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The aim of these notes is to give a concise introduction to the classical notions of points and
morphisms for affine varieties (and more generally, algebraic sets) over a possibly non-algebraically
closed field, and to explain how these notions may be expressed concisely in the language of schemes.

1. Classical affine algebraic sets: the algebraically closed case

Naively, given a field k and some n > 0, an affine algebraic set in kn is the zero set of some finite
collection of polynomial equations with n variables and coefficients in k. A morphism between two
affine algebraic sets is a map defined by a tuple of polynomials. Armed with Hilbert’s Nullstellen-
satz, it isn’t too hard to make this precise in the case that k is algebraically closed, so we begin
with this.

First, an affine algebraic set V ⊆ kn is a subset obtained as the common zero set of some
f1, . . . , fs ∈ k[x1, . . . , xn]. Given a second affine algebraic set W ⊆ km, defined as the zero set of
g1, . . . , gt, a morphism V → W is defined as follows. A m-tuple (h1, . . . , hm) of polynomials in
k[x1, . . . , xn] defines a map

~h : kn → km

by sending ~c := (c1, . . . , cn) to (h1(~c), . . . , hm(~c)). A morphism is then a function V →W obtained

as the restriction of some ~h as above.
Now, the above definitions are very naive and set-theoretic, but in the the algebraically closed

case, they turn out to behave well. Starting with the definition of algebraic set, one might wonder
if we are losing information by only looking at the zero set, and not keeping track of the original
defining polynomials. The answer is that we are losing very little information. Namely, it is easy
to see that (irrespective of the algebraic closure hypothesis) V only depends on the ideal generated
by the fi, and in fact only on the radical of this ideal. So the best we could hope to do is to recover
the radical of the ideal generated by the fi from V , and Hilbert’s Nullstellensatz says that in the
algebraically closed case, we can do precisely that: if we simply take all polynomials which vanish
on V , we will get precisely the radical of the ideal generated by the fi. Thus, in working with
algebraic sets over algebraic closed fields, it is irrelevant whether we think of them in terms of the
sets themselves, or in terms of the radical ideals of polynomials used to define them.

Remark 1.1. We have glossed over one point: a priori, in going from finite sets of polynomials to
arbitrary radical ideals, we could have introduced new ideals, if there were some ideals without
finite generating sets. But the Hilbert basis theorem asserts that in fact, in a polynomial ring over
a field, every ideal is finitely generated. Thus, this isn’t an issue.

Before discussing morphisms, we make the following observations: given n,m and ~h as in the
definition of morphisms, we obtain a ring homomorphism from k[y1, . . . , ym] to k[x1, . . . , xn] by
sending each yi to hi, and extending k-linearly and multiplicatively. We denote this homomorphism

by ~h]. Then for any (c1, . . . , cn) ∈ kn, and any g ∈ k[y1, . . . , ym], we have the basic compatibility
that

g(~h(c1, . . . , cn)) = (~h](g))(c1, . . . , cn).
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Now, for morphisms. We claim that here again, there is a correspondence between the set-
theoretic definition, and a more algebraic approach. Given V,W as above, let I ⊆ k[x1, . . . , xn] and

J ⊆ k[y1, . . . , ym] be the respective corresponding radical ideals. Given ~h as above, we claim that
~h gives rise to a morphism V →W if and only if ~h] maps J into I.

First suppose J is mapped into I. Given (c1, . . . , cn) ∈ V , we wish to see that ~h(c1, . . . , cn) ∈W .
In fact, this is just a definition-chase which doesn’t use the hypothesis that k is algebraically closed.

Since W is the vanishing set of J , it suffices to see that for all g ∈ J , we have g(~h(c1, . . . , cn)) = 0.
But by construction, we have

g(~h(c1, . . . , cn)) = (~h](g))(c1, . . . , cn) = 0

since we have assumed ~h](g) ∈ I, and (c1, . . . , cn) ∈ V , which is the zero set of I. On the other

hand, the converse uses the Nullstellensatz: suppose that ~h maps V into W . Given g ∈ J , we want

to see that ~h](g) ∈ I. Given (c1, . . . , cn) ∈ V , since ~h(V ) ⊆W , we have

~h](g)(c1, . . . , cn) = g(~h(c1, . . . , cn)) = 0,

since ~h(c1, . . . , cn) is assumed in W , and g vanishes on W . Thus we see that ~h](g) vanishes on V ,
and by the Nullstellensatz, it must be in I, as desired.

