80 Cartesian closed categories and A-calculus

Proof. (i) Consider the natural transformation e: CL —id defined for each
& in Carty by &(&). CL(f) - « as follows:

An object of CL(«/) is a type of L(s), that is, an object of <. Put
() (A) = A.

An arrow B— C in CL(#) has the form f =(yeB, ¢(y)), where ¢(y)eC
in L(s#). Put &(«/) (f)=the unique arrow g: B—C such that gy = ¢(y),
using functional completeness.

It is easily verified that (<) is an arrow in Carty. Moreover, in view of
functional completeness, it establishes a one-to-one correspondence
between Homgy,,, (B, C) and Hom,, (B, C). Thus &(s¢) is an isomorphism.

(i) Consider the natural transformation #:id — LC defined for each & in
2-Cale by n(&). & - LC(Z) as follows:

n(ZL)(A) = 4;
'7(-7)((/’(3‘1,---,)‘;.)) E(ZGI, (p(xla-“’xn)) in C(g(xlv--,xn))'

Note that we have identified C (#) [x,, ..., x,] withC(Z(x,,...,x,))as is
justified by Proposition 11.2. It is easily verified that n(#) is an arrow in A-
Calc. To see that #(.%)is an isomorphism, construct its inverse, which sends

(zel, p(z)) onto @(*).

Corollary 11.4. C(¥,), the free cartesian closed category with weak
natural numbers object generated by the pure typed A-calculus, is an initial
object in Carty.

The initial object of Carty may also be obtained by the methods of
Section 4.

We end this section with a remark concerning the problem of how to
interpret languages in categories. In the present context this is explained
quite easily: an interpretation of a typed A-calculus . in a cartesian closed
category & with weak natural numbers object is just a translation & —
L(s#). By Theorem 11.3 (or just by adjointness, see Exercise 3 below), this is
essentially the same as a cartesian closed functor C(¥)— «. As already
observed after Proposition 10.7, &, has a unique interpretation in any
cartesian closed category with weak natural numbers object.

Exercises

1. Show how to obtain the free cartesian closed category with a weak
natural numbers object generated by any classification. (See Exercise 2 of
Section 10.)

2. In the spirit of this section, find a new method for constructing the free

The decision problem for equality 81

cartesian closed category with a weak natural numbers object generated
by a graph.

3. Show that C is left adjoint to L with adjunction 7 and &.
4. Prove that Iz(<{y,v),x> =(tel, I(y,v,x))in C(ZL(y,v,x)).

12 The decision problem for equality

Let us look at the cartesian closed category with weak natural
numbers object freely generated by the empty graph, as in Section 4, but
with weak natural numbers object, or as in Exercise 2 of Section 11. Since
both are initial objects in Carty (see Corollary 11.4), they are isomorphic.
We shall write &, for this initial object. €, is of interest to logicians, as it
gives a version of Godel’s primitive recursive functionals of finite type, and
to categorists, as it is related to the so-called ‘coherence problem’ for Carty,.
This problem asks when diagrams in a category commute or, equivalently,
when two arrows between two given objects are equal. Indeed if one wants
to compute Hom(A, B) in %,, two problems arise: -

(I) Find an algorithm for obtaining all arrows A — B in €, (that is, all
proofs A— B in the corresponding deductive system).

(IT) Find an algorithm for deciding when two arrows 4 — B are equal
(better: when two proofs describe the same arrow).

We shall here address ourselves to the second problem. Looking at the
proof of the distributive law

fr9>h=<{fhgh)
for cartesian closed categories given in Section 3, we note that both sides
must be expanded to be shown equal. It seems easier to consider %, as given
by C(Z,) rather than as constructed by the method of Section 4.

Two arrows f, g: A — Bin €, are thus given by two terms ¢(x) and y(x) of
type B in #, with a free variable x of type A. We want to decide whether
©(x) 5 ¥(x) holds, or equivalently, 1, , ¢(x) = A ,¥(x) holds in #,. Let us
call two terms a and b of &, whose free variables are contained in X
convertible if the equation a 5 b holds in #,,. Terms of %, are, of course,
defined inductively, as the reader will recall. Thus Problem (II) has been
reduced to deciding when two closed terms of type B in #,(x) or &, are
convertible. In view of the fact that there are closed terms of each type in
£, we need not distinguish between = and =, as was pointed out in
Section 10.

