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1 Category Theory:

• Unifies mathematics.

• Studies the mathematics of mathematics (similar to mathematical logic).

• Moves towards higher-dimensional algebra (“homotopifying” mathe-
matics).

• •

•

• •

• •

•

• •

Set Theory Category Theory
0-dimensional 1-dimensional
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1.1 Definition of a Category

A category C consists of:

• A class Ob(C) of objects. If x ∈ Ob(C), we simply write x ∈ C.

• Given x, y ∈ C, there is a set HomC(x, y), called a homset, whose elements
are called morphisms or arrows from x to y. If f ∈ HomC(x, y), we write
f : x → y.

• Given f : x → y and g : y→ z, there is a morphism called their composite
g ◦ f : x → z.

y

x z

gf

g◦ f

• Composition is associative: (h ◦ g) ◦ f = h ◦ (g ◦ f ) if either side is well-
defined.

• •

• •

h◦ f

g

hf
g◦ f

h◦(g◦ f )=(h◦g)◦ f

• For any x ∈ C, there is an identity morphism 1x : x → x

x

1x

• We have the left and right unity laws:

1x ◦ f = f for any f : x′ → x

g ◦ 1x = g for any g : x → x′

Examples of Categories

1.1.1 Categories of mathematical objects

For any kind of mathematical object, there is a category with objects of that
kind and morhpisms being the structure-preserving maps between the objects
of that kind.

Example 1.1. Set is the category with sets as objects and functions as mor-
phisms.
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Example 1.2. Grp is the category with groups as objects and homomorphisms
as morphisms.

Example 1.3. For any field k, Vectk is the category with vector spaces over a
field k as objects and linear maps as morphisms.

Example 1.4. Ring is the category with rings as objects and ring homomor-
phisms as morphisms.

These are categories of “algebraic” objects, namely, a set (stuff) with oper-
ations (structure) such that a bunch of equations hold (properties), with mor-
phisms being functions that preserve the operations. All this is formalized in
“universal algebra”, using “algebraic theories”. There are also categories of
non-algebraic gadgets:

Example 1.5. Top is the category with topological spaces as objects and con-
tinuous maps as morphisms.

Example 1.6. Met is the category with metric spaces as objects and continuous
maps as morphisms.

Example 1.7. Meas is the category with measurable spaces as objects and
measurable maps as morphisms.

1.1.2 Categories as mathematical objects

There are lots of small, manageable categories:

Definition 1.1. A monoid is a category with one object.

Remark. HomC(•, •) for this object •, is a set with associative product and
unit.

• fg

1•

Example 1.8. • f1•

◦ 1• f
1• 1• f
f f 1•

The multiplication table above tells us how to compose morphisms. The
resulting monoid is usually called Z/2Z. Now, consider the same diagram
but with this multiplication table instead:

◦ 1• f
1• 1• f
f f f

Here we get another famous monoid:

1• = true 1• = false
f = false or alternatively f = true
◦ = or ◦ = and
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Definition 1.2. A morphism f : x → y is an isomorphism if it has an inverse
g : y→ x, that is, a morphism with:

g ◦ f = 1x

f ◦ g = 1y

If there exists an isomorphism between two objects x, y ∈ C, we say they’re
isomorphic.

Definition 1.3. A category where all morphisms are isomorphisms is called a
groupoid.

Example 1.9. "The groupoid of finite sets" is obtained by taking FinSet, with
finite sets as objects and functions as morphisms, and then throwing out all
morphisms except isomorphisms (i.e. bijections).

Definition 1.4. A monoid that is a groupoid is called a group.

Remark. the usual "elements" of a group are now the morphisms.

Definition 1.5. A category with only identity morphisms is a discrete category.

Remark. So any set is the set of objects of some discrete category in a unique
way. So a discrete category is "essentially the same" as a set.

• •

• x

1• 1•

1• 1x

Definition 1.6. A preorder is a category with at most one morphism in each
homset.

If there is a morphism f : x → y in a preorder, we say “x ≤ y”; if not, we say
“x � y. For a preorder, the category axioms just say:

• Composition: x ≤ y and y ≤ z =⇒ x ≤ z.

• Associativity is automatic.

• Identities: x ≤ x always.

• Left and right unit laws are automatic.

• We’re not getting antisymmetry: x ≤ y and y ≤ x =⇒ x = y.

Definition 1.7. An equivalence relation is a preorder that’s also a groupoid.

Proposition 1.1. A preoder is a groupoid if and only if this extra law holds for all
x, y ∈ C:

x ≤ y =⇒ y ≤ x
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Here we have transitivity, reflexivity, and symmetry of “≤”. So we usually
call this relation ∼.

Proposition 1.2. A preorder is skeletal, i.e. isomorphic objects are equal, if and only
if this extra law holds for all x, y ∈ C:

(x ≤ y) ∧ (y ≤ x) =⇒ x = y

In this case we say that C is a poset.

Example 1.10. Preorder that is a groupoid but not a poset:

• •

Example 1.11. Preorders that are posets but not groupoids:

•

•

•

• •

•

Example 1.12. Preorder that is both a poset and a groupoid:

•

Since categories can be seen as mathematical objects, we should define maps
between them:

Definition 1.8. Given categories C and D, a functor F : C→ D consists of:

• a function called F from Ob(C) to Ob(D): if x ∈ C then F(x) ∈ D.

• functions called F from HomC(x, y) to HomC(F(x), F(y)), for all objects
x, y ∈ C: if f : x → y then F( f ) : F(x)→ F(y)

such that:

• F(g ◦ f ) = F(g) ◦ F( f ) whenever either side is well defined.

• F(1x) = 1F(x) for all x ∈ C.

So a functor looks like this:

y

x z

g

1x

f

g◦ f

F F(y)

F(x) F(z)

F(g)

1F(x)

F( f )

F(g)◦F( f )
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Example 1.13. There’s a category called "1". It looks like this:

•

1•

What is a functor F : 1→ C where C is any category?

•

1•

F •

F(•) •

1•

The answer is: “an object in C”, since for any object x ∈ C, there exists a
unique functor F : 1→ C such that F(•) = x.

Example 1.14. There’s a category called "2". It looks like this:

Remark. Also a poset.

x y1x
f

1y

What is a functor F : 2→ C where C is any category? It’s just a morphism or
arrow in C! For any morphism g : X → X in C, there exists a unique functor
F : 2→ C such that F( f ) = g.

Proposition 1.3. If F : C → D and G : D → E are functors, then you can define a
functor G ◦ F : C → E and (H ◦ G) ◦ F = H ◦ (G ◦ F). Also, for any category C
there is an identity functor 1C : C→ C with:

• 1C(x) = x for all x ∈ C

• 1C( f ) = f for all f : x → y in C

• F ◦ 1C = F for all F : C→ D

• 1C ◦ H = H for all H : D→ C

Definition 1.9. Cat is the category whose objects are "small" categories and
whose morphisms are functors.

Remark. A "small" category is one with a set of objects. For example, Set is
not a small category because Set has a class of objects. Grp and Ring are also
not small categories for the same reason as Set. The categories 1 and 2 on the
other hand, are small categories.
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1.2 Doing Mathematics inside a Category

A lot of math is done inside Set, the category of sets and functions. Let’s try
to generalize all that stuff to other categories by replacing Set with a general
category C.

In Set, we have “onto” and “one-to-one” functions. In a category C,
we generalize these concepts to epimorphisms or “epis” and monomorphisms or
“monos” respectively.

Definition 1.10. A morhpism f : X → Y is a mono if for all g, h : Q → X we
have:

f ◦ g = f ◦ h =⇒ g = h

Q X Y
g

h

f

Remark. Also known as being a left-cancellative morhpism

Proposition 1.4. In Set, a morphism is monic if and only it is a one-to-one function.

Turning around the arrows in the definition of mono, we get:

Definition 1.11. A morhpism f : Y → X is a epi if for all g, h : X → Q we
have:

g ◦ f = h ◦ f =⇒ g = h

Y X Q
f g

h

Remark. Also known as being a right-cancellative morhpism

Proposition 1.5. In Set, a morphism is an epi if and only if it is an onto function.

Definition 1.12. A morphism f : X → Y is an iso if there exists f−1 : Y → X
that’s a left inverse f−1 ◦ f = 1X and a right inverse f ◦ f−1 = 1Y

Proposition 1.6. In Set, f : X → Y is a mono if and only if it has a left inverse,
and an epi if and only if it has a right inverse (using the axiom of choice). Thus, f is
an isomorhpism if and only if it is mono and epi.

Proposition 1.7. In Ring (rings and ring homomorphisms) f : Z→ Q (n→ n) is
a mono and an epi, but not an iso. In fact, it has neither a left nor a right inverse.

Proof. There isn’t a ring homorphism g : Q → Z, since it would send 1
2 to

some multiplicative inverse of 2. Why is f mono? We need:

f ◦ g = f ◦ h =⇒ g = h

R Z Q
g

h

f

If ( f ◦ g)(r) = ( f ◦ h)(r) ∀r ∈ R, since f is one-to-one g(r) = h(r) ∀r (as a
function), this implies g = h. Why is f epi? We need:
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g ◦ f = h ◦ f =⇒ g = h

Z Q R
f g

h

The main idea is that any morphism from Q is completely determined by its
values on the integers. We know g(p) = h(p) and g(q) = h(q). So
g(1) = g( q

q ) = g(q)g( 1
q ), so we can write g( 1

q ) =
1

g(q) . So

g( p
q ) = g(p)g( 1

q ) =
g(p)
g(q) . So g (and similarly for h) is determined by its

values on the integers; since they agree on Z, they’re equal.

Puzzle: In Top, find f : X → Y that is epi and mono, but not an iso.

