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The numbers Bk are defined by the equation

x

ex − 1
=
∑
n≥0

Bk
xk

k!
.

They are called the Bernoulli numbers because they were first studied by Johann Faulhaber in a
book published in 1631, and mathematical discoveries are never named after the people who made
them. For example, the ‘Čech compactification’ was invented by Tychonoff, while ‘Tychonoff’s The-
orem’ is due to Čech.

It had been known since antiquity that

1 + 2 + · · ·+ n =
n(n+ 1)

2

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

13 + 23 + · · ·+ n3 =
n2(n+ 1)2

4

but Faulhaber, the ‘Arithmetician of Ulm’, seems to have been the first to seek a general formula
for the sum of pth powers of the numbers from 1 to n. This general formula requires what are now
called the Bernoulli numbers.

Faulhaber’s work was cited and further developed by Bernoulli in his famous Ars Conjectandi,
published posthumously in 1713. In this book, Bernoulli wrote that he used the method described
below to compute “in less than half a quarter an hour” that

110 + · · ·+ 100010 = 91409924241424243424241924242500.

What a showoff! Let’s see how he did it. I’ll give a modern explanation of the trick.
Sums are to integrals as the difference operator

(∆f)(z) := f(z + 1)− f(z)

is to derivatives. It would be crazy to tackle fancy integrals before mastering derivatives. So, before
trying to do fancy sums, we should master the difference operator! We will think of this as an
operator

∆: E → E

where E is the space of entire functions on the complex plane. Note that E is contained in the space
of formal power series C[[z]], so it gives us a slight variation on a theme we know and love: the Fock
representation. In particular, we have annihilation and creation operators

a: E → E , a∗: E → E

given by the usual formulas:
(af)(z) = d

dz f(z)
(a∗f)(z) = zf(z)

The advantage of E is that we can evaluate its elements at any point of the complex plane, while
formal power series may not converge. We need this to make ∆ well-defined.



Now: since the difference operator is a discretized version of the derivative, let us find a formula
for ∆ in terms of a!

1. For any t ∈ C, define the operator
eta: E → E

by

eta =
∑
k≥0

(ta)k

k!
.

Show that
(etaf)(z) = f(z + t).

2. Show that
∆ = ea − 1.

Next: just as integration is the inverse of differentiation, summation should be the inverse of the
difference operator. So, to do sums we just need an inverse for the difference operator ∆. To see
what I mean, prove the following discrete version of the Fundamental Theorem of Calculus:

3. Show that if F ∈ E and
∆F = f

then
n−1∑
i=0

f(i) = F (n)− F (0).

So, if we could compute F from f via F = ∆−1f we’d have a nifty formula for summing the values
of f . There’s just one slight catch: the operator ∆: E → E isn’t invertible! The reason is that ∆F = 0
whenever F is a constant function. Since ∆ has a nontrivial kernel, it can’t have an inverse.

In fact, this problem is already familiar from ordinary calculus. I was lying slightly: integration
isn’t really the inverse of differentiation as an operator on functions. The derivative of any constant
is zero, so the integral of a function is only well-defined up to a constant.

However, the operators a and ∆ do have one-sided inverses, and this all we really need!

4. Define the operator a−1: E → E by

(a−1)f(z) =
∫ z

0

f(u)du.

Show that
aa−1f = f

but
not necessarily a−1af = f

for all f ∈ E .

We now use a−1 to concoct a one-sided inverse for the difference operator ∆ as follows. We saw
how the operator ∆ = ea − 1 can be written as a power series in a. We’d like to do the same for

∆−1 =
1

ea − 1
,



but we can’t, since the function
1

ex − 1
has a simple pole at x = 0. To get rid of this pole, we can work instead with

x

ex − 1
.

This is an entire function if we define its value at x = 0 to be 1, so we can write it as a power series:

x

ex − 1
=
∑
k≥0

Bk
xk

k!

where Bk are the Bernoulli numbers. We can then define an operator

a

ea − 1
: E → E

by the same power series:
a

ea − 1
:=
∑
k≥0

Bk
ak

k!

