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Abstract

General relativity may seem very different from quantum theory, but work on quantum gravity
has revealed a deep analogy between the two. General relativity makes heavy use of the cat-
egory nCob, whose objects are (n − 1)-dimensional manifolds representing ‘space’ and whose
morphisms are n-dimensional cobordisms representing ‘spacetime’. Quantum theory makes
heavy use of the category Hilb, whose objects are Hilbert spaces used to describe ‘states’, and
whose morphisms are bounded linear operators used to describe ‘processes’. Moreover, the cat-
egories nCob and Hilb resemble each other far more than either resembles Set, the category
whose objects are sets and whose morphisms are functions. In particular, both Hilb and nCob
but not Set are ∗-categories with a noncartesian monoidal structure. We show how this accounts
for many of the famously puzzling features of quantum theory: the failure of local realism, the
impossibility of duplicating quantum information, and so on. We argue that these features only
seem puzzling when we try to treat Hilb as analogous to Set rather than nCob, so that quantum
theory will make more sense when regarded as part of a theory of spacetime.

1 Introduction

Faced with the great challenge of reconciling general relativity and quantum theory, it is difficult
to know just how deeply we need to rethink basic concepts. By now it is almost a truism that the
project of quantizing gravity may force us to modify our ideas about spacetime. Could it also force
us to modify our ideas about the quantum? So far this thought has appealed mainly to those who
feel uneasy about quantum theory and hope to replace it by something that makes more sense. The
problem is that the success and elegance of quantum theory make it hard to imagine promising
replacements. Here I would like to propose another possibility, namely that quantum theory will

make more sense when regarded as part of a theory of spacetime. Furthermore, I claim that we

can only see this from a category-theoretic perspective — in particular, one that de-emphasizes the
primary role of the category of sets and functions.

Part of the difficulty of combining general relativity and quantum theory is that they use different
sorts of mathematics: one is based on objects such as manifolds, the other on objects such as Hilbert
spaces. As ‘sets equipped with extra structure’, these look like very different things, so combining
them in a single theory has always seemed a bit like trying to mix oil and water. However, work on
topological quantum field theory theory has uncovered a deep analogy between the two. Moreover,
this analogy operates at the level of categories.

We shall focus on two categories in this paper. One is the category Hilb whose objects are Hilbert
spaces and whose morphisms are linear operators between these. This plays an important role in
quantum theory. The other is the category nCob whose objects are (n − 1)-dimensional manifolds
and whose morphisms are n-dimensional manifolds going between these. This plays an important
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role in relativistic theories where spacetime is assumed to be n-dimensional: in these theories the
objects of nCob represent possible choices of ‘space’, while the morphisms — called ‘cobordisms’ —
represent possible choices of ‘spacetime’.

While an individual manifold is not very much like a Hilbert space, the category nCob turns out
to have many structural similarities to the category Hilb. The goal of this paper is to explain these
similarities and show that the most puzzling features of quantum theory all arise from ways in which
Hilb resembles nCob more than the category Set, whose objects are sets and whose morphisms are
functions.

Since sets and functions capture many basic intuitions about macroscopic objects, and the rules
governing them have been incorporated into the foundations of mathematics, we naturally tend to
focus on the fact that any quantum system has a set of states. From a Hilbert space we can indeed
extract a set of states, namely the set of unit vectors modulo phase. However, this is often more
misleading than productive, because this process does not define a well-behaved map — or more
precisely, a functor — from Hilb to Set. In some sense the gap between Hilb and Set is too great to
be usefully bridged by this trick. However, many of the ways in which Hilb differs from Set are ways
in which it resembles nCob! This suggests that the interpretation of quantum theory will become
easier, not harder, when we finally succeed in merging it with general relativity.

In particular, it is easy to draw pictures of the objects and morphisms of nCob, at least for low
n. Doing so lets us visualize many features of quantum theory. This is not really a new discovery: it
is implicit in the theory of Feynman diagrams. Whenever one uses Feynman diagrams in quantum
field theory, one is secretly working in some category where the morphisms are graphs with labelled
edges and vertices, as shown in Figure 1.

Figure 1: A Feynman diagram

The precise details of the category depend on the quantum field theory in question: the labels for
edges correspond to the various particles of the theory, while the labels for vertices correspond to
the interactions of the theory. Regardless of the details, categories of this sort share many of the
structural features of both nCob and Hilb. Their resemblance to nCob, namely their topological
nature, makes them a powerful tool for visualization. On the other hand, their relation to Hilb
makes them useful in calculations.

Though Feynman diagrams are far from new, the fact that they are morphisms in a category only
became appreciated in work on quantum gravity, especially string theory and loop quantum gravity.
Both these approaches stretch the Feynman diagram concept in interesting new directions. In string
theory, Feynman diagrams are replaced by ‘string worldsheets’: 2-dimensional cobordisms mapped
into an ambient spacetime, as shown in Figure 2. Since these cobordisms no longer have definite
edges and vertices, there are no labels anymore. This is one sense in which the various particles and
interactions are all unified in string theory. The realization that processes in string theory could
be described as morphisms in a category was crystallized by Segal’s definition of ‘conformal field
theory’ [31].

Loop quantum gravity is moving towards a similar picture, though with some important dif-
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Figure 2: A string worldsheet

ferences. In this approach processes are described by ‘spin foams’. These are a 2-dimensional
generalization of Feynman diagrams built from vertices, edges and faces, as shown in Figure 3.
They are not mapped into an ambient spacetime: in this approach spacetime is nothing but the
spin foam itself — or more precisely, a linear combination of spin foams. Particles and interactions
are not ‘unified’ in these models, so there are labels on the vertices, edges and faces, which depend
on the details of the model in question. The category-theoretic underpinnings of spin foam models
were explicit from the very beginning [4], since they were developed after Segal’s work on conformal
field theory, and also after Atiyah’s work on topological quantum field theory [2], which exhibits the
analogy between nCob and Hilb in its simplest form.

Figure 3: A spin foam

There is not one whit of experimental evidence for either string theory or loop quantum gravity,
and both theories have some serious problems, so it might seem premature for philosophers to
consider their implications. It indeed makes little sense for philosophers to spend time chasing every
short-lived fad in these fast-moving subjects. Instead, what is worthy of reflection is that these two
approaches to quantum gravity, while disagreeing heatedly on so many issues [32, 33], have so much
in common. It suggests that in our attempts to reconcile the quantum-theoretic notions of state and
process with the relativistic notions of space and spacetime, we have a limited supply of promising
ideas. It is an open question whether these ideas will be up to the task of describing nature. But
this actually makes it more urgent, not less, for philosophers to clarify and question these ideas and
the implicit assumptions upon which they rest.