1.3 Limits and Colimits

These are ways of building new objects in a category C from diagrams in C.

1.3.1 Products

Definition 1.13. Given objects X, Y ∈ C, a product of them is an object Z
equipped with morphisms, p and q called projections to X and Y.

Z

X Y

qp

such that for any candidate Q

Q

X Y

qp

there exists a unique ψ : Q→ Z such that the following diagram commutes

Z Q

X Y

q

p

ψ

g

f

The definition of coproduct is just the same but with all arrows reversed.
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Proposition 1.8. In Set, the product of X and Y, denoted X×Y, is:

X×Y = {(x, y) : x ∈ X, y ∈ Y}

Proof. Given

Q

X Y

fg

Let ψ : Q→ X×Y be ψ(q) = ( f (q), g(q)). We indeed get p ◦ ψ = f ,
q ◦ ψ = g, and ψ is the unique map obeying these equations.

We could also take as our product any set S that’s isomorphic to X × Y,
via some iso α : S→ X×Y

X×Y S

X Y

q

p

α

q◦α

p◦α

Use p ◦ α and q ◦ α as projections; then you can check that

S

X Y

q◦αp◦α

is also a product of X and Y. So “any object isomorphic to a product can also
be a product.”

Proposition 1.9. Suppose

W

X Y

qp and
Z

X Y

qp

are both a product of X and Y. Then W and Z are isomorphic. That is, products are
unique up to isomorphism.

Proof. Since W is a product. There exists a unique ψ : Z → W making this
diagram commute:
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Z W

X Y

q

p

∃!ψ

g

f

Also, since Z is a product, There exists a unique ϕ : W → Z making this
diagram commute:

Z W

X Y

q

∃!ϕ

p g

f

It suffices to show ϕ and ψ are inverse. Why is ψ ◦ ϕ : W →W the identity?
If we can show this, the same argument will show ϕ ◦ φ = 1Z. Since There is
a unique arrow making this diagram commute:

W W

X Y

q

p

∃!

g

f

1W : W →W does the job, but so does ψ ◦ ϕ : W →W . And so by
uniqueness, 1W = ψ ◦ ϕ.

Proposition 1.10. If a morphism is an iso, it is both a mono and an epi.

Remark. We’ve seen that the converse is false

Proof. If f : X → Y has a left inverse f−1, it is a mono:

f ◦ g = f ◦ h =⇒ f−1 ◦ f ◦ g = f−1 ◦ f ◦ h =⇒ g = h ∀g, h

Similarly, If f : X → Y has a right inverse f−1, it is an epi:

g ◦ f = h ◦ f =⇒ g ◦ f ◦ f−1 = h ◦ f ◦ f−1 =⇒ g = h ∀g, h
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Definition 1.14. A morphism with a left inverse is called a split monomorphism;
a morphism with a right inverse is called a split epimorphism.

Remark. In Set, every mono (or epi) splits, but we saw that this isn’t true in
Ring or Top.

1.3.2 Coproducts

Definition 1.15. Given objects X and Y, a coproduct of X and Y is an object Z
equipped with morphisms i, j called inclusions.

X Y

Z
i j

which is universal, which means for any diagram of the form:

X Y

Q
f g

There exists a unique ψ : Z → Q making the following diagram commute:

X Y

Z Q

f

i g

j

∃!ψ

That is, f = ψ ◦ i and g = ψ ◦ j.

Proposition 1.11. In Set, a coproduct of X and Y is their disjoint union.

X + Y = X× {0} t Y× {1}

with morphisms:

i : X → X + Y x 7→ (x, 0)
j : Y → X + Y y→ (y, 1)

Category PRODUCTS × COPRODUCTS +

Set cartesian product S× T disjoint union S t T
Top cartesian product X×Y with product topology disjoint union X tY
Grp product of groups G× H free product G ∗ H

AbGrp (abelian category) A⊕ B product of abelian groups A⊕ B
Vectk (abelian category) V ⊕W direct sum of vector spaces V ⊕W
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The free product G ∗ H consists of equivalence classes of words x1x2 . . . xn
where xi ∈ G ∪ H, with the following relations:

x1x2 . . . xi−11xi+1 . . . xn ∼ x1x2 . . . xi−1xi+1 . . . xn

x1x2 . . . xixi+1 . . . xn ∼ x1x2 . . . xi−1yxi+2 . . . xn

where 1 is the identity in G or H, and xi, xi+1 ∈ G or xi, xi+1 ∈ H, and
y = xixi+1

1.4 General Limits and Colimits

Given any diagram in a category C:

A B

C D

A cone over the diagram is a choice of morphisms from Z to each object in
the diagram, such that all the newly formed triangles commute:

Z

A B

C D

A limit of the diagram is a cone that’s universal, i.e. given any competitor Q
(another candidate), another cone over the same diagram, there exists a
unique ψ : Q→ Z such that all triangles including ψ commute. If C is any
object in the diagram and p : Z → C is the morphism in the universal cone,
and f : Q→ C is the morphism in the competitor, then f = p ◦ ψ.

Z Q

A B

C D

p

∃!ψ

f

A cocone is like a cone but with arrows reversed. A colimit is a universal
cocone.
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Diagrams LIMITS COLIMITS
• • binary product binary coproduct

• • equalizer coequalizer

A B

C

pullback C

C

A B

C pushout

•A A A
A• •B A B

terminal object 1 initial object 0

What’s a limit of the empty diagram? It’s an object Z such that for all objects
Q there exists a unique ψ : Q→ Z . This is called a terminal object.

• In Set, any 1-element set is a terminal object.

• In Vectk, any 0-dimensial vector space is a terminal object.

• In Ring, the zero ring, which is the unique ring (up to isomorphism)
consisting of one element is a terminal object.

Similarly, an initial object Z is one such that for any object Q, there exists a
unique ψ : Z → Q

• In Set, the empty set is an initial object.

• In Vectk, any 0-dimensional vector space is an initial object.

• In Ring, the ring of integers Z is an initial object.

In any abelian category, initial objects are terminal and vice-versa.

2 Equalizers, Coequalizers, Pullbacks, and Pushouts
(Week 3)

2.1 Equalizers

Definition 2.1. An equalizer is a limit of this diagram: A B
f

g

Proposition 2.1. In Set, the equalizer of A B
f

g
is
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Z

A B

p q

f

g

q = f ◦ p = g ◦ p

• with Z = {a ∈ A | f (a) = g(a)}.

• where p : Z → A has p(a) = a for all a ∈ Z (It’s an inclusion), and q is
forced to be f ◦ p = g ◦ p.

Remark. Since q is determined by p, we usually don’t draw it, and write an

equalizer like Z A B
p f

g
. Similarly, for lots of other limits and

colimits.

Proof. We need to check that this cone is universal, so take a competitor:

Q

Z A B

p′

p f

g

We want to show there exists a unique ψ : Q→ Z making everything
commute: p ◦ ψ = p′. Since p(a) = a for all a ∈ A, (p ◦ ψ)(q) = ψ(q) for all
q ∈ Q. Thus, ψ ◦ p = p′ simply says ψ(q) = p′(q) for all q ∈ Q. Thus, there
exists a unique ψ making everything commute, namely ψ = p′.

Proposition 2.2. In Grp, AbGrp, or Vectk, the equalizer of A B
f

g
is

ker( f − g).

Remark. ker( f − g) = {a ∈ A | f (a) = g(a)}

Proof. The same as before.

Proposition 2.3. If Z A B
p f

g
is an equalizer then p is monic.

Moral: monics and limits get alone well; epics and colimits do too.

Proof. Assume we have an equalizer. To check that i is monic, we consider:

Y Z A B
k

h p f

g

and show i ◦ h = i ◦ k =⇒ h = k. Y is a competitor to Z. Since Z is universal,
there exists a unique ψ : Y → Z making everything commute, so ψ = h = k.
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2.2 Coequalizers

Definition 2.2. A coequalizer of A B
f

g
is a universal cocone over this

diagram. i.e.

A B Z
f

g
i (commutes)

s.t. if we have a competitor

A B Z

Q

f

g
i′

i

there exists a unique ψ : Z → Q making everything commute.

Proposition 2.4. In Set, the coequalizer of A B
f

g
is A B Z

f

g
i

where Z = B/ ∼ where ∼ is the finest equivalence relation s.t. f (a) ∼ g(a) for all
a ∈ A and i maps b to its equivalence class [b].

Proof. i ◦ f = i ◦ g with this definition, so this is a cocone. Why is it universal?
Why does there exist a unique ψ : Z → Q making this diagram commute?

A B Z

Q

f

g
i′

i

∃!ψ

To commute, we need:

ψ ◦ i = i′

ψ(i(b)) = i′(b) ∀b ∈ B
ψ([b]) = i′(b)

This shows ψ is unique if it exists; to show it exists, we need to check it is
well-defined: If [b] = [b′] we need to show i′(b) = i′(b′). Since [b] = [b′],
either b = b′, or f (a) = b and g(a) = b′ for some a ∈ A. Since i′ ◦ f = i′ ◦ g
for all a ∈ A, the map is well-defined.

Proposition 2.5. In AbGrp or Vectk, the coequalizer of A B
f

g
is

coker( f − g) = B/im( f − g).

Proposition 2.6. If A B Z
f

g

p
is a coequalizer, p is epic.

Proof. Same as proof of the “dual” proposition for equalizers.
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2.3 Pullbacks

Definition 2.3. The limit of this diagram:

B

A C

g

f

is called a pullback, and denoted:

A×C B B

A C

p

q

g

f

The object here, “A times B over C, or the fibered product, and we only need to
draw its morphisms to A and B called projections. We write:

Z B

A C

y

when Z is a pullback.

