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Exercises

1. Establish the following isomorphisms in any bicartesian closed category:
A+0=A4, Ax0=0, A°=x1;
A+B=B+A, (A+B)+C2A+(B+C)
(A+B)xC=(AxC)+(BxC), AP Cx 48 x AC,

2. Write down explicit equations between arrows to replace ES and E6, that
is, eliminate f, g and h.

3. Givea dctailed justification for Definition 8.2, as was done for p A qin the
text.

4. Show that in a bicartesian closed category 04 = 0 if and only if A&0.

9 Natural numbers objects in cartesian closed categories
A natural numbers object in a cartesian closed category o,
according to Lawvere, consists of an initial object
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f

in the category of all diagrams 1 2,41 Ain o, This means that, for all
such diagrams there is a unique arrow h: N — A such that

h0=a and hS=fh,

as is illustrated by the following commutative diagram:
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Sometimes we merely wish to assert the existence of , never mind its
uniqueness. Then we shall speak of a weak natural numbers object. Cartesian
closed categories with a weak natural numbers object have been called
‘prerecursive categories’ by Marie-France Thibault. (See Exercise 2 below.)

For example, in Sets, the set N = {0, 1,2,...} of natural numbers together
with the successor function S(x) = x + 1 forms a natural numbers object.
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More generally, all toposes considered in Part II have natural numbers
objects.

If l—O—oN —£+N is a weak natural numbers object, we shall write

h=J (a,f). Thus

J+Hom(1, A) x Hom(A, A)» Hom(N, A)
satisfies the equations

Jaa, R =a, Jaf)S=fJa,f).

Proposition 9.1. 1f the cartesian closed category o/ has a natural numbers
object (weak natural numbers object) and if x: 1 - A is an indeterminate
arrow over &, then the cartesian closed category o/{x] has the same
natural numbers object (weak natural numbers object).

Proof. A short conceptual argument goes as follows. A (weak) natural
numbers object in & gives rise to one in the slice category «//A4, hence in
/[ x], which comes with a full and faithful functor K ,: &/[x] —«//A. For
the more meticulous reader, we shall now give a detailed computational
proof. o

First, assume the existence of a weak natural numbers object in . Let
B(x):1—-B and ¢(x): B— B be given polynomials in o/[x]. We seek a
polynomial y(x): N -» B such that

x(x)0 = B(x), xS = plx)x(x).

In view of functional completeness, these equations involving x are
equivalent to the following equations not involving x:

Kxea(X(X)0) = Ky aB(X), K e a(X(X)S) = Ko al@(X)1(x)).
Writing
KeeaB(x)=b:Ax 1B, k. p(x)=f:4xB-—-+B,
we seek
Kega(x)=hAxN->B
such that
h(n,0n'>=b, h(m,Sn'd=f{nh).
With b and f we may associate b: 1 —+ B4 and f”: B4 — B given by
b'=b{n',n))*, [ =(f{n\e))*.
Then we may find #: N — B4 such that
Ho=b, WS=[f'NH,
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as is illustrated by the following diagram:

0 S
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Now put h=e{k'n',n), then routine calculations show that
h{n,0n'y=b, h{m,Sn')=f{nh),

as required.

If we have a natural numbers object in &, not just a weak one, then the
arrow h': N— B4 is uniquely determined by the equations h'0 =5" and
'S =f'W. From this it easily follows that h is also uniquely determined by
the equations it satisfies. For we may calculate &' in terms of h as follows:

(R, m))* =(eh ', my{n m))*
=(e{hn, ')
=h,
and then transform the equations satisfied by h into the equations satisfied
by H'.
In what follows we shall write, for indeterminate arrows y:1— B, v: 1 — B?
and z:1 =N,
JB{J” UI)Z = IB<y’ U,Z>,
where (y,v,z) is short for {{y,v),2).

Corollary 9.2 A weak natural numbers object in a cartesian closed

category is given by an object N and arrows 1 &N —S->N and Ig:

(B x B®) x N — B, for each object B, satisfying the identities
Ip{y,0,0> =y, I3y, v,52> =v' 1<y, 0,2,

where the subscripts y, v, z on the equality symbol have been omitted.

Proof. We use Proposition 9.1 with 4 =B x B®. Adjoining a single

indeterminate x:1—- A is equivalent to adjoining two indeterminates
y:1—- B, and v: 1 - B%,
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Corollary 9.2 may also be stated in terms of an arrow N — (B®Y#") in place of
Iy.