Before plunging ahead, let us briefly sketch the contents of this paper. In Section 2 we explain
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the analogy between nCob and Hilb by recalling Atiyah’s definition of ‘topological quantum field
theory’, or ‘TQFT’ for short. In Section 3, we begin by noting that unlike many familiar categories,
neither Hilb nor nCob is best regarded as a category whose objects are sets equipped with extra
structures and properties, and whose morphisms are functions preserving these extra structures. In
particular, operators between Hilbert spaces are not required to preserve the inner product. This
raises the question of precisely what role the inner product plays in the category Hilb. Of course
the inner product is crucial in quantum theory, since we use it to compute transition amplitudes
between states — but how does it manifest itself mathematically in the structure of Hilb? One
answer is that it gives a way to ‘reverse’ an operator T :H → H ′, obtaining an operator T ∗:H ′ → H

called the ‘adjoint’ of T such that
〈T ∗φ, ψ〉 = 〈φ, Tψ〉

for all ψ ∈ H and φ ∈ H ′. This makes Hilb into something called a ‘∗-category’: a category where
there is a built-in way to reverse any process. As we shall see, it is easy to compute transition
amplitudes using the ∗-category structure of Hilb. The category nCob is also a ∗-category, where
the adjoint of a spacetime is obtained simply by switching the roles of future and past. On the
other hand, Set cannot be made into a ∗-category. All this suggests that both quantum theory and
general relativity will be best understood in terms of categories quite different from the category of
sets and functions.

In Section 4 we tackle some of the most puzzling features of quantum theory, namely those
concerning joint systems: physical systems composed of two parts. It is in the study of joint systems
that one sees the ‘failure of local realism’ that worried Einstein so terribly [14], and was brought
into clearer focus by Bell [8]. Here is also where one discovers that one ‘cannot clone a quantum
state’ — a result due to Wooters and Zurek [34] which serves as the basis of quantum cryptography.
As explained in Section 4, both these phenomena follow from the failure of the tensor product to
be ‘cartesian’ in a certain sense made precise by category theory. In Set, the usual product of sets
is cartesian, and this encapsulates many of our usual intuitions about ordered pairs, like our ability
to pick out the components a and b of any pair (a, b), and our ability to ‘duplicate’ any element a
to obtain a pair (a, a). The fact that we cannot do these things in Hilb is responsible for the failure
of local realism and the impossibility of duplicating a quantum state. Here again the category Hilb
resembles nCob more than Set. Like Hilb, the category nCob has a noncartesian tensor product,
given by the disjoint union of manifolds. Some of the mystery surrounding joint systems in quantum
theory dissipates when one focuses on the analogy to nCob and stops trying to analogize the tensor
product of Hilbert spaces to the Cartesian product of sets.

This paper is best read as a followup to my paper ‘Higher-Dimensional Algebra and Planck-Scale
Physics’ [5], since it expands on some of the ideas already on touched upon there.

2 Lessons from Topological Quantum Field Theory

Thanks to the influence of general relativity, there is a large body of theoretical physics that does
not presume a fixed topology for space or spacetime. The idea is that after having assumed that
spacetime is n-dimensional, we are in principle free to choose any (n − 1)-dimensional manifold to
represent space at a given time. Moreover, given two such manifolds, say S and S ′, we are free
to choose any n-dimensional manifold-with-boundary, say M , to represent the portion of spacetime
between them, so long as the boundary of M is the union of S and S ′. In this situation we write
M :S → S′, even though M is not a function from S to S ′, because we may think of M as the process
of time passing from the moment S to the moment S ′. Mathematicians call M a cobordism from
S to S′. For example, in Figure 4 we depict a 2-dimensional manifold M going from a 1-dimensional
manifold S (a pair of circles) to a 1-dimensional manifold S ′ (a single circle). Physically, this
cobordism represents a process in which two separate spaces collide to form a single one! This is an
example of ‘topology change’.
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S

S′

M
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Figure 4: A cobordism

All this has a close analogue in quantum theory. First, just as we can use any (n− 1)-manifold
to represent space, we can use any Hilbert space to describe the states of some quantum system.
Second, just as we can use any cobordism to represent a spacetime going from one space to another,
we can use any operator to describe a process taking states of one system to states of another. More
precisely, given systems whose states are described using the Hilbert spaces H and H ′, respectively,
any bounded linear operator T :H → H ′ describes a process that carries states of the first system to
states of the second. We are most comfortable with this idea when the operator T is unitary, or at
least an isometry. After all, given a state described as a unit vector ψ ∈ H , we can only be sure Tψ
is a unit vector in H ′ if T is an isometry. So, only in this case does T define a function from the set

of states of the first system to the set of states of the second. However, the interpretation of linear
operators as processes makes sense more generally. One way to make this interpretation precise is as
follows: given a unit vector ψ ∈ H and an orthonormal basis φi of H ′, we declare that the relative
probability for a system prepared in the state ψ to be observed in the state φi after undergoing
the process T is |〈φi, Tψ〉|2. By this, we mean that the probability of observing the system in the
ith state divided by the probability of observing it in the jth state is

|〈φi, Tψ〉|2

|〈φj , Tψ〉|2
.

The use of nonunitary operators to describe quantum processes is not new. For example, projec-
tion operators have long been used to describe processes like sending a photon through a polarizing
filter. However, these examples traditionally arise when we treat part of the system (e.g. the mea-
suring apparatus) classically. It is often assumed that at a fundamental level, the laws of nature
in quantum theory describe time evolution using unitary operators. But as we shall see in Section
3, this assumption should be dropped in theories where the topology of space can change. In such
theories we should let all the morphisms in Hilb qualify as ‘processes’, just as we let all morphisms
in nCob qualify as spacetimes.

Having clarified this delicate point, we are now in a position to clearly see a structural analogy
between general relativity and quantum theory, in which (n−1)-dimensional manifolds representing
space are analogous to Hilbert spaces, while cobordisms describing spacetime are analogous to
operators. Indulging in some lofty rhetoric, we might say that space and state are aspects of being,
while spacetime and process are aspects of becoming. We summarize this analogy in Table 1.

5



GENERAL RELATIVITY QUANTUM THEORY

(n − 1)-dimensional manifold Hilbert space
(space) (states)

cobordism between (n − 1)-dimensional manifolds operator between Hilbert spaces
(spacetime) (process)

composition of cobordisms composition of operators

identity cobordism identity operator

Table 1: Analogy between general relativity and quantum theory

This analogy becomes more than mere rhetoric when applied to topological quantum field theory
[5]. In quantum field theory on curved spacetime, space and spacetime are not just manifolds: they
come with fixed ‘background metrics’ that allow us to measure distances and times. In this context,
S and S′ are Riemannian manifolds, and M :S → S ′ is a Lorentzian cobordism from S to S ′: that
is, a Lorentzian manifold with boundary whose metric restricts at the boundary to the metrics on S
and S′. However, topological quantum field theories are an attempt to do background-free physics,
so in this context we drop the background metrics: we merely assume that space is an (n − 1)-
dimensional manifold and spacetime is a cobordism between such manifolds. A topological quantum
field theory then consists of a map Z assigning a Hilbert space of states Z(S) to any (n−1)-manifold
S and a linear operator Z(M):Z(S) → Z(S ′) to any cobordism between such manifolds. This map
cannot be arbitrary, though: for starters, it must be a functor from the category of n-dimensional
cobordisms to the category of Hilbert spaces. This is a great example of how every sufficiently good
analogy is yearning to become a functor.