Proposition 2.7. In Set, the pullback of A C B
f g

is

A×C B = {(a, b) ∈ A× B | f (a) = f (b)}

with

p : A×C B→ A q : A×C B→ B

(a, b) 7→ a (a, b) 7→ b

Proof. This is clearly a cone: to show it is universal, use the next Prop.

Proposition 2.8. Given A C B
f g

, if the product A× B exists and if
the equalizer exists:

Z

A× B B

A C

i

π1

π2

g

f

where i : Z → A× B is the equalizer of A× B C
f ◦π1

g◦π2
, then this is a pullback:

Z B

A C

π1◦i

π2◦i

g

f
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2.4 Pullbacks and Pushouts

Proposition 2.9. To compute a pullback of A C B
f g

it suffices to take
a product of A and B:

A× B B

A C

π1

π2

g

f

and then form the equalizer of: Z A× B Ci f ◦π1

g◦π2
giving the desired

pullback:

Z B

A C

π1◦i

π2◦i

g

f

Proof. Note the last square commutes since f ◦π1 ◦ i = g ◦π2 ◦ i, so it is a can-
didate for being the pullback. To show it is universal, consider a competitor:

Q

Z

A× B B

A C

∃!ψ

q

p

i

π1

π2

g

f

only little square does not commute.

How do we show there exists a unique ψ : Q→ Z making the newly formed
triangle commute? By the universal property of the product, we get:

Q

A× B B

A C

q

p π1

π2

g

f

making this commute.

Why is Q a competitor? We need to show f ◦ π1 ◦ ψ = g ◦ π2 ◦ ψ.

f ◦ π1 ◦ ψ = f ◦ p
= g ◦ q
= g ◦ π2 ◦ ψ (by various comm. diagrams)
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By the universal property of the equalizer, there exists a unique ψ : Q→ Z
making this diagram commute:

Z A× B C

Q

i f ◦π1

g◦π2
ψ

ϕ

In particular, ϕ = i ◦ ψ. Why does this imply:

1. π1 ◦ i ◦ ψ = p

2. π2 ◦ i ◦ ψ = q

3. a unique ψ making (1) and (2) true.

For (1) and (2), it suffices to show π1 ◦ ψ = p and π2 ◦ ϕ = q, but we already
had this by the universal property of the product.

Exercise 1. check (3).

“Category theory makes trivial things trivially trivial.” - Michael
Barr

“I’m content to let them be trivial.” - Timothy Gowers

2.5 Limits for all finite diagrams

A category has limits for all finite diagrams if and only if it has:

• products

• •

• equalizers

• •

• terminal object 1

Proposition 2.10. If this is a pullback:

A×C B B

A C

q

p
y g

f

and g is a mono, then p is a mono too.

Proof. Assume g is a mono. Show p is a mono:
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X A×C B B

A C

h

k

q

p g

f

Need: p ◦ h = p ◦ k =⇒ h = k

p ◦ h = p ◦ k =⇒ f ◦ p ◦ h = f ◦ p ◦ k
=⇒ g ◦ q ◦ h = g ◦ q ◦ k (by associativity and commutativity of diagram.)
=⇒ q ◦ h =q ◦ k (since g is mono.)

Note X is a competitor to the pullback:

X

A× B B

A C

∃!ψ

q◦h=q◦k

p◦h=p◦k p

q

g

f

f ◦ p ◦ h = g ◦ q ◦ h = g ◦ q ◦ k

So there exists a unique ψ : X → A×C B making this commute. Both h and k
do make it commute, so h = k.

Proposition 2.11. Given:

A B C

D E F
A B

1. If A and B are pullbacks, so is the combined square AB.

2. If B and AB are pullbacks, so is A.

3 Week 4

3.1 Mathematics Between Categories

Recall that given categories C and C a functor F : C → D is a map sending
objects c ∈ C to objects F(c) ∈ D, morphism f : c → c′ in C to morphism
F( f ) : F(c)→ F(c′) in D preserving composition F( f ′ ◦ f ) = F( f ′) ◦ F( f ), and
identities F(1c) = F(1F(c)).

There are many "forgetful functor" going from categories of "fancy"
mathematical gadgets to categories of less fancy ones, forgetting some extra
properties, structure or stuff.
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Ring Vectk

AbGrp

Grp Top Set2

Set

U3 U4

U2

U1 U5
U6

Example 3.1. U1 : Grp → Set sends any group G to its underlying set, and
any homomorphism f : G → G′ to its underlying function.

Example 3.2. Given categories C and D, there is a category C × D, where
objects are order pairs (c, d) with c ∈ C, d ∈ D, and morphism are order pairs
( f , g) with f a morphism in C and g a morphism in D: given f : c → c′ in C
and g : d → d′ in D then ( f , g) : (c, d) → (c′, d′). We define ( f ′, g′) ◦ ( f , g) =
( f ′ ◦ f , g′ ◦ g).

In fact C×D is the product of the objects C, D ∈ Cat, which is the category
with

• (small) categories as objects

• functors as morphisms

Among other things this means we have projections

C× D

C D

qp

Set is a large category but we can still define Set2 = Set× Set with pairs of
sets as objects. In the chart, let U6 : Set2 → Set, (S, T)→ S be the projection
onto the first component.

• Functions can be nice in two ways: one-to-one and onto.

• Functors can be nice in three ways:

Definition 3.1. A functor F : C→ D is faithful if for any c, c′ ∈ C,
F : hom(c, c′)→ hom(F(c), F(c′)) is one-to-one.

Definition 3.2. A functor F : C→ D is full if for any c, c′ ∈ C,
F : hom(c, c′)→ hom(F(c), F(c′)) is onto.

Definition 3.3. A functor F : C → D is essentially surjective if for any d ∈ D,
there exists c ∈ C such that F(c) ∼= d, meaning there exists an isomorphism
g : F(c)→ d in D.

Example 3.3. Compare FinVectR (finite dimensional vector spaces) to this
category C, with
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• {0}, R, R2, . . . as objects,

• all linear maps between these as morphisms

There is a functor F : C→ FinVectR, defined in objects as

Rn 7−→ Rn

and similarly for morphisms

f : Rn → Rn 7−→ f : Rn → Rn

This is faithfull and full, not surjective on objects, but essentally surjective.

Later we’ll define "equivalent" categories and see that if F : C→ FinVectR

is faithfull, full and essentially surjective then C and D are equivalent.

Definition 3.4. We say:

• A functor U : C→ D forgets nothing if it is faithfull, full, and essentially
surjective.

• A functor U : C→ D forgets (at most) properties if it is faithfull and full.

• A functor U : C→ D forgets (at most) structure if it is faithfull.

• In general we say U forgets (at most) stuff.

Example 3.4. U1 : Grp→ Set forgets (at most) structure.
It’s faithfull: given f , f ′ : G → G′ in Grp, U1( f ) = U1( f ′)⇒ f = f ′.
It’s not full: there are usually functions f : U1(G) → U1(G′) that don’t come
from group homomorphism, e.g : f (gh) 6= f (g) f (h) or f (1) 6= 1.

Example 3.5. U2 : AbGrp → Grp forgets (at most) properties: the commu-
tative law is forgotten. This is faithfull and also full: if you have any group
homomorphism f : U2(A) → U2(A′) then U2( f ′) = f for some homomor-
phism of abelian groups f ′ : A→ A′. But it is not esentially surjective, if G is
nonabelian, G � U2(A) for any A ∈ AbGrp.

Example 3.6. U6 : Set2 → Set forgets stuff: U6(S, S′) = S (it forget the sec-
ond set in the pair). Technically it is not faithfull: we can have 2 different
morphisms ( f , g), ( f , g′) : (S, S′)→ (T, T′) with U6( f , g) = f = U6( f , g′).

In our chart, every forgetful functor U : C → D has a "left adjoint" F :
D→ C which "freely creates" stuff, structure or properties that U forgets.

Example 3.7. • F1 : Set→ Grp takes a set S and form the free product on
S, F1(S).

• F2 : Grp→ AbGrp abelianizes any group G, forming

F2(G) =
G

< xyx−1y−1 >

• F6 : Set→ Set2, S→ (S, ∅)

To define adjoint functors (and many other things) we need...
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3.2 Natural Transformations

Given two functors F, G : C → D, we can define a natural transformation
α : F ⇒ G.

F(x) F(y)

x y

G(x) G(y)

αx

F( f )

αy
f

F

G

α

G( f )

Definition 3.5. Given functors F, G : C → D a transformation α : F ⇒ G is a
function sending each object x ∈ C to a morphism αx : F(x) → G(x). We say
α : F ⇒ G is a natural transformation if for each morphism f : x → y in C this
square commutes:

F(x) F(y)

G(x) G(y)

αx

F( f )

αy

G( f )

Proposition 3.1. Given categories C and D there is a category, the functor category
DC, with:

• objects being functors F : C→ D

• morphisms being natural transformation α : F ⇒ G.

In DC we compose α : F ⇒ G, β : G ⇒ H to get β ◦ α : F ⇒ H as follows:
(β ◦ α)x : F(x)→ H(x) for all x ∈ C is given by βx ◦ αx.
In DC the identity 1F : F ⇒ F, (1F)x : F(x)→ F(x) is given by 1F(x).

Proof: We’ll check that the compositie β ◦ α is natural. Given f : x → y in C,
we want the following diagram to commute:

F(x) F(y)

H(x) H(y)

(β◦α)x

F( f )

(β◦α)y

H( f )

We have

F(x) F(y)

G(x) G(y)

H(x) H(y)

αx

F( f )

(β◦α)x

αy

(β◦α)y

βx

G( f )

β

H( f )

25



Since the top and bottom commute (α and β are natural), the whole dia-
gram commute. �
Remark. So, just as given two sets X and Y, there is a set YX of all functions
f : X → Y, given two categories there is a category YX of all functors F : X ⇒
Y.