We thus see that in the algebraically closed case, we can make our definitions in terms of a naive
set theory point of view, and they will still correspond very nicely with algebraic definitions.

2. Classical affine algebraic sets over arbitrary fields

If we wish to work over non-algebraically closed fields, the situation is more complicated, and
it does not suffice to work naively with zero sets over the base field. Even if we are ultimately
interested in the zero set over k, it is often helpful to consider first zero sets over extensions of
k, which may be easier to analyze, and then attempt to use this to study the points over k. For
instance, given a real algebraic set, the complex points are usually easier to understand, and the
real points can be recovered as the fixed points of complex conjugation.

We introduce some convenient notation: given a subset F ⊂ k[x1, . . . , xn], and k′ extending k,
denote by Zk′(F ) the subset of (k′)n consisting of simultaneous zeroes of all polynomial in F .

Example 2.1. Consider the elliptic curve defined (in the affine plane) by y2 = x3 − x. The Q-
points of this are the solutions to this equation over Q, and one can show that the only Q-points
are (0, 0), (1, 0), and (−1, 0). On the other hand, the Q(

√
6)-points also contain the point (2,

√
6)

(among others), the R-points contain an oval and a component going off to infinity, and the C-points
look like a torus missing one point (the point at infinity). It is not hard to imagine a continuous
involution of the torus with fixed points consisting of a disjoint pair of circles; this is how the
complex and real points are related in this case.

We easily see that for non-algebraically closed k, just looking at the set Zk(I) for a radical ideal
I may lose a great deal of information. For instance, if we set k = R, and I = (x2

1 + x2
2 + 1) or

I = (x2
1 + x2

2), then ZR(I) is the empty set or a single point respectively. But ZC(I) is infinite in
both cases. That is, the (radical ideal generated by) the defining equations contains strictly more
information than the zero sets. If, however, we are willing to work with zero sets over extensions
of our base field as well, then we can recover the same algebraic information as before.

To develop the dictionary between algebraic and geometric definitions, we need a slightly more
general statement of the Nullstellensatz than usual. There are many proofs of the Nullstellensatz,
but for at least some of them, this more general statement is no harder – see Theorem 5.4 of [2].
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Theorem 2.2 (Hilbert Nullstellensatz). Let k be a field, and k̄ its algebraic closure. Let F ⊆
k[x1, . . . , xn] be a collection of polynomials, and g ∈ k[x1, . . . , xn] any polynomial. Suppose that
g(c1, . . . , cn) = 0 for all (c1, . . . , cn) ∈ Zk̄(F ). Then g is in the radical of the ideal generated by F .

As a consequence, we see that for general k, we can think of our algebraic sets as being charac-
terized in terms of their ideals, in terms of their zero sets over k̄, or in terms of their zero sets over
arbitrary extensions of k:

Corollary 2.3. Let I, J be radical ideals of k[x1, . . . , xn]. Then the following are equivalent:

(1) I = J ;
(2) Zk̄(I) = Zk̄(J);
(3) Zk′(I) = Zk′(J) for all field extensions k′ of k.

Proof. It is clear that (1) implies (3) and (3) implies (2). The Nullstellensatz implies precisely that
(2) implies (1). �

Moreover, we can also characterize morphisms similarly, leading to a useful definition in the case
that k is not algebraically closed:

Corollary 2.4. Let I ⊆ k[x1, . . . , xn] and J ⊆ k[y1, . . . , ym] be radical ideals, and ~h = (h1, . . . , hn) ∈
k[y1, . . . , ym]n. Then the following are equivalent:

(1) ~h](J) ⊆ I;

(2) for all (c1, . . . , cn) ∈ Zk̄(I), we have ~h(c1, . . . , cn) ∈ Zk̄(J);

(3) for all k′ extending k, and all (c1, . . . , cn) ∈ Zk′(I), we have ~h(c1, . . . , cn) ∈ Zk′(J).

