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1. We’re interested in the operator eta =
∑
k>0

(ta)k

k! , which is to say
∑
k>0

tk

k! ·
dk

dzk
. Applying this to some function f(z) ∈ E to get (etaf)(z) =

∑
k>0

tk

k! ·
dkf(z)

dzk
= f(z) +

∑
k>1

tk

k! ·
dkf(z)

dzk
, we note that since f is entire, Taylor’s

theorem says that this expansion as a power series in t about z converges
to the value of f(z + t). This being so for every z ∈ C, we have that
(etaf)(z) = f(z + t).

2. The difference operator ∆ is defined as (∆f)(z) = f(z+1)−f(z) = (e1af)(z)−
f(z), for all f , z. So as an operator, ∆ = e1a − 1 = ea − 1.

3. If ∆F = f , we have
∑n−1
i=0 f(i) =

∑n−1
i=0 (∆F )(i) =

∑n−1
i=0 F (i + 1) − F (i).

This is a telescoping sum, in which every value in the sum except the first
and last appears twice, with opposite signs (first positive, then negative with
the next value of of the summation index). Cancellation leaves the F (i+ 1)
term for the case i = n − 1 and the F (i) term for i = 0. Thus, we have∑n−1
i=0 f(i) = F (n)− F (0).

4. Given any entire function f ∈ E , we have

(aa−1f) =
d
dz

(a−1f)(z) =

(
d

dz′

∫ z′

0

f(u)du

)
(z).

As a complex-valued function on the real line, the Fundamental Theorem of
Calculus means that the derivative of

∫ z′
0
f(u)du with respect to z′ at z is

just the value of f there, f(z). Since f is entire as a function f : C→ C, the
complex derivative exists everywhere and is just the same as the derivative as
a function f ′ : R→ C. So in fact we have for all z that (aa−1f)(z) = f(z), so
aa−1f = f (and this is true ∀f ∈ E , hence in fact as an operator aa−1 = IdE).
On the other hand, since the integral of a function is only defined up to a
constant, a is not a right inverse of a−1: if f ≡ k for any constant k 6= 0, we
have:

(a−1af)(z) =
∫ z

0

(af)(u)du =
∫ z

0

(
d

du
k

)
du =

∫ z

0

0du = 0

This is, in general, not f(z), which is k for all z. Thus, a is a left inverse
only for a−1, so called. In categorical terms, both maps are endomorphisms
of E . Seen this way, a is an epimorphism (indeed, a split epi since it has a
right inverse - and in fact is surjective as a set-map since every function in
E is the derivative of something in E) and likewise a−1 is a monomorphism
(indeed, a spilt mono since it has a left inverse - and in fact is injective as a
set map, since there is exactly one function in E whose integral any given f
is, namely its derivative).

5. The Bernoulli numbers are the coefficients Bk in the expression z
ez−1 =∑

k>0Bk
zk

k! , which is an entire function. The function ez − 1 is also entire
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and only zero at z = 0, where it has a zero of first order (hence z
ez−1 being

entire). The power series for this function is ez−1 =
∑
j>0

zj

j! −1 =
∑
j>1

zj

j! .
Since both of these are entire functions, the power series converge everywhere
in C, and the product is also entire, so we can write the product of the two
functions (which is just z, of course) as the product of the two power series:

z =
∑
j>1

zj

j!

∑
k>0Bk

zk

k!

Now, to see that the same applies when we replace the complex variable z
by the differential operator a = d

dz , we can note that the Fourier transform
of this differential operator is multiplication by z (i.e. if we take functions to
their Fourier transforms, the action of a is to take the transform of a function
f , say f̄ , to zf̄ , and ak acting on f takes f̄ to zkf̄). Thus, by the above and
by linearity of the Fourier transform, the effect of a on f̄ is:

a =
∑
j>1

aj

j!

∑
k>0Bk

ak

k!

Now, by definition of ∆ and a
ea−1 , this just says that a = ∆ a

ea−1 .

6. To see that ∆−1 is a right-inverse of ∆, note that for any f ∈ E , we have

(∆∆−1f)(z) =
(

∆ a
ea−1a

−1f
)

(z) (definition of ∆−1)

=
(

∆ a
ea−1

(∫ z
0
f(u)du

))
(definition of a−1)

=
(
a
(∫ z

0
f(u)du

))
(by part 5)

= d
dz

∫ z
0
f(u)du

= f(z)

So in fact ∆∆−1f = f . On the other hand, the converse need not be so:

(∆−1∆f)(z) =
(

a
ea−1a

−1∆f
)

(z)

=
(

a
ea−1a

−1((ea − 1)f)
)

=
(

a
ea−1

∫ z
0

(∑
j>1

aj

j!

