Structure Theorems

- A groupoid is a category with all morphisms invertible. (Here, strict = weak since we have no 2-morphisms.)

Note: morphisms must satisfy a bunch of laws; composition must be associative, left/right unit laws.

* Everything holds on the nose.

* Every morphism has an inverse.

A groupoid:

```
A = \bullet \xrightarrow{f} \bullet \xrightarrow{g} \bullet \xrightarrow{h} \bullet
```

consists of

```
\begin{array}{c}
1_x
\end{array}
```

pieces

```
f \circ f = 1_x \Rightarrow f = f^{-1}
```

A group is a groupoid w/ one element:

```
\begin{array}{c}
\bullet
\end{array}
```

\text{elts: } 1_x, f

We need to compose } f \circ a \text{ and } ab.
$f = f^{-1}$

So, every groupoid is a "disjoint union" of connected groupoids (i.e., groupoids with 4 objects x, y)

If $\exists f: x \rightarrow y$ we say they're in the same connected component, i.e., an equivalence relation, since (among other things) if $f: x \rightarrow y$ then $f^{-1}: y \rightarrow x$.

Note—- symmetric property of groupoid for "disjoint union"—- no morphism going from one groupoid to other.

So— it suffices to study connected groupoids.

Note— A connected component in a groupoid is a groupoid consisting of all objects $y \iff \exists f: x \rightarrow y$ (fixing x) and all morphisms between them.
let \(C \) be a connected groupoid w/ set \(S \) of objects.

Pick \(x \in S \). Then \(\text{han}(x,x) \) is a group \(G_i \).

But what if we choose some other point \(y \).
Then \(\text{han}(y,y) \cong \text{han}(x,x) \) (look at picture on last pg - all pts have group \(\mathbb{Z}_2 \)).

\[\text{han}(x,x) \cong \text{han}(y,y) \]

\(\alpha : \text{han}(x,x) \rightarrow \text{han}(y,y) \)

Choose \(f : x \rightarrow y \).

Then for \(g \in \text{han}(x,x) \)

\[\alpha : g \rightarrow f^{-1}gf \]

Then \(\alpha \) is a group homomorphism:

\[f^{-1}(gg')f = (f^{-1}gf)(f^{-1}g'f) \]

\(\alpha \) is 1-1 and onto since

\[\alpha^{-1} : h \mapsto fhf^{-1} \]
So groupoid has groups in it:
all \(\text{ham}(x,x) \) endomorphisms
(morphisms from \(x \) to itself)

Claim: \(G \) and \(S \) determine \(C \) up to isomorphism,
so we'll say \(C \cong G[S] \).

\[\text{ham}(y,y) \]
\[f_y \]
\[f_y^{-1} \]
\[y \]
\[y' \]
\[x \]
\[\text{pts in } S \]

\(\text{ham}(x,x) = G \)

Assuming it's connected — \(\forall y \neq x \), we can
find a morphism from \(x \) to that other pt.

\(\forall y \neq x \text{ in } S \), choose \(f_y : x \to y \).

These \(f_y \)'s give isomorphisms

\[\alpha_y : \text{ham}(x,x) \xrightarrow{\sim} \text{ham}(y,y) \]

as we did before. We get maps from \(y \) to
itself by doing \(f_y^{-1} \) (something in \(\text{ham}(x,x) \)) \(f_y \).
If \(y = x \), choose \(\alpha_y = 1_x \) (identity)

Now note \(\forall y, y' \in C \)

\[
\alpha_{yy'} : \text{han}(y, y') \sim \rightarrow \text{han}(x, x) = G
\]

\[
h \rightarrow f_y h f_{y'}^{-1}
\]

so now we have an isomorphism \(\text{han}(x, y) \) and \(\text{han}(x, x) = G \).