Exercises

—

- If a cartesian closed category has a natural numbers object, then this is
unique up to isomorphism.

2. Determine all weak natural numbers objects in the category of sets.
3. Carry out the routine calculations mentioned in the text to show that
h{n,0n'y=b, him,Sn'y=f{mh>.

4. Show that a natural numbers object in a cartesian closed category is
equivalent to the following condition: for each g: A - Band f: B— B there
is a unique &: N x A — B such that the following diagram commutes:

<OO,4» lA) S x lA

=z

- ————=x
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The same assertion without uniqueness holds for a weak natural numbers
object. This suggests how to define (weak) natural numbers objects in
cartesian categories which are not cartesian closed.

5. Show that, if a cartesian closed category & has a (weak) natural numbers
object, then so does .2//4 for each object 4 of .

6. Verify the remark in the proof of Proposition 9.1 that, if A is an object ofa
cartesian closed category .« and x: 1 — A an indeterminate arrow, there is
a full and faithful functor K: o/[x] - «#/A.

7. (Lawvere) Given a category &, let o/'°°? be the category whose objects are
‘endomaps’ f: 4 — A and whose arrows are commutative squares.
There is an obvious forgetful functor U: .of10%F . o
(a) Show that &#'" is equivalent to /™, where N is regarded as the free

monoid on one generator. ‘

(b) Assuming that o/ is cartesian closed, show that U has a left adjoint F if
and only if .o/ has a natural numbers object. (Hint: In one direction
define F(A)=S x 1,: N x A — N x A and use Exercise 4 above. In the
other direction consider F(1).)



72 Cartesian closed categories and A-calculus

8. Consider the cartesian closed category of limit spaces (Part 0, Section 7,
Example 7.8). Show that the natural numbers object is the set N of natural
numbers with the ‘discrete’ convergence structure: a sequence {x,|reN}
converges to x € N if it is eventually constant with value x.

10 Typed A-calculi

The purpose of this section is to associate a language with a
cartesian closed category with weak natural numbers object, which will be
called its ‘internal language’. The kind of language we have in mind will be
called a ‘typed A-calculus’ for short, although it might be known from the
literature more fully as a ‘typed An-calculus with product types (surjective
pairing) and iterator’. This association will turn out to be an equivalence
between appropriate categories.

A typed A-calculus is a formal theory defined as follows. It consists of
classes of ‘types’, ‘terms’ of each type, and ‘equations’ between terms which
are said to ‘hold’, all subject to certain closure conditions. We shall write
acA to say that a is a term and is of type 4; the symbol € belongs to the
metalanguage.

(@) Types: The class of types contains two basic types and is closed
under two operations as follows:

(al) 1 and N are types (these are the ‘basic’ types).

(a2) If A and B are types so are A x B and B*. _
There may be other types not indicated by (al) and (a2) and there
may be un-expected identifications between types.

(b) Terms: The class of terms is freely generated from variables and
certain basic constants by certain term forming operations as
follows:*

(b1) For each type A there are countably many variables of type A4, say
xfted (i=0,1,2,...). Weshall hardly have occasion to referto a
specific variable, instead we shall frequently use the phrase ‘let x be
a variable of type A’, abbreviated as ‘xeA’.

(b2) =el.

(b3) If acA,beB and ceA x B, then {a,b)eAd x B, n,z(c)eA and
7'y s(c)EB.

(b4) If feB4 and aeA, then ¢p ,(f,a)eB.

(b5) If xeA and @(x)eB, then A, ,o(x)eBA.

{(b6) OeN; if neN, then S(n)eN.

(b7) If acA,he A* and neN, then [ ((a, h,n)e A.

* There may be other constants and term forming operations than those specified.
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We shall abbreviate &5 4(f,a) as ffa (read: f of a’) when the type
subscripts are clear from the context. There may be other terms not
indicated by (bl) to (b7). Intuitively, e5 , means evaluation, {-,—> means
pairing and A,.,(x) denotes the function x - @(x). i, acts like a
quantifier, so the variable x in 1. ,¢(x) is ‘bound’ as in Viea®(x) or
{3f(x)dx. We have the usual conventions for free and bound variables and
when it is permitted to substitute a term for a variable. The term a is
substitutable for x in @(x) if no free occurrence of a variable in a becomes
bound in ¢(a). A term is ‘closed’ if it contains no free variables. We usually
omit subscripts in 7, 4(-), I ,(-,—,~) etc.

