Math 260: Equivalence of Categories

Miguel Carrión Álvarez

Suppose $F: C \to D$ is an equivalence of categories. This means there is a functor $G: D \to C$ which is a two-sided inverse of F up to natural isomorphism, that is, there are natural isomorphisms $\alpha: GF \Rightarrow 1_C$ and $\beta: FG \Rightarrow 1_D$. (Note: here we are using the convention in which the result of first applying F and then G is denoted GF.) This means that, for each $f: c \to c'$ in C and for each $g: d \to d'$ in D, the following diagrams commute:

We need to show that F is faithful, full and essentially surjective.

Suppose that $f, f': c \to c'$ are such that F(f) = F(f'). Then GF(f) = GF(f') and, by naturality of α ,

$$f = \alpha_{c'} GF(f) \alpha_c^{-1} = \alpha_{c'} GF(f') \alpha_c^{-1} = f'.$$

This shows that F is faithful. Similarly, G is faithful.

Now let $c, c' \in C$ and let $g: F(c) \to F(c')$ in D. Then, $G(g): GF(c) \to GF(c')$. By naturality of α , if $f = \alpha_{c'}G(g)\alpha_c^{-1}: c \to c'$, we have G(g) = GF(f). Then, FG(g) = FGF(f) and, since F and G are faithful, g = F(f) and F is full.

Finally, suppose $d \in D$. The isomorphism $\beta_d: FG(d) \to d$ makes F essentially surjective, with G(d) in the essential preimage of d.

For the converse, suppose that $F: C \to D$ is essentially surjective, full and faithful. This means that: for each $d \in D$, there is a $c = G(d) \in C$ and an isomorphism $\beta_d: F(c) \to d$; and, for each $c, c' \in C$, the map $F: C(c, c') \to D(F(c), F(c'))$ is a bijection. We need to construct a two-sided weak inverse of $F: C \Rightarrow D$.

We already have defined G on objects. Now, given $g: d \to d'$ in D, we want to define $G(g): G(d) \to G(d')$. We have a bijection between hom-sets $F: \hom_C(G(d), G(d'))) \to \hom_D(FG(d), FG(d'))$. Observe that $g \mapsto \beta_{d'}g\beta_d^{-1}$ is a bijection from $\hom_D(d, d')$ to $\hom_D(FG(d), FG(d'))$, and define a map of morphisms $G(g) = F^{-1}(\beta_{d'}g\beta_d^{-1})$. Given a $g': d' \to d''$, we have

$$G(g'g) = F^{-1}(\beta_{d''}g'g\beta_d^{-1}) = F^{-1}(\beta_{d''}g'\beta_{d'}^{-1}\beta_{d'}g\beta_d^{-1}) = F^{-1}(\beta_{d''}g'\beta_{d'}^{-1})F^{-1}(\beta_{d'}g\beta_d^{-1}) = G(g')G(g),$$

so that $G: D \to C$ so defined is a functor.

The definition $G(g) = F^{-1}(\beta_{d'}g\beta_d^{-1})$ implies that

$$\begin{array}{c|c} FG(d) & \xrightarrow{\beta_d} & d \\ & & \downarrow^{FG(g)} & \downarrow^g \\ FG(d') & \xrightarrow{\beta_{d'}} & d' \end{array}$$

commutes, defining a natural isomorphism $\beta: FG \Rightarrow 1_D$.

Finally, for every $c \in C$ we have an isomorphism $\beta_{F(c)} : FGF(c) \to F(c)$. Since F is full and faithful, we can define $\alpha_c = F^{-1}(\beta_{F(c)}) : GF(c) \to c$, which is also an isomorphism. Now, applying the definition of $G(g) = F^{-1}(\beta_{d'}g\beta_d^{-1})$ to $g = F(f) : d = F(c) \to F(c') = d'$, we get

$$GF(f) = F^{-1}(\beta_{F(c')}F(f)\beta_{F(c)}^{-1}) = \alpha_{c'}f\alpha_c^{-1},$$

 \mathbf{SO}

$$\begin{array}{c} GF(c) \xrightarrow{\alpha_c} c \\ \downarrow GF(f) \\ GF(c') \xrightarrow{\alpha_{c'}} c' \end{array}$$

commutes, and $\alpha: GF \Rightarrow 1_C$ is a natural isomorphism.