Geometric Representation Theory Homework
 January 17, 2008
 John Baez
 Homework solutions by John Huerta

Homework 1

Show that

$$
\psi_{0}(x)=e^{-x^{2} / 2}
$$

is an eigenvector of the Hamiltonian

$$
H=\frac{1}{2}\left(p^{2}+q^{2}\right)
$$

with eigenvalue $\frac{1}{2}$.

Solution

It's easy to compute

$$
\begin{aligned}
H \psi_{0}(x) & =\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+x^{2}\right) e^{-x^{2} / 2} \\
& =\frac{1}{2}\left(-\frac{d}{d x}\left(-x e^{-x^{2} / 2}\right)+x^{2} e^{-x^{2} / 2}\right) \\
& =\frac{1}{2}\left(e^{x^{2} / 2}-x^{2} e^{-x^{2} / 2}+x^{2} e^{-x^{2} / 2}\right) \\
& =\frac{1}{2} \psi_{0}(x)
\end{aligned}
$$

where we've made the usual substitutions $p=-i \frac{d}{d x}$ and $q=x$, So $\psi_{0}(x)$ is indeed an eigenvector with eigenvalue $\frac{1}{2}$.

Homework 2

Define the creation and annihilation operators by

$$
a^{*}=\frac{1}{\sqrt{2}}(p+i q)
$$

and

$$
a=\frac{1}{\sqrt{2}}(p-i q)
$$

respectively, where p and q are as above and obey

$$
[q, p]=q p-p q=i
$$

Show that

$$
\begin{gathered}
{\left[a, a^{*}\right]=1} \\
H=a^{*} a+\frac{1}{2} \\
{\left[H, a^{*}\right]=a^{*}}
\end{gathered}
$$

$$
[H, a]=-a
$$

Then show that if

$$
H \psi=\lambda \psi
$$

then

$$
H a^{*} \psi=(\lambda+1) a^{*} \psi
$$

and

$$
H a \psi=(\lambda-1) a \psi
$$

Solution

Using the so-called canonical commutation relation (CCR)

$$
[q, p]=i
$$

with the definitions of a and a^{*}, we get

$$
\begin{aligned}
{\left[a, a^{*}\right] } & =\left[\frac{1}{\sqrt{2}}(p-i q), \frac{1}{\sqrt{2}}(p+i q)\right] \\
& =\frac{1}{2}\left([p, p]-i[q, p]+i[p, q]+i^{2}[q, q]\right) \\
& =\frac{1}{2}(0+(-i) i+i(-i)+0) \\
& =1
\end{aligned}
$$

where we used the bilinearity of [,].
We can also use the CCR to show $H=a^{*} a+\frac{1}{2}$, even though at first glance H does not appear to involve a commutator:

$$
\begin{aligned}
a^{*} a & =\frac{1}{\sqrt{2}}(p+i q) \frac{1}{\sqrt{2}}(p-i q) \\
& =\frac{1}{2}\left(p^{2}+i q p-i p q+q^{2}\right) \\
& =\frac{1}{2}\left(p^{2}+i[q, p]+q^{2}\right) \\
& =\frac{1}{2}\left(p^{2}+q^{2}-1\right) \\
& =H-\frac{1}{2}
\end{aligned}
$$

The commutators of the creation and annihilation operators with H are an easy consequence of $\left[a, a^{*}\right]=1$, their commutation relatiun with each other:

$$
\begin{aligned}
{\left[H \cdot a^{*}\right] } & =\left[a^{*} a+\frac{1}{2}, a^{*}\right] \\
& =\left[a^{*} a, a^{*}\right]+\left[\frac{1}{2}, a^{*}\right] \\
& =a^{*} a a^{*}-a^{*} a^{*} a \\
& =a^{*}\left(\left[a, a^{*}\right]\right) \\
& =a^{*}
\end{aligned}
$$

and similarly for $[H, a]=-a$.
Now it's very straightforward to see that eigenvectors of H

$$
H \psi=\lambda \psi
$$

are "raised" by a^{*}

$$
H a^{*} \psi=(\lambda+1) a^{*} \psi
$$

since

$$
\begin{aligned}
H a^{*} \psi & =a^{*} H \psi+\left[H, a^{*}\right] \psi \\
& =a^{*} \lambda+a^{*} \psi \\
& =(\lambda+1) a^{*} \psi
\end{aligned}
$$

and "lowered" by a, since

$$
\begin{aligned}
H a \psi & =a H \psi+[H, a] \psi \\
& =a \lambda-a \psi \\
& =(\lambda-1) a \psi
\end{aligned}
$$

