
Toby Bartels* Equivalence of Categories 2004 April 15

Notation

John has confused everybody by writing functor application in the traditional Leibniz fashion while simul-
taneously writing functor composition in the intuitive antiLeibniz fashion. Thus I feel justi�ed in intro-
ducing yet another notation. It will not con�ict with anything above; it is essentially antiLeibniz but does
not use parentheses, so there will be no confusion with John s Leibniz notation using parentheses. (This is
easy to do, of course, by treating application as a special case of composition; but that is not pedagogical-
ly sound. My notation continues to distinguish these.)

Speci�cally, if F is an operator acting on x, then the result of the application is denoted xF ; I delib-
erately mean to evoke the algebraic intuition surrounding exponentiation. For example, if G acts on xF ,
then the result must be denoted (xF )G; but the notation suggests a simpli�cation to xFG. Thus FG is the
composition of F and G, doing F �rst and then doing G. Note that I will use this superscript notation re-
gardless of whether the argument x is an object or a morphism and regardless of whether the operator F
is a functor or a natural transformation. Thus the subscript notation for natural transformation applica-
tion is also abolished, restoring the proper symmetry between functors and natural transformations. Fi-
nally, I shall �nd it convenient to abbreviation (xα)−1 as x−α when xα is an isomorphism. (Thus if α is a
natural isomorphism, then −α is the inverse natural isomorphism; although I ll have no call to refer to −α
by itself.)

Note that the notation internal to a category is unchanged; morphism composition is written an-
tiLeibniz as John did consistently, and that s all that there is to that; there is no notion of morphism ap-
plication. That said, the notation is still suggestive of true facts; for example, the requirement that a func-
tor preserve composition is the equation (fg)F = fF gF .

Essential surjectivity

In this section, I prove that equivalences are essentially surjective. So let C and D be categories, let the
functor F :C → D be an equivalence (with weak inverse G:D → C and natural isomorphisms α:FG ⇒ 1C

and β:GF ⇒ 1D), and let x be an object of D. Then xG is an object of C; let x̃ be this. Then xβ is an
isomorphism in D from xGF = x̃F to x1D = x. Therefore, x̃F ∼= x as desired.

Fullness

In this section, I prove that equivalences are full. So let C, D, and F (with G, α, and β) be as above, let
x and y be objects in C, and let f :xF → yF be a morphism in D. Then fG:xFG → yFG is a morphism in
C; let f̃ be the morphism x−αfGyα := (xα)−1fGyα:x → y.

Now consider the naturality diagram for α as applied to f̃ :

xFG
f̃FG

//

xα

��

yFG

yα

��
x

f̃
// y

This diagram is basically the de�nition of f̃ , only with f̃FG in the place of fG. But because xα and yα are
isomorphisms, it thus follows that f̃FG and fG are in fact equal. Using equations only, I can also calculate
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as follows, starting with the naturality condition:

f̃FGyα = xαf̃

= xαx−αfGyα

= fGyα;

f̃FG = fG.

Now, I want to get f̃F = f , but I can t simply drop G. Instead, let me apply the weak inverse of G,
which is F again, to get f̃FGF = fGF . This suggests that I should look at the naturality diagram for β as
applied to f :

xFGF
fGF

//

xFβ

��

yFGF

yFβ

��
xF

f
// yF

Compare this to the naturality diagram for β as applied to f̃F :

xFGF
f̃FGF

//

xFβ

��

yFGF

yFβ

��
xF

f̃F
// yF

These diagrams are identical except for the horizontal arrows. (The reason for this is that f and f̃F have
the same domain and codomain.) But I ve already calculated that the top arrows are equal. Since the ver-
tical arrows are invertible, it follows that the bottom arrows are also equal. That is, f = f̃F , so the func-
tor F is full.

This equality can also be calculated perfectly algebraically. Start with the naturality condition for β
as applied to f , and substitute the previously calculated equation, then apply the naturality condition for
β as applied to f̃F :

xFβf = fGF yFβ

= f̃FGF yFβ

= xFβ f̃F ;

f = f̃F .