However, we are getting a bit ahead of ourselves. Before we can talk about functors, we must
talk about categories. What is the category of n-dimensional cobordisms, and what is the category
of Hilbert spaces? The answers to these questions will allow us to make the analogy in Table 1 much
more precise.

First, recall that a category consists of a collection of objects, a collection of morphisms f :A→
B from any object A to any object B, a rule for composing morphisms f :A → B and g:B → C to
obtain a morphism gf :A→ C, and for each object A an identity morphism 1A:A→ A. These must
satisfy the associative law f(gh) = (fg)h and the left and right unit laws 1Af = f and f1A = f

whenever these composites are defined. In many cases, the objects of a category are best thought
of as sets equipped with extra structure, while the morphisms are functions preserving the extra

structure. However, this is true neither for the category of Hilbert spaces nor for the category of
cobordisms.

In the category Hilb we take the objects to be Hilbert spaces and the morphisms to be bounded
linear operators. Composition and identity operators are defined as usual. Hilbert spaces are indeed
sets equipped with extra structure, but bounded linear operators do not preserve all this extra
structure: in particular, they need not preserve the inner product. This may seem like a fine point,
but it is important, and we shall explore its significance in detail in Section 3.

In the category nCob we take the objects to be (n−1)-dimensional manifolds and the morphisms
to be cobordisms between these. (For technical reasons mathematicians usually assume both to be
compact and oriented.) Here the morphisms are not functions at all! Nonetheless we can ‘compose’
two cobordisms M :S → S ′ and M ′:S′ → S′′, obtaining a cobordism M ′M :S → S′′, as in Figure
5. The idea here is that the passage of time corresponding to M followed by the passage of time
corresponding to M ′ equals the passage of time corresponding to M ′M . This is analogous to the
familiar idea that waiting t seconds followed by waiting t′ seconds is the same as waiting t′ + t

seconds. The big difference is that in topological quantum field theory we cannot measure time in
seconds, because there is no background metric available to let us count the passage of time. We
can only keep track of topology change. Just as ordinary addition is associative, composition of

6



S

S′

M

��

S′′

M ′

��

Figure 5: Composition of cobordisms

cobordisms satisfies the associative law:

(M ′′M ′)M = M ′′(M ′M).

Furthermore, for any (n−1)-dimensional manifold S representing space, there is a cobordism 1S:S →
S called the ‘identity’ cobordism, which represents a passage of time during which the topology of
space stays constant. For example, when S is a circle, the identity cobordism 1S is a cylinder, as
shown in Figure 6. In general, the identity cobordism 1S has the property that

1SM = M

and
M1S = M

whenever these composites are defined. These properties say that an identity cobordism is analogous
to waiting 0 seconds: if you wait 0 seconds and then wait t more seconds, or wait t seconds and then
wait 0 more seconds, this is the same as waiting t seconds.

S

S

1S

��

Figure 6: An identity cobordism

A functor between categories is a map sending objects to objects and morphisms to morphisms,
preserving composition and identities. Thus, in saying that a topological quantum field theory is a
functor

Z:nCob → Hilb,
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we merely mean that it assigns a Hilbert space of states Z(S) to any (n− 1)-dimensional manifold
S and a linear operator Z(M):Z(S) → Z(S ′) to any n-dimensional cobordism M :S → S ′ in such a
way that:

• For any n-dimensional cobordisms M :S → S ′ and M ′:S′ → S′′,

Z(M ′M) = Z(M ′)Z(M).

• For any (n− 1)-dimensional manifold S,

Z(1S) = 1Z(S).

Both these axioms make sense if one ponders them a bit. The first says that the passage of time
corresponding to the cobordism M followed by the passage of time corresponding to M ′ has the
same effect on a state as the combined passage of time corresponding to M ′M . The second says that
a passage of time in which no topology change occurs has no effect at all on the state of the universe.
This seems paradoxical at first, since it seems we regularly observe things happening even in the
absence of topology change. However, this paradox is easily resolved: a topological quantum field
theory describes a world without local degrees of freedom. In such a world, nothing local happens,
so the state of the universe can only change when the topology of space itself changes.

Unless elementary particles are wormhole ends or some other sort of topological phenomenon, it
seems our own world is quite unlike this. Thus, we hasten to reassure the reader that this peculiarity
of topological quantum field theory is not crucial to our overall point, which is the analogy between
categories describing space and spacetime and those describing quantum states and processes. If we
were doing quantum field theory on curved spacetime, we would replace nCob with a category where
the objects are n-dimensional Riemannian manifolds and most of the morphisms are Lorentzian
cobordisms between these. In this case a cobordism M :S → S ′ has not just a topology but also a
geometry, so we can use cylinder-shaped cobordisms of different ‘lengths’ to describe time evolution
for different amounts of time. The identity morphism is then described by a cylinder of ‘length
zero’. This degenerate cylinder is not really a Lorentzian cobordism, which leads to some technical
complications. However, Segal showed how to get around these in his axioms for a conformal field
theory [31]. There are some further technical complications arising from the fact that except in low
dimensions, we need to use the C*-algebraic approach to quantum theory, instead of the Hilbert space
approach [13]. Here the category Hilb should be replaced by one where the objects are C∗-algebras
and the morphisms are completely positive maps between their duals [15].

Setting aside these nuances, our main point is that treating a TQFT as a functor from nCob to
Hilb is a way of making very precise some of the analogies between general relativity and quantum
theory. However, we can go further! A TQFT is more than just a functor. It must also be compatible
with the ‘monoidal category’ structure of nCob and Hilb, and to be physically well-behaved it must
also be compatible with their ‘∗-category’ structure. We examine these extra structures in the next
two sections.

3 The ∗-Category of Hilbert Spaces

What is the category of Hilbert spaces? While we have already given an answer, this is actually a
tricky question, one that makes many category theorists acutely uncomfortable.

To understand this, we must start by recalling that one use of categories is to organize discourse
about various sorts of ‘mathematical objects’: groups, rings, vector spaces, topological spaces, mani-
folds and so on. Quite commonly these mathematical objects are sets equipped with extra structure
and properties, so let us restrict attention to this case. Here by structure we mean operations and
relations defined on the set in question, while by properties we mean axioms that these operations
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and relations are required to satisfy. The division into structure and properties is evident from the
standard form of mathematical definitions such as “a widget is a set equipped with ... such that
....” Here the structures are listed in the first blank, while the properties are listed in the second.

To build a category of this sort of mathematical object, we must also define morphisms between
these objects. When the objects are sets equipped with extra structure and properties, the morphisms
are typically taken to be functions that preserve the extra structure. At the expense of a long
digression we could make this completely precise — and also more general, since we can also build
categories by equipping not sets but objects of other categories with extra structure and properties.
However, we prefer to illustrate the idea with an example. We take an example closely related to
but subtly different from the category of Hilbert spaces: the category of complex vector spaces.