Given two sets X and Y they have a product:

X×Y = {(x, y) : x ∈ X, y ∈ Y}
Notice X × Y 6= Y × X but if we want to be honest X × Y ∼= Y × X and there
is a specific "good" isomorphism αX,Y : X×Y → Y× X, ((x, y)→ (y, x)).
It’s good because it is natural in the sense we just defined.
There are two functors from Set2 → Set,

F : (X, Y) 7→ X×Y

G : (X, Y) 7→ X×Y

and α is a natural transformation from F to G. In fact it is a "natural isomor-
phism":

Definition 3.6. If F, G : C → D are functors and α : F ⇒ G is a natural
transformation, we say α is a natural isomorphism if αx : F(x) → G(x) is an
isomorphism for all x ∈ C.

Proposition 3.2. α : F → G is a natural isomorphism iff it have and inverse α−1 :
G → F in DC.

Proof: Key Idea:(α−1)x = (αx)−1. �

Proposition 3.3. Suppose C is a category with binary product :any pair of object
have a product. Then we can choose, for any pair x, y ∈ C, a specific product:

X×Y

X Y

qX,YpX,Y

and then there is a functor X : C2 → C, (X, Y) 7→ X×Y.
In fact there are two functors:

X = F : C2 → C, (X, Y) 7→ X×Y

G : C2 → C, (X, Y) 7→ Y× X

and this are naturally isomorphic. We say "products are commutative up to natural
isomorphism"

Remark. Also products are associative up to natural isomorphisms.

αX,Y,Z : (X×Y)× Z ∼−→ (X×Y)× Z

C3 CαX,Y,Z

(Just keep using universal properties of product.)
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Definition 3.7. A cartesian category is a category with binary products and
a terminal object. (I.e. it is a category where any finite set of objects have a
product- a finite product category )

One can show that in a cartesian category we have natural isomorphisms.

lX : 1× X ∼−→ X.

rX : X× 1 ∼−→ X.

All this work similarly in a cat with finite coproducts

βX,Y : X + Y ∼−→ Y + X.

αX,Y,Z : (X + Y) + Z ∼−→ X + (Y + Z).

lX : 0 + X ∼−→ X.

rX : X + 0 ∼−→ X.

In case C = FinSet (finite sets and functions) this gives laws of arithmetic: N

is the isomorphism clases of objects in FinSet.
Another example:

Example 3.8. A group is a category G with one object and all morphisms
invertible:

•

Z

3

ff 2

1= f 3

What’s a functor F : G→ Set?

x F(x)

G Set

ff 2

1= f 3
F

F( f )F( f 2)

F(1)

F picks out a set F(x) = X and for each group element f it picks out a
function F( f ) : X → X such that F( f f ′) = F( f )F( f ′) and F(1) = 1X . So X is
a set acted by the group G, or a G-set.

So: a functor F : G→ Set is a G-set.

What’s a natural transformation between two such functors?.
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4 Maps Between Categories

4.1 Natural Transformations

4.1.1 Examples of natural transformations

Example 4.1. We saw that a 1-object category G with all morphisms invertible
is a group. We saw that a functor F : G→ Set is a G-set:

• a set F(•)

• with functions F(g) : S→ S for all g ∈ G

• such that F(gg′) = F(g) ◦ F(g′) and F(1•) = 1F(•)

Given two functors F, F′ : G → Set, what is a natural transformation α : F ⇒
F′? It’s called a map of map o f G-sets or G-equivariant map, but let’s draw
one.

F(•)

(•)

F′(•)

F

F( f )F(g)

F(1•)

α•fg

1•

F′
F′( f )F′(g)

F′(1•)

• It’s a function α• : F(•)→ F′(•)

• such that for all morhpisms g ∈ G, we have F′(g) ◦ α• = α• ◦ F(g).

• F(•) F′(•)

• F(•) F′(•)

g F(g)

α•

F′(g)

α•

Example 4.2. Two sets are isomorphic if there are functions F : X → Y and
G : Y → X such that G ◦ F = 1X and F ◦ G = 1Y. Given F, when can you find
such a G? If and only if F is one-to-one and onto.

4.2 Equivalence of Categories

Definition 4.1. An equivalence of categories C and D consists of:

• functors F : C→ D and G : D→ C.

• natural transformations α : G ◦ F ⇒ 1X and β : F ◦ G ⇒ 1X .
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We say that F and G are weak inverses. We say C and D are equivalent if there
exists an equivalence between them.

Theorem 4.1. A functor F : C → D is part of an equivalence (F,G,α,β) if and only
if F is faithful, full, and essentially surjective. If such a G exists, it may not be unique,
but if G′ was another one, it is naturally isomorphic to G.

4.3 Adjunctions

4.3.1 What are adjunctions?

Recall an example:

U : Grp→ Set sending each group G to its underlying set U(G).

F : Set→ Grp sending each set S to the free group on it F(S).

We say that U is the “right adjoint” of F, or synonymously, F is the “left
adjoint” of U. The basic idea is that morphisms from the object F(S) to the
object G in Grp are in 1-1 correspondence with morphisms from the object
S to the object U(G) in Set. Given a function f : S → U(G), we get a ho-
momorphism f̄ : F(S) → G, the unique one such that f̄ (s) = f (s) for all
s ∈ S ⊆ F(S). And conversely, given a homomorphism h : F(S) → G, we get
h : S→ U(G) by restricting h to S ⊆ F(S). The usual picture looks like this:

S

F(S) G

inclusion
f

∃! f̄

We prefer to say that there is a bijection HomGrp(F(S), G) ∼= HomSet(S, U(G)).
Note that F is on the left of HomGrp(F(−),−) and G is on the right of
HomSet(−, G(−)). To define adjoint functors, we need to say that this kind
of bijection is “natural”. What functors give HomGrp(F(S), G)? They must be
two functors from Set×Grp to Set. On objects, these do:

(S, G)→ HomGrp(F(S), G)

(S, G)→ HomSet(S, U(G))

What is the “hom” doing here?

Proposition 4.1. For any category, there is a functor, called the hom functor; Hom :
Cop × C→ Set which sends each object (X, Y) to the set HomC(X, Y)

Remark. Here, Cop is the opposite of C: the category with one morphism
f op : Y → X for each f : X → Y in C, and f op ◦ gop = (g ◦ f )op with the same
identity morphisms.

Proof. Sketch of proof: We need to define Hom : Cop × C → Set on mor-
phisms. Given a morphism in Cop × C, ϕ : (X, Y) → (X′, Y′). That is, a pair
of morphisms: f op : X → X′ in Cop and g : Y → Y′ in C. We need to define
a morphism, i.e. a function, Hom(ϕ) : HomC(X, Y) → HomC′(X′, Y′) in Set.
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Given h ∈ HomC(X, Y), what is Hom(ϕ)(h) ∈ HomC′(X′, Y′)? It is g ◦ h ◦ f .
Thus, the hom functor Hom : Cop ×C→ Set will not only describe hom sets,
but also composition in C. Then check it is really a functor: For example,
check it preserves composition.

X Y

X′ Y′

h

gf

g◦h◦ f=Hom(ϕ)(h)

Given functors F : C→ D and U : D→ C, how can we say that the
isomorphism HomD(F(X), Y) ∼= HomC(X, U(Y)) is natural?

Dop ×D Set

Cop ×D Cop × C

Hom

α
sFop×1D

1C×U

Hom

4.3.2 Examples of Adjunctions

Let’s at first downplay the naturality condition and look at examples
focusing on bijections.

Example 4.3. The forgetful functor U : Grp → Set sends each group G to its
underlying set U(G). The free functor F : Set → Grp sends each set S to the
free group on it F(S). Since these two functors form an adjunction between
the categories Grp and Set, we have bijections for every G ∈ Grp and S ∈ Set:

HomGrp(F(S), G) ∼= HomSet(S, U(G))

These bijections let us turn any function f : S→ U(G) into a homomorphism
f̄ = α−1

S,G( f ) : F(S) → G. And conversely; any homomorphism h : F(S) → G
comes from a function h = αS,G(h) : S→ U(G).

Example 4.4. Does the forgetful functor U : Vectk → Set sending each vector
space V over a field K to its underlying set U(V) have a left adjoint? Yes, for
any set S, there is a vector space F(S) whose basis is S, where the sums are
formal expressions:

F(S) = {∑
si∈S

cisi | ci ∈ K, only finitely many nonzero}
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What does F : Set→ Vectk do to a morphism f : S→ T in Set? It should
give a linear map F( f ) : F(S)→ F(T). What is it? It is:

F( f )( ∑
si∈S

cisi) = ∑
si∈S

ci f (si)

Check F is a functor: That is, check that identities F(g ◦ f ) = F(g) ◦ F( f ) and
F(1S) = 1F(S) hold.