(c) Equations:
(c1) Equations have the form a 5 @', where X is a finite set of variabies,

aand a’ have the same type 4, and all variables occurring freelyina
or @' are elements of X.

(c2) The binary relation between terms a, a’ which says thata 5 a’ holds
is reflexive, symmetric and transitive and it satisfies the rule: when
X < Ythenifa 5 bholds one may infer that a 5 b holds, which will
be abbreviated:
agb
agb’

It also satisfies the usual substitution rules for all term forming
operations, in particular the following:

LA
f’a 3(—'f!b l,,A(p(x) ? A'xaA(D’(x)’

from which the other substitution rules follow.

All these are ‘obvious’ substitution rules, except perhaps the rule involving
4, which decreases the number of free variables.

(c3) The following specific equations hold:
ax * for all ael;
n(<a,b))5a forall aeA4,beB, .
n'({a,b))5 b for all acA,beB,
{mle)w'(c)> T ¢ forall ced x B;
Area®(x)’a 5 @(a) for all acA which are substitutable for X,

Awealf¥)5 f for all feB4, provided x is not in X
(hence does not occur freely in b3
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I(a,h,0)5a, forall acA, heA*

I(a,h,S(x)) = h'la,h, x);, provided x is not in X (hence does not
Xuix}
occur freely in a or hj;

Aeea®(X) T Ageap(x), if X" is substitutable for x.

There may be other equations not indicated by (cl) to (c3).
The last equation listed under (c3) may be omitted if we are willing to
identify terms which differ only in the choice of bound variables.

One of the rules listed under (c2) allows us to pass from a 5 b to ax=( }b,

even when x is not in X. Under certain conditions one can go in the opposite
direction, as we shall see. Of course, if this were always the case, there would
have been no point in putting the subscript X on the equality sign.
Proposition 10.1. Tn any typed A-calculus, one may infer from (p(x)x -—; }lll(x)
that ¢(a) 3 ¥(a) for any acA, provided x is not in X and all variables
occurring freely in a are elements of X.

Proof. From (p(x)x={ P(x) we infer A, @(x)5 Awes¥(x), hence

[V

x}
leea®(x)'aF Ayeqtp(x)’a, using (c2). In view of (c3), we then obtain

o(a) 3 ¥(a).
Corollary 10.2. 1f fand g do not contain free occurrences of the variabie x

of type A, then from f = g weinferf 5 g, provided there exists a term a of
Xufx)

type A such that all variables occurring freely in a are elements of X.
Proof. 1f x is not already in X, this follows from Proposition 10.1.

Unfortunately, it may happen that A is ‘empty’ that is, no closed term of
type A exists (see examples 10.5 and 10.6, below). On the other hand, if there
are closed terms of each type, the proviso of Corollary 10.2 is always
satisfied. This is the case, for example, in the ‘pure typed A-calculus with
weak natural numbers object’ to be discussed presently. In such a situation
the subscript X on = is redundant and one may replace 3 by just =.
Sometimes one may argue differently, but with the same result. Suppose

f = g.then ffx = g'x, hence A, ((f'X) T Aeea(g’x). In view of (c3), it
}

Xuix} Xoufx
follows that f 5 g. The assumption here is that f and g have type B4. We
shall sum this up:

Proposition 10.3. 1f f and g are of type B* and if xe A does not occur freely
in f or g, then from f = g one may infer f 3 4.
Xofx}

wix
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We shall consider three examples of typed A-calculi with weak natural
numbers object.

Example 10.4. Suppose there are no types, terms and equations other than
those indicated by the closure rules (and also no nontrivial identifications
between types), then we obtain the pure typed A-calculus with weak natural
numbers object called &,

Example 10.5. Given a graph ¥, the J-calculus A(%) generated by ¥ is
defined as follows. Its types are generated inductively by the type forming
operations () x (~)and (-)"") from the basic types 1, N and the vertices of ¢
{which now count as basic types). Its terms are generated inductively from
the basic terms x;,0 and = by the old term forming operations {-,—, n(-),
T'(-), &(—==), Area(=), S(-) and I(-,—,-) together with the new term forming
operations: if aeA then faeB, for each arrow f: 4 - B in 4. Finally, its
equations are precisely those which follow from (c1) to (c3) and no others.
Note that there are plenty of empty types, for instance, all the vertices of 4.
Clearly, Example 10.5 includes 10.4 if 4 is the empty graph.
We now come to the principal example of this section.