Actually, we shall solve the decision problem for convertibility not in &,
but in &Z,, which is like £, but without type 1. In other words, % is a

82 Cartesian closed categories and A-calculus

“variant of pure typed A-calculus in which the only basic type is N. This may
be done without loss in generality for the following reason: a closed term of
type Bin £ or #(x) corresponds to an arrow 1 — Bin %, or €, [x], where
the object B is canonically isomorphic to either 1 (which case may be
dismissed as uninteresting) or an object whose inductive construction does
not contain 1 at all. This is so in view of the canonical isomorphisms
Cx1=C=1xC, C'=C and 1°x 1. The last mentioned isomorphism
presupposes that Hom(1, C) is not empty, which is the case in %, as there
are closed terms of each type in %,

To solve the decision problem for convertibility of terms in %, we shall
replace convertibility by a finer relation, that of reducibility. However, it
becomes tedious to distinguish between terms which differ only in the
choice of bound variables. We shall call two such terms a and a’ congruent
and write a=a'.

First we shall define a relation a > a’ between terms of type A4 in &, or
£, (actually, congruence classes) and say ‘a basically reduces to a”. There
are eight basic reductions; in each of the basic equations of typed A-calculus
the left hand side basically reduces to the right hand side:

B1. a>x (ael,a % x); (not used in Zy)
B2. n({a,b))>a (acA,beB)

B3. w'({a,b>)>b (aeA, beB),

B4. {n(c),n'(c)> >c¢ (ceA x B);

BS. Awao(x) a> o(a) (ac A);

B6. Iea ffX)>f (feB4,x not free in f);

B7. I(a,h,0)>a (acA, he A%,
BS. I(a,h,S(n))> h'I(a,h,n) (acA,he A4, neN).

We shall say that b reduces to b’ in one step and write b > b’ provided b’ is
obtained from b by replacing a single occurrence of a subterm ain b byd,
where a > a'. For example,

;“xeA<n(<x,y>),y> ? ;'xeA <x’y>
because n({x,y>)>x.
We shall say that b reduces to b’ in n steps and write b > b’ provided
b=by>by > >b,=b. /

In particular, b 2 b means that b = b'. We shall also say b reduces to b’ and
write b'> b’ provided there is a natural number n such that b >b'.
The convertibility relation between terms is of course the smallest

The decision problem for equality 83

equivalence relation containing >, that is, the equivalence relation
generated by >. This takes a particularly simple form in view of the
following:

Proposition 12.1. (Church—Rosser Theorem). In %, if b > cand b > d then
there exists a term e such that c>eand d>e.

We postpone the proof of this until later and only note its consequence:

Corollary 12.2. 1fband b’ are terms of type B, then b = b’ holds in &, if and
only if there is a term deB such that b>d and b’ > d.

Proof. Tt suffices to check that the relation between b and b’ which holds
whenever there exists d such that b > d and b’ > d is an equivalence relation.

We shall call a term b irreducible, or in normal form, if there does not exist a
term b’ such that b > b', that is, if for no subterm a of b there exists a’ with
a > da'. Another way of saying this is that b > b’ implies b = b’ for all terms b’

Remark 12.3. In %, there are irreducible closed terms k(A) of each type A,
defined inductively as follows:

K(1) = *, k(N) = 0, k(4 x B) = {k(A), x(B)),)c(BA) = A, ,x(B).

We shall leave the easy verification of this to the reader and pass on to some
further obvious consequences of the Church—Rosser Theorem.

Clearly, a sufficient condition for b = b’ to hold in £, or ¥, is that b and
b’ reduce to congruent irreducible terms (or have congruent normal forms).
Call b normalizable if there exists an irreducible b* such that b > b*,

Corollary 12.4. In &, if b is normalizable, then its normal form is unique
up to congruence. Two normalizable terms are convertible if and only if
they have congruent normal forms.

One might think that this gives a decision procedure for convertibility of
normalizable terms: reduce each to normal form and see whether these
irreducible terms are congruent. Unfortunately, there is still a problem of
how to reduce a given term to normal form. While one sequence of one-step
reductions may end up with an irreducible term after a finite number of
steps, it is conceivable that another sequence of one-step reductions will
never terminate, and we may have no way of telling beforehand whether we
are on the right track.

We shall call a term bounded (some authors say ‘strongly normalizable’) if
there is a number n so that no sequence of one-step reductions has more
than n steps. The bound of t, written bd(t), is the smallest such n. For
example, the bound of an irreducible term is 0. Clearly, if a term is bounded,

84 Cartesian closed categories and A-calculus

every sequence of one-step reductions will terminate after a finite number of
steps. (The converse of this statement is also true, in view of Ko6nig’s
Lemma; but we shall not need this.) In particular, every bounded term is
normalizable. Note that if ¢ 3t then bd(r) > bd(t).