Faithfulness

In this section, I prove that equivalences are faithful. So let C, D, F (with G, α, and β), x, and y be as
above, and let f, g:x → y be morphisms in C. Suppose that fF = gF :xF → yF in D. Then fFG = gFG:
xFG → yFG also.
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Now look at the naturality diagrams for α as applied to f and g:

xFG
fFG

//

xα

��

yFG

yα

��
x

f
// y

and:

xFG
gFG

//

xα

��

yFG

yα

��
x

g
// y

These are identical except for the horizontal arrows. But the top arrows are equal, so the bottom arrows
must also be equal. Therefore, f = g, and the functor F is faithful.

Again, this can be done by manipulating equations:

xαf = fFGyα

= gFGyα

= xαg;

f = g.

Equivalence

In this section, I prove that an essentially surjective, full, faithful functor is an equivalence. So let C and
D be categories, and let F be a functor from C to D. Suppose that F is essentially surjective, full, and
faithful. I wish to construct a weak inverse G of F , with associated natural isomorphisms α and β.

First, let me de�ne G on objects. If x is an object of D, then by the essential surjectivity of F , there
is an object x̃ of C such that x̃F ∼= x. So let xG be this x̃. As a bonus, I see that β is already staring at
me: let xβ :xGF → x be the guaranteed isomorphism from x̃F to x. Next, let me de�ne G on morphisms.
If x and y are objects of D and f :x → y is a morphism in D, then g := xβfy−β is a morphism from xGF

to yGF . Since F is full, I get a corresponding morphism g̃ from xG to yG in C, such that g̃F = g. Let fG

be this g̃. Finally, I must de�ne α. If x is an object in C, then f := xFβ is a morphism in D from xFGF

to xF . Since F is full, there must be a morphism f̃ :xFG → x; let xα be this f̃ .
Now, the hard part is proving that the above really de�nes a functor and natural transformations.

First, let me check that G preserves identities. Given an object x of D, what is 1G
x ? Well, if g := xβ1xx−β

= 1xGF = 1F
xG , then 1G

x is a lifting of g such that 1GF
x = g = 1F

xG . Since F is faithful, it follows that 1G
x =

1xG . Thus, G preserves identities. Now let me check that G preserves composition. Given objects x, y,
and z of D and morphisms f :x → y and g: y → z, I see that fG is a lifting of xβfy−β and gG is a lifting
of yβgz−β , while (fg)G is a lifting of xβfgz−β . These will be easier to think about with a picture:

xGF

xβ

��

yGF

yβ

��

zGF

zβ

��
x

f
// y

g
// z
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Then the de�nition of fG shows that fGF runs along the left half of the top row; similarly, gGF runs along
the right half. But the de�nition of (fg)G shows that the entire top row can be �lled by the single arrow
(fg)GF :xGF → yGF . Thus (fg)GF = fGF gGF = (fGgG)F . I can also get this equation purely algebraical-
ly:

(fGgG)F = fGF gGF

= xβfy−βyβgz−β

= xβfgz−β

= (fg)GF .

Either way, since F is faithful, it follows that (fg)G = fGgG. Therefore, G is indeed a functor.
Next, let me check that β is a natural transformation. That is, if f :x → y is a morphism in D, then I

want to prove that this square commutes:

xGF
fGF

//

xβ

��

yGF

yβ

��
x

f
// y

But this is true by the very de�ntion of fG. In equations,

fGF := xβfy−β ;

fGF yβ = xβf .

Finally, let me check that α is a natural transformation. That is, if f :x → y is a morphism in C, then
I want to prove that this square commutes:

xFG
fFG

//

xα

��

yFG

yα

��
x

f
// y

Whether or not this commutes, it still exists, so I ll apply F to it:

xFGF
fFGF

//

xαF = xFβ

��

yFGF

yαF = yFβ

��
xF

fF
// yF

Here I ve written in the de�nition of α in terms of β. But now this is simply the commutative square for
β applied to fF . Thus the original square also commutes, since F is faithful. This also can be done with
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1dimensional algebra:

fFGF = xFβfF y−Fβ ;

fFGF yFβ = xFβfF

fFGF yαF = xαF fF ;

fFGyα = xαf .

