
Linear Orderings, Cyclic Orderings and Permutations
Questions by: John C. Baez, April 1, 2004

Answers by: Toby Bartels1, 2004 April 8

A linear ordering of a set S, also called a total ordering, is a binary relation < on S that is:

• irreflexive (x ≮ x),

• asymmetric (x < y =⇒ y ≮ x),

• transitive (x < y & y < z =⇒ x < z)

• and linear (x 6= y =⇒ x < y or y < x).

In pictures, a linear ordering looks something like this:
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A ‘cyclic ordering’, on the other hand, looks like this:
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More formally, we can define a cyclic ordering of the finite set S to be a permutation σ:S → S
with exactly one orbit. The permutation maps each element of S to the ‘next one on the cycle’.
We can also define a cyclic ordering to be an equivalence class of linear orderings, where the linear
ordering of {x1, . . . , xn} with

x1 < x2 < · · · < xn−1 < xn

is equivalent to the total ordering with

xn < x1 < x2 < · · · < xn−1.

(“And the last shall be first.” — Matthew 19.) However, this definition is valid only if S is nonempty;
the empty set has no cyclic ordering (because its unique permutation has zero orbits).

Let L be the structure type “being a linearly ordered finite set”, and let C be the structure type
“being a cyclically ordered finite set”. There are some nice relations between these two structure
types.

1. Compute the generating functions |L| and |C| directly, by counting the number of linear orderings
and cyclic orderings on an n-element set.

To linearly order a set with n elements, first pick the first element (in n possible ways), then pick
the next element (in n − 1 possible ways), then . . . then pick the last element (in 1 possible way).
Thus the number of ways to linearly order a set with n elements is n!. Therefore,

|L| =
∞∑
n=0

n!
n!
zn =

∞∑
n=0

zn =
1

1− z
.

1I reserve no legel rights whatsoever to any of my creative work; see http://toby.bartels.name/copyright/.



To cyclically order a set with n > 0 elements, linearly order it in n! ways if you like; but then
notice that this is overdetermined by a factor of n, since we should not have been able to tell which
of n positions is the starting position. Thus the number of ways to cyclically order a set with n > 0
elements is (n− 1)!. On the other hand, the empty set can’t be cyclically ordered, so the number of
ways to cyclically order a set with 0 elements is 0. Therefore,

|C| =
∞∑
n=1

(n− 1)!
n!

zn =
∞∑
n=1

1
n
zn.

I could find a closed form for |C| now, but it’s easier to do this in the context of question 2..

2. Using 1. show that
d

dz
|C| = |L|

d

dz
|L| = |L|2

e|C| = |L|.

Differentiating term by term,

d

dz
|C| =

∞∑
n=1

d

dz

1
n
zn =

∞∑
n=1

zn−1 =
∞∑
n=0

zn = |L|.

Now using a closed form,

d

dz
|L| = d

dz

1
1− z

=
1

(1− z)2
= |L|2.

Now combining these facts,
d

dz
|L| = |L|2 = |L| d

dz
|C|,

or
d

dz
|C| = 1

|L|
d

dz
|L| = d

dz
ln |L|.

Also |C|(0) = |C|0 = 0 and |L|(0) = |L|0 = 1, so |C|(0) = ln |L|(0). Therefore, |C| = ln |L|, or
|L| = e|C|. (Note that |L| has an inverse and a logarithm, since |L|0 > 0.)

I can now write down a closed form for |C|;

|C| = ln |L| = ln
1

1− z
= − ln(1− z).

3. Do the above equations between generating functions come from natural isomorphisms between
the structure types? Show that

D

DZ
C ∼= L

and
D

DZ
L ∼= L2

but
EC � L.



Hint: Hint: for the last one, let P be the structure type “being a finite set equipped with a permutation
of its elements”. Show that EC ∼= P and P � L.

To place a D
DZC structure on a set S, adjoin a point and then cyclically order the result S+. By

starting with the adjoined point and ordering from there, this defines a linear order on S. Conversely,
if S has been linearly ordered, then we may cyclically order S+ by mapping each point to the next
in order, with the extra point serving on the boundary. These transformations are inverses of each
other, so D

DZC
∼= L.

To place a D
DZL structure on a set S, adjoin a point and then linearly order the result S+. The

new point will break S up into pieces (one before the point and one after it), each of which will be
linearly ordered, giving an L2 structure on S. Conversely, if S has an L2 structure, then linearly
order S+ by going through the one subset of L in order, then the new point, then the other subset
of L in order. These transformations are inverses of each other, so D

DZL
∼= L2.

At this point, I should be able to calculate D
DZC = D

DZ LNL and C(0) ∼= LNL(0), although LN
hasn’t yet been covered fully in class. Even so, this is insufficient to conclude that C ∼= LNL and
then EC ∼= L, since differential equations don’t have unique solutions. Indeed, EC � L, as stated.

For, to place an EC structure on a set S, partition S and cyclically order each piece. Since
each point x of S belongs to a unique piece, whose cyclic ordering assigns x a value, this defines
a single permutation on all of S. Conversely, given a permutation p on S, the orbits of p form a
partition of S, each piece of which has a single orbit of the partition, which is a cyclic order. These
transformations are inverses of each other, so EC ∼= P .

Now suppose that P ∼= L through a natural isomorphism H. Then in particular, P2
∼= L2

through a bijection H2. Now, P2 is the set of permuations of 2 = {0, 1}; these permutations are
i := {(0, 0), (1, 1)} and t := {(0, 1), (1, 0)}. On the other hand, L2 is the set of linear orderings of
2 = {0, 1}; these linear orderings are f := {(0, 1)} and b := {(1, 0)}. Now, H2 maps i to either f
or b, not both. Either way, it must respect the automorphisms of 2, since it comes from a natural
isomorphism. In particular, H2 must respect the involution τ that swaps 0 to 1. (Yes, t and τ are
literally the same thing, but they are playing very different roles here.) Now, Pτ fixes i, but Lτ
swaps f with b. This is a contradiction; therefore, P � L.

P and L are an interesting pair of structure types. Even though a permutation is very different from
a linear order:

P � L

there are just as many permutations of a finite set as linear orders on it:

|P | = |L|

and we’ve seen above that both can be defined in terms of cyclic orderings:

P ∼= EC , L ∼=
DC

DZ
.

4. Let 1//2! be the groupoid with one object and Z2 as the group of automorphisms of this object,
so that

|1//2! | = 1/2.

Calculate the groupoid cardinality of C(1//2!). This is the groupoid of ‘half-colored cyclically ordered
finite sets’.

Knowing the generating function for C, this is easy:

|C(1//2!)| = |C|(|1//2!|) = − ln(1− 1/2) = ln 2.