Exercise 2. Why is the functor F of the last example, left adjoint to U? First,
for all V ∈ VectK and Set, we need the following bijections to hold (and check
they’re natural):

HomVectk (F(S), V) ∼= HomSet(S, U(V))

Given a function f : S → U(V), we need a linear map f̄ : F(S) → V in
some “natural” way. Try f̄ (∑si∈S cisi) = ∑si∈S ci f (si). Conversely, given a
linear map l : F(S) → V, we need a function l : S → U(V). Try l(s) = l(s).
Check these maps are inverses: ( f̄ ) = f and (l̄) = l, so that we have a bijection:

HomVectk (F(S), V) ∼= HomSet(S, U(V))

Example 4.5. To dream up a left adjoint of the forgetful functor U : Top→ Set
sending each topological space X to its underlying set U(X), we need to think
of ways to turn a set S into a topological space. One way we can do this
is to give this set the discrete toppology, where you give S as many open sets
as possible, so every subset is open. Another way we can do this is to give
this set the indiscrete topology, where you give S as few open sets as possible.
The left adjoint of U : Top → Set, say L : Set → Top, must have have the
following bijections for every X ∈ Top and S ∈ Set:

HomTop(L(S), X) ∼= HomSet(S, U(X))

That is, continuous maps f̄ : L(S)→ X are “the same” as functions
f : S→ U(X). To make this true, L(S) should have as many open sets as
possible, so L(S) is S with the discrete topology. The right adjoint of
U : Top→ Set, say R : Set→ Top, must have have the following bijections
for every X ∈ Top and S ∈ Set:

HomSet(U(X), S) ∼= HomTop(X, R(S))

That is, continuous maps h : X → R(S) are “the same” as functions
h : U(X)→ S. To make this true, R(S) should have as few open sets as
possible, so R(S) is S with the indiscrete topology.

4.3.3 Diagonal Functor

Suppose C is any category. There’s always a functor ∆ : C→ C×C called the
diagonal with:

∆(X) = (X, X) for all objects X ∈ C

∆( f ) = ( f , f ) : (X, X)→ (Y, Y) for all objects X, Y ∈ C
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Proposition 4.2. If C has binary products, then the functor × : C× C → C is the
right adjoint of ∆ : C→ C× C.

Remark. In fact, the converse is true: ∆ has a right adjoint if and only C has
binary products, and the right adjoint is ×.

Proof. Sketch of proof: For starters, we need bijections for all objects X, Y, Z ∈
C:

HomC×C(∆(X), (Y, Z)) ∼= HomC(X, Y× Z)

since a morphism from (X, X) to (Y, Z) is a pair: f : X → Y, g : X → Z, for
the left side we have:

HomC×C(∆(X), (Y, Z)) = HomC×C((X, X), (Y, Z)) ∼= HomC(X, Y)×HomC(X, Z)

So what we need to show is:

HomC(X, Y)× HomC(X, Z) ∼= HomC(X, Y× Z)

Indeed, the universal property of the product says:

X

Y× Z

Y Z

∃!ψ
f g

qp

So ( f , g) gives ψ and conversely ψ gives f = p ◦ ψ and g = q ◦ ψ, wo we have
a bijection:

HomC(X, Y)× HomC(X, Z) ∼= HomC(X, Y× Z)

( f , g)←→ ψ

Proposition 4.3. If C has binary coproducts, then the functor + : C× C → C is
the left adjoint of ∆ : C→ C× C.

Remark. In fact, the converse is true: ∆ has a left adjoint if and only C has
binary coproducts, and the left adjoint is +.

Proof. Sketch of proof: For starters, we need bijections for all objects X, Y, Z ∈
C:

HomC(Y + Z), X) ∼= HomC×C((Y, Z), ∆(X))

since a morphism from (X, X) to (Y, Z) is a pair: f : X → Y, g : X → Z, for
the right side we have:

HomC×C((Y, Z), ∆(X)) = HomC×C((Y, Z), (X, X)) ∼= HomC(Y, X)×HomC(Z, X)

32



So what we need to show is:

HomC(Y + Z, X) ∼= HomC(Y, X)× HomC(Z, X)

Indeed, the universal property of the coproduct says:

X

Y + Z

Y Z

∃!ψ

i

f

j

g

So ( f , g) gives ψ and conversely ψ gives f = i ◦ ψ and g = j ◦ ψ, wo we have
a bijection:

HomC(Y + Z, X) ∼= HomC(Y, X)× HomC(Z, X)

ψ←→ ( f , g)

A product (an example of a limit) is an example of a right adjoint - it is easy
to describe morphisms going into it. A coproduct (an example of a colimit) is
an example of a left adjoint - it is easy to describe morphisms going out of it.

5 Diagrams in a Category as Functors

Last time, we saw that if C has products, the functor × : C2 → C is a right
adjoint to the diagonal functor ∆ : C → C2 c 7→ (c, c). Similarly, the functor
+ : C2 → C, if C has coproducts, is a left adjoint to ∆. Thus, ⊕ : Vect2

k →
Vectk is both left and right adjoint to ∆ : Vect2

F → VectF. In fact, if a category
has limits, these limits give a right adjoint to some functor:

“limits are right adjoints”

“colimits are left adjoints”

We often think about the limit of a diagram in a category C. What’s a
“diagram in C”, really?

c c′

c′′ c′′′

f
g

k

Namely, it is a collection of objects and morphisms between them. We can
make it into a subcategory of C:
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c c′

c′′ c′′′

f

1c
1c′

g
k

f ◦k

1c′′ 1c′′′

We’re often interested in diagrams of some shape, like pullbacks:

• • • •

• • •

These “shapes” can be interpreted as categories:

• • • •

• • •

Let D be any category: we’ll take this as our “diagram shape”. What is a
D-shaped diagram in some category C? It’s a functor F : D→ C:

• • F(•) F(•)

• • F(•) F(•)

F

When we take the limit of this diagram, we get an object lim F ∈ C (defined
up to isomorphism). What is the process that takes us from F : D→ C to
limF ∈ C? The key is that there is a category CD with:

• objects being functors F : D→ C.

• morphisms being natural transformations α. D C

G

F

α

These morphisms look like:
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F(•) F(•)

• • F(•) F(•)

• • G(•) G(•)

G(•) G(•)

F

G

α

When we take a limit of F : C→ D, we study cones over F.

Definition 5.1. A cone over F is a natural transformation α : G → F where G
sends every object of D to some object of C, and G sends every morphism of
D to the identity morphism of that object.

•

•

• •

F(x) F(z)

x z F(w) F(y)

w y G(x) G(z)

G(w) G(y)

αx

F( f )F(e)

αz

fe

F

αw αy

F(g)

g

G

α

G( f )G(e) G(g)

Here, G : D→ C was determined by the object x via the above recipe. It
turns an object x ∈ C into an object G ∈ CD. So this recipe should be a
functor ∆D : C→ CD. ∆C(x) is the diagram:

• • x x

• • x x

∆D(x)

1x

1x

1x

So a cone over F with apex x ∈ C is a natural transformation α : ∆C(x)→ F.
What’s the limit of a diagram? If F ∈ CD, it is a universal cone over that
diagram.
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limF x

• •

• •

∃!ψ

Remember U is the right adjoint of F if:

HomD(F(x), y) ∼= HomC(x, U(y))

So adjoint functors are about converting one kind of morphisms into another
in a bijective way, and that’s what we’re doing when we’re stating the univer-
sal property:

• morphisms ψ : q→ limF in C.

• cones over F with apex q, i.e. natural transformations α : ∆D(q) → F.
(morphisms α from ∆D(q) to F in CD.)

So:
HomCD(∆D(q), F) ∼= HomC(q, limF)

So it looks like we have lim : CD → C which is right adjoint to ∆D : C→ CD.
This is true, you need to check that the bijection above is natural to finish the
proof of:

Theorem 5.1. If C has all limits for D-shaped diagrams, then we have a functor
lim : CD → C which is right adjoint to ∆D : C→ CD. Conversely, if ∆D : C→ CD

has a right adjoint, then this gives limits of D-shaped diagrams in C.

What choice of D gives the case of binary products (a special case of limits)?

C× C′ C× C′

• •

C C′

p q

∆D(C×C′)

G

α

Here, D has two objects and only identity morphisms, so we could call it 2,
so CD = C2 and × : C2 → C is right adjoint to ∆2 = ∆ : C→ C2. Similarly,

Theorem 5.2. If a category C has colimits of all D-shaped diagrams, there is a functor
colim : CD → C which is left adjoint to ∆D : C → CD. Conversely, if ∆D : C →
CD has a left adjoint, then this gives limits of D-shaped diagrams in C.

Note: α ∈ HomCD(F, ∆D(q)) is a cocone:
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• •

• •

q

Theorem 5.3. Left adjoints preserve colimits; right adjoints preserve limits.

Proof. Sketch of proof:

Let’s show that if F : C→ D is a left adjoint to U : D→ C, then F preserves
colimits. For concreteness, let’s show F preserves pushouts - general case is
analogous. So suppose we have a pushout in C:

a

b c

x

Here, x is the apex of a cocone on the diagram we’re taking a colimit of, and
the universal property holds. The claim is that applying F to this universal
cocone gives a universal cocone in D:

F(a)

F(b) F(c)

F(x) Q
∃!ψ

Choose a competitor cocone with apex Q. We need to show ∃!ψ : F(x)→ Q
making the newly formed triangle commute. We can look at U(Q) :∈ C:

a

b c

x U(Q)
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Since F is left adjoint to U, we have:

HomD(F(x), Q) ∼= HomC(x, U(Q))

So to get ψ : F(x)→ Q, let’s find ϕ : x → U(Q). U(Q) becomes a competitor
due to the adjointness of F and U, e.g.

HomD(F(a), Q) ∼= HomC(a, U(Q))

For some reason, the triangles involving U(Q) commute since those
involving Q commute. So U(Q) is a competitor. Thus, ∃!ϕ : x → U(Q)
making the newly formed triangles commute.

a

b c

x U(Q)
∃!ϕ

This gives us ψ : F(x)→ Q, check it makes its newly formed triangle
commute and is unique (since ϕ is).

Example 5.1. F : Set → Grp preserves colimits, e.g. coproducts, so F(S +
T) ∼= F(S) + F(T). Here, S + T is the disjoint union of S and T, F(S + T)
is the free group with elements of S + T as generators, and F(S) + F(T) =
F(S) ∗ F(T) is the “free product” of F(S) and F(T) .

Example 5.2. U : Grp → Set preserves limits, e.g. products, so U(G× H) ∼=
U(G)×U(H) where G× H is the usual product of groups G× H.