A complex vector space is a set V equipped with extra structure consisting of operations
called addition

+:V × V → V

and scalar multiplication
·: C × V → V,

which in turn must have certain extra properties: commutativity and associativity together with
the existence of an identity and inverses for addition, associativity and the unit law for scalar
multiplication, and distributivity of scalar multiplication over adddition. Given vector spaces V and
V ′, a linear operator T :V → V ′ can be defined as a function preserving all the extra structure.
This means that we require

T (ψ + φ) = T (ψ) + T (φ)

and
T (cψ) = cT (ψ)

for all ψ, φ ∈ V and c ∈ C. Note that the properties do not enter here. Mathematicians define the
category Vect to have complex vector spaces as its objects and linear operators between them as its
morphisms.

Now compare the case of Hilbert spaces. A Hilbert space H is a set equipped with all the
structure of a complex vector space but also some more, namely an inner product

〈·, ·〉:H ×H → C.

Similarly, it has all the properties of a complex vector spaces but also some more: for all φ, ψ, ψ ′ ∈ H

and c ∈ C we have the equations

〈φ, ψ + ψ′〉 = 〈φ, ψ〉 + 〈φ, ψ′〉,

〈φ, cψ〉 = c〈φ, ψ〉,

〈φ, ψ〉 = 〈ψ, φ〉,

together with the inequality
〈ψ, ψ〉 ≥ 0

where equality holds only if ψ = 0; furthermore, the norm defined by the inner product must be
complete. Given Hilbert spaces H and H ′, a function T :H → H ′ that preserves all the structure is
thus a linear operator that preserves the inner product:

〈Tφ, Tψ〉 = 〈φ, ψ〉

for all φ, ψ ∈ H . Such an operator is called an isometry.
If we followed the pattern that works for vector spaces and many other mathematical objects, we

would thus define the category Hilb to have Hilbert spaces as objects and isometries as morphisms.
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However, this category seems too constricted to suit what physicists actually do with Hilbert spaces:
they frequently need operators that aren’t isometries! Unitary operators are always isometries, but
self-adjoint operators, for example, are not.

The alternative we adopt in this paper is to work with the category Hilb whose objects are Hilbert
spaces and the morphisms are bounded linear operators. However, this leads to a curious puzzle.
In a precise technical sense, the category of finite-dimensional Hilbert spaces and linear operators
between these is equivalent to the category of finite-dimensional complex vector spaces and linear
operators. So, in defining this category, we might as well ignore the inner product entirely! The
puzzle is thus what role, if any, the inner product plays in this category.

The case of general, possibly infinite-dimensional Hilbert spaces is subtler, but the puzzle persists.
The category of all Hilbert spaces and bounded linear operators between them is not equivalent to
the category of all complex vector spaces and linear operators. However, it is equivalent to the
category of ‘Hilbertizable’ vector spaces — that is, vector spaces equipped with a topology coming
from some Hilbert space structure — and continuous linear operators between these. So, in defining
this category, what matters is not the inner product but merely the topology it gives rise to. The
point is that bounded linear operators don’t preserve the inner product, just the topology, and a
structure that is not preserved might as well be ignored, as far as the category is concerned.

My resolution of this puzzle is simple but a bit upsetting to most category theorists. I admit
that the inner product is inessential in defining the category of Hilbert spaces and bounded linear
operators. However, I insist that it plays a crucial role in making this category into a ∗-category!

What is a ∗-category? It is a category C equipped with a map sending each morphism f :X → Y

to a morphism f∗:Y → X , satisfying
1∗X = 1X ,

(fg)∗ = g∗f∗,

and
f∗∗ = f.

To make Hilb into a ∗-category we define T ∗ for any bounded linear operator T :H → H ′ to be the
adjoint operator T ∗H ′ → H , given by

〈T ∗ψ, φ〉 = 〈ψ, Tφ〉.

We see by this formula that the inner product on both H and H ′ are required to define the adjoint
of T .

In fact, we can completely recover the inner product on every Hilbert space from the ∗-category
structure of Hilb. Given a Hilbert spaceH and a vector ψ ∈ H , there is a unique operator Tψ: C → H

with Tψ(1) = ψ. Conversely, any operator from C to H determines a unique vector in H this way.
So, we can think of elements of a Hilbert space as morphisms from C to this Hilbert space. Using
this trick, an easy calculation shows that

〈φ, ψ〉 = Tφ
∗ Tψ.

The right-hand side is really a linear operator from C to C, but there is a canonical way to identify
such a thing with a complex number. So, everything about inner products is encoded in the ∗-
category structure of Hilb. Moreover, this way of thinking about the inner product formalizes an old
idea of Dirac. The operator Tψ is really just Dirac’s ‘ket’ |ψ〉, while Tφ

∗ is the ‘bra’ 〈φ|. Composing
a ket with a bra, we get the inner product.

This shows how adjoints are closely tied to the inner product structure on Hilbert space. But
what is the physical significance of the adjoint of an operator, or more generally the ∗ operation
in any ∗-category? Most fundamentally, the ∗ operation gives us a way to ‘reverse’ a morphism
even when it is not invertible. If we think of inner products as giving transition amplitudes between
states in quantum theory, the equation 〈T ∗φ, ψ〉 = 〈φ, Tψ〉 says that T ∗ is the unique operation we

10



can perform on any state φ so that the transition amplitude from Tψ to φ is the same as that from
ψ to T ∗φ. So, in a suggestive but loose way, we can say that the process described by T ∗ is some
sort of ‘time-reversed’ version of the process described by T . If T is unitary, T ∗ is just the inverse
of T . But, T ∗ makes sense even when T has no inverse!

This suggestive but loose relation between ∗ operations and time reversal becomes more precise in
the case of nCob. Here the ∗ operation really is time reversal. More precisely, given an n-dimensional
cobordism M :S → S′, we let the adjoint cobordism M∗:S′ → S to be the same manifold, but with
the ‘past’ and ‘future’ parts of its boundary switched, as in Figure 7. It is easy to check that this
makes nCob into a ∗-category.

S

S′

M

��

S′

S

M∗

��

Figure 7: A cobordism and its adjoint

In a so-called unitary topological quantum field theory (the terminology is a bit unfortunate),
we demand that the functor Z:nCob → Hilb preserve the ∗-category structure in the following sense:

Z(M∗) = Z(M)∗.

All the TQFTs of interest in physics have this property, and a similar property holds for conformal
field theories and other quantum field theories on curved spacetime. This means that in the analogy
between general relativity and quantum theory, the analogue of time reversal is taking the adjoint

of an operator between Hilbert spaces. To ‘reverse’ a spacetime M :S → S ′ we formally switch the
notions of future and past, while to ‘reverse’ a process T :H → H ′ we take its adjoint.