We thus have an algorithm for deciding convertibility of two bounded
terms in Z: just reduce both of them at random until irreducible terms are
reached and then compare these to see whether they are congruent.

We shall prove in Section 13 that the Church-Rosser Theorem holds for
bounded terms and in Section 14 that all terms are bounded. We shall thus
obtain an algorithm for deciding convertibility of terms in .#;, and therefore
for deciding equality of arrows in €, = C(%,).

For th\e moment, let us just make an observation that will be useful later.

Lemma 12.5. Suppose ¢(x)is a term in &, with no free variables other than
x of type A and a is a closed term of type A4 such that ¢(a) is bounded. Then
¢(x) is bounded.

Proof. If ¢(x) > ¥(x) by virtue of B2 to B8, then surely also ¢(a) > ¥(a).
However, when the basic reduction x T 1s used, then @(*) = y(*) are the
same terms. This unfortunate exception complicates the proof somewhat.
Still, ¢(x) = Y(x) implies ¢(a) = yY(a). Consider the set " of all terms y(x)
such that ¢(x) > y(x). For any §(x) in T it thus follows that ¢(a) > y/(a).
Since ¢(a) is bounded, the set A of all terms b such that ¢(a) > b is finite.
(Remember that we do not distinguish between congruent terms, that is,
terms that differ only in the choice of bound variables.) Moreover, for each b
in A, the set I, of all Y(x) such that y/(a) = b is finite. Hence I' < |) I, is also

beA
finite, and therefore (x) is bounded.

Exercises

1. Show that all irreducible closed terms of #, have the form =, S¥(0), (a,b)
(where a and b are necessarily irreducible) or A..,@(x) (where ¢(x) is
necessarily irreducible). Thus closed terms of the form n(c), n'(c), ffa or
I(a, h, n) are never irreducible.

2. Show that {a,b) is bounded if and only if a and b are bounded.

13 The Church—Rosser theorem for bounded terms

In this section we shall prove the Church-Rosser Theorem
(Proposition 12.1) for the special case when b is a bounded term of Z;, or,

i

)
[

The Church—Rosser theorem for bounded terms 85

more generally, of %, but without any subterm of type 1 other than *. As
we shall prove in Section 14 that every term is bounded, this will establish
Proposition 12.1.

Proposition 13.1. 1f bis bounded and b >c and b > d, then thereis a term e
such that czeand d>e.

Proof. We argue by induction on the bound of b and reduce the problem to
the case m< 1,n< 1. The case m=1, n=1, is handled by Lemma 13.2
below. If m =0, or n =0, there is nothing to prove.

So suppose m> 1 or n> 1. We then have

¢, b>d, > _.d

where m—1>0 or n—1>0. By Lemma 13.2 below we find e, so that
c;>e; and d; >e,;. Now ¢; and d, have smaller bound than b; so, by
inductional assumption, we can find ¢, and d, so that c>c,,e, >c,,
e, >d,andd > d,. Again, e, has smaller bound than b; so we can find e such
that ¢, > e and d, > e. By transitivity, c> e and d > e.

This proof is illustrated by the following diagram:

NN
NN

b>c, >,

b

/\
A

/_
\/\

It remains to prove the lemma. .

Lemma 13.2. If b >c and b > d then there is a term e such that ¢ > e and

d=e.

86 Cartesian closed categories and i-calculus

Proof. The reduction of b to ¢ depends on the basic reduction of a subterm
aof b to @', and the reduction of b to d depends on the basic reduction of a
subterm f of b to f". If a and f do not overlap, we have

b=...a...f...,
c=...a...f...,
d=..a..f[

If we now take
e=...a...f'...,

then clearly c>eand d > e.

If the subterms a and f of b do overlap, one of them must be a subterm of
the other, say f is a subterm of a. Without loss in generality, we may assume
that a = b. So b reduces in two ways: an ‘outer’ reduction on the whole term
b and an ‘inner’ reduction on the subterm f. Thus we have achieved a
reduction of the problem to the following special case:

Ifb >c (outer reduction) and b > d (inner reduction) then there is a term e
such that ¢ 2 e and d > e. (Recall that b > ¢ means that there is a basic
reduction of b to c.)