The proof is the same as in the algebraically closed case, making use of the generalized Nullstel-
lensatz statement.

We remark that when dealing with non-algebraically closed fields, it is important to keep track
of what field a morphism is defined over.

Example 2.5. Consider the curves C1 and C2, defined in the plane by the single equations y2 =
x3 + ax + b and ny2 = x3 + ax + b respectively, where a, b, n ∈ Q, with n non-zero.

If n = m2 for some m ∈ Q, we have the map (in fact an isomorphism) f : C1 → C2 obtained by
(x, y) 7→ (x, y

m). Again, one can check both on points and on rings that this gives a map from C1

to C2, and it is defined over Q.
On the other hand, if n is not a perfect square in Q, we see that as long as we consider C1 and

C2 as curves over Q, it is not possible to define the isomorphism f between them. On the other
hand, if we consider them as curves over Q(

√
n), we see that we can define f as before, and C1 and

C2 are isomorphic. We say that f is defined over Q(
√
n), but not over Q.

In particular, f will give a natural bijection between the Q(
√
n) points of C1 and C2, but not

the Q-points (which might look quite different).

Thus, we see that for both algebraic sets and morphisms, we can think of the fundamental data
either algebraically (in terms of ideals, and homomorphisms sending ideals into one another) or
geometrically (in terms of zero sets over extension fields, and polynomial maps sending zero sets
into one another). To fix a convention, we will say that an affine algebraic set over k is described
by a radical ideal I ⊆ k[x1, . . . , xn], and a morphism between algebraic sets described by ideals

I ⊆ k[x1, . . . , xn] and J ⊆ k[y1, . . . , yn] is described by the ring homomorphism ~h] sending J into

I. Note that this is a bit sloppy, as different choices of ~h] might yield the same morphism on V , if
the hi used to define it differ by elements of I. We will address this issue shortly.
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3. Classical affine algebraic sets, abstractly

What we have described above is, in essence, a category of imbedded affine algebraic sets over
k. That is, our affine algebraic sets have thus far always come with an imbedding in a particular
affine space, and this was used to define the concept of morphisms between them. We wish to show
that from the algebraic point of view, this imbedding is in some sense extraneous data.

The first observations in this direction is the following: if we have an algebraic set V deter-
mined by a radical ideal I ⊆ k[x1, . . . , xn], then we can define the coordinate ring A(V ) :=
k[x1, . . . , xn]/I of V . If also W is determined by J ⊆ k[y1, . . . , ym], then we see that the condition

on a morphism that ~h] map J into I is precisely equivalent to requiring that ~h] induce a ring ho-
momorphism A(W )→ A(V ). This is promising, as it looks like we have now related the category
of affine algebraic sets to the category of rings (more restrictively, rings which are finitely generated
over k and do not have nilpotents).

However, the relationship is not quite so simple: not every ring homomorphism comes from a
morphism of the corresponding algebraic sets. This is because we are starting off by assuming

that ~h is “defined by polynomials,” which depends not only on the abstract rings, but also on the
presentation of the rings as quotients of polynomial rings. For instance, in the trivial case that V
and W are both just points, there is clearly only one morphism between them, but depending on
the field k, there might be a lot of homomorphisms from k to itself! At first it may appear that this
is a serious issue, but in fact there is a simple solution, coming from the observation that coordinate
rings do not only have the structure of rings, but also the structure of k-algebras (that is, rings
enriched with k-vector space structure, or equivalently, rings together with a homomorphism from
k).

Proposition 3.1. Given algebraic sets V,W determined by radical ideals I ⊆ k[x1, . . . , xn] and
J ⊆ k[y1, . . . , ym], a homomorphism

ϕ : A(W )→ A(V ),

can be obtained as ~h] for some ~(h) ∈ k[x1, . . . , xn]m if and only if ϕ is a homomorphism k-algebras.

