COMPARING OPERATOR TOPOLOGIES

John Baez and Christopher Walker

Problem 1. If $R: \ell^2 \to \ell^2$ is the right shift operator, show that the sequence R^i converges weakly to 0, but not strongly.

Proof. Recall that a sequence of operators $T_i: H \to H$ converges weakly to T if

$$\langle \Phi, (T_i - T)\Psi \rangle \to 0$$

for all $\Phi, \Psi \in H$. So, we need to show that for any $\Phi, \Psi \in \ell^2$ we have $\langle \Phi, R^i \Psi \rangle \to 0$. Since the right shift operator is the adjoint of the left shift operator L, we have

$$\langle \Phi, R^i \Psi \rangle = \langle L^i \Phi, \Psi \rangle$$

and thus

$$|\langle \Phi, R^i \Psi \rangle| \le \|L^i \Phi\| \|\Psi\|$$

by the Cauchy–Schwarz inequality. By Problem 2, $L^i \to 0$ strongly, which means that $\|L^i \Phi\| \to 0$ for all Φ . So,

 $\langle \Phi, R^i \Psi \rangle \to 0$

as desired.

Next, recall that a sequence of operators T_i converges strongly to T if $||T_i\Phi - T\Phi|| \to 0$ for all $\Phi \in H$. To see that R^i does not converge strongly to 0, we only need to find a vector $\Phi \in \ell^2$ such that $||R^i\Phi||$ does not go to zero. Let $\Phi = (1, 0, 0, ...)$. Notice that this is a unit vector in ℓ^2 . Also note that R^i preserves the norm on any vector in ℓ^2 . This gives us that $||R^i\Phi|| = 1$ for all i, and so $||R^i\Phi|| \to 1 \neq 0$. Thus R^i does not converge strongly to 0.

Problem 2. If $L = R^* \colon \ell^2 \to \ell^2$ is the left shift operator, show that the sequence L^i converges strongly to 0 (and thus weakly), but does not converge to 0 in norm.

Proof. In general, we can think of the left shift operators L^i as "removing" the first *i* terms of a vector $\Phi \in \ell^2$. So to see that L^i converges strongly to 0, we will write the norm of $L^i \Phi$ as the difference of two sums:

$$\left\|L^{i}\Phi\right\|^{2} = \sum_{j=1}^{\infty} \Phi_{j}^{2} - \sum_{j=1}^{i} \Phi_{j}^{2}.$$

If we consider the limit as $i \to \infty$ this norm goes to 0. Thus L^i converges strongly to 0.

Finally, recall that a sequence of operators T_i converges to T in norm if $||T_i - T|| \to 0$. So we need to show that $||L^i||$ does not converge to zero. By definition, $||L^i|| = \sup_{\|\Phi\|=1} ||L^i\Phi||$. But for any i consider the vector $E_{i+1} = (0, \ldots, 0, 1, 0, \ldots)$ where the 1 is in the *i*th coordinate. We see that $||E_{i+1}|| = 1$ and $||L^iE_{i+1}|| = 1$. This gives us that $||L^i|| \ge 1$ for all i. Thus the sequence $||L^i||$ cannot possibly converge to 0. Thus L^i does not converge to 0 in norm.