Therefore, F is an equivalence.

Constructivity

In this section, I examine to what extent the previous section should be acceptable to a constructivist; in
particular, does it rely nonconstructively on the axiom of choice?

At �rst glance, this would seem to be true for the de�nition of G on objects. The essential surjectiv-
ity of F guarantees only the existence of some object x̃ in the essential preimage of any object x of D; it
doesn t tell us how to choose which object to let xG be. And indeed, if one were to formalise this proof in
Zermelo Fraenkel set theory ZF (assuming that C and D are small categories), then the axiom of choice
would be required here.

In fact, the axiom of choice is equivalent , in ZF (or even the weaker constructive Zermelo set theo-
ry CZ) to the theorem that every essentially surjective, full, faithful functor between small categories has
a weak inverse. To see this, let S be a collection of occupied sets. De�ne a category C such that ObC =⊎
S; that is, an object of C is a pair (s, S) such that s ∈ S ∈ S. Given objects x := (s, S) and y := (t, T )

of C, let there be a morphism from x to y i� S = T , and let this morphism be unique. Also, de�ne a cate-
gory D such that ObD = S; let the morphisms of D be only identity morphisms. Finally, de�ne a functor
F :C → D by letting (s, S)F be S. Then F is clearly full and faithful; it s also essentially surjective (in
fact surjective) since each set S is occupied. If a weak inverse G exists, then SG is an element of S, so G
(when restricted to objects) is a choice function for S.

I restricted attention above to small categories, so that I could discuss set theory; the situation is even
worse for large categories. If we work in a formalism allowing for large classes, then the previous para-
graph can be applied when S is the large class of all occupied small sets. The result is a global choice
function; a large function on the class of occupied small sets that maps, once and for all, each occupied
small set to one of its elements. This class-theoretic axiom of choice is even stronger than the purely set-
theoretic axiom.

Yet as Peter Aczel wrote, `[t]he axiom of choice has an ambiguous status in constructive matemat-
ics'. It has long been known that CZ + AC implies the law of the excluded middle (since one can force
the choice function to choose between a proposition and its negation), so the set-theoretic axiom of choice
cannot be accepted in constructive set theory. On the other hand, any constructive proof that every mem-
ber of S is occupied must give an algorithm for turning a construction of any S ∈ S into a construction of
some s ∈ S. If one identi�es a set with the set of constructions of its elements (as Per Martin-L�of encour-
ages), then this algorithm describes a choice function.

Constructivist philosophers today know that the resolution of this con�ict lies in understanding the
role of equality in set theory. Two quite di�erent constructions of members of S may turn out to describe
equal sets; yet when applying the proof that every member of S is occupied to these constructions, the
resulting elements of the equal sets may be quite di�erent. Thus we have a choice operation (also called
prefunction, or function of complete presentations), but not a choice function, because an operation is a
function only if it preserves equality.

This may become clearer with an example; let me use the most dangerous example, the S whose choice
function proves the law of the excluded middle. Actually, we have a seperate S for each proposition P ; if
S has a choice function, then we can prove P ∨ ¬P . Now, S will be a collection of subsets of {0, 1}, and
it will consist of two (possibly equal) subsets, S and T . To de�ne S and T , I must explain whether 0 and
1 belong to them. So, let 0 ∈ S and 1 ∈ T regardless; but let 0 ∈ T and 1 ∈ S each i� P is true. Now, to
prove that S and T are occupied, you can ignore P and just note that 0 ∈ S and 1 ∈ T . So a choice opera-
tion for S maps S to 0 and T to 1. But this will not be a function if S = T ! This is relevant to P , because
S = T i� P is true. In other words, if this choice operation is a function, then P is false. Now, any of the
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other operations from S to {0, 1} require P to be true if they are to be choice operations. So if you in-
sist that S has a choice function, then either P is false or it is true. But if you require only that S have a
choice operation, then you can draw no conclusion about P .

