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Homework 1

Show that ,
o(w) =e "/
is an eigenvector of the Hamiltonian
1
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with eigenvalue 3.

Solution

It’s easy to compute
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where we’'ve made the usual substitutions p = —id— and ¢ = z, So 1o (z) is indeed an eigenvector
x

. . 1
with eigenvalue 3.

Homework 2

Define the creation and annihilation operators by
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a* = —=(p+iq)

and

respectively, where p and q are as above and obey

l¢,p] = qp — pg = i.

Show that
[a,a*] =1
1
H=a" —
a a-+ 5
[H,a*] =a*



[H,a] = —a
Then show that if

Hy =\
then
Ha*p = (A+1)a™y
and
Hayp = (A—1)ay
Solution

Using the so-called canonical commutation relation (CCR)
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with the definitions of a and a*, we get
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where we used the bilinearity of [, ].
We can also use the CCR to show H = a*a + %, even though at first glance H does not appear
to involve a commutator:
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The commutators of the creation and annihilation operators with H are an easy consequence of
[a,a*] = 1, their commutation relatiun with each other:

1
[a*a+ =, a”]

[H.a"] 5



and similarly for [H,a] = —a.
Now it’s very straightforward to see that eigenvectors of H

Hip =X
are "raised” by a*
Ha*p = A+ 1)a™y

since

Ha*y = o'HY+ [H,a* Y
= a'XA+a"y
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and ”lowered” by a, since
Hap = aHy + [H,ali
aX — ay
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