Note that $U_q(g)$-modules have dimension $\dim V_q^n$ (e.g., $\dim V_q^n = \dim V_q(A_2)$), though their q-dim may depend only on q.

This phenomenon of "q-universality" is not quite reflected in a Hall-module from last time. Roughly speaking, $B(W)$ given $W \in \text{Fundim Rep}_{F_q} (A_2)$ was the category of all $V_1 \rightarrow V_2 \rightarrow W$.

But now morphisms in $B(W)$ are $V_1 \rightarrow V_2 \rightarrow W$.

So we must have $\text{Im}(\alpha) = \text{Im}(\beta)$.

But even then, we have many subspaces in W depending on q. So the classes of isomorphisms depend on q.

To amend this, we now construct a new Hall-module.
We start by replacing $B(V)$ by

$$\text{Mon}^0(V) = \left\{ (V \to W), y \mapsto A \right\},$$

where A has $\text{Rep}_{\text{End}}(A^2)$.

We will now construct the underlying groupoid

whose degroupoidification is the "nice" Hall-module.

Its $(\text{Mon}_{\text{const}}(V))_0 = (\text{monomorphisms over constant reps}).$

Def: A constant rep. of a quiver is a vector space X (to be thought of, via $v \mapsto v_x$ at every vertex $v \in X$). Every rep. (edge) is id$_X$.

Its objects in $\text{Mon}_{\text{const}}(V)_0$ are $\text{Rep}_{\text{const}}: V_i \to V_j \to W$.

We have the "constant" functor sending $V_i \to W$.

On the other hand, given any Young diagram D, one has the notion of D-sheaf as a vector space X, and the forgetful functor that takes this to X.
We can now construct the weak/homotopy pullback

\[\text{Man}_\text{Const}(U) \triangleleft \{ \text{Fg-V-Sp. w/ D-flag} \} \]

"Constant"

\[(\text{Vec SP}_{F_q}) \]

Thus, essentially \(\mathcal{P} = \text{(Vec Spaces equipped with a) pair of structures} \)

\(a \) "quiver-up embeds it"

\(b \) a D-flag on it

So, we're really trying to compute the "real" homotopy fiber product because these two properties/structures are independent.

(Recall how the fiber product works:

\[T \times_{B} T = \bigcap_{b \in B} \pi^{-1}(b) \times_{\pi(B)} \pi^{-1}(b) \]

But if we look over with groupoids, then we are allowed to share..."
\[F : G_1 \to G_2 \]
\[R \to S \quad \text{or} \quad R \to S', \phi \]

So, the fiber should be replaced in this setting by the \textit{homotopy/mold} fiber, i.e.
\[F^{-1}(S) = \chi(R, S', \phi) : F(R) = S', \phi \]

And weak pullbacks are also called \textit{homotopy pullbacks}.
\[= \text{homotopy (fiber product)} \]
\[= \text{homotopy fiber) product} \]

\(\) (a) There are several things to do now:

(i) Give an example
(ii) Counting the isoclasses (are there only finitely many?)
(iii) Defining the groupification of the action map.

\[\text{SES}(P, A) \]

Let's do (iii) first.
\[\text{SES}(P, A) \]

Where
\[\text{SES}(P, A) \]

is just as
Also note that comparing the types of flags is exactly what (i) is being done in the groupoid \(P \)!

(ii) we also did last quarter, while to look at Hecke operators!

We consider an example:

\[
\begin{align*}
A_2 & \xrightarrow{\text{Sh}_3} \text{Vec} \; V = \mathbb{V}_2 \oplus \mathbb{V}_1 \\
\mathbb{V}_3 & \cong \mathbb{V}_2 \oplus \mathbb{V}_1
\end{align*}
\]

So, the space \(V/\text{D-flag} \) is 2-dim \(\in \) 3-dim \(\mathbb{V}_2 \oplus \mathbb{V}_3 \).

Now combine the 2 structures, and check/compare!
<table>
<thead>
<tr>
<th>dim A</th>
<th>dim B</th>
<th># classes</th>
<th># total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Total = dim (module) = 18

Q: Why is this a module for $U_q(g)$? All we know is that it's a module over the algebra $U_q(g)$.