Thus practising constructivists may use the axiom of choice, so long as they verify that the choice op-
eration is a function by checking that it preserves equality. My construction in the previous section is per-
fectly acceptable to a constructivist so long as it s understood that I m only de�ning operations; to de�ne
functions, something more is required. But what does it mean to preserve equality in category theory?
Equality between objects has no meaning! Only equality between morphisms has meaning, and this does
indeed have to be checked. But equality between objects must be replaced by isomorphism, and it s the
very de�nition of G on morphisms that shows that the de�nition of G on objects is an operation that pre-
serves isomorphism. In this sense, functoriality of an operation on objects (being able to extend the oper-
ation appropriately to morphisms) is a categori�cation of functionality of an operation on elements (being
able to prove that the function preserves equality).

Let s examine the previous section carefully in light of this. I de�ned G on objects, as an operation
from ObD to ObC. Then I de�ned β, as an operation from ObD to MorC. Then I de�ned G on mor-
phisms, as an operation from MorD to MorC. Finally, I de�ned α, as an operation from ObC to MorD.
Since none of these classes of objects or morphisms has any absolute notion of equality, to what extent is
it reasonable to demand that these operations be functions? They should be functions to that extent; and
if I haven t proved it yet, then I should do so now. But it makes no sense to expect them to be functions
in any absolute sense, so I certainly don t have to prove that.

Let s start with G on morphisms. Given objects x and y in D, it makes sense to say that two mor-
phisms from x to y are equal; similarly, it makes sense to say that two morphisms from xG to yG are equal.
Thus, I should prove that G de�nes a function from Hom(x, y) to Hom(xG, yG). That is, if f = g:x → y,
then fG = fG:xG → yG. And this is true, because F is faithful. (Thus the faithfulness of F is needed in
this paragraph!) Next, what does it mean to say that α or β preserves equality? Taking β for de�nite-
ness, I can t expect to say that xβ = yβ if x = y, because the latter equation has no meaning. Nor can
I expect to say that xβ = yβ if x ∼= y, because then xβ and yβ may not even have the same domain and
codomain. All that I can expect is that, given an isomorphism f :x ∼→ y, I should �nd that xβ and yβ are
related through fGF and f . And they are � this is what the naturality square of β says! (The same idea
holds for α.) Finally, I ve already dealt with G on objects. It s meaningless to consider whether x = y, but
if x ∼= y, then I should have xG ∼= yG. And this is true; if f :x ∼→ y, then fG:xG ∼→ yG.

Why doesn t this prove the axiom of choice, using the argument from the beginning of this section?
Recall that S was a collection of occupied sets (occupied subsets of a given universe, to be careful), and I
de�ned a functor whose weak inverse G, when restricted to objects, de�ned a choice function on S. Now,
this is certainly a �ne choice operation on S, but is it a function? The only sense in which it s a function
is that if S ∼= T , then SG ∼= TG. This is perfectly true, since S ∼= T i� S = T and SG ∼= TG i� S = T as
well. But this does not mean that SG = TG! Even though that statement has meaning, because that the
elements of S were subsets from a given universe, it does not actually follow from the functoriality of G.

Notice how the `functions' of category theory � functors and natural transformations � are, de-
spite their apparently complicated de�nitions, really just the natural notions of functionality in a situation
where equality of objects is replaced by isomorphism. That is, if one has an operation mapping objects of
one category to objects of another category, then the closest thing to requiring this operation to be a func-
tion is to extend the operation to isomorphisms, making it a functor, at least on the underlying groupoids.
(Actually, a bit more insight is necessary to realise that a good notion of functor should also preserve com-
position.) Similarly, if one has an operation mapping objects of one category to morphisms of another cat-
egory, then the closest thing to requiring this operation to be a function is to identify the functors involved
and make the naturality square commute. Before category theory, mathematicians were working with such
operations commonly, but since most mathematicians believed in a global notion of equality, they didn t
realise that they weren t functions. A proper appreciation of the relativity of equality and the distinction
between operation and function leads naturally to the full development of groupoid theory (after which
the generalisation to category theory is obvious). Conversely, a proper appreciation for the role of the ax-
iom of choice in constructive mathematics con�rms that there is nothing nonconstructive about category
theory.
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