Theorem 5.4. The composite of left adjoints is a left adjoint. The composite of right
adjoints is a right adjoint.

Proof. Suppose we have functors C D EF F′ and F and F′ are left

adjoint of functors U and U′ C D E
U U′

. We’ll show that F′ ◦ F :

C→ E is the left adjoint of U ◦U′ : E→ C. We want a natural isomorphism:

HomE(F′ ◦ F(c)), e) ∼= HomC(c, U ◦U′(e))

Here’s how we get it:

HomE(F′ ◦ F(c), e) ∼= HomD(F(c), U′(e)) Since F′is left adjoint to U′

HomD(F(c), U′(e)) ∼= HomC(c, U ◦U′(e)) Since F is left adjoint to U

Example 5.3. F′ ◦ F is left adjoint to the forgetful functor U ◦U′ from Ring to
Set.
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Ring

AbGrp

Set

U′

U◦U′

U

F′

F

F′◦F

• Starting from the empty set ∅ (the initial set) we get F(∅) = {0} (the
trivial abelian group, which is the initial abelian group) and then F′(F(∅)) =
Z (the ring of integers, which is the initial ring).

• Starting from a one-element set {x}, we get F({x}) = {. . . ,−x, 0, x, x +
x, . . . } ∼= Z and then F′(F(x)) = Z[x], the ring of polynomials in x with
integer coefficients.

5.1 Units and Counits of Adjunctions

Suppose we have C D
F

U
with F left adjoint to U. So that for all c ∈ C

and d ∈ D, we have:

HomD(F(c), d) ∼= HomC(c, U(d))

We can apply this bijection to an identity morphism and get something
interesting. We can do this if d = F(c).

HomD(F(c), F(c)) HomC(c, U(F(c)))

1F(c) ϕ(1F(c))

ϕ

∼

ϕ(1F(c)) is called the unit, ιc:

ιc : c→ U(F(c))

We can also apply ϕ−1 to an identity if c = U(d).

HomD(F(U(d)), d) HomC(U(d), U(d)))

ϕ−1(1F(c)) 1F(c)

ϕ−1

∼

ϕ−1(1U(d)) is called the counit, εd:

εd : F(U(d))→ d
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These give various famous morphisms.

Example 5.4.
F : Set→ Grp

U : Grp→ Set

Given any set S, we get a unit:

ιS : S→ U(F(S))

This is the “inclusion of the generators”: elements of S are generators of
F(S). Given a group G, we get a counit:

εG : F(U(G))→ G

g±1
1 ∗ g±1

2 ∗ · · · ∗ g±1
n 7→ g±1

1 g±1
2 · · · g±1

n

“formal product” in F(U(G)). “actual product” in G.

The counits “convert formal expressions into actual ones”.

6 Cartesian Closed Categories

Any category has a set Hom(X, Y) of morphisms from one object X to another
object Y, but in a cartesian closed category (or ccc) you also have an object YX

of morphisms from X to Y.

Example 6.1. If C = Cat, HomC(X, Y) is the set of functors F : X → Y, while
YX is the category of functors F : X→ Y and natural transformations between
them. In general, you can get HomC(X, Y) from YX but not vice versa. We call
HomC(X, Y) the homset or external hom (it lives outside of C, in Set), and YX

the exponential or internal hom (since it lives inside C).

Internalization is the process of taking math that lives in Set and moving it
into some category C.

Example 6.2. In Set you can define a group to be an object G ∈ Set with
morphisms:

m : G× G → G Multiplication

inv : G → G Inverses

i : 1→ G The identity-assigning map.
It maps the one element of 1 to the identity element in G.

associative law:
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G× G× G

G× G G× G

G

1G×mm×1G

m m

left and right unit laws:

1× G G G× 1

G G G× G

i×1G

∼ ∼

1G 1G×i

m m

(∗, g) g (g, ∗)

(1, g) 1g = g = g1 (g, 1)
inverse laws:

G× G G G× G

G× G G G× G

inv×1G

∆

∃!i 1G×inv

m m

All these diagrams make sense in any cartesian category (=category with
finite products = category with binary products and terminal object). So we
can define a group internal to C or group in C using these axioms whenever C
is cartesian. For example:

• If C = Top, a group in C is called a topological group.

• If C = Diff, a group in C is called a Lie group.

• If C is the category of algebraic varieties, a group in C is called an algebraic group.

Puzzle: If C = Grp, a group in C is a very famous thing. What is it?

6.1 Evaluation and Coevaluation in Cartesian Closed Cate-
gories

Recall a cartesian category C is a ccc if for any Y ∈ C, the functor −×C has a
right adjoint:

HomC(X×Y, Z) ∼= HomC(X, ZY)

Any adjunction C D
F

U
has a unit and counit:

ιX : X → UFX X ∈ C

εY : FUY → Y Y ∈ D

Now we have an adjunction C C
−×Y

−Y

ιX : X → (X×Y)Y
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εX : XY ×Y → X

X ∈ C

The second one is called evaluation: in Set

εX : XY ×Y → X

( f , y) 7→ f (y)

The first one is called coevaluation: in Set

ιX : X → (X×Y)Y

ix(x)(y) = (x, y)

So we have analogous of these in any ccc.

6.1.1 Internalizing Composition

In any category, we have composition:

◦ : Hom(Y, Z)× Hom(X, Y)→ Hom(X, Z)

( f , g) 7−→ f ◦ g

In a ccc, we can internalize this and define “internal composition”:

• : ZY ×YX → ZX

• ∈ Hom(ZY ×YX , ZX) ∼= Hom(ZY, (ZX)(Y
X)) ∼= Hom(ZY ×YX × X, Z)

So we get • form a morphism:

•̃ : ZY ×YX × X → Z

which we indeed have in any ccc:

ZY ×YX × X ZY ×Y Z
1ZY×ε ε

This is just an internalized way of saying the old definition of composition:
( f ◦ g)(x) = f (g(x))

Emily Riehl, Categories in Context, Dover Pub. free on the web.
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6.2 Elements

Sets have elements, but what about objects in other categories? Elements of
a set X are in 1− 1 correspondence with functions f : 1 → X, where 1 is a
terminal object in Set (1 = a one element set). So:

Definition 6.1. If C is a category with a terminal object, an element of an object
X ∈ C is a morphism 1→ X. We define the set elt(X) to be Hom(1, X).

Example 6.3. If C = Top, elt(X) = {continuous maps f : {∗} → X, where {∗}
is the one-point space, i.e. the terminal object in Top}. In fact, elt(X) is in 1− 1
correspondence with the underlying set of X:

Given x ∈ X, f : {∗} → X where ∗ 7→ x, and conversely any such f (∗) ∈ X.

Example 6.4. If C = Grp, elt(G) = {homomorphisms f : 1→ G, where 1 is the
trivial group, i.e. the terminal object in Grp}. So elt(G) has just one element:
there is just one homomorphism f : 1→ G, since 1 is also initial!

Example 6.5. If C = Cat, elt(D) = {functors f : 1→ D, where 1 is the terminal
category in Cat}. functors f : 1 → D are in 1− 1 correspondence with the
objects of D. So elt(D) ∼= {objects in D}

•

•

F(•) •
1X

F

1F(•)

Here, as in the previous example, elt forgets a lot of information:

elt( • • ) ∼= elt( • • )

7 Week 9

Proposition 7.1.

Suppose C is a category with terminal object 1 ∈ C. Then there is a functor
elt : C→ Set with

elt(X) = Hom(1, X), ∀X ∈ C

and given any morphism g : X → YinC, elt(g) : elt(X)→ elt(Y) is defined as
follows:

1 X

Y

f

elt(g) f=g◦ f
g
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Proof: elt preserve composition: given X Y Z
g h we need

elt(h ◦ g) = elt(h) ◦ elt(g)

1 X

Y

Z

f

g

h

Given f ∈ elt(X) we have

elt(h ◦ g) f = (h ◦ g) ◦ f
= h ◦ (g ◦ f )
= h ◦ (elt(g) f )
= elt(h)(elt(g)( f ))

Similarly elt(1x) f = 1x ◦ f = f , for all f ∈ elt(X). So elt(1x) = 1elt(X). �

Example 7.1. elt : C→ Set may not be faihtfull, i.e we can have two different
morphisms g, g′ : X → Y in C with elt(g) = elt(g′).
If C = Grp, we saw elt(G) = 1 ∈ Set for all G, so any homomorphism
h : G → G′ will be get sent to a function elt(h) : 1 → 1, but there is only one
of these.

Proposition 7.2. If C is a cartesian category elt : C→ Set preserve finite products.

Proof: If easy to show elt preserve the terminal object: if 1 ∈ C then
elt(1) = { f : 1→ 1} is one-element set, so it is terminal in Set.

Why does elt preserve binary products?
Suppose X, Y ∈ C, then their product is a universal cone

X×Y

X Y

qp

To show elt preserve products, we need this cone is universal in Set:

elt(X×Y)

elt(X) elt(Y)

elt(q)elt(q)elt(p)

Choose a competitor:
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Q

elt(X×Y)

elt(X) elt(Y)

ψf

qp

Want ∃!φ : Q→ elt(X×Y) making the newly formed triangles commute.
f : Q → elt(X) sends any a ∈ Q to a point f (a) ∈ elt(X) = h : 1→ X, so
f (a) : 1 → X. Similarly g(a) : 1 → Y. We want to define ψ : Q → elt(X × Y);
this will send any a ∈ Q to ψ(a) : 1→ X×Y.