Example 10.6. The internal language L(<) of a cartesian closed category
.o with weak natural numbers object is defined as follows. Its types are the
objects of o7, with 1, N, A x B and B* having the obvious meanings. Terms
of type A are those polynomial expressions ¢(x,,...,x,):1—= A4 in the
indeterminates x;:1—A; which are obtained from variables, namely
indeterminates, and basic constants, namely arrows | — 4 in .o, by the term
forming operations:

al—-A b:1-B al—A4 @(x):.1-B
{a,b}: 1> AxB’fa:1-B’A,_p(x):1-B*

where f:A—B and A, ,¢(x) ="K ,0(x){1,,04>" as in the proof of
Corollary 6.2. Moreover, we write * for O, 4 glc) for n, g, €5 (/. a) for
¢g 4 {Jfia), etc. Finally, if a and b are polynomial expressions whose free
variables are in X, a = b is said to hold in L («) if a 5 b as polynomials in
L[X].

We shall now introduce morphisms @ ¥ — %’ of typed A-calculi, to be
called transiations.

(d1) @ sends types of ¥ to types of ¥’ and terms of & to terms of &’ s0
that if ae A, then ®(a)ed(A); but we insist that if a is closed, so is
®(z) and that ® sends the ith variable of type A4 to the ith variable of

type ®(A).
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(d2) @ preserves the specified type operations on the nose, for example:
O)=1, D4 x B)=D4)x OB),...;

and the specified term forming operations up to ‘equality holding’,
e.g. the following eqiations hold in %"

D(7 4 5(c)) = "q,qo(a)(‘b(c)); B(A,e40(x)) = AquA)‘D((P(x))
(d3) Moreover, ® preserves equations:

if a = holds in & then <D(a) <D(b) holds in .#".

In view of (d3), @ really acts on equivalence classes of terms (modulo the
equivalence relation described in (c2)). We shall say that two translations
are equal if they have the same effect on such equivalence classes. Thus
@ =Y provided d>(a) ‘P(a) holds whenever a = @' holds.

We thus obtain a catcgory A-Calc whose obJects are typed A-calculi and
whose arrows are translations.

Let Carty be the category of cartesian closed categories with weak
natural numbers object and cartesian closed functors preserving weak
natural numbers objects on the nose. The proof of the following is left to the
reader.

Proposition 10.7. Let L(s#) be the internal language of &/ and, for any
morphism F: of — o', let L(F) be defined by L(F)(4) = F(A), L(F){(x,) = x;,
L(F) (p(X)) = Fy(@(X)), where x| is the ith variable of type F(A4) and F is
the unique arrow in Carty such that the following diagram commutes:

Then L is a functor from Carty to A-Cale.

2, is an initial object in A-Calc, that is, for any typed A-calculus # thereisa
unique translation #,— .%. In particular, for any & in Carty there is a
unique morphism .Z, — L(s). This may be called the interpretation of &,
in &,
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The reader may have noticed that the languages discussed in this section
may be proper classes in the sense of Godel-Bernays. If necessary, one may
work in a set theory with universes, in which ‘classes’ are replaced by ‘sets in
a sufficiently large universe’.

Exercises

1. Verify that A: Grph — 1-Cale (see Example 10.5) is a functor left adjoint to
the obvious forgetful’ functor V: 2-Cale — Grph. (The underlying graph of
a A-calculus has as vertices the types and as arrows A — B suitable
equivalence classes of pairs (x, p(x)), where ¢(x) is a term of type B with no
free variables other than x, which is of type A4.)

2. By a classification we mean two classes and a mapping between them:
—_— Types

The mapping assigns to each entity its type, and we write ‘ae 4’ for ‘the
type of a is A’. Morphisms @ between classifications are defined in the
obvious way:aeA should itply ®(a)e®(4). The category of small
classifications is thus equivalent to Sets®, where 2 is the category consisting
of two objects and one arrow between them. Show that the obvious
forgetful functor from A-Calc to the category of classifications has a left
adjoint.

3. If € is a Heyting algebra considered as a cartesian closed category, show
that there may be unexpected identifications between types in L(%).
4. Verify that L(#) in Example 10.6 is a typed A-calculus.