Taking this analogy seriously leads us in some interesting directions. First, since the ∗ operation
in nCob is given by time reversal, while ∗ operation in Hilb is defined using the inner product,
there should be some relation between time reversal and the inner product in quantum theory! The
details remain obscure, at least to me, but we can make a little progress by pondering the following
equation, which we originally introduced as a ‘trick’ for expressing inner products in terms of adjoint
operators:

〈φ, ψ〉 = Tφ
∗ Tψ.

An equation this important should not be a mere trick! To try to interpret it, suppose that in some
sense the operator Tψ describes ‘the process of preparing the system to be in the state ψ’, while
Tφ

∗ describes the process of ‘observing the system to be in the state φ’. Given this, Tφ
∗ Tψ should

describe the process of first preparing the system to be in the state ψ and then observing it to be
in the state φ. The above equation then relates this composite process to the transition amplitude
〈φ, ψ〉. Moreover, we see that ‘observation’ is like a time-reversed version of ‘preparation’. All this
makes a rough intuitive kind of sense. However, these ideas could use a great deal of elaboration
and clarification. I mention them here mainly to open an avenue for further thought.

Second, and less speculatively, the equation Z(M ∗) = Z(M)∗ sheds some light on the relation
between topology change and the failure of unitarity, mentioned already in Section 2. In any ∗-
category, we may define a morphism f :x → y to be unitary if f ∗f = 1x and ff∗ = 1y. For a
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morphism in Hilb this reduces to the usual definition of unitarity for a linear operator. One can
show that a morphismM in nCob is unitary ifM involves no topology change, or more precisely, ifM
is diffeomorphic to the Cartesian product of an interval and some (n−1)-dimensional manifold. (The
converse is true in dimensions n ≤ 3, but it fails in higher dimensions.) A TQFT satisfying Z(M ∗) =
Z(M)∗ maps unitary morphisms in nCob to unitary morphisms in Hilb, so for TQFTs of this sort,
absence of topology change implies unitary time evolution. This fact reinforces a point already well-
known from quantum field theory on curved spacetime, namely that unitary time evolution is not
a built-in feature of quantum theory but rather the consequence of specific assumptions about the
nature of spacetime [13].

To conclude, it is interesting to contrast nCob and Hilb with the more familiar category Set,
whose objects are sets and whose morphisms are functions. There is no way to make Set into a
∗-category, since there is no way to ‘reverse’ the map from the empty set to the one-element set.
So, our intuitions about sets and functions help us very little in understanding ∗-categories. The
problem is that the concept of function is based on an intuitive notion of process that is asymmetrical
with respect to past and future: a function f :S → S ′ is a relation such that each element of S is
related to exactly one element of S ′, but not necessarily vice versa. For better or worse, this built-in
‘arrow of time’ has no place in the basic concepts of quantum theory.

Pondering this, it soon becomes apparent that if we want an easy example of a ∗-category other
than Hilb to help build our intuitions about ∗-categories, we should use not Set but Rel, the category
of sets and relations. In fact, quantum theory can be seen as a modified version of the theory of
relations in which Boolean algebra has been replaced by the algebra of complex numbers! To see this,
note that a linear operator between two Hilbert spaces can be described using a matrix of complex
numbers as soon as we pick an orthonormal basis for each. Similarly, a relation R between sets S
and S′ can be described by a matrix of truth values, namely the truth values of the propositions
yRx where x ∈ S and y ∈ S′. Composition of relations can be defined as matrix multiplication with
‘or’ and ‘and’ playing the roles of ‘plus’ and ‘times’. It easy to check that this is associative and has
an identity morphism for each set, so we obtain a category Rel with sets as objects and relations
as morphisms. Furthermore, Rel becomes a ∗-category if we define the relation R∗ by saying that
xR∗y if and only if yRx. Just as the matrix for the linear operator T ∗ is the conjugate transpose of
the matrix for T , the matrix for the relation R∗ is the transpose of the matrix for R.

So, the category of Hilbert spaces closely resembles the category of relations. The main difference
is that binary truth values describing whether or not a transition is possible are replaced by complex
numbers describing the amplitude with which a transition occurs. Comparisons between Hilb and
Rel are fruitful source of intuitions not only about ∗-categories in general but also about the meaning
of ‘matrix mechanics’. For some further explorations along these lines, see the work of Abramsky
and Coecke [1].

4 The Monoidal Category of Hilbert Spaces

An important goal of the enterprise of physics is to describe, not just one physical system at a time,
but also how a large complicated system can be built out of smaller simpler ones. The simplest
case is a so-called ‘joint system’: a system built out of two separate parts. Our experience with the
everyday world leads us to believe that to specify the state of a joint system, it is necessary and
sufficient to specify states of its two parts. (Here and in what follows, by ‘states’ we always mean
what physicists call ‘pure states’.) In other words, a state of the joint system is just an ordered pair
of states of its parts. So, if the first part has S as its set of states, and the second part has T as its
set of states, the joint system has the cartesian product S × T as its set of states.

One of the more shocking discoveries of the twentieth century is that this is wrong. In both
classical and quantum physics, given states of each part we get a state of the joint system. But
only in classical physics is every state of the joint system of this form! In quantum physics are

12



also ‘entangled’ states, which can only be described as superpositions of states of this form. The
reason is that in quantum theory, the states of a system are no longer described by a set, but by a
Hilbert space. Moreover — and this is really an extra assumption — the states of a joint system
are described not by the cartesian product of Hilbert spaces, but by their tensor product.

Quite generally, we can imagine using objects in any category to describe physical systems, and
morphisms between these to describe processes. In order to handle joint systems, this category will
need to have some sort of ‘tensor product’ that gives an object A ⊗ B for any pair of objects A
and B. As we shall explain, categories of this sort are called ‘monoidal’. The category Set is a
example where the tensor product is just the usual cartesian product of sets. Similarly, the category
Hilb is a monoidal category where the tensor product is the usual tensor product of Hilbert spaces.
However, these two examples are very different, because the product in Set is ‘cartesian’ in a certain
technical sense, while the product in Hilb is not. This turns out to explain a lot about why joint
systems behave so counterintuively in quantum physics. Moreover, it is yet another way in which
Hilb resembles nCob more than Set.

To see this in detail, it pays to go back to the beginning and think about cartesian products.
Given two sets S and T , we define S×T to be the set of all ordered pairs (s, t) with s ∈ S and t ∈ T .
But what is an ordered pair? This depends on our approach to set theory. We can use axioms in
which ordered pairs are a primitive construction, or we can define them in terms of other concepts.
For example, in 1914, Wiener defined the ordered pair (s, t) to be the set {{{s}, ∅}, {{t}}. In 1922,
Kuratowski gave the simpler definition (s, t) = {{s}, {s, t}}. We can use the still simpler definition
(s, t) = {s, {s, t}} if our axioms exclude the possibility of sets that contain themselves. Various other
definitions have also been tried [17]. In traditional set theory we arbitrarily choose one approach
to ordered pairs and then stick with it. Apart from issues of convenience or elegance, it does not
matter which we choose, so long as it ‘gets the job done’. In other words, all these approaches are
all just technical tricks for implementing our goal, which is to make sure that (s, t) = (s′, t′) if and
only if s = s′ and t = t′.