There are now eight cases for b > ¢ according to the eight basic
reductions in Section 12. The following diagrams illustrate what we do in
these eight cases. We always put the outer reduction on the left and the
inner reduction on the right.

\/

2. n({a, b)) n({n(c), m'(c)))

///////// \\\\\\\\\ ////L///// \\\\\L\\\

\ = H(C)\ /C)
n(c)

The Church—Rosser theorem for bounded terms 87

In the first subcase of B2, the inner reduction takes a to a’ (whence b’ = b)or
bto b’ (whence a’ = a). In the second subcase of B2, the inner reduction takes
{a,b) to c, provided a = n(c) and b = n'(c).

B3. Similar
B4. <m(c), m'(c)) (m({a, b)), w’({a, b)))
c\ {n(c), n'(¢)) <a, b)\ }a, I
c / {a, b)

In the first subcase of B4, the inner reduction takes ¢ to ¢’. In the second
subcase of B4, the inner reduction takes n(c) to a, provided ¢ =<a,b).
There is another subcase of B4, not shown, in which the inner reduction
takes n'(c) to b.

Area @(x)'a Azea (f*X)‘a

N T
—

(p(a) .IEA 'Y (X) a’ f‘a

.

P'(a’)
In the first subcase of BS, the inner reduction takes (p(x) to ¢'(x) (whence
d' =a) or a to a' (whence ¢'(x) = ¢(x)). Note that if o(x) = ¢’(x) then
®(a) 2 ¢'(a). In the second subcase of BS, the inner reduction takes Area @(x)
to f, provided ¢(x)=f‘x and x is not free in f.

6. xeA (f’x) eA (kyeA w(,V)'X)
f xxeA (qu) :eA O’))"IEA <p(x)

\/ \/

Area P(X)

88 Cartesian closed categories and A-calculus

In the first subcase of B6, the inner reduction takes f to f. In the second
subcase of B6, the inner reduction takes ¥ x to ¢(x), provided f = Ayea@(Y)-

/ \

Ia', K, 0)

\ al /

Here the inner reduction takes a to a’ (whence h' = h) or h to h’ (whence
a=a). -~

B7. Ka, h, 0)
a

BS. Ka, h, S(n))

PN

h'Ka, h, n) Ka', k', S(n))

N 7

hila', h,n)

Here the inner reduction takes a to a’ (whence ¥ =hand n'=n)or hto I’
(whence @' =a and n' =n) or n to n’ (whence @’ =a and ' = h).

The proof of Lemma 13.2 is now complete, hence so is the proof of
Proposition 13.1.

Exercise

(Obtulowicz). Show that the argument in case B4 breaks down if n(c) or
m'(c) is of type 1 and that the argument in case B6 breaks down if f/x has
type 1. In particular, show that the Church—Rosser Theorem fails for 2,
by taking c or f to be a variable.

14 All terms are bounded

One wants to prove that all terms of #, are bounded. Clearly all
irreducible terms are bounded, in particular variables, 0 and *. We may list
the following partial results.

o

All terms are bounded 89

Remark 14.1.
(1) {a,b) is bounded if a and b are.
(2) =(c) and n’(c) are bounded if c is.
(3) A e4(x) is bounded if ¢(x) is.
(4) S(n) is bounded if n is.

Proof. We shall prove (1), for example, the others being similar. We argue
by induction on bd(a) + bd(b). Clearly, it suffices to show that ¢ is bounded
whenever {a,b) > c.Ifc=(d,b) witha> a’orc = (a,b’) withb>¥', cis
bounded by inductional assumption. The only other case is a=n(c),
b =1'(c), but then c is bounded because it is a subterm of a.

Unfortunately, this kind of argument does not extend to terms of the form
bfa and I(a, h,n). Note that in the basic reductions

Aeea®(x) a> @), I(a,h,S(n))>h'I(a,h,n)

the right hand side may be more complicated than the left hand side.

We shall follow Tait and replace boundedness by an apparently stronger
notion, that of ‘computability’, which is defined by induction on types. We
first confine attention to closed terms. '

Definition 14.2. A closed term c is computable provided one of the following
cases holds;
(i) cel or N and c is bounded;
(i) ceA x B and n(c) and ='(c) are computable;
(i) ceB4, cis bounded and ¢’ ais computable for all computable closed
acA.

Here are two immediate consequences of the definition.

Lemma 14.3. Assume ¢ and ¢’ closed.

(1) If ¢ is computable, then ¢ is bounded.
(2) If c is computable and ¢ > ¢/, then ¢’ is computable.