11 The cartesian closed category generated by a typed A-calculus

To show that the functor L in Section 10 is an equivalence of

categories we shall obtain a functor C in the opposite direction.

Given a typed A-calculus &, we construct a cartesian closed category
C(#) with weak natural numbers object as follows:

The objects of C(<) are the types of &£.

The arrows 4 - B of C(%) are (equivalence classes of) pairs (xe A4, ¢(x)),
with x a variable of type A and @(x) a term of type B with no free variables
other than x. (Think of the function x — ¢(x).)
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Equality of arrows is defined by: (xe A4, ¢(x)) = (x'e 4, ¥(x")) if and only if
@(x) = Y(x) holds, where = abbreviates =-

The identity arrow 4 — 4 is the pair (xe 4, x).

The composition of (xe A, ¢(x)): A— Band (ye B, y(y)): B— C is given by
(xeA, ¥(p(x))): A—C, p(x) having been substituted for y in y(y).

The cartesian closed structure of C(%) is obtained as follows:

Qi=(xeA, ),

T45 = (264 x B, n(2)),

Ty =(ze4 x B,7'(2)),
C(zeC,0(2),(zeC,¥(2))) = (2eC,{ 0(2), ¥(2)>),
(zeA x B, x(2))* = (x€ A, 4,epx({x,¥))),

tc.a = (EC* x 4, ec 4(m(y), ().

C(#) has a weak natural numbers object:
0=(xel,0),

S =(xeN, S(x)),
I = (we(B x B®) x N, I(rn(n(w)), n'(rn(w)), 7'(w))).

It is easy to make C into a functor A-Calc — Carty. Indeed, suppose
D ¥ - ¥ is a translation, define C(®) C(¥)—- C(¥') as follows:

If A is an object of C(Z), that is, a type of &, C(®) (4) =P(A) is the
corresponding type of &', hence an object of C(#”).

If f =(xeA, ¢(x)) is an arrow A - B in C(%), that is, ¢(x) is a term of
type B in .2, C(®) (f) = B(x)ed(A), D(p(x)) is the corresponding arrow
D(A) - D(B) in C(&").

To sum up:

Proposition 11.1. C is a functor from A-Calc to Carty.

Instead of adjoining an indeterminate arrow x: 1 — A4 to the cartesian closed
category C(.#), one may adjoin a ‘parameter’ x of type 4 to the language %.
To be precise, if & is a typed A-calculus and x is a variable of type A4, one
may form another language (x) by adjoining the parameter x as follows:

Z(x) has exactly the same types as % and also the same terms, except
that x is no longer counted as a variable. In other words, the closed terms of
Z(x) are terms ¢(x) in & which contain no free variables other than x. In

the same spirit, ¥ in &(x) means = in & just make sure that x is not
Xuix

in X,
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Some dictionaries define a ‘parameter’ as a ‘variable constant’. For us it is
a variable kept constant.

Proposition 11.2. C(¥)[x] = C(Z(x)).

Proof. We show that C(#(x)) has the universal property of C(¥) [x] (see
Section 5):

L)

f

H,

(%)

The indeterminate x:1— A is defined by (yel, x). H, is C of the
inclusion of # into #(x), which may necessitate some relabelling of
variables. Suppose F: C(#)— .o is any cartesian closed functor preserving
the weak natural numbers object, and given any arrow b: 1 — F(A) in o,
we claim that there is a unique such functor F': C(#(x)) - & such that
F'H,=F and F'(x)=b.

Indeed, put F'(B) = F(B) for each object B of C(.#), that is type in .
Suppose [ = (yeB, ¢(x,y)) is any arrow B— C in C(£(x)), that is, ¢(x, y)
is any term of type C in % with free variables xe 4 and yeB. Define F'(f):
F(B)— F(C) in &/ as follows:

First note that ¢(x, y){=’|///1(y)5 x holds, where yi(y) is 4, (x, y). Thus

x.y

S =¢c.4{g,xQp), where g =(yeB, ¥(y)): B— C* in C(&). Now. define
F(f)= 3F(C).F(A)<F(9),b0r(s)>-

That this definition has the right property is easily seen. Moreover, it is
clearly forced upon us, since F'(g) = F(g) and F'(x) = b. We now establish
the main result of this section.