It is a bit annoying that the definition of ordered pair cannot get straight to the point and capture
the concept without recourse to an arbitrary trick. It is natural to seek an approach that focuses
more on the structural role of ordered pairs in mathematics and less on their implementation. This
is what category theory provides.

The reason traditional set theory arbitarily chooses a specific implementation of the ordered pair
concept is that it seems difficult to speak precisely about “some thing (s, t) — I don’t care what
it is — with the property that (s, t) = (s′, t′) iff s = s′ and t = t′”. So, the first move in category
theory is to stop focussing on ordered pairs and instead focus on cartesian products of sets. What
properties should the cartesian product S×T have? To make our answer applicable not just to sets
but to objects of other categories, it should not refer to elements of S × T . So, the second move in
category theory is to describe the cartesian product S × T in terms of functions to and from this
set.

The cartesian product S × T has functions called ‘projections’ to the sets S and T :

p1:S × T → S, p2:S × T → T.

Secretly we know that these pick out the first or second component of any ordered pair in S × T :

p1(s, t) = s, p2(s, t) = t.

But, our goal is to characterize the product by means of these projections without explicit reference
to ordered pairs. For this, the key property of the projections is that given any element s ∈ S and
any element t ∈ T , there exists a unique element x ∈ S × T such that p1(x) = s and p2(x) = T .
Furthermore, as a substitute for elements of the sets S and T , we can use functions from an arbitrary
set to these sets.

Thus, given two sets S and T , we define their cartesian product to be any set S×T equipped
with functions p1:S × T → S, p2:S × T → T such that for any set X and functions f1:X → S,
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f2:X → T , there exists a unique function f :X → S × T with

f1 = p1f, f2 = p2f.

Note that with this definition, the cartesian product is not unique! Wiener’s definition of ordered
pairs gives a cartesian product of the sets S and T , but so does Kuratowski’s, and so does any other
definition that ‘gets the job done’. However, this does not lead to any confusion, since one can easily
show that any two choices of cartesian product are isomorphic in a canonical way. For a proof of
this and other facts about cartesian products, see for example the textbook by McLarty [29].

All this generalizes painlessly to an arbitrary category. Given two objects A and B in some
category, we define their cartesian product (or simply product) to be any object A×B equipped
with morphisms

p1:A×B → A, p2:A×B → B,

called projections, such that for any object X and morphisms f1:X → A, f2:X → B, there is a
unique morphism f :X → A × B with f1 = p1f and f2 = p2f . The product may not exist, and it
may not be unique, but it is unique up to a canonical isomorphism. Category theorists therefore
feel free to speak of ‘the’ product when it exists.

We say a category has binary products if every pair of objects has a a product. One can
also talk about n-ary products for other values of n, but a category with binary products has n-ary
products for all n ≥ 1, since we can construct these as iterated binary products. The case n = 1
is trivial, since the product of one object is just that object itself (up to canonical isomorphism).
The only remaining case is n = 0. This is surprisingly important. A 0-ary product is usually called
a terminal object and denoted 1: it is an object such that that for any object X there exists a
unique morphism from X to 1. Terminal objects are unique up to canonical isomorphism, so we
feel free to speak of ‘the’ terminal object in a category when one exists. The reason we denote the
terminal object by 1 is that in Set, any set with one element is a terminal object. If a category
has a terminal object and binary products, it has n-ary products for all n, so we say it has finite
products.

It turns out that these concepts capture much of our intuition about joint systems in classical
physics. In the most stripped-down version of classical physics, the states of a system are described
as elements of a mere set. In more elaborate versions, the states of a system form an object in some
fancier category, such as the category of topological spaces or manifolds. But, just like Set, these
fancier categories have finite products — and we use this fact when describing the states of a joint
system.

To sketch how this works in general, suppose we have any category with finite products. To do
physics with this, we think of any of the objects of this category as describing some physical system.
It sounds a bit vague to say that a physical system is ‘described by’ some object A, but we can make
this more precise by saying that states of this system are morphisms f : 1 → A. When our category is
Set, a morphism of this sort simply picks out an element of the set A. In the category of topological
spaces, a morphism of this sort picks out a point in the topological space A — and similarly for the
category of manifolds, and so on. For this reason, category theorists call a morphism f : 1 → A an
element of the object A.

Next, we think of any morphism g:A→ B as a ‘process’ carrying states of the system described
by A to states of the system described by B. This works as follows: given a state of the first system,
say f : 1 → A, we can compose it with g to get a state of the second system, gf : 1 → B.

Then, given two systems that are described by the objects A and B, respectively, we decree that
the joint system built from these is described by the object A× B. The projection p1:A × B → A

can be thought of as a process that takes a state of the joint system and discards all information
about the second part, retaining only the state of the first part. Similarly, the projection p2 retains
only information about the second part.

Calling these projections ‘processes’ may strike the reader as strange, since ‘discarding infor-
mation’ sounds like a subjective change of our description of the system, rather than an objective
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physical process like time evolution. However, it is worth noting that in special relativity, time
evolution corresponds to a change of coordinates t 7→ t+ c, which can also be thought of as change
of our description of the system. The novelty in thinking of a projection as a physical process really
comes, not from the fact that it is ‘subjective’, but from the fact that it is not invertible.

With this groundwork laid, we can use the definition of ‘product’ to show that a state of a joint
system is just an ordered pair of states of each part. First suppose we have states of each part, say
f1: 1 → A and f2: 1 → B. Then there is a unique state of the joint system, say f : 1 → A×B, which
reduces to the given state of each part when we discard information about the other part: p1f = f1
and p2f = f2. Conversely, every state of the joint system arises this way, since given f : 1 → A× B

we can recover f1 and f2 using these equations.
However, the situation changes drastically when we switch to quantum theory! The states of a

quantum system can still be thought of as forming a set. However, we do not take the product of
these sets to be the set of states for a joint quantum system. Instead, we describe states of a system
as unit vectors in a Hilbert space, modulo phase. We define the Hilbert space for a joint system to
be the tensor product of the Hilbert spaces for its parts.

The tensor product of Hilbert spaces is not a cartesian product in the sense defined above, since
given Hilbert spaces H and K there are no linear operators p1:H ⊗K → H and p2:H ⊗K → K

with the required properties. This means that from a (pure) state of a joint quantum system we
cannot extract (pure) states of its parts. This is the key to Bell’s ‘failure of local realism’. Indeed,
under quite general conditions one can derive Bell’s inequality from the assumption that pure states
of a joint system determine pure states of its parts [3, 8], so violations of Bell’s inequality should be
seen as an indication that this assumption fails.

The Wooters–Zurek argument that ‘one cannot clone a quantum state’ [34] is also based on the
fact that the tensor product of Hilbert spaces is not cartesian. To get some sense of this, note that
whenever A is an object in some category for which the product A × A exists, there is a unique
morphism

∆:A → A×A

such that p1∆ = 1A and p2∆ = 1A. This morphism is called the diagonal of A, since in the category
of sets it is the map given by ∆(a) = (a, a) for all a ∈ A, whose graph is a diagonal line when A is
the set of real numbers. Conceptually, the role of a diagonal morphism is to duplicate information,
just as the projections discard information. In applications to physics, the equations p1∆ = 1A and
p2∆ = 1A says that if we duplicate a state in A and then discard one of the two resulting copies, we
are left with a copy identical to the original.

In Hilb, however, since the tensor product is not a product in the category-theoretic sense, it
makes no sense to speak of a diagonal morphism ∆:H → H ⊗H . In fact, a stronger statement is
true: there is no natural (i.e. basis-independent) way to choose a linear operator from H to H ⊗H

other than the zero operator. So, there is no way to duplicate information in quantum theory.
Since the tensor product is not a cartesian product in the sense explained above, what exactly

is it? To answer this, we need the definition of a ‘monoidal category’. Monoidal categories were
introduced by Mac Lane [25] in early 1960s, precisely in order to capture those features common
to all categories equipped with a well-behaved but not necessarily cartesian product. Since the
definition is a bit long, let us first present it and then discuss it:

Definition. A monoidal category consists of:

(i) a category M,

(ii) a functor ⊗:M×M → M,

(iii) a unit object I ∈ M,
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(iv) natural isomorphisms called the associator:

aA,B,C : (A⊗B) ⊗ C → A⊗ (B ⊗ C),

the left unit law:

`A: I ⊗A → A,

and the right unit law:

rA:A⊗ I → A,

such that the following diagrams commute for all objects A,B,C,D ∈ M:

(v)

(A⊗B) ⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D))

A⊗ ((B ⊗ C) ⊗D)(A⊗ (B ⊗ C)) ⊗D

((A⊗B) ⊗ C) ⊗D

aA,B,C⊗D

''OOOOOOOOOOOOOOOOOOOOOOOOOOOO

1A⊗aB,C,D

CC����������������aA,B⊗C,D //

aA,B,C⊗1D

��7
77

77
77

77
77

77
77

7

aA⊗B,C,D

77oooooooooooooooooooooooooooo

(vi)

(A⊗ I) ⊗B
aA,I,B //

rA⊗1B &&MMMMMMMMMM
A⊗ (I ⊗B)

1A⊗`Bxxqqqqqqqqqq

A⊗B

This obviously requires some explanation! First, it makes use of some notions we have not
explained yet, ruining our otherwise admirably self-contained treatment of category theory. For
example, what is M ×M in clause (ii) of the definition? This is just the category whose objects
are pairs of objects in M, and whose morphisms are pairs of morphisms in M, with composition of
morphisms done componentwise. So, when we say that the tensor product is a functor ⊗:M×M →
M, this implies that for any pair of objects x, y ∈ M there is an object x⊗y ∈ M, while for any pair
of morphisms f :x→ x′, g: y → y′ in M there is a morphism f ⊗g:x⊗y → x′⊗y′ in M. Morphisms
are just as important as objects! For example, in Hilb, not only can we take the tensor product of
Hilbert spaces, but also we can take the tensor product of bounded linear operators S:H → H ′ and
T :K → K ′, obtaining a bounded linear operator

S ⊗ T :H ⊗K → H ′ ⊗K ′.

In physics, we think of S⊗T as a joint process built from the processes S and T ‘running in parallel’.
For example, if we have a joint quantum system whose two parts evolve in time without interacting,
any time evolution operator for the whole system is given by the tensor product of time evolution
operators for the two parts.
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1

S2 ⊗ S′
2

M⊗M ′

��

Figure 8: Two cobordisms and their tensor product

Similarly, in nCob the tensor product is given by disjoint union, both for objects and for mor-
phisms. In Figure 8 we show two spacetimes M and M ′ and their tensor product M⊗M ′. This as a
way of letting two spacetimes ‘run in parallel’, like independently evolving separate universes. The
resemblance to the tensor product of morphisms in Hilb should be clear. Just as in Hilb, the tensor
product in nCob is not a cartesian product: there are no projections with the required properties.
There is also no natural choice of a cobordism from S to S ⊗ S. This means that the very nature
of topology prevents us from finding spacetimes that ‘discard’ part of space, or ‘duplicate’ space.
Seen in this light, the fact that we cannot discard or duplicate information in quantum theory is not
a flaw or peculiarity of this theory. It is a further reflection of the deep structural analogy between

quantum theory and the conception of spacetime embodied in general relativity.

Turning to clause (iii) in the definition, we see that a monoidal category needs to have a ‘unit
object’ I . This serves as the multiplicative identity for the tensor product, at least up to isomorphism:
as we shall see in the next clause, I ⊗ A ∼= A and A ⊗ I ∼= A for every object A ∈ M. In Hilb
the unit object is C regarded as a Hilbert space, while in nCob it is the empty set regarded as an
(n−1)-dimensional manifold. Any category with finite products gives a monoidal category in which
the unit object is the terminal object 1.

This raises an interesting point of comparison. In classical physics we describe systems using
objects in a category with finite products, and a state of the system corresponding to the object
A is just a morphism f : 1 → A. In quantum physics we describe systems using Hilbert spaces. Is
a state of the system corresponding to the Hilbert space H the same as a bounded linear operator
T : C → H? Almost, but not quite! As we saw in Section 3, such operators are in one-to-one
correspondence with vectors in H : any vector ψ ∈ H corresponds to an operator Tψ: C → H with
Tψ(1) = ψ. States, on the other hand, are the same as unit vectors modulo phase. Any nonzero
vector in H gives a state after we normalize it, but different vectors can give the same state, and
the zero vector does not give a state at all. So, quantum physics is really different from classical
physics in this way: we cannot define states as morphisms from the unit object. Nonetheless, we
have seen that the morphisms T : C → H play a fundamental role in quantum theory: they are just
Dirac’s ‘kets’.

Next, let us ponder clause (iv) of the definition of monoidal category. Here we see that the tensor
product is associative, but only up to a specified isomorphism, called the ‘associator’. For example,
in Hilb we do not have (H ⊗K) ⊗ L = H ⊗ (K ⊗ L), but there is an obvious isomorphism

aH,K,L: (H ⊗K) ⊗ L→ H ⊗ (K ⊗ L)

given by
aH,K,L((ψ ⊗ φ) ⊗ η) = ψ ⊗ (φ⊗ η).