Proof. We shall prove (1) and leave (2) as an exercise, as it is never used.
The proof of (1) goes by induction on types. We need only laok at the
case ceA x B. Since c is computable, so is n(c)e A, by Definition 14.2. By
inductional assumption, the result holds for A4, hence =(c) is bounde,d.
Therefore c, being a subterm of n(c), is also bounded.

Lemma 14.4. (I) A closed term c is computable if one of the following three
cases holds:

(1) c¢=<{a,b) and a and b are computable;

90 Cartesian closed categories and A-calculus

(2) c=2.40(x) and @(a) is computable for all computable closed
aeA,

(3) c is neither of the above and, for all closed ¢, if ¢ >’ then ¢’ is
computable.

(IT) For all types C, k(C) is computable.

Proof. For the purpose of this proof only we shall make two definitions.
Call a closed term a pre-computable if it satisfied (1), (2) or (3) above. Call a
type C nice if all pre-computable ceC are computable. We may thus restate
(I) as:

(I') All types are nice.

Before proving this, let us make an observation:

(IIT) If C and all subtypes of C are nice then x(C) is computable.

‘Being a subtype’ is of course the transitive relation generated by: A and B
are subtypes of 4 x B and B4

Indeed, (II1) is easily shown by induction on the type C. By Definition
142, k(1)=»* and x(N)=0 are clearly computable, because they are

- bounded. Moreover, k(A x B) = {«x(A),k(B)) is computable by (1) if x(A4)

and x(B) are, and k(B*) = 4, ,k(B) is computable by (2) if k(B) is, so that the
induction hypothesis applies.

As we are planning to prove (I'), (IT) will follow immediately from (III). It
remains to prove (I'), which we shall do by induction on types. To this
purpose, let us adopt the following assumption:

(A) All proper subtypes of C are nice and the closed term ceC is
pre-computable.

We wish to establish the following conclusion:
(C) ¢ is computable.

We shall look at the cases C =1, N, A x Band B4 separately, but first let us
note this preliminary conclusion:

(P) c is bounded.

Indeed, by assumption (A), ¢ satisfies (1), (2) or (3). In case (1), ¢ is bounded
by Remark 14.1 and Lemma 14.3, because a and b are bounded. In case (2),
it will follow from Remark 14.1 that c is bounded if we show that ¢(x) is
bounded. Now k(A) is computable by the assumption (A) and (III).
Therefore, @(x(A4)) is bounded by (2) and Lemma 14.3, hence ¢(x) is
bounded by Lemma 12.5. In case (3), ¢ is evidently bounded, because,
whenever ¢ > ¢, then ¢’ is bounded by Lemma 14.3.

All terms are bounded 91

We are now ready to prove the conclusion (C). When C=1 or N,
computable means bounded, and so we refer to the preliminary conclusion
(P).

Suppose C = A x B. According to Definition 14.2, we must show that
n(c)eA and 7'(c)eB are computable, for example, the former. We shall
proceed by induction on bd(c). By assumption (A), A is nice, so we need only
show that n(c) is pre-computable. Since n(c) is neither a pair nor a A-term, we
only have to check (3).

So suppose n(c) > &', we must show that a’ is computable. There are two
cases. If @ = n(c’) and ¢ > ¢/, @' is computable by inductional assumption,
since bd(c’) < bd(c). If @’ =a and c=a and c=<{a,b), a' is computable
by (1).)

Next, suppose C = B4, According to Definition 14.2, we must show that
¢'aeB is computable for all computable closed ae 4, as we already know
that cis bounded by (P). We shall proceed by induction on bd(c) + bd(a). By
assumption B is nice, so we need only show that ¢a is pre-computable.
Since cfa is neither a pair nor a A-term, we only have to check (3).

So suppose c’a > b’', we must show that b’ is.computable. There are two
cases. If b’ = ¢'fa with ¢ >c or b =cfa with a>a, b’ is computable by
inductional assumption, since bd(a’) < bd(a) and bd(c’) < bd(c). If ¥’ = ¢(a)
and c=4,.,0(x), b’ is computable by (2).

We have thus established the conclusion (C) and the proof of Lemma 14.4
is complete.

Lemma 14.5. If ac A, he A* and neN are computable closed terms, then
I(a, h,n) is computable.

Proof. We proceed by induction on bd(a) + bd(h) + bd(n) + a(n), where
a(n) is the number of occurrences of the symbol S in the normal form of n.
(Recall that n computable implies n bounded.) Since I(a, b, n) is neither a
pair nor a A-term, we need only check case (3) of Lemma 14.4.

