 The structure of reductive groups

o

Recall that every algebraic group G of multiplicative type contains a largest torus G ;.
For example, if G = D(M), then G, = D(M/{torsion}). Its formation commutes with
extension of the base field:

(Gra)kr = (Gr)rea- (129)
THEOREM 5.1 If G is reductive, then

(a) the radical RG of G is a torus, and (RG)ga = RGpa;
(b) the centre ZG of G is of multiplicative type, and (ZG);., = RG;

(c) the derived group DG of G is semisimple;
(d) ZG N'DG is the (finite) centre of DG, and
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() G = RG-DG (hence also G = (ZG)°-DG).

PROOF. According to (XVI, 2.6), ZGa is a product of a group of multiplicative type with
a unipotent subgroup, and the decomposition is stable under all automorphisms. As Gya
is reductive, the unipotent subgroup is trivial, and so ZGpa is of multiplicative type. As
ZGra = (ZG)pa, ZG is also of multiplicative type.

Because RGya is a smooth connected solvable group, it is an extension of a group of
multiplicative type by a connected unipotent group (XVI, 5.1). As Gpa is reductive, the
latter is trivial, and so RGya is of multiplicative type. As (RG)ga C RGpa, RG itself is
of multiplicative type, and as it is smooth and connected, it is a torus. Rigidity (XIV, 6.1)
implies that the action of G on RG by inner automorphisms is trivial, and so RG C ZG.
Hence RG C (ZG),,,, but clearly (ZG).,; C RG, and so

RG = (ZG)2,. (130)

Now (130
(RG)kal = ((ZG)O )kz\] =(ZGkal)°

red red

2 RGya.
This completes the proof of (a) and (b).

We next show that the algebraic group ZG N DG is finite. For this, we may replace k
with its algebraic closure. Choose a faithful representation G — GLy,, and regard G as an
algebraic subgroup of GLy . Because ZG is diagonalizable, V' is a direct sum

V=Vi®-dV,

of eigenspaces for the action of ZG (see XIV, 4.7). When we choose bases for the V;, then
(ZG) (k) consists of the matrices

A1 0 O
o . 0
0O 0 A,
with each A; of the form diag(a;.,...,a;), a; # a; fori # j, and so its centralizer in GLy

consists of the matrices of this shape but with the A; arbitrary. Since (DG)(k) consists of
commutators (X VI, 3.6), its elements have determinant 1. But SL(V;) contains only finitely
many scalar matrices diag(a;,...,a;), and so (ZG)(k) N (DG) (k) is finite. This equals
(ZGNDG) (k), and so ZG N'DG is finite (XII, 1.6).
Note that RG - DG is a normal subgroup of G. The quotient G/(RG - DG) is semisim-
ple because (G/(RG - DG))a is a quotient of Gra/RGya and we can apply (2.5 and 4.3).
On the other hand, G/(RG -DG) is commutative because it is a quotient of G/DG. There-
fore it is trivial (4.4),
G = RG-DG.

Now the homomorphism
DG — G/RG

is surjective with finite kernel RG N DG C ZG NDG. As G/R(G) is semisimple, so also
is DG.

Certainly ZG N DG C Z(DG), but, because G = RG-DG and RG C ZG, Z(DG) C
ZG . This completes the proof of (c), (d), and (e). O
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EXAMPLE 5.2 Let G = SL,,. Let p be the characteristic exponent of k, and setn = n’- p”
with ged(n’, p) = 1. Then ZG =~ pun, (ZG)° =~ ppr, (ZG)rea = fin', and (ZG)2y =1 =
RG.

REMARK 5.3 From a reductive group G, we obtain a semisimple group G’ (its derived
group), a group Z of multiplicative type (its centre), and a homomorphism ¢: ZG’' — Z.
Moreover, G can be recovered from (G', Z,¢): the map

2 (p(2) 1 2):ZG' - Zx G’

is an isomorphism from ZG’ onto a central subgroup of Z x G, and the quotient is G.
Clearly, every reductive group arises from such a triple (G’,Z,¢) (and G’ can even be
chosen to be simply connected).

Reductive groups in characteristic zero

THEOREM 5.4 The following conditions on a connected algebraic group G over a field of
characteristic zero are equivalent:

(a) G is reductive;
(b) every finite-dimensional representation of G is semisimple;
(c) some faithful finite-dimensional representation of G is semisimple.

PROOF. (a) = (b): If G is reductive, then G = Z - G’ where Z is the centre of G (a
group of multiplicative type) and G’ is the derived group of G (a semisimple group) — see
(5.1). Let G — GLy be a representation of G. When regarded as a representation of Z, V
decomposes into a direct sum V = €, V; of simple representations (XIV, 5.10). Because Z
and G’ commute, each subspace V; is stable under G’. As a G’-module, V; decomposes into
a direct sum V; = EBj V;; with each Vj; simple as a G’-module (4.6). Now V = @i’j Vij
is a decomposition of V' into a direct sum of simple G-modules.

(b) = (c): Obvious, because every algebraic group has a faithful finite-dimensional
representation (VIII, 9.1).

