QUANTUM GRAVITY HOMEWORK 7
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2. Since the Bernoulli numbers are defined by the relation
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by problem 1. Since coth z is an odd function, z coth z is an even function and hence
so is Zcoth 3. It is the defining property of even functions that their power series
expansion has no odd-powered terms, or rather, that the coefficient of 2?*! is 0 for
every n. Then collecting coefficients, the second equality in (1) can be rewritten
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which immediately implies
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. Now we obtain a power series:
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In (2), the odd terms (after the first) drop out by the result in problem 2. Now

making the substitution £ — z,
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Then making another substitution z +— iz,
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But note that we can go another way with this:

Z BQk

k

= jzcothiz

1z —1z
. e +e
=lz—— def of coth z
e — e~
e 4 e 21 1
=1z - — — . —
2 e —e ¥ g
. cosz
=1z
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and we are done.
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. Since
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we make the substitution 7z — 2z to obtain
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Then, multiply both sides by z/7 to obtain
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Note that the second sum vanishes in line (3) because
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and the terms of this latter sum cancel pairwise:
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we would like to show
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Working backwards just for kicks,
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Note that the sums may be interchanged in (5) because the summands are all positive
(since everything is squared), and that the —1 in (6) comes from the missing 0 term:
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We can use the geometric series formula here because we are restricting to the disk
|z| < m, where the summand is
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Finally, we substitute (7) back into (4) and obtain

zcotz-l—QZW—l—QZCQk ( )

n>1 k>1

5. From 3&4 we obtain
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Now we can collect terms and solve for ((2k):
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6. Now we can compute (and this is cool!):
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7. What structure type would seem to have the generating function
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The structure type of “not being a simply-connected orbifold”?
No, really I have no idea. In any case, I think the trouble is that it’s negative ...




