From the Associator to the 6j Symbols

John C. Baez, January 20, 2005

Given a 2-algebra A with multiplication

$$m: A \otimes A \to A$$
,

the associator is a natural isomorphism

$$\alpha : (m \otimes 1)m \Rightarrow (1 \otimes m)m$$

which we can draw as this process:

If we pick a basis of objects e^i for the 2-vector space A and define vector spaces

$$m_k^{ij} = \text{hom}(e^k, e^i \otimes e^j),$$

we can label all the strands in the above diagram by basis objects:

and use this to read off how the associator gives a bunch of linear operators:

$$\alpha \colon m_p^{ij} \otimes m_l^{pk} \to m_q^{jk} \otimes m_l^{iq}.$$

If we then go ahead and pick bases of all four vector spaces here:

$$E^{\mu} \in m_p^{ij}, \quad E^{\nu} \in m_l^{pk}, \quad E^{\lambda} \in m_q^{jk}, \quad E^{\omega} \in m_l^{iq},$$

we can describe the above linear operators as matrices! Note that picking bases of these vector spaces amounts to labelling the *vertices* in the above diagram by basis *vectors*:

Thus, we can describe the associator in a very low-brow way as a bunch of numbers depending on the 6 Latin indices i, j, k, l, p, q and the 4 Greek indices $\mu, \nu, \lambda, \omega$. This is a categorified version of the usual index notation that physicists like — but now there are two layers of indices: Latin indices for bases of 2-vector spaces, and Greek indices for bases of vector spaces!

In the special case where A = Rep(SU(2)) these numbers are called the $\mathbf{6}j$ symbols, since then the spaces m_k^{ij} are at most 1-dimensional, which allows us to ignore the Greek indices above, leaving a number that depends on 6 Latin indices.

For applications to physics and topology, it's good to imagine the associator as a process that sweeps out a surface in spacetime:

Our index notation then amounts to labelling all the *faces* of this surface by *Latin letters* corresponding to a basis of our *2-vector space A*, and labelling all the *edges* of this surface by *Greek letters* corresponding to bases of various *vector spaces*. So, we get a number from this picture:

It's also crucial to note that the 2d surface traced out by the associator is Poincaré dual to a tetrahedron. We can draw it like this:

