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RECURSIVITY IN QUANTUM MECHANICS 
BY 

JOHN C. BAEZ 

ABSTRACT. The techniques of effective descriptive set theory are applied to the 
mathematical formalism of quantum mechanics in order to see whether it actually 
provides effective algorithms for the computation of various physically significant 
quantities, e.g. matrix elements. Various Hamiltonians are proven to be recursive 
(effectively computable) and shown to generate unitary groups which act recursively 
on the Hilbert space of physical states. In particular, it is shown that the ni-particle 
Coulombic Hamiltonian is recursive, and that the time evolution of n-particle 
quantum Coulombic systems is recursive. 

Introduction. Computable analysis [1] and effective descriptive set theory [3] study 
mathematical processes to see whether they can be done effectively, e.g. by computer 
programs. Kreisel [2] has raised the possibility of applying these branches of 
mathematics to mathematical physics. Since the goal of physics is to be able to 
predict phenomena, it is of interest to see whether physical theories provide effective 
algorithms for making quantitative predictions. In Kreisel's words, "We consider 
theories, by which we mean such things as classical or quantum mechanics, and ask 
if every sequence of natural numbers or every real number which is well defined 
(observable) according to the theory must be recursive, or, more generally, recursive in 
the data (which, according to the theory, determine the observations considered)." 

In [4], Pour-El and Richards study the classical wave equation in R3 and show 
that even when recursive initial conditions are given the solution may not be a 
recursive function. In this paper I will show, among other things, that the quantum- 
mechanical Coulombic Hamiltonian 

H = -2 2m 712 + g_x , 

generates a unitary group exp(-iHt/h) which acts on L2(R3n) in a manner that is 
recursive in the data mI,, qi, h. Since I deal with wave-functions as vectors in L2(R3n) 
rather than pointwise-defined continuous functions, nonrecursivity of the type found 
by Pour-El and Richards, in which the solutions of the classical wave equations are 
not computable on certain sets of measure zero in R3, cannot occur. Treating 
wave-functions as vectors in a Hilbert space would be artificial in the context of the 
classical wave equation, but this is natural in the framework of quantum mechanics, 
where the expectation values of all observables depend only on the vector in 
Hilbert space representing the physical state. Thus it seems as if nonrecursivity may 
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340 J. C. BAEZ 

be less of a problem in quantum mechanics than in classical mechanics. There are, 
however, interesting unresolved questions about the recursivity of spectra of quan- 
tum-mechanical Hamiltonians, which I will discuss in the Conclusion. 

Preliminaries. In this section I will introduce the Kleene pointclasses and recursive 
functions on recursively presented separable metric spaces. Moschovakis discusses 
this material in detail in [3], so I will follow his definitions and notation closely. 

Let M be a separable metric space with metric d: M X M -- R. A "recursive 
presentation" of M is a dense sequence of points (ri)iEN of M such that the relations 

d(ri, rj) < m/(k + 1) and d(ri,rj) <m/(k + 1) 

are recursive. (Requiring that d(ri, rj) < m/(k + 1) and d(ri, rj) > m/(k + 1) be 
recursively enumerable relations is in fact sufficient, but this need not concern us 
here.) The recursively presented space will be denoted either by the ordered pair 

(M, (ri)) or simply by M. 
Given a recursively presented space, we can enumerate a base for its topology as 

follows. Let (PA)IEN be the sequence of prime numbers in increasing order, and 
define 

( ko, .., gkn =Pkok+ I . .. pkn+ I 

so that K.) effectively assigns a unique integer to each finite sequence of integers. 
Next define 

(a)= ki if a = (ko, ..., kn ) for some ko, . . , kn, 

O otherwise, 

so that FDn: N -- Nn + defined by 

4In(a) = ((a)O,..., (a)n) 

is onto (though not one-to-one). Then given the recursively presented space (M, (r1 )), 
defining 