Recall that a homomorphism of k-algebras is simply a ring homomorphism which is also k-linear.

Proof. By construction, any homomorphism obtained as ~h] is k-linear. Conversely, suppose that
ϕ is k-linear. Then for i = 1, . . . ,m we may set hi to be any lift to k[x1, . . . , xn] of ϕ(yi), and it

is clear that the resulting ~h] must agree with ϕ, since it is defined by extending the values on yi
using k-linearity and multiplicativity. �

Thus, on the algebra side, we see that morphisms can in fact be defined without reference to the
imbedding/presentation. All we have to do is work with coordinate rings considered as k-algebras.
In categorical language, we say that the category of affine algebraic sets of k is equivalent to the
category of finitely generated k-algebras without nilpotents.

It turns out the same approach can be applied to the points of an algebraic set. Namely, in our
definition of Zk′(I), we use the presentation explicitly by extending the polynomial ring to k′ and
then taking the zero set of I in the larger ring. However, we observe that an extension k′ of k is in
particular a k-algebra, and this turns out to be a useful observation:

Proposition 3.2. Given an algebraic set determined by a radical ideal I ⊆ k[x1, . . . , xn], and
any extension k′ of k, the set Zk′(I) is in bijection with the set of k-algebra homomorphisms
A(V )→ k′, via the map sending (c1, . . . , cn) ∈ Zk′(I) to the k-algebra homomorphism ϕ sending f
to f(c1, . . . , cn)).

Proof. First observe that the proposed map is well defined, since although f is only defined modulo
I, we have (c1, . . . , cn) in the vanishing set of I, so the value of f at (c1, . . . , cn) does not depend
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on the choice of representative. Thus, it suffices to produce an inverse map. Given a k-algebra
homomorphism ϕ : A(V )→ k′, we observe the point (ϕ(x1), . . . , ϕ(xn)) ∈ (k′)n in fact lies in Zk′(I),
because I maps to 0 in A(V ) by definition. We claim this is the desired inverse. It is immediate
from the construction that if we start with a point (c1, . . . , cn), take the associated ϕ, and then
consider (ϕ(x1), . . . , ϕ(xn)), we recover (c1, . . . , cn). Conversely, given ϕ, and f ∈ A(V ), the fact
that f(ϕ(x1), . . . , ϕ(xn)) = ϕf follows from the hypothesis that ϕ is a k-linear ring homomorphism.
We thus obtain the desired correspondence. �

Thus, the points can also be understood from an abstract algebraic point of view, without
reference to the imbedding.

Remark 3.3. The distinction between k-algebra homomorphisms and arbitrary ring homomorphisms
is not to be taken lightly. In 1964, Serre ([3]) produced examples of projective complex varieties
whose equations are related to one another by applying an automorphism of C, but which have
different fundamental groups, and in particular are not even homeomorphic to one another in the
classical complex topology. For a more recent survey and further work, see also [1].

4. Affine algebraic sets from a scheme point of view

From here, it is easy enough to see how to relate schemes to the classical point of view of algebraic
sets and their morphisms. Before discussing the “right” way to understand it, we explore the naive
point of view, which looks pretty bleak. In the context of points, even if k is algebraically closed,
SpecA(V ) contains not only the classical points of V , but also extra generic points. If k is not
algebraically closed, the situation is even worse, as SpecA(V ) contains points which are related to
but not in bijection with classical points over algebraic extensions of k.

Example 4.1. Consider the case of A1
k = Spec k[t]. The closed points correspond to maximal

ideals of k[t], which is a PID, so we see that we get a closed point for every monic irreducible
polynomial p(t) ∈ k[t].

In particular, for any k-point of A1
k, which is simply some c ∈ k, we have the irreducible polyno-

mial t− c, so the k-points are naturally contained among the closed points of A1
k.

