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Theorem 1 The collection Cat of all categories, together with functors and
natural transformations, is a (strict) 2-category.

Proof : We first define the 2-category and then show it satisfies the usual ax-
ioms. We define it to contain:

• Objects: Categories

• Morphisms: Functors

• 2-Morphisms: Natural transformations

To make Cat into a 2-category, we need to show that left and right unitors,
and an associator. However, this is trivial: in fact, it suffices to take all of
these to be the identity, making Cat a strict 2-category. To verify that this
choice works, we check that: for any categories C1 and C2, Hom(C1, C2) is a
category; that composition is a functor between such hom-categories; and that
the unitors and associator satisfy the requisite identities. First is the “triangle
identity”, namely the condition that the diagram

(G ◦ 1) ◦ F aG,1,F //

l⊗1F

��

G ◦ (1 ◦ F )

1G⊗rwwooooooooooo

G ◦ F

(1)

commute. This holds since all three maps a, r, and l, are just identity maps.
The associator satisfies the pentagon identity:

(F ◦G) ◦ (H ◦ J)

F ◦ (G ◦ (H ◦ J))

F ◦ ((G ◦H) ◦ J)(F ◦ (G ◦H)) ◦ J

((F ◦G) ◦H) ◦ J

aF,G,H◦J

((PPPPPPPPPPPPPPP

1F ◦aG,H,J

GG������������

aF,G◦H,J
//

aF,G,H◦1J

��////////////

aF◦G,H,J

66nnnnnnnnnnnnnnn

(2)
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for the same reason.
Next we show that for any categories C1 and C2, hom(C1, C2) is a category.

To do this, we need to check that the collection of natural transformations is
closed under (“vertical”) composition, and that there is an identity transforma-
tion for each functor. The vertical composition of two natural transformations
works as follows: each natural transformation α : F → G gives, for each object
x ∈ C1, a morphism α(x) ∈ C2, so that for every morphism f : x → y in C1,
the diagram

F (x)

α(x)

��

F (f) // F (y)

α(y)

��
G(x)

G(f) // G(y)

(3)

commutes. But then, vertical composition of natural transformations α : F → G
and β : G→ H gives a diagram like this for each morphism f :

F (x)

α(x)

��

F (f) // F (y)

α(y)

��
G(x)

β(x)

��

G(f) // G(y)

β(y)

��
H(x)

H(f) // H(y)

(4)

and since each square commutes, so does the whole diagram, so that β ◦ α :
F → H is a natural transformation. This composition is associative since the
composition β(x) ◦ α(x) is associative for each x. Likewise, there is a unit
natural transformation 1F : F → F for which 1(x) = 1x for every x.

Next we need to see that (“horizontal”) composition of functors ◦ : hom(A,B)×
hom(B,C)→ hom(A,C) is itself functorial, we need to check that the compos-
ite of two functors is indeed a functor; that the operation ◦ preserves source,
target, and (“vertical”) composition of natural transformations; and that the
associativity and unit axioms hold.

Now, since functor F : C1 → C2 consists of a set map ob(F ) : ob(C1) →
ob(C2) between the sets of objects together with a set map mor(F ) : mor(C1)→
mor(C2) between the morphisms, such that source and target maps s and t, and
composition, are preserved. Given two functors F : C1 → C2 and G : C2 → C3,
we then can compose the set maps for objects and morphisms separately, and
define ob(G ◦ F ) = ob(G) ◦ ob(F ) and mor(G ◦ F ) = mor(G) ◦mor(F ).

To see this is a functor, note that if since if both mor(F ) and mor(G) re-
spect source and target maps, so does mor(G ◦ F ). If s(F (m)) = F (s(m)) and
s(G(m)) = G(s(m)) for any morphism m, then s(G(F (m))) = G(s(F (m))) =
G(F (s(m))), and similarly for t. Similarly, G ◦ F respects composition: given
morphisms f : x → y and g : y → z in C, we have F (g ◦ f) = F (g) ◦ F (f).
But then, given two functors F : C1 → C2 and G : C2 → C3, we have that
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G ◦ F (g ◦ f) = G(F (g ◦ f)) = G(F (g) ◦ F (f)) = G ◦ F (g) ◦G ◦ F (f). So G ◦ F
is a pair of set functions preserving source and target maps and composition -
i.e. a functor.

So finally we want to show that ◦ preserves source, target, and vertical
composition for natural transformations. First, consider the effect of ◦ on
natural transformations: suppose we have functors, F, F ′ : C1 → C2 and
G,G′ : C2 → C3, and natural transformations α : F → F ′ and β : G→ G′, then
we should have a natural transformation α ◦ β from G ◦ F to G′ ◦ F ′. Applying
these functors in four possible combitations to a morphism f : x → y we get a
commuting cube:

G ◦ F (x)

G(α(x))

��

G◦F (f) //

β(F (x)

&&MMMMMMMMMMM
G ◦ F (y)

G′(α(y))

��

β(F (y)

&&MMMMMMMMMM

G′ ◦ F (x)

G′(α(x))

��

G′◦F (f) // G′ ◦ F (y)

G′(α(y))

��

G ◦ F ′(x)
G◦F ′(f) //

β(F ′(x))

&&MMMMMMMMMMM
G ◦ F ′(y)

β(F ′(y)

&&MMMMMMMMMM

G′ ◦ F ′(x)
G′◦F ′(f) // G′ ◦ F ′(y)

(5)

The squares of this cube all commute, by naturality of α and β and the fact that
F and G′ are functors. But then, this gives us, for each x, a map G′(α(x)) ◦
β(F (x)) = β(F ′(x))◦G(α(x)) from G◦F (x) to G′ ◦F ′(x) and that these satisfy
the commutation relation for a natural transformation. So we call this β ◦α(x).
It is clear that ◦ preserves source and target maps for natural transformations,
and vertical composition (which gives a commuting parallelepiped in the same
way).

So indeed Cat is a 2-category. QED
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