By the universal property of X × Y, for each a ∈ Q ∃!ψ(a) : 1 → X × Y so
that this commutes

1

X×Y

X Y

∃!ψ
f (a) g(a)

qp

Define ψ this way, check that (*) commutes, and moreover (*) commuting
forces us to choose this ψ, so ψ is unique. �
What if C is a ccc?
then

hom(X, Y) ∼= hom(1× X, Y)
∼= hom(1, YX)

= elt(YX)

Since 1× X ∼= X so:

1× X X X 1× X

Y Y

α

f ◦α
f

α−1

g◦α−1
g

give us a bijection

hom(X×Y) ∼= hom(1× X, Y)
f −→ f ◦ α

g ◦ α−1 ←− g

The moral: we can convert the hom-object YX ∈ C into the hom-set hom(X, Y) ∈
Set by taking elements.
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Given f : X → Y in hom(X, Y) we can convert it into an element of YX called
the name of f : p fq : 1→ YX .
Conversely, any elemnet of YX is the name of a unique morphism f : X → Y.
In functional programming, objects are data types, morphisms are programs
and any program f : X → Y have a name p fq ∈ elt(YX).

7.1 Subobjects

Definition 7.1. In a category C is an equivalence class of monomorphisms
i : A → X, where monos i : A → X, j : B → X are equivalent if there is an
isomorphisms f : A→ B so that this commutes:

A X

B

i

f
j

Example 7.2. If C = Set, subobjects of X ∈ Set corresponds to subsets of X.
Given a monomorphism i : A → X we get a subset im(i) ⊂ X. Any subset
S ⊂ X arise in this way via the inclusion:

i : S→ X

s→ s ∈ X

this has im(i) = S.
Finally, given monos i : A → X and j : B → X that define the same subset
im(i) = im(j), then there exists a bijection f : A→ B so that

A X

B

i

f
j

coomutes, namely f = (j|im(j))
−1 ◦ i.

Example 7.3. In Graph,how many subobjects does this graph?: v• •w

e

e′

Here

they are
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v•
•w

v• •w

v• •w

e

v• •w

e′

v• •w

e

e′

Any object give a subobject of itself:1X : X → X is a monomorphism.

(A graph is a pair of functions E V

s

t

Proposition 7.3. In Set, subobjects of S ∈ Set are in 1-1 correspondence with
functions X : S→ 2 where 2 = {F, T}.

Proof: Subobjects of S are just subsets A ⊂ S.

Any such subset has a characteristic function X : S→ 2 given by

χ(s) =
{

F s /∈ A
T s ∈ A

Conversely, given χ : S→ 2,let A = χ−1(T) = {s ∈ S : X(s) = T} �

Roughly, a "subobject classifier" in a category C is an object Ω ∈ C that
plays the role of 2 = {F, T}, in that subobjects of any subset S ∈ C are going
to be in 1-1 correspondence with morphisms χ : S→ Ω.
Set has the "subobject classifier" 2 = {F, T}. What does this really means?.
First,there is a function called true:t : 1 → 2 from 1 = {∗} to 2 given by
t(∗) = T ∈ 2.
For any set A there is a unique function !A : A→ 1 since 1 is terminal.
I claim that for any monomorphism i : A → X (that is a 1-1 function), there
exists a unique function

S : X → 2

called the characteristic function of i, such that:

E 1

E 2

!A

i t

Xi
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is a pullback.
χi,in more familiar terms, will be the characteristic function of the subset
im(i) ⊂ X, but we call it the characteristic fucntion of the monomorphism i.
First Let’s show that this χi :

χi(x) =
{

T x ∈ im(i)
F x /∈ im(i)

Let Q be a competitor

Q

A 1

X 2

!Q

φ

!Q

!A

i t
χi

Then show ∃!ψ : Q → A making the newly formed triangles commute.
Since Q is a competitor:

χi( f (q)) = t(!Q(q)), q ∈ Q
= t(∗)
= T

⇒ (using the definition of χi) f (q) ∈ im(i).
So since i is one-to-one, for each q ∈ Q, ∃!a ∈ A with f (q) = i(a). So define
φ : Q → A by φ(q) = a. This makes f = ß ◦ ψ and it is the unique φ : Q → A
that does so (since i is one-to-one).
The other newly formed triangle automatically commutes:

Q

A 1

!Q

φ

χi

you can also check that χi : X → 2 is the unique morphism from X to 2

that makes the square a pullback.
So generalizing:

Definition 7.2. Given a category C with a terminal object, a subobject classifier
is an object Ω ∈ C with a morphism t : 1 → Ω such that : for any monomor-
phism i : A → X there exists a unique χi : X → Ω such that this square is a
pullback:

A 1

X Ω

!A

i t

Xi

Definition 7.3. A (elementary) topos is a cartesian closed category with finite
limits (limits of finite sized diagrams) and a subobject classifier.
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Grothendieck in the 1960’s introduced a concept of topos, now Grothendieck
topos, which is a special case of alementary topos, as part of proving the Weil
hypothesis in number theory. Later in the late 60’s and early 70’s Lawrence
and Trerney simplified the concept of topos to define an "elementary topos".

Example 7.4. Examples of elementary topos

1. Set: category of sets and functions.

2. FinSet: category of finite sets and functions, this doesn’t have all limits
only finite limits, so topos theory includes finitest mathematics.

3. Set′: category of sets and functions as defined using ZF=Zermelo-Fraenkel
axioms without axiom of choice.
The axiom of choice is aquivalent to: there exists a monomorphisms
i : A→ X so that p ◦ i = 1A.If this if true we say the epimorphism splits.
In a general topos, not every epimorphisms splits so the axiom of choice
need not hold.

4. Graphs: The category of graphs:

E V

s

t

5. Previous example is ana special case of a category SetC, where C is
any category. These are called presheaf categories when we write them as
SetDop

(eg.D = Cop so Dop = C)

If C = x y1x

f

g

1y then SetC = Graph

F(x) F(y)

x y

G(x) G(y)

C Set

αx

f

g
αy

f

g

F

G

α
G( f )

G(g)

A functor F : C→ Set is a graph with E = F(x), V = F(y), s = F( f ), t =
F(g). So a graph is an object in SetC. Similarly, a morphism in SetC is a
morphism between graphs.
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6. Another example of a presheaf category is the category of simplicial sets:

These are fundamental to algebraic topology.

7. Presheaf categories are closely connected to categories of sheaves, which
are also topoi. Sheaves are fundamental to algebraic geometry.

8 Symmetric Monoidal Categories

8.1 Guest lecture by Christina Osborne

A category theorist is sort of like a sociologist. He looks at mathe-
matical objects - he doesn’t pry it open and see how it works - but
sees how it behaves in relation to all other things.

- Chris Heunen

8.1.1 What is a Monoidal Category?

Definition 8.1. A monoid is a nonempty set G together with a binary operation
on G which is:

• associative: (xy)z = x(yz) ∀ x, y, z ∈ G

• and contains a (two-sided) identity element e ∈ G such that xe = ex = x
∀ x, y, z ∈ G

Remark. i.e. take the definition of a group and drop the requirement of in-
verses

Definition 8.2. A monoidal category is a category C which is equipped with:

1. A tensor product functor ⊗ : C× C→ C where the image of a pair of
objects (x, y) is denoted by x⊗ y.

2. A unit object I.

3. For every x, y, z ∈ Ob(C), and associativity isomorphism ax,y,z : (x ⊗
y)⊗ z→ x⊗ (y⊗ z), natural in the objects x, y, and z.

4. For every x ∈ Ob(C), a left unit isomorphism `x : I⊗X → X and a right
unit isomorphism rx : x⊗ I → x, both natural in x.

We further assume the following diagrams commute for any objects w, x, y,
and z:

• the pentagon identity:
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((w⊗ x)⊗ y)⊗ z

(w⊗ (x⊗ y))⊗ z (w⊗ x)⊗ (y⊗ z)

w⊗ ((x⊗ y)⊗ z) w⊗ (x⊗ (y⊗ z)

aw⊗x,y,zaw,x,y⊗idz

aw,x⊗y,z aw,x,y⊗z

idz⊗ax,y,z

• the triangle identity:

(x⊗ I)⊗ y x⊗ (I ⊗ y)

x⊗ y

ax,I,y

rx⊗idy idx⊗`y

Remark. When we want to emphasize the tensor product and unit, we denote
a monoidal category by (C,⊗, I).

Example 8.1. (Set,×, {•})

Example 8.2. (Set, ä, {∅})

Example 8.3. (Grp,×, {e})

Example 8.4. (Hilb,⊗, C), where the category Hilb has Hilbert spaces as
objects and short linear maps (linear maps of norm at most 1) as morphisms.

Why is ax,y,z : (x⊗ y)⊗ z→ x⊗ (y⊗ z) an isomorphism and not an equality?
Let’s consider the example (Set,×, {•}) :

(X×Y)×Z = {(w, z) | w ∈ X×Y, z ∈ Z} = {((x, y), z) | x ∈ X, y ∈ Z, z ∈ Z}

X× (Y×Z) = {(x, w) | x ∈ X, w ∈ Y×Z = {(x, (y, z)) | x ∈ X, y ∈ Y, z ∈ Z}

These sets are not equal - but we can easily construct an isomorphism.

Example 8.5. How can we take a monoid G and construct a monoidal cate-
gory? First we need a category C:

• objects: elements of G.
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• morphisms: identity morphisms.

We get a monoidal category (C, •, e) where • is the binary product of G and e
is the identity element of G.

Note: In general:

• If C has products, we get a monoidal category (C,×, 1).

• If C has coproducts, we get a monoidal category (C,+, 0).