Bk(M, (ri)) = {x E M: d(r(k)o, x) < (k)I/ ((k)2 + 1)) 

gives an enumerated base of balls (Bk(M, (ri)))kEN for the topology of M. 
Given recursively presented spaces (MO, (rj)),... , (Mn, (rin)) with metrics dk: Mk 

X Mk -- R, the product space Mo X ... X Mn is a separable metric space when given 
the metric d defined by 

n 

d((xo,. I .xn)) (Yo ... *Y)) = I dk(Xk, Yk). 
k=O 

MO X ... X Mn has a canonical recursive presentation ((r?0 0 ... 0 rn)i) given by 

(ro 0 * * * rn)i ( r(), . . . n 

(cf. [3, Exercise 3B.3]). 
We will take (0, 1, 2,...) as a recursive presentation of N with the metric 

i if =ij, 
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RECURSIVITY IN QUANTUM MECHANICS 341 

We will take (qi) as a recursive presentation of R, where 

qi = (_ 1P)O )?I/ ((i)2 + 1), 

and we will consider C to be R X R so that it gets the canonical recursive 
presentation (c,), where 

c, = q(+ -l. 

A set S C M is said to be "semirecursive" with respect to the recursive presenta- 
tion (r,) of M if for some recursivef: N -- N 

S UBf(n)(M (r0))- 
n EN 

The class of semirecursive subsets of M is denoted by 2?(M), and the class of sets 
of the form 

{x E M: 3n[(x, n) 4 S]j}, 

where S E - 2(M X N), is denoted by 20+ I(M). 
The class of sets with M - S E 

Y5?(M) is denoted by HJ5?(M). Also, we write 

An (M) = FJ5 (M) n -?(M). 

20, F11, and An are known as the "Kleene pointclasses" and satisfy the inclusions: 

/vo C _C 5 Y2 
XC T1 C C- rI 

A1 2 

In the case M = N this is just the arithmetical hierarchy. 
Given f: M N, where (M, (r)) and (N, (s1)) are recursively presented spaces, 

the "neighborhood (nbhd) diagram" of f, a set Gf C M X N, is defined by 

Gf = (x, k) : f(x) E- Bk(N, (si))}. 

We say f is "2:-recursive" if Gf E V(M X N), and if f is 20-recursive we say 
simply that f is "recursive." (If f: N -- N, this definition of "recursive" coincides 
with the usual definition.) If f: M -3 N is recursive, we can effectively compute 
arbitrarily good approximations to f(x) by choosing n and searching for k such that 
f(x) E Bk(N) and Bk(N) has radius less than l/n. Note that recursive functions are 
always continuous, since their nbhd diagrams must be open. 

Recursive real-valued functions can be characterized as follows: 

PROPOSITION 1. f: M -* R is recursive iff the relation 

qi <f(x) <qj 

is semirecursive as a subset of M X N2 (cf. [3, Exercise 3D.9]). El 

In [1], many standard real and complex functions are proved to be recursive. 
From now on we shall use such results without special mention. 

The following closure properties are extremely useful and will also be used 
without special mention. 
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PROPOSITION 2. Let r be a Kleene pointclass. If S, T e F(M) then S U T G F(M) 
andS n T e i(M). If S E F(M X N) then 

{(x, n): 3k s n[(x, k) ]E S] } J(M X N) 

and 

{(x, n): Vk ? n[(x, k) C S] }E C(M X N). 

Iff: M -- N is recursive and S ? Jr(N), f '(S) C F(M). Also, if S e I?(M X N), 

{x: 3n[(x, n) e S]) e V(M) 

and if S fl H(M X N) 

{x: Vn[(x, n) C S]) e Hl(M) 

Lastly, S C 1\?(M) implies M - S C 1\(M) (cf. [3, Corollary 3E.2]). 0 

PROPOSITION 3. Iff: M -- N and g: N - 0 are E ?-recursive, then g o f: M 0 is 
E>-recursive (cf. [3, Theorem 3D.4]). D 