(c) = (a): This is true over any field (see 2.8). o

COROLLARY 5.5 Over a field of characteristic zero, all finite-dimensional representations
of an algebraic group G are semisimple if and only if the identity component G° of G is
reductive.

PROOF. Omitted for the moment. o

6 Pseudoreductive groups

We briefly summarize Conrad, Gabber, and Prasad 2010, which completes earlier work of
Tits (Borel and Tits 1978; Tits 1992, 1993; Springer 1998, Chapters 13—15).

6.1 Let k be a separably closed field of characteristic p, and let G = (Gp)//x Where k'
is an extension of k of degree p (necessarily purely inseparable). Then G is a commutative
smooth connected algebraic group over k. The canonical map G,, — G realizes G, as the
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largest subgroup of G of multiplicative type, and the quotient G/G,, is unipotent. Over
k¥, G decomposes into (Gy)ga X (G/Gp)ga (see XVI, 2.4), and so G is not reductive.
However, G contains no unipotent subgroup because G (k) = k', which has no p-torsion.
Therefore G is pseudo-reductive.

6.2 Let k' be a finite field extension of k, and let G be a reductive group over k. If & is
separable over k, then (G )/, is reductive, but otherwise it is only pseudoreductive.

6.3 Let C be a commutative connected algebraic group over k. If C is reductive, then C
is a torus, and the tori are classified by the continuous actions of Gal(k*P/ k) on free com-
mutative groups of finite rank. By contrast, “it seems to be an impossible task to describe
general commutative pseudo-reductive groups over imperfect fields” (Conrad et al. 2010,

p- Xv).

6.4 Let ky,...,ky be finite field extensions of k. For each i, let G; be a reductive group
over k;, and let 7; be a maximal torus in G;. Define algebraic groups

G<—T—>T
by
G = l_[l.(Gi)ki/k
r :l_[l.(Ti)kl—/k

T =T1.(T/ZG)wi k.

Let ¢:T — C be a homomorphism of commutative pseudoreductive groups that factors
through the quotient map 7" — T':

r%c T

Then y defines an action of C on G by conjugation, and so we can form the semi-direct
product
G xC.

The map
t— L) T —>GxC

is an isomorphism from 7" onto a central subgroup of G x C, and the quotient (G x C)/T
is a pseudoreductive group over k. The main theorem (5.1.1) of Conrad et al. 2010 says
that, except possibly when k has characteristic 2 or 3, every pseudoreductive group over k
arises by such a construction (the theorem also treats the exceptional cases).

6.5 The maximal tori in reductive groups are their own centralizers. Any pseudoreductive
group with this property is reductive (except possibly in characteristic 2; Conrad et al. 2010,
11.1.1).

6.6 If G is reductive, then G = DG - (ZG)° where DG is the derived group of G and
(ZG)° is the largest central connected reductive subgroup of G. This statement becomes
false with “pseudoreductive” for “reductive” (Conrad et al. 2010, 11.2.1).
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6.7 For a reductive group G, the map
RG = (ZG)° - G/DG

is an isogeny, and G is semisimple if and only if one (hence both) groups are trivial. For
a pseudoreductive group, the condition RG = 1 does not imply that G = DG. Conrad
etal. 2010, 11.2.2, instead adopt the definition: an algebraic group G is pseudo-semisimple
if it is pseudoreductive and G = DG. The derived group of a pseudoreductive group is
pseudo-semisimple (ibid. 1.2.6, 11.2.3).

6.8 A reductive group G over any field k is unirational, and so G (k) is dense in G if k is
infinite. This fails for pseudoreductive groups: over every nonperfect field k there exists a
commutative pseudoreductive group that it not unirational; when k is a nonperfect rational
function field ko(7"), such a group G can be chosen so that G (k) is not dense in G (Conrad
etal. 2010, 11.3.1).

7 Properties of G versus those of Rep, (G): a summary

7.1 An affine group G is finite if and only if there exists a representation (V,r) such that
every representation of G is a subquotient of V" for some n > 0 (XII, 1.4).

7.2 A affine group G is strongly connected if and only if, for every representation V' on
which G acts nontrivially, the full subcategory of Rep(G) of subquotients of V", n > 0, is
not stable under ® (apply 7.1). In characteristic zero, a group is strongly connected if and
only if it is connected.

7.3 An affine group G is unipotent if and only if every simple representation is trivial (this
is essentially the definition XV, 2.1).

7.4 An affine group G is trigonalizable if and only if every simple representation has
dimension 1 (this is the definition XVI, 1.1).

7.5 An affine group G is algebraic if and only if Rep(G) = (V)® for some representation
(V,r) (VIL, 11.7).

7.6 Let G be a smooth connected algebraic group. If Rep(G) is semisimple, then G is
reductive (2.8), and the converse is true in characteristic zero (II, 5.4).






CHAPTER XVI I I

Beyond the basics

Not yet written. It will provide a 50 page summary of the rest of the theory of affine
algebraic groups, as developed in detail in LAG and RG.
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