What does \(\nu, h \), \(\nu', h' \), \(\nu, hh' \)

\[
o : \text{han}(y, y') \times \text{han}(y', y'') \rightarrow \text{han}(y, y'')
\]

look like if we interpret it as a map

Quest: \(G \times G \rightarrow G ? \)

*check this

Answer: \((\alpha_{yy} h, \alpha_{yy''} h') \rightarrow (\alpha_{yy} h)(\alpha_{yy''} h') \)

\(G \times G \rightarrow G \) multiplication in \(G \)!
Structure Theorem: A group G and a set S determine a connected groupoid $G[S]$ with S as objects and $\text{hom}(x, x) \equiv G \forall x \in G$, up to isomorphism. Canonical if we pick $x \in S$.

Any groupoid is isomorphic to a disjoint union of groupoids of this form:

$$\bigsqcup_{\alpha} G_{\alpha} [S_{\alpha}]$$

These are the connected components.

Example: Let C be the groupoid whose objects are finite sets and morphisms are all 1-1 and onto functions (we want them to be invertible).

The components of C are:

- 1-elt sets (all n-element sets are in the same connected component)
- 2-elt sets
- 3-elt sets
- etc.

Correspond to $n = 0, 1, 2, 3, \ldots$

So S_n = the set of all n-element sets.
\[\text{hom}(x, x) \text{ where } x \in S_n. \text{ So } x \text{ is a set of } n \text{ elements.} \]

And \(G_n = \text{the group of permutations of an } \ n\text{-element set "} n! \text{"} \)

So:

\[C = \prod_{n=0}^{\infty} C_n \]

our name for the perm. group \(S_n \)

Defn: We call a groupoid **skeletal** if all components have only one object.

(just a bunch of groups)

If \(C \) is **skeletal**, \(C = \prod_{\alpha} G_{\alpha} \)

If in prev. example, we make it skeletal, we have just one 1-elt set, one 2-elt set, etc...
2-Groupoids

Now we'll just study strict 2-groupoids, i.e., strict 2-categories with all morphisms and invertible "on the nose". (Later we'll do weak ones.)

This 2-morphism isn't going from inverse to inverse.

\[\alpha : f \Rightarrow g \]
\[\text{but } \alpha : f'' \Rightarrow g^{-1} \]

If we forget about 2-morphisms, we have a groupoid.

Given a 2-groupoid \(C \), we could ignore the 2-morphisms and get a groupoid \(\tilde{C} \).

\(\text{hom}(x,x) \) has morphisms and 2-morphisms.

Given \(x \in C \), the set of morphisms \(f : x \to x \) is a group.

Also, the set of 2-morphisms \(\alpha : 1_x \Rightarrow 1_x \) forms a group, under vertical composition.

\[\alpha \beta : 1_x \Rightarrow 1_x \]
This 2nd group, \(\text{hom}(1_x, 1_x) \) is interesting because it is abelian.

Notice - this group also has another product given by horizontal composition:

\[
\alpha \cdot \beta : 1_x \Rightarrow 1_x
\]

We also have:

\[
(\alpha \cdot \beta)(\beta \cdot \delta) = (\alpha \beta) \cdot (\beta \delta)
\]

Vertical composition makes this into a group but we don’t know that horizontal comp. does. (in fact it does)

* Claim: \(1_{1_x} \) is also identity for horiz. comp.

\[
\alpha \cdot 1_{1_x} = \alpha \quad \text{and} \quad 1_{1_x} \cdot \alpha = \alpha
\]

\[
= (\alpha \cdot 1_{1_x})(1_{1_x} \cdot 1_{1_x})
\]
So -

\[(\alpha \cdot 1_{1_x}) = (\alpha \cdot 1_{1_x})(1_{1_x} \cdot 1_{1_x})\]

\[\Rightarrow 1_{1_x} \cdot 1_{1_x} = 1_{1_x} \text{ (identity)}\]

\[\hom(x, x) \text{ consists of 1-morphisms } f : x \to x\]

and all 2-morphisms between them.