On the other hand, if k is not algebraically closed, we also have irreducible polynomials of higher
degree. We can relate these to points of A1

k̄
by considering the roots of the polynomials p(t). If

c ∈ k̄ is any element of the algebraic closure, we could consider it as corresponding to the closed
point given by p(t), the minimal polynomial of c over k. On the other hand, given any p(t), there is
some c ∈ k̄ a root of p(t). But this is not a unique correspondence, so we can summarize as follows:

There is a map from k̄-points of A1
k to closed points of A1

k which is surjective, and such that any
c, c′ ∈ k̄ map to the same point if and only if they have the same irreducible polynomial over k.

The situation with morphisms is at least as bad, and directly comparable to what we discussed
above in the context of rings.

Example 4.2. Consider morphisms from the single point Spec k to itself. Classically, there should
only be one morphism from a point to a point: the identity map. We see that this is not the case
with schemes. Such morphisms correspond to ring homomorphisms (in the opposite direction) from
k to itself k. The possibilities for these depend on the field k, but they certainly include Aut(k),
which could be extremely large (if k = Q̄, then Aut(k) = Gal(Q̄/Q)).

On the other hand, if k = k′(t) for some smaller field k′ and t a transcendental element, then we
have the non-surjective map corresponding to t 7→ t2.

Which is stranger? That there can be many maps from a point to itself, or that there exist
non-invertible maps from a point to itself?
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What can I say, other than “it’s not a bug, it’s a feature!”
Allow me to explain. First, the fact that we see Gal(Q̄/Q), an object of great interest to number-

theorists, popping up in the context of schemes, is no coincidence, but rather fits into Grothendieck’s
vision of using scheme theory to unify number theory and algebraic geometry. Similarly, the map
t 7→ t2 mentioned above is nothing more than the map induced on generic points by the map
A1
k → A1

k given by t 7→ t2. The fact that the map isn’t invertible is an encapsulation of the fact
that it comes from a morphism of the affine line which certainly isn’t invertible.

We now explain how the classical notions of points and morphisms can be expressed in scheme
land. As mentioned above, if V is an affine algebraic set over k with coordinate ring A(V ), then
A(V ) naturally carries the structure of a k-algebra, which is to say, it comes with a homomorphism
k → A(V ). In scheme world, this means that we are given not only the scheme SpecA(V ), but
also a morphism SpecA(V ) → Spec k, which is called the structure morphism. Similarly, if k′

is a field extension of k, we obtain a morphism of schemes Spec k′ → Spec k. Since morphisms of
affine schemes correspond precisely to ring homomorphisms in the other direction, it is simple to
reformulate our earlier discussion in scheme terms. Specifically, we have:

Proposition 4.3. Let V be an affine algebraic set over k. For any field k′ extending k, the classical
k′-points Zk′(V ) can be described in scheme language as the set of morphisms Spec k′ → SpecA(V )
which commute with the given maps to Spec k.

Proof. Proposition 3.2 asserts that the k′-points of V are in bijection with k-algebra homomor-
phisms A(V ) to k′, and it is elementary to verify that these in turn are the same as ring homomor-
phisms A(V )→ k′ which commute with the given inclusions of k into each. The proposition then
follows from the correspondence between ring homomorphisms and affine scheme morphisms. �

For morphisms, the story is the same:

Proposition 4.4. Let V,W be affine algebraic sets over k. Then morphisms (as algebraic sets)
from V to W are in natural bijection with scheme morphisms SpecA(V )→ SpecA(W ) commuting
with the structure morphisms to Spec k.

Proof. We have seen in Proposition 3.1 that morphisms from V to W are in bijection with k-algebra
homomorphisms A(W ) to A(V ), so the proposition again follows from the correspondence between
ring homomorphisms and affine scheme morphisms. �

Moral. We see that the correct way to think of an algebraic set over k in scheme terms is not as
an individual scheme, but as a scheme together with a structure morphism to Spec k. Accordingly,
many classical properties of varieties, when translated into the scheme setting, will be phrased as
properties of morphisms rather than of individual schemes.

In a similar vein, the underlying set/topological space of a scheme should really be viewed as
a technical tool rather an intuitive geometric object. Indeed, even for something as basic as the
classical notion of points, we have now seen that they are best understood in terms of morphisms
rather than in terms of the underlying set of the scheme.
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