PROPOSITION 4. f: M ---* No X X Nk is E?-recursive iff f(x) (fo(x),. . . fk(x)) 
for some Y25-recursive functions f,: M - N,, 0 < i < k (cf. [3, Theorem 3D.3]). O 

The following propositions will also be useful: 

PROPOSITION 5. The metric d: M X M -- R is recursive for any recursively pre- 
sented space M (cf. [3, Exercise 3D. 10]). O 

PROPOSITION 6. The sequence (r,) considered as a function from N to M is recursive 

for any recursively presented space (M, (ri)) (cf. [3, Exercise 3D.8]). 0 

Recursive operators. Operators occuring in quantum mechanics are often given in 
the form A: D(A) -- L2(RW), where D(A) is a "core" for A, i.e. a dense subspace of 

L2(RW) on which A is essentially selfadjoint. "Weighted Sobolev spaces" will be 
useful because they are cores for some important operators. If r, s C N and 

q): R -n C is measurable with a well-defined Fourier transform f: Rn- C, and 

Ik<PIIr,s f=fl | + IX 2)r I (X) 12 dx + (I + I x 12)SI 
- 

(x) 12 dx 

is finite, we say p is in the "weighted Sobolev space" W(Rj ). 
The spaces Wo,s(R) are often called "Sobolev spaces"; the spaces WrO(RW) are 

called "weighted L2 spaces"; WOO(RW) is just L2(RW). zp E Wr,(R) iff for all 
multiindices a, 13 with j a Is r, I/ I-< s, we have x"'p E L2(RW) and D&P E L2(RW), 
where derivatives are taken in the sense of distributions. WJ (R) is a Hilbert space 
with the inner product (, *)rs naturally associated to the norm 11 * 11rs via the 
polarization identity. If r < r' and s < s', Wr>,s,(R) is a dense subspace of Wrjs(R). 
(For these and other results of functional analysis stated without proof see, e.g., [5].) 

W02(R3) is a core for the free Hamiltonian; by the Kato-Rlellich theorem WO,2(R3n) 
is a core for the n-particle Coulombic Hamiltonian. W22(RW) is a core for the 

harmonic oscillator Hamiltonian. Furthermore, these Hamiltonians are bounded as 
operators from Wrs(RJ ) (with appropriate r, s, n) to L2(R ). This is important 
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RECURSIVITY IN QUANTUM MECHANICS 343 

because recursivity only makes sense for continuous functions. Indeed, the only 
unbounded selfadjoint operators we will be considering are those which have some 

W,,(RW) as a core and restrict to a bounded operator from W, (RW) to L2(R"). We 
will often describe this situation simply by saying "A: Ws(R") -> L2(R") is essen- 
tially selfadjoint." 

To study recursive operators on weighted Sobolev spaces we need recursive 
presentations for these spaces. A handy one involves tensor products of the Hermite 
functions O2i: R -- R. Let 

'q'i'(x S.. 1 , x, X = 2(1,(xl) Q(i)"- (X") 

and 

00 

1=O 

Note that this sum is always effectively finite since if ! > i then (i), = Oso c(,)/ = 0. 

(~7 1)1N is an orthonormal basis for L2(R") and for any r, s (4X,," )EN is dense in 

WJ, (RW); indeed we have 

PROPOSITION 7. (4,") is a recursive presentation of Wr (Rj). 
PROOF. Since 11A'' - j''lrs is effectively computable in terms of rational functions 

and square roots using Hermite function identities, the relations 

114,-" 11 r,s< m/ (k + 1) 

and 

114"' - ?11r,s < m/ (k + 1) 

are recursive. El 

In what follows I will often use the abbreviations W for Wr(Rj), (.,.)w for 

( )r,s 1 * llw for 11 * K,sr (.,.) for (, )o,o, ll * 1I for 11 * 110,0, (4') for (4i,), and (ij) for 

PROPOSITION 8. The following functions are recursive: 11 IIw: W -* R, +: W X W 

W, it: C X W -4W defined by ji(x, sp) = x(p, and ( -, -)w: W X W -*C. 