)
(f)du

)
=

(∑
k>0Bk

ak

k!

∫ z
0

(∑
j>1

aj

j! (f)
)

du
)

=
(∑

k>0Bk
ak

k!

(∑
j>1

∫ z
0

(
aj

j! f
)

du
))

This last step makes sense by linearity and since f is entire, so every derivative
exists everywhere: the sum converges since (ea − 1)f is also entire.
Now, since the integral is only a right-inverse of a, this will not necessarily
be the same as f . If the integral were a left-inverse of a, we could pass
the integral through the derivatives in front of f and get back f by part
5. However, this is not guaranteed to work, and we make get a constant of
integration. Thus, (∆−1∆f)(z) may not be equal to f(z).

7. We had seen that z =
∑
j>1

zj

j!

∑
k>0Bk

zk

k! and if we equate coefficients of
powers of z, we find that every coefficient of the right hand side is 0 except
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for the coefficient of z1, which is 1. Now, the coefficient of zi on the right
hand side will be ∑

j + k = i
j > 0

1
j!
· Bk
k!

=
i∑

j=1

1
j!
· Bi−j

(i− j)!

If we expand this sum for any i 6= 1, so that the whole sum is 0, we find:

0 =
1
1!
· Bi−1

(i− 1)!
+ . . .+

1
(i− 1)!

· B1

1!
+

1
i!
· B0

0!

8. The relations we found in part 7 give expressions in the Bj which sum to
0, one for each value of i greater than 1. In each case, we have fractional
coefficients which can be cleared by multiplying the whole expression on the
right hand side by i!, in which case we get the relations:

0 =
∑

j + k = i
j > 0

i!
j!k!

Bi−j =
∑

j + k = i
j > 0

(
i

j

)
Bi−j

Notice that the coefficients of the Bj are the same as the binomial coefficients
from Pascal’s triangle, as we had hoped.

9. To find out B0, recall that we defined the Bk to be the coefficients in z of the
power series for the function z

ez−1 extended to equal 1 at x = 0. B0 is the
constant coefficient for the power series about 0, and is therefore 1. Using
the relations from part 8, this implies that:
0 = 1(1) + 2(B1), hence B1 = − 1

2
0 = 1(1) + 3(− 1

2 ) + 3(B2) = − 1
2 + 3B2, hence B2 = 1

6
0 = 1(1) + 4(− 1

2 ) + 6( 1
6 ) + 4(B3) = 0 + 4(B3), hence B3 = 0

0 = 1(1) + 5(− 1
2 ) + 10( 1

6 ) + 10(0) + 5(B4) = 1
6 + 5B4, hence B4 = − 1

30 .
0 = 1(1) + 6(− 1

2 ) + 15( 1
6 ) + 20(0) + 15(− 1

30 ) + 6(B5), hence B5 = 0

10. We had seen that∑n
i=1 i

p = 1
p+1

∑p
k=0Bk

(
p+1
k

)
(n+ 1)p+1−k

Applying this to the situation where p = 4, we find∑n
i=1 i

4 = 1
5

∑4
k=0Bk

(
5
k

)
(n+ 1)5−k

= 1
5

[
(1)(1)(n+ 1)5 +

(
− 1

2

)
(5)(n+ 1)4 +

(
1
6

)
(10)(n+ 1)3 +

(
− 1

30

)
(5)(n+ 1)

]
= (n+1)5

5 − (n+1)4

2 + (n+1)3

3 − (n+1)
30

11. The binomial expansion for (B + (n+ 1))p+1 is
∑p+1
k=0

(
p+1
k

)
Bk(n+ 1)p+1−k.

Identifying Bk with Bk and dividing by p+ 1 gives the expression above.

12. The first and most obvious reason it’s difficult to categorify this business is
the presence of negative coefficients, which means we can’t categorify using
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ordinary species. (Cubical species could help here, though they are not nec-
essary at first.) Another problem is that A−1 and ∆−1 will not be associated
with natural transformations between structure types, since they necessar-
ily involves an arbitrary choice (of elements to remove, in each case). Here
follow some comments on categorifying the results from various parts of this
computation:

1. If we define EtA to be the operation on structure types ETA =
∑
k>0

(tA)k

k! ,
this amounts to an operation taking a structure type and producing the
“sum” (union) of types which apply (TA) some number k of times, over
all k. For each particular case k, in the case t = 1, this is simply taking
the “derivative” k times, which gives a new structure whose effect on a
set S is to put the original structure on the set S+k - the k! denominator
reduces be the action of a permutation group, meaning these elements
are unordered. When T is general, we interpret this as meaning that the
elements we add are T -coloured.
The result here is that (ETAF )(Z) ∼= F (Z + T ) - that is, putting the
structure EtAF on a set is the same as putting an F structure on a set of
things which are either one-element sets or members of T , the set of colours
we could paint the new elements we add in the definition of ETA. That is,
we think of these not as elements of a set contributing to the cardinality of
the set S on which we put the ETA-structure, but as “just colours”. (Here
we’re using the interpretation of composition that a F (Z + T ) structure
is an F structure on sets of Z + T structures, i.e. things which are either
a one-element set or a colour from T .