Next, we define the operator ∆−1 by

∆−1 =
a

ea − 1
a−1.

where a−1 is the one-sided inverse of a. And believe it or not, ∆−1 is a one-sided inverse of ∆:

5. Starting from the definition of the Bernoulli numbers, show that

x =
∑
j≥1

xj

j!

∑
k≥0

Bk
xk

k!
. (1)

Use this to show

a =
∑
j≥1

aj

j!

∑
k≥0

Bk
ak

k!

and therefore
a = ∆

a

ea − 1
. (2)

6. Using parts 4 and 5 together with the definition of ∆−1, show that

∆∆−1f = f

for all f ∈ E , but
not necessarily ∆−1∆f = f.

Warning: here’s how not to do the first part:

∆∆−1 = (ea − 1)
a

ea − 1
a−1 = aa−1 = 1

You can’t simply cancel the factors of ea−1, because
a

ea − 1
is not defined as the product of a and the

(nonexistent) operator (ea − 1)−1 — it’s defined as a power series involving the Bernoulli numbers!
This is why we need the rigamarole in part 5.



Now, here’s how we use this abstract nonsense to calculate a sum! Let’s do the example Faulhaber
did, where the function to be summed is

f(z) = zp.

Then we have
∆−1f =

a

ea − 1
a−1f

but by definition,

(a−1f)(z) =
∫ z

0

f(u)du =
zp+1

p+ 1
so

(∆−1f)(z) =
a

ea − 1
zp+1

p+ 1

=
∑
k≥0

Bk
k!

dk

dzk
zp+1

p+ 1

=
p+1∑
k=0

Bk
k!

(p+ 1)p · · · (p+ 1− k)
zp+1−k

p+ 1

=
1

p+ 1

p+1∑
k=0

Bk

(
p+ 1
k

)
zp+1−k

and since ∆−1 is a one-sided inverse of ∆, part 3 gives
n−1∑
i=0

ip = (∆−1f)(n)− (∆−1f)(0)

=
1

p+ 1

p+1∑
k=0

Bk

(
p+ 1
k

)
np+1−k

or if you prefer,
n∑
i=1

ip =
1

p+ 1

p+1∑
k=0

Bk

(
p+ 1
k

)
(n+ 1)p+1−k.

Since the right-hand sum has just p+ 1 terms, regardless of n, it’s actually much easier to calculate
than the left-hand sum when n gets big.

... or at least it would be easy if we knew the Bernoulli numbers! We could calculate these by
grinding out the Taylor series of x/(ex − 1), but here’s a much quicker way:

7. By taking the coefficient of xi+1 on both sides of equation (1), show that

0 =
B0

0!
· 1

(i+ 1)!
+
B1

1!
· 1
i!

+ · · ·+ Bi
i!
· 1

1!

for i ≥ 1.

8. Using part 7, show that

0 = 1B0 + 2B1

0 = 1B0 + 3B1 + 3B2

0 = 1B0 + 4B1 + 6B2 + 4B3

0 = 1B0 + 5B1 + 10B2 + 10B3 + 5B4



and so on, where the numbers in boldface are taken from Pascal’s triangle in an obvious way.

9. Show that B0 = 1, and by using the recurrence in part 8 work out B1, B2, B3 and B4.

10. Use everything we’ve done to work out an explicit formula for

14 + · · ·+ n4.

11. Show that

1p + · · ·+ np =
(B + n+ 1)p+1 −Bp+1

p+ 1

where the rules of the game are that we expand the right-hand side using the binomial theorem and
then set Bi equal to the Bernoulli number Bi. What formula do you get if you set n = 0 here?
Where have you seen that formula before?

12. Extra Credit: categorify this homework assignment as much as possible, replacing E by the
category of entire structure types: that is, structure types whose generating functions are entire
functions on the complex plane. Why is this hard?