PROOF. By Propositions 5 and 6 and the fact that 11gIIw = II( - QoI, it follows 
that I I*I lw: W -- R is recursive. 

By standard recursion-theoretic techniques there is a recursive a: N -* N such that 

+ ((4, 0) 4,)) =+ (4,(,), 4,(i),) = 
)o + 4(i), =am 

Note that g + p' C Bk(W) iff 

Il(w + ') - 4(k)ollw < (k)+ 
(ki)2 + 1 

Since ((4, 09 4)j) is dense in W X W, this means that qg + T)' C Bk(W) iff 
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By Propositions 1, 5, and 6 we see that (1) defines a set in 1?(W X W X N). This set 
is precisely the nbhd diagram of +: W X W -- W, so + is recursive. 

There is also a recursive /3: N N such that 

A((C 0 4)j) =(C(0)0, 4(1),) C(i)o4()1 = CMA 1). 

Note that xqp E Bk(W) iff 

IIXq _-4(k)0IIw < (k)l 
(k)2 + I 

Since ((c 0 A),) is dense in C X W, this means xm E Bk(W) iff 
(2) 

3i[4x - C()o llllw + lc(l)0 lilT - 4)ilw + il4'/N) - 4k)ollw < (k)1/ ((k)2 + 1)]. 

By Propositions 1, 5, and 6 we see that (2) defines a set in V'(C X W X N). This set 
is precisely the nbhd diagram of y: C X W W. Thus it is recursive. 

Having proved that 11 * 11,,, +, and ,u are recursive, to see that ( is recursive we 
need only note the polarization identity: 

(T' T')w 
I 

(11 + '9 -1 - IT- )'112) + 
I 

(jig + iT'II2 - 1lT - iT'Ii%). 12 

We now turn our attention to operators from W to L2(RW). We shall study not 

only operators but "parametrized operators," that is, continuous functions T: M X 

W -* L2(R ) such that for each x E M, T,: W -* L2(R ) is an operator. Operators in 

physics are often parametrized, the parameters being either physical constants or 

variables such as time. 
Note that Proposition 8 implies that if T: M X W -> L2(Rn) is a recursive 

parametrized operator the function (p, T7',) from M X L2(RW) X W to C is recur- 

sive. This is desirable in quantum mechanics, where such matrix elements have 
physical significance. 

The following proposition characterizes uniformly bounded parametrized opera- 
tors. 

PROPOSITION 9. Let T: M X W -- L2(R1) be a uniformly bounded parametrized 
operator. T is recursive iff there are recursive functions f: M X N2 C and g: M X 
N -* R such that 

f.Ji, j) =(r,q , Txqi) and gx(i ) = jTxq1ijj 

PROOF. If T is recursive, f and g are recursive by Proposition 8 and the recursivity, 
easily seen, of the sequence (in) considered as a function from N to W (or to 

L2(Rn)). 

For the converse, assume f and g are recursive and llTxl < K C N for all x E M. 
Let F: N -* N be a recursive function such that j > F(k) implies (k)j 

= 0, hence 
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C(k) = 0. Since (,i) is an orthonormal basis for L2(RW) we have 

IIT,i -k 112 =|2 ((qj I Tx7i) - 
C(k)J )71j| = I fX0i, j) C(k), 

1 

j=O j=O 

F(k) ?? 

= Ifx(i, j) - C(k)I + 2 If(i j) 12 
j=O j=F(k)+l 

F(k) 0o 

= 2 |fX(, J - Ck12 - if(i, j) 12) + 2 Ifx( )1 
j=O j=O 

F(k) 

= 2 (jfx(i, j) - C(k)I| - jf)(i 1)12) + gx(i)2. 
j=O 

Thus Tx-qi E Bk(L2(RW)) iff 

(3) (Ifx( j) -C(k) -f(i, j) 12) + gx(i)2 < ( (k)2+ 1) 
j=O k2 

Since f, g, and F are recursive, (3) defines a set in l?(M X N2). This set is just the 
nbhd diagram of Txji as a function from M X N to L2(RW), so Txji is a recursive 
function. 

