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The Big Idea

Once upon a time, mathematics was all about sets:

In 1945, Eilenberg and Mac Lane introduced categories:

These put processes on an equal footing with things.



In 1967 Bénabou introduced weak 2-categories:

These include processes between processes.

In 1995, Gordon, Power and Street introduced weak
3-categories.

Since then we have been developing a general theory
of weak n-categories, which is starting to have a big
impact on math.

What about physics?



First, how do categories impact physics? I claim:

Quantum theory makes more sense when seen as part
of a theory of spacetime — but this can only be

understood using categories.

Why? The ‘weird’ features of quantum theory come
from the ways that Hilb is less like Set than nCob —
the category where objects are choices of ‘space’ and
morphisms are choices of ‘spacetime’:



object

morphism

e — O

SET set function between
THEORY sets
QUANTUM |Hilbert space| operator between
THEORY Hilbert spaces
(state) (process)
GENERAL manifold |cobordism between
RELATIVITY manifolds
(space) (spacetime)




Objects and Morphisms

Every category has objects and morphisms:

e In Set an object is a set, and a morphism is a
function.

e In Hilb an object is a Hilbert space, and a morphism
is a linear operator.

e In nCob an object is an (n — 1)-dim manifold, and a
morphism is a cobordism between such manifolds:

SR —

S/



Composition

Every category lets us compose morphisms in an
associative way:

e In Set, we compose functions as usual.

e In Hilb, we compose operators as usual:
(T = T'(T).

e In nCob, we compose cobordisms like this:




Identity Morphisms

Every category has an tdentity morphism 1,: x — x for
each object x:

e In Set, 15: S — S is the identity function.
e In Hilb, 15: H — H is the identity operator:

L =1
e In nCob, identity morphisms look like this:

S S
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Monoidal Categories

In fact, all our examples are monotdal categories —
they have a tensor product and unit object:

e In Set, the tensor product is X, and the unit object
is the 1-element set.

e In Hilb, the tensor product is ®, and the unit object
is C.
e In nCob, the tensor product looks like this:

Sl - Si Sl &) S{ ~—

Ml M/l @ M®M’l @
So S So & S

and the unit object is the empty manifold.

(A bunch of axioms must hold, and they do....)



Now for the first big difference: the tensor product in
Set is ‘cartesian’, while those in nCob and Hilb are not!

A monoidal category is cartesian when you can
duplicate data:
ANir —>rQx

and delete it:
e:xr— 1

so that these diagrams commute:

x—éﬁx®x x—Aﬁx®x

1% l e®1, 1% l 1,Qe

In Set, you can do this. In Hilb you can’t: you can
neither clone a quantum, nor cleanly delete quantum
information. Nor can you do this in nCob!



Duality for Objects

Both nCob and Hilb have ‘duals for objects’, but Set
does not. This is why quantum teleportation seems
odd.

A monoidal category has duals for objects if every
object r has an object r* with morphisms

e T Rr—1, i1l —-2rQx"

satisfying the zig-zag tdentities.

In nCob, S* is S with its orientation reversed. We have

and the zig-zag identities look like this:



In Hilb, H* is the dual Hilbert space. We have

eg: H*"@H — C 1g: C — HQ H*
(Y — L) c— cly

and the zig-zag identities say familiar things about
linear algebra.

But... there is no ‘dual’ of a set!



Abramsky and Coecke have shown that quantum
teleportation relies on the zig-zag axiom:

S S
e
=
g S

A particle interacts with one of a pair of particles
prepared in the Bell state. Its quantum state gets
transferred to the other member of the pair!

Read their paper A Categorical Semantics of Quantum
Protocols for details.



In summary:

Quantum theory seems counterintuitive if we
expect Hilb to act like Set, since it acts more like
nCob. Superficially, Hilbert spaces and operators
seem like sets and functions. But, they’re really
more like spaces and spacetimes!

This 1s a clue.

Perhaps Feynman was the first to get it...

...or maybe Penrose, with his spin networks.



Both string theory and spin foam models are trying to
exploit this clue. They are groping towards a

language for quantum spacetime that will usefully blur
the distinction between pieces of spacetime geometry:

and quantum processes.

At this point we should think of them, not as
predictive theories, but as explorations of the
mathematical possibilities!



Since strings and spin foams are both 2d generalizations
of Feynman diagrams, it’s natural to use 2-categories
to describe the ways of ‘composing’ them.

A (strict) 2-category has objects:
o

morphisms:

Te oy

and also 2-morphisms:



We can compose morphisms as before:

We can compose 2-morphisms vertically and
horizontally:

f
o B

ﬁo
\%/\ f/ /

g

Each composition is associative and has identities. Lastly
we have the interchange law, saying this diagram gives
a well-defined 2-morphism:

J_N ]




So far we see 2-categories playing four distinct but
closely related roles:

1. In string theory — more precisely, in any conformal
field theory — we have a 2-category where:

e objects are D-branes: e
e morphisms are string states: e——e
e 2-morphisms are evolution operators corresponding

. 7N\
to string worldsheets: o | o
N

For details see Categorification and Correlation Functions in
Conformal Field Theory by Runkel, Fuchs, and Schweigert.



2. In 3d quantum gravity — more generally, in any
extended topological quantum field theory — we have
a 2-category where:

e objects describe kinds of matter
e morphisms describe choices of space

e 2-morphisms describe choices of spacetime

In 3d quantum gravity this matter consists of point
particles — see the work of Freidel et al:

In 4d topological gravity this matter consists of strings
— see my papers with Crans, Wise and Perez.



3. In higher gauge theory we have fields describing
parallel transport not just for point particles moving
along paths:

but also for strings tracing out surfaces:

I’ve developed this in papers with Bartels, Crans, Lauda,
Schreiber and Stevenson.



Indeed, every manifold gives a 2-category where:

e objects are points: ex

e morphisms are paths: ze~ ey
g

e 2-morphisms are surfaces like this: xe “2 °y

2
Ordinary gauge theory uses groups, which are special

categories:

Higher gauge theory uses 2-groups, which are special

2-categories:



In practice a 2-group consists of two groups, G and H,

related by various operations. A 2-connection consists
of:

e a g-valued 1-form A
e an h-valued 2-form B

Parallel transport along a path should give an

g

element of G: e~ e

Parallel transport along a surface should give an
element of H: o/ﬂh\o

b S
But, A and B must satisfy an equation for this to work.

And in 4d spacetime, this equation has the BF' theory
equation B o« F' as a special case.

So, we get parallel transport for particles and strings
in 4d topological gravity!



4. Feynman diagrams and spin networks are really just
a way of reasoning diagrammatically with operators —
morphisms in Hilb. All these:

HmT H z‘\. /j

f k
are just different ways of writing the same thing!

1]
my.

Similarly, spin foams are a way of reasoning with
2-morphisms in a 2-category of ‘2-Hilbert spaces’:




