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1 The Harmonic Oscillator with n Degrees of Freedom

I have been talking about the Harmonic oscillator with one degree of freedom. Now we are going to
generalize this to n degrees of freedom. This is important because in real life we have things which
can wiggle around in n ways.

Before we looked at the groupoid of finite sets. Now we will look at the groupoid of n copies of
finite sets.
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We have n creation and annihilation operators, whose groupoidified versions are spans:
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This “creates a particle of type ¢”.
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This “annihilates a particle of type i”.
These give operators: ~ ~
Ai = Q4, Ar = a;-k

from the “Fock space” k[z1, ..., zn] to itself, and explicitly:
0
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t 821
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where m, is multiplication by z;.
These satisfy:
;a5 = a5



These are called the “CCR” - “canonical commutation relations”.
So , we hope:
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ATAS = ATA;

and it’s true.
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(*) should really be a fancy way of giving an n-tuple of finite sets. Another way to describe this
weak pullback is A; A}
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So we have groupoidified all these things:

1. The associative algebra generated by a;, af, (i = 1,...,n) is called the Weyl algebra W,,.
This has a god-given representation on k[z1, ..., 2,] with



A typical element, in this representation, is like:
2
zf’ (9_22 + 2223 ﬁ
So W,, = {polynomial coefficient differential operators}. This becomes a Lie algebra with
[a,b] = ab — ba
and then it has lots of Lie subalgebras, including:
2. {Polynomial coefficient vector fields} = {polynomial coefficient 1!-order differential operators}
3. {Homogeneous linear coefficient vector fields} 2 gl(n) = {n x n matrices}

4. The Heisenberg Lie algebra, b, all linear combinations of a;, af, 1. This is a (2n + 1)-
dimensional Lie algebra.

5. {Homogeneous quadratic expressions in a; and a}, plus constants}
This is closed under [-,-]. We have:

ajaj,ij=1,...,n
a;a;,t<j
ajaj,i <j
1
Then dim = n?> +n(n—1)+1 =2n? —n+ 1.

Homework: Work out:
* *
a7 a;, apar] =7

laiaj, apa;] =7

Are these linear combinations of ajaj, a;a;, ajaj or do we get constant terms?