Since 
F(i) 

TX4) = 2 c(i)7Tx>j 
j=O 

we can conclude that Tx4i is also recursive as a function from M X N to L2(R ). 
For T C W, Txp E Bk(L2(RW)) iff 

I I Txq) < 
(k)1 

lTqg - 4'(k)oI < (Ik)2 + 1 

and since (4i) is dense in Wand IITxII < A, this holds iff 

(4) 3i[KIlT - 4'llw + IlhTA - (k)oll < (k)1/ ((k)2 + 1)]. 

Since Txip is a recursive function and K E N, (4) defines a set in Y4(M X W X N) 
which is the nbhd diagram of T: M X W -- L2(R ). Thus T is recursive. [ 

This has as a corollary: 

PROPOSITION 10. An operator T: W -* L2(Rn) is recursive iff there are recursive 
functions f: N2 -- C and g: N -* R such that f(i, j) = (iij, Trqi) and g(i) = IlTi lI. 

PROOF. Take M to be a one-point space in Proposition 9 and use the existence of a 
natural recursive bijection between W and M X W. D 

Define an "essentially selfadjoint (ess. s.a.) parametrized operator" to be a 
parametrized operator A: M X W -* L2(Rn) such that for each x E M A, is essen- 
tially selfadjoint. We will show that a recursive ess. s.a. parametrized operator A 
generates a unitary group exp(iA,t) which acts recursively on L2(Rw). First, how- 
ever, we need a lemma on resolvents. 
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If AX: W -- L2(RW) is essentially selfadjoint, there is an operator (Ax+ i)-1 
L2(Rn) -* L2(RW) such that (Ax + i)-'(A, + i) is the identity on W(cf. [5, Theorem 

VIII.3]). If A: M X W -- L2(RW) is an ess. s.a. parametrized operator, we can define 
a parametrized operator (A + i)-' : M X L2(RW) -- L2(RW) by 

(A + i)-' 
- 

(Ax + i)-. 

(A + i)-' is called the "resolvent" of A. We always have II(A + i)j11 < 1. 

PROPOSITION 11. If A: M X W -- L2(RW) is a recursive ess. s. a. parametrized 

operator, then the resolvent (A + i)-': M X L2(RW) -- L2(RW) is a recursive parame- 
trized operator. 

PROOF. Suppose (A + i)x'p e Bk( L2(R)), i.e. 

I ~~~(k)1 
1(A + i)X - (k)jl < (k)2 ? 

Then since W is a core for Ax, we can find 4, making both II(A + i)-'p - 4.II and 

Il(A + i)j'p - 4jI simultaneously as small as we like, so we know by the triangle 

inequality that 

3;[11AX + ill II(A + i)OX P-4Allw + IIJ - (k)jl < (k)1/ ((k)2 + 1)]. 

This in turn implies 

(5) 3j[1iT - (Ax + i)041l + II4+J - P(k)jII < (k)I/ ((k)2 + 1)] 

Conversely, suppose (5) holds. Then since tI(A + i)j 
- 1 1 s l, we have 

3j[ll(A + i)X g-j4Il + I4J - 4k(kjl < (k)I/ ((k)2 + 1)1 
which implies 

Il(A + i)X'q - 4kk)II < (k)1/((k)2 + 1), 

i.e. (A + i)X-l E Bk(L2(RW)). Thus (5) defines a subset of M X L2(Rw) X N which is 
the nbhd diagram of (A + i)- 1: M X L2(RW) -4 L2(RW). If A is recursive (5) defines 
a semirecursive set, which implies that (A + i)-1 is recursive. D 

THEOREM 12. If A: M X W - L2(Rn) is a recursive ess. s. a. parametrized operator, 
the parametrized operator U: M X R X L2(Rn) - L2(Rn) defined by Ux, = exp(iAxt) 
is recursive. 