Similarly, we do not have C ⊗H = H and H ⊗ C = H , but there are obvious isomorphisms

`H : C ⊗H → H, rH :H ⊗ C → H.
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Moreover, all these isomorphisms are ‘natural’ in a precise sense. For example, when we say the
associator is natural, we mean that for any bounded linear operators S:H → H ′, T :K → K ′,
U :L→ L′ the following square diagram commutes:

(H ⊗K) ⊗ L
aH,K,L //

(S⊗T )⊗U

��

H ⊗ (K ⊗ L)

S⊗(T⊗U)

��
(H ′ ⊗K ′) ⊗ L′

aH′,K′,L′

// H ′ ⊗ (K ′ ⊗ L′)

In other words, composing the top morphism with the right-hand one gives the same result as
composing the left-hand one with the bottom one. This compatibility condition expresses the fact
that no arbitrary choices are required to define the associator: in particular, it is defined in a basis-
independent manner. Similar but simpler ‘naturality squares’ must commute for the left and right
unit laws.

Finally, what about clauses (v) and (vi) in the definition of monoidal category? These are so-
called ‘coherence laws’, which let us manipulate isomorphisms with the same ease as if they were
equations. Repeated use of the associator lets us construct an isomorphism from any parenthesization
of a tensor product of objects to any other parenthesization — for example, from ((A⊗B)⊗C)⊗D
to A ⊗ (B ⊗ (C ⊗ D)). However, we can actually construct many such isomorphisms — and in
this example, the pentagonal diagram in clause (v) shows two. We would like to be sure that all
such isomorphisms from one parenthesization to another are equal. In his fundamental paper on
monoidal categories, Mac Lane [25] showed that the commuting pentagon in clause (v) guarantees
this, not just for a tensor product of four objects, but for arbitrarily many. He also showed that
clause (vi) gives a similar guarantee for isomorphisms constructed using the left and right unit laws.

5 Conclusions

Our basic intuitions about mathematics are to some extent abstracted from our dealings with the
everyday physical world [19]. The concept of a set, for example, formalizes some of our intuitions
about piles of pebbles, herds of sheep and the like. These things are all pretty well described
by classical physics, at least in their gross features. For this reason, it may seem amazing that
mathematics based on set theory can successfully describe the microworld, where quantum physics
reigns supreme. However, beyond the overall ‘surprising effectiveness of mathematics’, this should
not really come as a shock. After all, set theory is sufficiently flexible that any sort of effective
algorithm for making predictions can be encoded in the language of set theory: even Peano arithmetic
would suffice.

But, we should not be lulled into accepting the primacy of the category of sets and functions
just because of its flexibility. The mere fact that we can use set theory as a framework for study-
ing quantum phenomena does not imply that this is the most enlightening approach. Indeed, the
famously counter-intuitive behavior of the microworld suggests that not only set theory but even
classical logic is not optimized for understanding quantum systems. While there are no real para-
doxes, and one can compute everything to one’s heart’s content, one often feels that one is grasping
these systems ‘indirectly’, like a nuclear power plant operator handling radioactive material behind
a plate glass window with robot arms. This sense of distance is reflected in the endless literature
on ‘interpretations of quantum mechanics’, and also in the constant invocation of the split between
‘observer’ and ‘system’. It is as if classical logic continued to apply to us, while the mysterious rules
of quantum theory apply only to the physical systems we are studying. But of course this is not
true: we are part of the world being studied.

To the category theorist, this raises the possibility that quantum theory might make more sense
when viewed, not from the category of sets and functions, but within some other category: for
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example Hilb, the category of Hilbert spaces and bounded linear operators. Of course it is most
convenient to define this category and study it with the help of set theory. However, as we have
seen, the fact that Hilbert spaces are sets equipped with extra structure and properties is almost a
distraction when trying to understand Hilb, because its morphisms are not functions that preserve
this extra structure. So, we can gain a new understanding of quantum theory by trying to accept
Hilb on its own terms, unfettered by preconceptions taken from the category Set. As Corfield [10]
writes: “Category theory allows you to work on structures without the need first to pulverise them
into set theoretic dust. To give an example from the field of architecture, when studying Notre
Dame cathedral in Paris, you try to understand how the building relates to other cathedrals of the
day, and then to earlier and later cathedrals, and other kinds of ecclesiastical building. What you
don’t do is begin by imagining it reduced to a pile of mineral fragments.”

In this paper, we have tried to say quite precisely how some intuitions taken from Set fail in
Hilb. Namely: unlike Set, Hilb is a ∗-category, and a monoidal category where the tensor product is
noncartesian. But, what makes this really interesting is that these ways in which Hilb differs from
Set are precisely the ways it resembles nCob, the category of (n − 1)-dimensional manifolds and
n-dimensional cobordisms going between these manifolds. In general relativity these cobordisms
represent ‘spacetimes’. Thus, from the category-theoretic perspective, a bounded linear operator
between Hilbert spaces acts more like a spacetime than a function. This not only sheds a new light
on some classic quantum quandaries, it also bodes well for the main task of quantum gravity, namely
to reconcile quantum theory with general relativity.

At best, we have only succeeded in sketching a few aspects of the analogy between Hilb and nCob.
In a more detailed treatment we would explain how both Hilb and nCob are ‘symmetric monoidal
categories with duals’ — a notion which subsumes being a monoidal category and a ∗-category.
Moreover, we would explain how unitary topological quantum field theories exploit this fact to this
hilt. However, a discussion of this can be found elsewhere [6], and it necessarily leads us into deeper
mathematical waters which are not of such immediate philosophical interest. So, instead, I would
like to conclude by saying a bit about the progress people have made in learning to think within
categories other than Set.

It has been known for quite some time in category theory that each category has its own ‘internal
logic’, and that while we can reason externally about a category using classical logic, we can also
reason within it using its internal logic — which gives a very different perspective. For example, our
best understanding of intuitionistic logic has long come from the study of categories called ‘topoi’,
for which the internal logic differs from classical logic mainly in its renunciation of the principle of
excluded middle [9, 11, 30]. Other classes of categories have their own forms of internal logic. For
example, ever since the work of Lambek [18], the typed lambda-calculus, so beloved by theoretical
computer scientists, has been understood to arise as the internal logic of ‘cartesian closed’ categories.
More generally, Lawvere’s algebraic semantics allows us to see any ‘algebraic theory’ as the internal
logic of a category with finite products [21].

By now there are many textbook treatments of these ideas and their ramifications, ranging from
introductions that do not assume prior knowledge of category theory [12, 29], to more advanced texts
that do [7, 16, 20, 26]. Lawvere has also described how to do classical physics in a topos [22, 23].
All this suggests that the time is ripe to try thinking about quantum physics using the internal
logic of Hilb, or nCob, or related categories. However, the textbook treatments and even most of
the research literature on category-theoretic logic focus on categories where the monoidal structure
is cartesian. The study of logic within more general monoidal categories is just beginning. More
precisely, while generalizations of ‘algebraic theories’ to categories of this sort have been studied
for many years in topology and physics [24, 27], it is hard to find work that explicitly recognizes
the relation of such theories to the traditional concerns of logic, or even of quantum logic. For
some heartening counterexamples, see the work of Abramsky and Coecke [1], and also of Mauri [28].
So, we can only hope that in the future, more interaction between mathematics, physics, logic and
philosophy will lead to new ways of thinking about quantum theory — and quantum gravity — that
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take advantage of the internal logic of categories like Hilb and nCob.
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