Theorem 11.3. The categories A-Calc and Carty are equivalent, in fact
CLzid and LC =id.
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Proof. (i) Consider the natural transformation & CL —id defined for each
& in Carty by &(of). CL(&f) > o as follows:

An object of CL(«) is a type of L(«), that is, an object of /. Put
oA)(A)=A.

An arrow B — C in CL(#) has the form f = (yeB, ¢(y)), where ¢(y)eC
in L(«). Put &) (f) = the unique arrow g: B—C such that gy = o(y),
using functional completeness.

It is easily verified that () is an arrow in Carty. Moreover, in view of
functional completeness, it establishes a one-to-one correspondence
between Homgy,,,, (B, C) and Hom,, (B, C). Thus &(«/) is an isomorphism.

(ii) Consider the natural transformation #:id - LC defined for each £ in
A-Cale by n(#). ¥ - LC(¥) as follows:

&) A) = 4;
L) @(xy, ... x)) = (€L, 9(xy,...,x,)) In C(L(xy, ..., X,)).

Note that we have identified C (£)[x,,..., x,] with C(£L(x,,...,x,)) asis
justified by Proposition 11.2. It is easily verified that n(.#) is an arrow in 4-
Calc. To see that #(#)is an isomorphism, construct its inverse, which sends

(ze1, ¢(2)) onto o(*).

Corollary 114. C(¥,), the free cartesian closed category with weak
natural numbers object generated by the pure typed A-calculus, is an initial
object in Carty.

The initial object of Carty may also be obtained by the methods of
Section 4.

We end this section with a remark concerning the problem of how to
interpret languages in categories. In the present context this is explained
quite easily: an interpretation of a typed A-calculus % in a cartesian closed
category & with weak natural numbers object is just a translation & —
L(=). By Theorem 11.3 (or just by adjointness, see Exercise 3 below), this is
essentially the same as a cartesian closed functor C(%¥)— . As already
observed after Proposition 10.7, #, has a unique interpretation in any
cartesian closed category with weak natural numbers object.

Exercises

1. Show how to obtain the free cartesian closed category with a weak

natural numbers object generated by any classification. (See Exercise 2 of
Section 10.)

2. In the spirit of this section, find a new method for constructing the free
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cartesian closed category with a weak natural numbers object generated
by a graph.

3. Show that C is left adjoint to L with adjunction n and &.
4. Prove that I;{<{y,v),x) = (tel, I(y,v,x))in C(Z(y,v,x)).

12 The decision problem for equality

Let us look at the cartesian closed category with weak natural
numbers object freely generated by the empty graph, as in Section 4, but
with weak natural numbers object, or as in Exercise 2 of Section 11. Since
both are initial objects in Carty, (see Corollary 11.4), they are isomorphic.
We shall write €, for this initial object. %, is of interest to logicians, as it
gives a version of Godel’s primitive recursive functionals of finite type, and
to categorists, as it is related to the so-called ‘coherence problem’ for Carty,.
This problem asks when diagrams in a category commute or, equivalently,
when two arrows between two given objects are equal. Indeed if one wants
to compute Hom(A4, B) in ¥,, two problems arise: -

(I) Find an algorithm for obtaining all arrows 4 — B in €, (that is, all
proofs A— B in the corresponding deductive system).

(II) Find an algorithm for deciding when two arrows A — B are equal
(better: when two proofs describe the same arrow).

We shall here address ourselves to the second problem. Looking at the
proof of the distributive law

Ssg>h=<fhgh)

for cartesian closed categories given in Section 3, we note that both sides
must be expanded to be shown equal. It seems easier to consider €, as given
by C(£,) rather than as constructed by the method of Section 4.

Two arrowsf,g: 4 > Bin €, are thus given by two terms ¢(x) and yr(x) of
type B in &, with a free variable x of type A. We want to decide whether
@(x) = Y¥(x) holds, or equivalently, 1, ,¢(x) = A, ¥(x) holds in &, Let us
call two terms a and b of ¥, whose free variables are contained in X
convertible if the equation a 5 b holds in .#,,. Terms of &, are, of course,
defined inductively, as the reader will recall. Thus Problem (II) has been
reduced to deciding when two closed terms of type B in £(x) or &, are
convertible. In view of the fact that there are closed terms of each type in
Z,, we need not distinguish between = and =, as was pointed out in
Section 10.

Actually, we shall solve the decision problem for convertibility not in Z,
but in &, which is like &, but without type 1. In other words, Z, is a