PROOF. Define the parametrized operators R, R*: M X L2(RW) -- L2(R" ) by 

R = (A + i) ', R* = ((A + i)-')* = - (-A + i)?x' 

Since A and -A are recursive ess. s.a. parametrized operators, R and R* are 
recursive parametrized operators by Proposition 1. The proof will proceed by using 
the functional calculus for normal operators to approximate Ux,t with polynomials in 

Rx and R*. Define a " recursively parametrized polynomial" to be a function 
P: N X C -* C (N being a recursively presented space) such that for ac E N Pa: C 

C is a polynomial in X, X E C whose degree and coefficients are recursive functions 
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of a. Using standard recursion-theoretic techniques one can see that if P is a 
recursively parametrized polynomial, the corresponding parametrized operator 
P( R): M X N X L2(R ) -- L2(RW) given by the functional calculus is recursive. (For 
all x E M and a C N, P,(Rx) is a polynomial in RX and R*.) 

By the functional calculus we know 

= exp(it(R-' -i)) 

or if we let f(X) exp(it(A -'i)), 

UXjt = ft(Rx). 

Let 

0O if IXI< 1/(1 + 1), 

P1 t(X) = (A)((I + 1) XI -1) if 1/ (I + 1) I A-- 2/ (I + 1), 
(ft(A) if IX 1,> 2/ (I + 1). 

The spectrum of RX is a subset of D ={X E C: I A 1) 1, and zero is not in the pure 
point spectrum of Rx. Thus s-lim-oo pI t(Rx) = ft(Rx), since lim I0pi, t f ft point- 
wise on D - (0) and 1lp, ,,Lo < 1 for all 1, t. Thus for all T E L2(RW) we have 
lim oopl, t(Rx)Tp = Uxtp, but at first glance this convergence does not seem 
effective. However, since Ux,t is unitary 

1I(p,,O(Rx)- II- t1(P,t0(Rx) - I)wii II(fJ(Rx)p,,O(Rx) - Ux,t)wIi 
and since tpi o ='p, t this implies 

(6) 11(p, O(Rx) -I)llJ = JpIj(,tRx) - Ux,)TII 
This will allow us to effectively compute how close p, t(Rx)4' is to U, t4. 

By standard analytical techniques we can find a recursively parametrized poly- 
nomial P: N2 X R X C -- C such that for all 1, m, t 

(7) sup I P1,.,(X)-pP, T() I< M,t 
A\eD 

T=O, t 

where 8: N X R -* R is a recursive function with limm , m,t = 0 for all t. By the 
preceding remarks we know that P(R): N2 X R X L2(RW) -* L2(RI) is a recursive 
parametrized operator. Since the spectrum of RX is in D, (7) implies 

(8) IIPi,m,o(Rx) - P,,o(RX)11 < m ,t 
and 

(9) 11P1,M,t(Rx) -pi,t(Rx)jj < Sm,t. 

Now suppose Uxjt, C Bk(L2(RI)), i.e. 

IlIuh,q - 
4~(kj)l < (k)1 

(k)2 + 1 

Then since s-liml opi,t(Rx) Ux,t we know 

3[11Ux,t - Pi,t(Rx)Til + 1pl,t(Rx)T - P(k)oll < (k)I/ ((k)2 + 1)]. 
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By (6) this implies 

3[llpjp0(Rx)p - TIl + Iipl,t(Rx)w - 41(k)oll < (k)I/ ((k)2 + 1)]. 