Definition 8.3. A monoidal category (C,⊗, I) is symmetric if it additionally is
equipped with an isomorphism sx,y : x ⊗ y → y⊗ x for any objects x and y
of C, natural in x and y, such that the following diagrams commute for all
objects x, y, and z:

(x⊗ y)⊗ z (y⊗ x)⊗ z

x⊗ (y⊗ z) y⊗ (x⊗ z)

(y⊗ z)⊗ x y⊗ (z⊗ x)

ax,y,z

sx,y⊗idz

ay,x,z

sx,y⊗z idy⊗sx,z

ay,z,x

x⊗ I I ⊗ x

x

sx,I

rx `x

x⊗ y y⊗ x

x⊗ y

sx,y

idx×y sy,x

52



Most of the examples of monoidal categories we have talked about are
symmetric. So what’s an example of a monoidal category that is not
symmetric?

Example 8.6. Let R be a non-commutative ring. The category R-R-bimodules
with R⊗R as the tensor and R as the unit is an example of a monoidal category
that is not symmetric.

Note: Let (C, •, e) be the monoidal category given by the monoid G. If G
is an abelian group, then (C, •, e) is symmetric.

8.1.2 Going back to the definition of a symmetric monoidal category...

Q: Why is the hexagon commuting diagram sufficient?

• There are 6 different ways to order 3 elements.

• There are 2 ways of associating 3 elements.

• So there are 12 possibilities (we would expect all of these to be isomor-
phic).

A: repeat!

(x⊗ y)⊗ z (y⊗ x)⊗ z

x⊗ (y⊗ z) y⊗ (x⊗ z)

(y⊗ z)⊗ x y⊗ (z⊗ x)ay,z,x

(y⊗ z)⊗ x (z⊗ y)⊗ x

y⊗ (z⊗ x) z⊗ (y⊗ x)

(z⊗ x)⊗ y z⊗ (x⊗ y)
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(z⊗ x)⊗ y (x⊗ z)⊗ y

z⊗ (x⊗ y) x⊗ (z⊗ y)

(x⊗ y)⊗ z x⊗ (y⊗ z)

9 Week 10

9.1 The subobject classifier in Graph

This is some graph Ω such that subgraphs A of any graph X corresponds to
morphisms of graphs χ : X → Ω in such a way that

A 1

X Ω

!A

i t
χ

is a pullback. Ω looks like this:

• ◦OUT

IN

OUT

The terminal graph, "1", looks like this: •
The purple subgraph of Ω is a copy of 1 (it is isomorphic to 1). We get this
from the morphism t : 1→ Ω which you have in any topos. A vertex or edge
of X will be mapped to this subgraph of Ω iff it is true that the vertex or edge
is in A.
The most important basic properties of topoi:

Proposition 9.1. A topos has finite colimits, meaning it has colimits of finite-sized.

Proposition 9.2. Any morphism f : X → Y in a topos has an epi-mono factorization
i.e. there exists an epimorphism p : X → A and a mono i : A → Y making this
triangle commute:

X Y

A

f

p i
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Proposition 9.3. In a topos, the epi-mono factorization of any morphism f : X → Y
is unique up to a unique isomorphism. Given two epi-mono factorization:

X Y

A

A′

p′

f

p i

i′

there exists a unique isomorphism g : A → A′ making the resulting diagram
commute.

Example 9.1. In Set, we have an epi-mono factorization

X Y

im( f )

f

p i

where im( f ) = {y ∈ Y : y = f (x) for some x ∈ X}, i : im( f ) → Y is the
inclusion and p : X → im( f ) is the obvious function p(x) = f (x) ∈ im( f ).

So:

Definition 9.1. Given an epi-mono factorization:

X Y

A

f

p i

we call A "the" image of f (it is unique up to isomorphism) and denote it
as im(f).

Generalize ⊆,∩,∪ to any topos, henceforth suppose C is a topos.

Definition 9.2. Given X ∈ C, define Sub(X) to be the set of all subobjects of
X:equivalence classes of monomorphisms i : A → X, where i : A → X and
j : A→ X are equivalent iff there exists an isomorphism g : A→ B so that:

A X

B

i

g j

commutes.

Note. Sub(X) ∼= hom(X, Ω) since Ω is the subobject classifier.

Proposition 9.4. Sub(X) is a poset where we say the equivalence class of i : A→ X
is contained in (or ⊆) the equivalence class of j : B → X if there exists f : A → B
making this commute:
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A X

B

i

f j

(Note: f must be a monomorphism, and it is unique)

Proof. Need to check:

• If [i] ⊆ [j] and [j] ⊆ [k], then [i] ⊆ [k]

A X

B C

i

f

g

j
gives

A X

C

i

g◦ f
k

• [i] ⊆ [i] - easy

• If [i] ⊆ [j] and [j] ⊆ [i], then [i] = [j]

A X

B

i

f
j

A X

B

i

g
k

To show [i] = [j], it suffices to show:

A

B X

A

if
j

g
i

B

A X

B

jg

i

f
j

commute, so i ◦ g ◦ f = i ◦ 1A and j ◦ f ◦ g = j ◦ 1B, and since i and k are
monic, they’re left cancellable: g ◦ f = 1A and f ◦ g = 1B

Next time we’ll define U for subobjects, and this makes Sub(X), which is a
poset (hence a category), into a category with coproducts: ∪ is the coproduct
in Sub(X). Similarly, ∩ is the product in the category Sub(X).

9.2 Set Theory, Topos, and Logic

In Set, every subset of X ∈ Set corresponds to a predicate on elements of X:

χ : X → {T, F} i.e. a characteristic function

χ determines a subset A⊆X via:

A = {x ∈ X | χ(x) = T}
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and conversely, any subset A ⊆ X determines χ : X → {T, F} via:

χ(x) =

{
T x ∈ A
F x /∈ A

In a topos, we get a similar bijection between Sub(X) and Hom(X, Ω). The
concepts of ∪ and ∩ for subsets correspond to the operations of ∧ and ∨ on
predicates.

{x ∈ X | χ(x) = T} ∪ {x ∈ X | ϕ(x) = T} = {x ∈ X | (χ ∨ ϕ)(x) = T}

and similarly for ∩ and ∧.

Proposition 9.5. In Set, Sub(X) for X ∈ Set is a poset via ⊆, and thus a category
where there exists a unique morphism from A to B if and only if A ⊆ B (A, B ⊆ X).
In this category A ∩ B is the product of A and B, and A ∪ B is the coproduct.

Proof. We have

A ∩ B

A B

⊆⊆

and this cone is universal:

Q

A ∩ B

A B

∃!ψ⊆ ⊆

⊆⊆

which is true since Q ⊆ A, Q ⊆ B =⇒ Q ⊆ A ∩ B.

In fact, in Set, Sub(X) has all finite limits and all finite colimits! A category
has all finite limits if an only if it has:

• binary products

• a terminal object

• equalizers

Sub(X) has binary products (∩), a terminal object (X, since A ⊆ X for all

A ∈ Sub(X)) and equalizers: B C
f

g
in any poset is really B C

f

f
,

and the equalizer is:

B B Ci f

f
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so equalizers exist in any poset. Similarly in Set, Sub(X) has all finite colimits
because it has:

• binary coproducts

• an initial object

• coequalizers

The binary coproduct of A and B is A ∪ B, the initial object is ∅ (since ∅ ⊆ A
for all A ∈ Sub(X)), and coequalizers (which exist in any poset: just turn
arrows around in argument for equalizers).

Definition 9.3. A lattice is a poset with all finite limits and colimits.

Remark. This is equivalent to other more popular definitions, though some
evil people don’t demand the initial and terminal object.

In fact we have:

SET THEORY LOGIC CATEGORY THEORY
∩ ∧ binary product

X (the whole set) T terminal object
∪ ∨ binary coproduct
∅ F initial object

B ∪ Ac Q ∨ ¬P or “P implies Q” exponentiation

Note:
X = {x ∈ X | T = T}
∅ = {x ∈ X | F = T}

In fact, the poset Sub(X) is cartesian closed. In general, this means:

Hom(B× C, D) ∼= Hom(B, DC)

but for Sub(X), being a poset, these sets either have 0 elements or 1 element.
Also, the product is the intersection. So this says:

B ∩ C ⊆ D if and only if B ⊆ D ∪ Cc

or in terms of logic:

P ∧Q =⇒ R if and only if P =⇒ R ∨ ¬Q

Theorem 9.1. In any topos, for any object X the poset Sub(X) is a Heyting algebra:
it is a poset that has finite limits, finite colimits, and is cartesian closed.

Remark. i.e. it is a Cartesian closed lattice

Proof. Given two subobjects of X, [i] and [j], we want to form [i] ∩ [j] and
[i] ∪ [j]. Taking the pullback gives us the intersection:

A ∩ B B

A X

i◦ f

j◦g
f

g

j

i
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Since this is a pullback and i,j are monic, then f ,g, must be monic too
(monics pullback to monics). This implies i ◦ f = j ◦ g is monic too, so we get
a new subobject of X, which is [i] ∩ [j]. For unions, we start with the product:

A + B B

A X

∃!ψ

g

j

i

f

where we get ψ from the universal property of the coproduct. But ψ need not
be monic, so do the epi-mono factorization:

A + B X

imψ

p

ψ

k

where p is epic and k is monic. k gives a new subobject of X, which is [i] ∪ [j].

9.3 Where does topos theory go from here?

Many directions.... e.g.:

• Using the “Mitchell-Benabov language”, we can reason inside any topos:

We can write things like:

{x ∈ A ∩ B | ∀y ∈ Y ∃z ∈ Z f (x, z) = y}

and prove things about them using the logic internal to the topos, and
“generalized elements”.

• There are also maps between topoi:

C D

consisting of certain nice adjunctions. These maps are called “geometric
morphisms”. There’s a topos called Th(Grp) - “the theory of groups”, and
then a geometric morphism from some other topos C to Th(Grp) is the same
as a group object in C. This idea works for lots of concepts, not just the
concept of a group.
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