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In physics we often try to study the dynamics of a complicated system by thinking of it as a slightly
modified version of some simpler system — preferably one where we can compute everything in
‘closed form’. We then use the simpler system as a starting point for studying the more complicated
one. This idea is called perturbation theory.

In quantum theory we sometimes do this as follows. Suppose we have a system with Hilbert space H
whose Hamiltonian is some self-adjoint operator H on H. States are described by unit vectors in H
that depend on time. These evolve according to Schrödinger’s equation:

dψ(t)
dt

= −iHψ(t)

It’s easy to write down the unique solution to this equation with ψ(0) equal to a given state ψ ∈ H:

ψ(t) = e−itHψ

where

e−itHψ =
∞∑
n=0

(−itH)n

n!
ψ.

(If H is any bounded operator, the right-hand side converges in the norm topology on H for all vectors
ψ. If H is an unbounded self-adjoint operator, it converges for a dense set of vectors called entire
vectors; we can then define e−itHψ for other vectors by applying e−itH to a sequence of entire
vectors that converges to ψ and taking the limit. To avoid subtleties like this and focus attention on
the basic ideas, let’s assume in Problems 1 and 2 that all operators under discussion are bounded.
Unfortunately this does not hold in the really interesting examples, like in Problem 3. So, things get
more technical — but the basic ideas are still relevant.)

Even though the solution to Schrödinger’s equation is easy to write down, when H is complicated
it’s hard to actually calculate e−itHψ. To deal with this, we often try to write

H = H0 + V

where H0 and V are self-adjoint operators. We try to do this so that e−itH0ψ is easy to calculate and
V is small. Then we write e−itHψ as an infinite sum where the zeroth-order term is just e−itH0ψ,
while the nth-order term involves n factors of V .

In physics jargon we call H0 the free Hamiltonian and V the interaction Hamiltonian. The
power series for e−itHψ is called a perturbation series. With no further ado, here is how it
actually looks:

ψ(t) = (1)
∞∑
n=0

∫
0≤t1≤···≤tn≤t

(−i)ne−i(t−tn)H0V e−i(tn−tn−1)H0V · · · e−i(t2−t1)H0V e−it1H0 ψ dt1dt2 · · · dtn.

1. Show that this equation is true.



Hint: Here’s one way. The basic theorem on ordinary differential equations — Picard’s theorem —
assures us that when H is bounded, Schrödinger’s equation

dψ(t)
dt

= −iHψ(t)

has a unique solution with the initial conditions

ψ(0) = ψ.

So, it suffices to show that if we define ψ(t) using (1), it satisfies Schrödinger’s equation and these
initial conditions. I’ll be satisfied if you check this at the physicist’s level of rigor — namely, by taking
(1) and performing plausible manipulations without checking the analyst’s fine print that guarantees
they’re allowed. It’s actually easy to check this fine print when H0 and V are bounded — but that’s
not the point of this exercise!

We can make the meaning of the perturbation series clearer if we work in the interaction represen-
tation. In this approach, we to ‘factor out’ the effect on time evolution due to the free Hamiltonian.
To do this, we focus attention on

ψint(t) = eitH0ψ(t)

instead of ψ(t). Similarly, we focus attention on

V (t) = eitH0V e−itH0

instead of V . Since we’re assuming eitH0 is easy to compute, a formula ψint(t) is just as good as a
formula for ψ(t). And here it is:

2. Starting with equation (1), show that

ψint(t) =
∞∑
n=0

∫
0≤t1≤···≤tn≤t

(−i)nV (tn) · · ·V (t1)ψ dt1 · · · dtn. (2)

Formula (2) will eventually lead us to Feynman diagrams if we start drawing pictures like this:

• −iV (t)
��

��

to stand for the operator −iV (t). We think of this as a picture of the system evolving in a boring
way according to the free Hamiltonian except for an ‘interaction’ that occurs at time t. If we use the
usual trick for drawing composition of linear operators, formula (2) says that the time evolution in
the interaction representation:

Ũ(t): H → H
ψ 7→ ψ̃(t)

is given as follows:

Ũ(t) =

��

+
∫

0≤t1≤t
•−iV (t1)
��

��

dt1 +
∫

0≤t1≤t2≤t

•−iV (t1)

•−iV (t2)

��

��

��

dt1dt2 + · · ·



Usually when people draw these diagrams, the integrals over the times at which interactions occur
are left implicit, with the vertical ordering of the dots serving to remind us that t1 ≤ · · · ≤ tn. In
this simplified notation, we have:

Ũ(t) =

��

+ •−iV (t1)
��

��

+
•−iV (t1)

• −V (t2)

��

��

��

+ · · ·

Now let’s do an example! Let’s see what happens when we perturb the harmonic oscillator. So, take
our Hilbert space to be the Fock space K. Take H0 to be the harmonic oscillator Hamiltonian
with the ground state energy subtracted off:

H0 =
1
2

(p2 + q2 − 1) = a∗a.

And, for simplicity, take
V = λq,

where
q =

a+ a∗√
2

is the position operator and the constant λ ∈ R says how strong the interaction Hamiltonian V
is. (Physicists call any constant that does this sort of thing a coupling constant.) This problem
amounts to studying a particle on the line moving in the potential 1

2q
2 + λq, where the first term is

the potential for the harmonic oscillator.
To keep things simple, let’s work out the amplitude for the ground state 1 ∈ K to evolve to the

ground state after some time t:
〈1, e−itH1〉.

(We’d take the absolute value of this amplitude and square it to get the probability that this process
occurs.) Let’s do this to second order in perturbation theory. So:

3. Calculate the right-hand side of

〈1, e−itH1〉 ≈ 〈1, e−itH01〉 +

(−i)
∫

0≤t1≤t〈1, e
−i(t−t1)H0V e−it1H01〉 dt1 +

(−i)2
∫

0≤t1≤t2≤t〈1, e
−i(t−t2)H0V e−i(t2−t1)H0V e−it1H01〉 dt1dt2

Your answer should be a completely explicit function of λ and t.

Hint: you’ll want to review how a, a∗ and thus H0 and q act on the basis vectors zn ∈ K.


