Last time we had:

\[\text{Set} \xrightarrow{S \rightarrow CS} \text{Vect}_C \]
\[\quad \downarrow V \mapsto SV \]
\[\quad \text{CommAlg}_C \]

*Given a set \(S \) of "vibrational modes" we can form the complex vector space \(CS \) with basis \(S \); it's just the classical phase space. E.g. if \(S = 1 \), \(CS = C \) is the classical phase space for the harmonic oscillator with 1 degree of freedom:

\(C \ni z = q + ip \)

describes position & momentum of the oscillator. If \(S = n \), \(CS = C^n \) & we get \((z_1, \ldots, z_n) = (q_1 + ip_1, \ldots, q_n + ip_n) \).

Given a phase space \(V \subseteq \text{Vect}_C \), we can form the symmetric tensor algebra on it, \(SV \); this is the "pre-Fock space", whose Hilbert space completion is the Hilbert space of the quantum harmonic oscillator. E.g. if \(V = C \), \(SV = C[z] \). If \(V = C^n \), \(SV = C[z_1, \ldots, z_n] \).
There's another route:

\[
\begin{array}{cc}
\text{Set} & \xrightarrow{s \mapsto \mathbb{C}s} & \text{Vec}_\mathbb{C} \\
\downarrow \quad \alpha & \uparrow \quad \text{V} \mapsto \text{SV} & \text{or } "\text{V} \mapsto \text{[V]}" \quad ?.
\end{array}
\]

\[
\begin{array}{c}
\alpha \\
\downarrow
\end{array}
\]

\[
\begin{array}{c}
\text{CommMon} \\
\xrightarrow{M \mapsto \text{CM}} & \text{CommAlg}_\mathbb{C}
\end{array}
\]

Here \([S]\) is the free commutative monoid on \(S\): e.g. if \(S = \{z_1, \ldots, z_n\}\) then \([S]\) is the comm. monoid of monomials \(z_1^{p_1} \cdots z_n^{p_n}\). Given a comm. monoid \(M\), \(\text{CM}\) consists of all formal linear combinations of elts. of \(M\), & this is a commutative algebra. This square commutes up to natural isomorphism:

\[
\alpha_s : \mathbb{C}[S] \rightarrow [S].
\]

i.e. "\(\mathbb{C}\) commutes with \([\cdot]\)."

E.g.

\[
\alpha_s^{-1}((z + 2i z_2)(z_3 - 7z_4)) = z_3 - 7z_1 z_4 + 2i z_2 z_3 - 14i z_3 z_4.
\]

\(\alpha_s^{-1}\) is just the distributive law in action! (it lets us write products of sums as a sum of products)

So, whenever we have a commutative square of free functors, people call it a distributive law.
Physically, if S is a set of "vibrational modes" or "types of particle", the free comm monoid $[S]$ is the set of "collections of particles" - e.g. $z_1^p_1 \ldots z_n^p_n$ represents a collection with p_i particles of type i. These monomials form a basis for the polynomials, so physically these states form a basis of Fock space.

We would like to generalize this in a way that is not specific to C. Let's replace C by any commutative rig R:

\[
\begin{array}{ccc}
\text{Set} & \xrightarrow{S \mapsto RS} & \text{R-Mod} \\
\downarrow & & \downarrow \\
\text{CommMon} & \xrightarrow{M \mapsto RM} & \text{Comm R-Alg}
\end{array}
\]

R-modules & commutative R-algebras are defined for comm. rigs just as for comm. rings.

(Note: if your algebra book defines an R-module as an abelian group, replace group by monoid - the negatives are superfluous even in the ring case.)

Again, the diagram commutes up to natural isomorphism.
Let's try $R = \mathbb{N}$, the free comm. rig on no generators:

$\text{Set} \xrightarrow{\text{taking formal sums}} \text{Comm Mon} (= \mathbb{N}/\text{Mod}) \xrightarrow{\text{taking formal products}} \text{Comm Rig} (= \text{Comm } \mathbb{N}/\text{Alg})$

Another famous example: $R = \mathbb{Z}$, the free commutative ring on no generators:

$\text{Set} \xrightarrow{\text{taking formal sums \& differences}} \text{AbGrp} \xrightarrow{\text{taking formal products}} \text{Comm Mon} \xrightarrow{\text{taking formal sums \& differences}} \text{Comm Ring}$
Let's do an example.

\[\sin x, \sin 2x, \sin 3x, \ldots \Rightarrow \mathbb{N}^+ \]

A violin string has vibrational modes forming the set \(\mathbb{N}^+ \) if our string has length \(\pi \). The frequency of the vibration of the \(n \)th mode is proportional to \(n \), \(n \) depending on tension, mass density of the string.

Let's just say \(\nu_n = n \) for simplicity. In QM we learn that energy \(\nu \cdot \text{frequency} \) so we can also say \(E_n = n \).

We'll count the number of states having energy \(E \) for the quantized string.