Since limm, 00 t = 0 this implies 

3m3l[48m,,tIl)I + IlP, O(Rx)T - TIl + liP, t(Rx)w - (k)OII < (k)1/ ((k)2 + )j] 

By (8), (9) and the triangle inequality this implies 

(10) 3m31[28m,tllkll + IIP,,m,O(Rx)P - 11 

+IPi, m,t(Rx) -+ (k)oll < (k)1/((k)2 + 1)1] 

Conversely, assume (10) is true. Then (8), (9) and the triangle inequality imply 

31[4Ip1,O(Rx)q - Til + 1lpl t(Rx)w - 4(k)oll < (k)II ((k)2 + 1)] 

which by (6) implies 

31[IUx,tp - pi t(Rx)pII + |lpi,t(Rx)q - 4(k)oll < (k)I/ ((k)2 + 1)] 

so that 

l4Utpx - 4(k)0II < (k)1/ ((k)2 + 1), 

i.e. 
Ux,tp 

E B4(L2(RW)). Thus (10) holds iff Ux tp E Bk(L2(R )), so (10) defines a 
subset of M X R X L2(RW) X N which is precisely the nbhd diagram of U: M X R 
X L2(RW) -* L2(RW). Since 8 is recursive and P(R) is a recursive parametrized 
operator, the set (10) defines is semirecursive. Thus U is recursive. O 

Recursivity of Hamiltonians. The recursivity of a number of physically important 
Hamiltonians follows directly from Proposition 10. For example, we can prove the 
recursivity of the n-particle Coulombic Hamiltonian, which for convenience we 
parametrize using the "reciprocal masses" jii = I/Mi. 

PROPOSITION 13. If one defines H: R2n+I X WO2(R3n) L2(R3n) by 

H, = - 

n 
2 h2, 2V7 + i -j 

iq 1 1 .17iI 

where 

2 +2 a 2 + a2~ 
v,2m= ( 

3i-2 +a3i- a3i) 

and 

(X3i-2, X3i_, X3i) 

then H is a recursive parametrized operator. 
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PROOF. V72: WO2(R3n) L2(R3n) is a bounded linear operator, and by the Kato- 
Rellich theorem so is 1/Ix>,-Xy I: W02(R3n) L2(R3n) (cf. [5, Theorem X. 16]). A 
simple application of Proposition 10 implies these operators are recursive. Thus the 
parametrized linear combination 

~ h2/lv 2 + 
q1 q1 -*E,q,....,qn h = - 2 _ hy<2+ 1,.....it.....n. Iz Ji::i 

I-I 1 <i<j-_n I XI 
- 

I 

is a recursive parametrized operator. D 
An important corollary of this is the following 

THEOREM 14. If one defines U: R2n+2 X L2(R3n) -- L2(R3n) by 

Uy, ,*.4Lqq1.q,,=)exp(-itHy, .,,q,...,qn,h) 

where H,, q,,h is defined as above and t ht/, then U is a recursive 
parametrized operator. 

PROOF. A corollary of Theorem 12 and Proposition 13. D 
This says that the time evolution of an n-particle quantum Coulombic system is 

recursive in the initial conditions and the data j,u, q,, h. 
If we set all the q, equal to zero in Proposition 13 and Theorem 14, we obtain 

recursivity results for the n-particle free Hamiltonian. One can easily derive similar 
results for the harmonic oscillator Hamiltonian and other operators with weighted 
Sobolev spaces for cores. 

Conclusion. The results obtained here make it seem that quantum mechanics is a 
fairly tractable theory from the point of view of recursivity. In particular, the 
methods used here to prove the recursivity of Hamiltonians and the unitary groups 
they generate seem easily generalizable. 

An interesting possibility for further research lies in characterizing the spectra of 
selfadjoint operators in terms of the Kleene pointclasses. This idea is implicit in a 
remark of Kreisel [2]: "Suppose we find a Schrbdinger equation of a-presumably 
large-molecule such that the (dimensionless) ratio A2/X1 of its second to its first 
eigenvalue is not recursive (in the data). Then there is no difficulty in finding a 
corresponding experimental setup to show that quantum theory is nonmechanistic in 
the sense of this note." It is possible, using methods similar to the proof of 
Proposition 12, to show that the spectrum of a recursive essentially selfadjoint 
operator with a weighted Sobolev space for its core must be in FJ?(R). Sharper 
results will require more specialized methods suited to the particular operators being 
studied. 

I would like to thank John Burgess, Ed Nelson, and the referee for some helpful 
suggestions regarding this paper. 
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