Math 260: Categorified inner products

Miguel Carrión Álvarez

We will consistently use skeleta. The skeleton of FinSet₀ is E, the category with **N** as its set of objects, no morphism other that automorphisms, and Aut $(n) = \mathbf{Z}_n$.

1. $\langle Z^n / \!\! / n!, Z^n / \!\! / n! \rangle$.

The structure type $Z^n /\!\!/ n!$, being an *n*-element set, has for its total groupoid the groupoid of *n*-element sets with bijections, which is a full subcategory of *E*, and whose skeleton consists of an *n*-element set as its single object and the group n! of permutations of its elements as morphisms. In other words,

$$Z^n /\!\!/ n! : 1 /\!\!/ n! \to E$$

is the inclusion. Now, the pull-back

has objects of the form

$$n^{\bullet} \xrightarrow{\alpha} n^{\bullet}$$

where $n \in E$, $\bullet \in 1/\!\!/n!$ and $\alpha: n \to n$. Morphisms are pairs of morphisms

where $\gamma: \bullet \to \bullet$ can be chosen freely, and determines γ' uniquely. Hence, all $n^{\bullet} \xrightarrow{\alpha} n^{\bullet}$ are isomorphic and have automorphism groups isomorphic to n!. It follows that

$$\langle Z^n /\!\!/ n!, Z^n /\!\!/ n \rangle \simeq 1 /\!\!/ n!$$

2. $\langle Z^n, Z^n / \!\! / n! \rangle$.

The skeleton of the groupoid of totally-ordered *n*-element sets with order-preserving bijections consists of a single *n*-element set as object, and the identity permutation as morphism, since no other permutations preserve a total order. This is equivalent to the groupoid 1.

The structure type "being a totally-ordered *n*-element set" is the inclusion functor $Z^n: 1 \to E$ and the pull-back

again has objects of the form

$$n^{\bullet} \xrightarrow{\alpha} n^{\bullet}$$
 with $\alpha \in E$,

with morphisms being of the form

so $(Z^n/\!\!/n!)(\gamma) = \alpha^{-1}\beta$ is determined uniquely by α and β and, since $Z^n/\!\!/n!$ is faithful, there is a unique such γ in $\mathbb{Z}^n/\!\!/n!$ for each pair α, β . Hence, all $n^{\bullet} \xrightarrow{\alpha} n^{\bullet}$ are isomorphic in exactly one way, and

$$\langle Z^n, Z^n / \!\!/ n! \rangle \simeq 1.$$

3. $\langle Z^n, E^{KZ} \rangle$.

The proper generalization of K-colouring and colour-preserving bijections (when K is a set) to the case when K is a groupoid is "K-flavourings with flavour-preserving, colour-changing bijections" (flavour-compatible bijections for short). To see why, consider a skeleton of K, whose only morphisms are automorphisms. We can visualize the skeleton as a collection of "flavoured objects" each of which with "internal (colour) degrees of freedom", and "colour-changing, flavour-preserving morphisms". This sounds a lot like quantum chromodynamics!

The stuff type E^{KZ} , "being a K-flavoured finite set", has for its total groupoid the groupoid of K-flavoured finite sets with flavouring-compatible bijections, denoted E^{K} . In symbols,

$$E^{KZ}: E^K \to E.$$

To fix the notation, an object of E^K is an *n*-tuple $k = (k_1, \ldots, k_n)$ of objects of K, for some $n \in E$; and a morphism $\kappa: k \Rightarrow k'$, where $k' = (k_1, \ldots, k_n)$ for the same n, consists of a bijection $\kappa_0: \{1, \ldots, n\} \to \{1, \ldots, n\}$ and morphisms $\kappa_i: k_i \to k'_{\alpha_0(i)}$. In other words, k, k' are objects of K^n and $(\kappa_1, \ldots, \kappa_n)$ is a morphism of K^n . The stuff type $E^{KZ}: E^K \to E$ maps $E^{KZ}(k) = \{1, \ldots, n\}$ and $E^{KZ}(\kappa) = \kappa_0$.

The pull-back

$$\begin{array}{c} \langle Z^n, E^{KZ} \rangle \longrightarrow E^K \\ \downarrow \qquad \qquad \downarrow \\ 1 \xrightarrow{Z^n} E \end{array}$$

has objects of the form

$$n^{\bullet} \xrightarrow{\alpha} n^k$$
, with $\alpha \in n!$ and $k \in K^n$.

and morphisms of the form

 $\begin{array}{cccc} \bullet & k & \text{such that} & n^{\bullet} \xrightarrow{\alpha} n^{k} & \text{commutes,} \\ & & & & \\ \downarrow^{1} & \downarrow^{\kappa} & & Z^{n}(1) & \downarrow^{E^{KZ}(\kappa)} \\ \bullet & & k' & & n^{\bullet} \xrightarrow{\beta} n^{k'} \end{array}$

that is, $\beta = \alpha \kappa_0$. Given α and β , κ_0 is uniquely determined, and κ is a morphism of K^n such that $\kappa_0 = \alpha^{-1}\beta$. There may be any number (including none) of κ with that κ_0 . Since there are no other restrictions on k or κ , it is clear that

$$\langle Z^n, e^{KZ} \rangle \simeq K^n.$$

4. $\langle Z^n / \!\!/ n!, e^{KZ} \rangle$.

By definition of X_n as the pull-back

$$\begin{array}{ccc} X_n \longrightarrow X \\ & & & \downarrow \\ & & & \downarrow \\ 1/\!\!/ n! \xrightarrow{Z^n/\!\!/ n!} & E \end{array}$$

we have that

$$\langle Z^n /\!\!/ n!, F \rangle = X_n.$$

 \mathbf{so}

$$\langle Z^n/\!\!/n!, e^{KZ}\rangle \simeq K^n/\!\!/n!.$$

5. $\langle e^{KZ}, e^{KZ} \rangle$.

The pull-back

$$\begin{array}{c} \langle E^{KZ}, E^K Z \rangle \longrightarrow E^K \\ & \downarrow \\ E^K \xrightarrow{E^{KZ}} E \end{array}$$

has objects of the form

$$n^k \xrightarrow{\alpha} n^{k'}$$
, with $\alpha \in n!$ and $k, k' \in K^n$,

and morphisms of the form

$$\begin{array}{cccc} k & k' & \text{such that} & n^k & \xrightarrow{\alpha} n^{k'} & \text{commutes.} \\ & & & & & \\ \downarrow^{\kappa} & & & \downarrow^{\kappa'} & & E^{KZ}(\kappa) \\ & & & & & \\ k'' & & & & & \\ k''' & & & & & n^{k'''} & \xrightarrow{\alpha'} n^{k'''} \end{array}$$

In other words, $\alpha \kappa'_0 = \kappa_0 \alpha'$. In this case, once κ_0 is (freely) specified, then κ'_0 is determined. Other than that, as long as κ and κ' preserve the flavouring, they can be freely specified, as can k, k'. This corresponds to a K^2 -flavouring of the *n*-element set, with morphisms $\kappa = (\kappa_0, \kappa', \kappa'')$, where $\kappa_0: n \to n$ is a flavour-preserving permutation, and κ', κ'' are colour-changing morphisms in K^n . Hence, κ is a morphism of $(K^2)^n/n!$, and

$$\langle E^{KZ}, E^{KZ} \rangle \simeq E^{K^2}.$$