Geometric Representation Seminar Homework
 January 30, 2008
 John Baez
 Homework solutions by John Huerta

Homework 3

Find the unique inner product on $\mathbb{C}[z]$ such that m_{z}, multiplication by z, and $\frac{d}{d z}$, differentiation with respect to z, are adjoints, i.e.

$$
\left\langle z \cdot z^{n}, z^{m}\right\rangle=\left\langle z^{n}, \frac{d}{d z} z^{m}\right\rangle
$$

for all $n, m \geq 0$, where $\|z\|=1$.

Solution

First note that $\|z\|=1$ if and only if $\|1\|=1$, since

$$
\langle z, z\rangle=\left\langle 1, \frac{d}{d z} z\right\rangle=\langle 1,1\rangle
$$

Now it's easy to check that all off-diagonal terms are zero, because if $n>m$, we have

$$
\left\langle z^{n}, z^{m}\right\rangle=\left\langle 1, \frac{d^{n}}{d z^{n}} z^{m}\right\rangle=\langle 1,0\rangle=0
$$

and the $n<m$ terms vanish by symmetry

$$
\left\langle z^{n}, z^{m}\right\rangle=\overline{\left\langle z^{m}, z^{n}\right\rangle}=0 .
$$

The terms on the diagonal are just as easy

$$
\left\langle z^{n}, z^{n}\right\rangle=\left\langle 1, \frac{d^{n}}{d z^{n}} z^{n}\right\rangle=n!\langle 1,1\rangle=n!
$$

so, in summary,

$$
\left\langle z^{n}, z^{m}\right\rangle= \begin{cases}n! & \text { if } n=m \\ 0 & \text { if } n \neq m\end{cases}
$$

gives the unique inner product on $\mathbb{C}[z]$ making m_{z} and $\frac{d}{d z}$ into adjoints.