2. The ∆ operator, applied to a structure type F , should satisfy ∆F (Z) ∼=
F (Z + 1)− F (Z), which as an equivalence of structure types means that
a ∆F structure on a set S is an F structure on a set consisting of either
single elements, or the empty set (that is, an F structure on any set
larger than or equal to than S, since we are simply not counting some of
the points toward the cardinality), with the exception that it cannot be
simply an F structure on S (that is, those on sets whose elements are just
one-point sets are removed). This means a ∆F -structure on S is an F
structure on any set bigger than S.1

What we’re saying here ∆ ∼= EA − 1, is that the natural transformation
∆ between structure types (which are functors) is the same as the nat.
trans. which takes the derivative any number of times (other than 0)
- that is, which adds any number of points surreptitiously into our set
before putting the F -structure on it (where F is whatever structure ∆ is
acting on). This is obvious from the description in the last paragraph.

3. We want to say that if ∆G ∼= F , then
∑n−1
i=0 F (i) ∼= G(n) − G(0). The

first says that F structures on S are G structures on anything strictly

1It seems there should be a correction in the cardinality accounting for the k! denominator,
something to the effect that all the added elements are interchangeable... Not clear to me
at the moment what exactly this should be, though.
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containing S. The second says that when we take the groupoid we get by
evaluating G at the n-element set and removing from it the sub-groupoid
which is the same as what we get evaluating G at the empty set, we should
get the same as if we tack together all the groupoids obtained by evaluating
F at sets of size smaller than n. When we proved this in the power series
case, we had telescoping series - a similiar effect should occur here - each
of the F (i) groupoids will be easily describable as some groupoid G(i+ 1)
with G(i) removed (the strict inclusion in our description of F ), so taking
all these together will fill in all the missing parts of G(n) from F (n − 1)
except the part where we evaluate at the empty set.2

4. Now we’re defining an inverse to the derivative. This A−1 is clearly
nonunique, since any given set S can be written in |S| different ways
as some smaller set with a single element adjoined. So when we take A−1

of some structure type F and put this new type on a set S, we get sets
of F structures on S with one element removed (nonuniqueness coming
from the fact that we could take out different elements, so there is no
natural way to do this). This is not really a natural transformation of
species, which presumably has something to do with the extra constant
that comes in when we integrate (e.g. integrating the structure type “be-
ing a 5-element set”, Z5 gives 1

6Z
6 - this fractional coefficient apparently

counting the number of ways we could have done this, suggesting that it
measures the degree of nonuniqueness of A−1. That AA−1F ∼= F , if we
swallow this problem and keep going, is due to the fact that putting an
element in, once we have removed one, gives a set that can be naturally
identified with the original by calling these the same element, which we
are putting “back” in. That A−1AF is not naturally equivalent to F is
due to the fact that if we remove the element AFTER putting one it, it
may not be the same one.

5. Getting an inverse for ∆, the transformation which, applied to F gives
F -structures on “bigger sets than S”, is problematic for similar reasons to
the problems we encountered in categorifying part 4, only more so. The
“even more so” is visible in the fact that we would need to categorify the
differential-operator power series we had for the difference operator ∆,
which, however, has coefficients which are not only fractional (which we
might could handle by some clever trick with groupoids), but also negative.
This might could be handled by re-casting this whole crazy affair in the
setting of cubical species, but I won’t be doing that here.

Well, from here on in these problems will only get worse, so let’s take this
opportunity to stop categorifying for the moment, mentioning only that to do
this properly would require working in a category in which we can handle neg-
ative coefficients, which by itself would be okay since such a category exists.
We also also would have to somehow deal suitably with the non-naturality of

2I’m not quite sure how to put this better. Describing the groupoids involved here is still a
bit mysterious to me. So it goes.
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some of the transformations involved - and the method for doing this ought
to give entities rather like structure types, but with fractional coefficients,
where the denominators handle the size of the collection of different choices
we might make at certain key points. Since we already have non-integral
coefficients turning up when we consider groupoid cardinalities, and these
are related to automorphisms of objects in a groupoid, this might be a rele-
vant tool, using those non-unique choices to give those automorphisms. Then
again, it might not.
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