So suppose I(a, h,n) > d; we must show that d is computable. There are
three cases. If d=1(a’,h,n) with a>a' or d=1I(a,i,n) with h > K or
d=I(a,h,n') with n > n', d is computable by inductional assumption, since
bd(a’) < bd(a), bd(h') < bd(h) and bd(n') < bd(n) but a(n')=a(n). f d=a
with n=0, d is given to be computable. Finally, iffd = h'I(a, h,m) with
n = S(m), we have a(m) < a(n) and bd(m) = bd(n), so I{a, h,m) is computable
by inductional assumption. Since h is given to be computable, d is
computable by Definition 14.2.

We now extend the notion of computability to open terms.

92 Cartesian closed categories and A-calculus

Definition 14.6. A term t = ¢(x,,...,x,), with no free variables other than
Xy,..., Xy, is computable provided, for all computable closed terms a Lseeerd
of appropriate types, the closed term f= ¢(a,,...,a,) is computable.

n

Theorem 14.7. All terms of £, are computable, hence bounded.

Proof. We proceed by induction on the length of terms. For the constants *
and 0 and for all variables the result holds trivially. It remains to prove the
following six statements.

(1) 1If a and b are computable, so is {a,b).
Indeed, let @ and b be computable, then so is {4,5), by Lemma 14.4.
' (2) If ¢ is computable, then so are n(c) and ='(c).
Indeed, let ¢ be computable, then so are 7(¢) and n'(¢) by Definition 14.2.

(3) IffeB* and aeA are computable, then so is f”a.

Indeed, let f and @ be computable, then so is /a, by Definition 14.2 and
Lemma 14.3.

4 If o(x,x4,...,x,) is computable, so is Aea (X, X150, X,).

Indeed, let @(x) = ¢(x,a;,...,a,) for computable closed a;,...,a, and
assume that @(a)eB is computable for all computable closed ac A. Then
A4 @(x) is computable, by Lemma 14.4.

(5) If neN is computable, so is S(n).
Indeed, let i be computable, that is, bounded. Then so is S().
(6) If aeA, he A4 and neN are computable, then so is I(a, h,n).

Indeed, let G, h and 7/ be computable. Then so is (4, h, /i), by Lemma 14.5.

The first person to prove Theorem 14.7 in essentially the generality given
here was R.C. de Vrijer. Our proof is closer to Tait’s original proof, but
depends crucially on an idea of de Vrijer, which is here embedded in
condition (3) of Lemma 14.4 and the use that is made of it.

Exercises
1. Prove (2) to (4) of Remark 14.1.

2. Prove (2) of Lemma 14.3.

C-monoids 93

15 C-monoids

A small category with one object is a monoid, that is, a semigroup
with a unity element. (See Part 0, Section 1, Example C2') If a small
cartesian closed category has only one object, it is a rather uninteresting
monoid. For, if 1 is the terminal object, Hom(1, 1) has only one element.
However, if we delete the terminal object, we obtain an interesting class of

monoids. o .
A C-monoid (C for Curry, Church, combinatory or cartesian) is a monoid

M with extra structure (r, 7', &, *,{ D), where n, #’, and ¢ are elements of #
(nullary operations), (-)* is a unary operation and {-,~) is a binary
operation satisfying the following identities:
Cl. n{a,b) =a,
C2. n'{a,b>=b,
C3. {mc,m'c) =c,
C4. e{h*n,n'>=h,
Cs. (e<km, 7' >)* =k,
for all a,b,c, h and k. These are the axioms of a cartesian closed category
without terminal object, with the type subscripts erased.
We list some easy consequences of the above definition:
C3a. <(a,bd>c=<{ac,bc),
C3b. {(mn')=1,
Cda. e(h*a,b)=h{ab),
C5a. h*k=(h<{kn,n'))*,

Csb. ¢e*=1,
for all a,b,c,h and k.
Proof.
{a,bdc={(nla,bdc,w'{a,b)c) by C3,
= {ac,bc) by C3.
(m, 7' Yy=<{nl,a'l)=1 : by C3.
e(h*a,b) =e(h*nla,b),n'{a,b)) by C1 and C2,
=g(h*n,n'>{a,b) by C3a,
=h{a,b) by C4. .
h*k = (e(h*km, 7'))* by C5,

=(e{h*nlkn, 7'y, 7' (km, ') D)* by Cl and C2,

