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A BAYESIAN CHARACTERIZATION
OF RELATIVE ENTROPY

JOHN C. BAEZ AND TOBIAS FRITZ

ABSTRACT. We give a new characterization of relative entropy, also known as
the Kullback—Leibler divergence. We use a number of interesting categories
related to probability theory. In particular, we consider a category FinStat
where an object is a finite set equipped with a probability distribution, while a
morphism is a measure-preserving function f: X — Y together with a stochas-
tic right inverse s: Y — X. The function f can be thought of as a measurement
process, while s provides a hypothesis about the state of the measured system
given the result of a measurement. Given this data we can define the entropy
of the probability distribution on X relative to the ‘prior’ given by pushing the
probability distribution on Y forwards along s. We say that s is ‘optimal’ if
these distributions agree. We show that any convex linear, lower semicontinu-
ous functor from FinStat to the additive monoid [0, co] which vanishes when
s is optimal must be a scalar multiple of this relative entropy. Our proof is
independent of all earlier characterizations, but inspired by the work of Petz.
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1. INTRODUCTION

This paper gives a new characterization of the concept of relative entropy, also

S(g,p) =Y ¢In (Z)

zeX
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known as ‘relative information’, ‘information gain’ or ‘Kullback-Leibler divergence’.
Whenever we have two probability distributions p and ¢ on the same finite set X,
we define the information of ¢ relative to p as:

Here we set ¢, In(g,/p.) equal to co when p, = 0, unless g, is also zero, in which
case we set it equal to 0. Relative entropy thus takes values in [0, 0o].
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Intuitively speaking, S(q,p) is the expected amount of information gained when
we discover the probability distribution is really ¢, when we had thought it was p.
We should think of p as a ‘prior’. When we take p to be the uniform distribution
on X, relative entropy reduces to the ordinary Shannon entropy, up to a sign and
an additive constant. The advantage of relative entropy is that it makes the role of
the prior explicit.

Since Bayesian probability theory emphasizes the role of the prior, relative en-
tropy naturally lends itself to a Bayesian interpretation [3]. Our goal here is to
make this precise in a mathematical characterization of relative entropy. We do
this using a category FinStat where:

e an object (X,q) consists of a finite set X and a probability distribution
T — g, on that set;

e amorphism (f,s): (X, q) — (Y,r) consists of a measure-preserving function
f from X to Y, together with a probability distribution x + s, on X for
each element y € Y with the property that s, = 0 unless f(z) =y.

We can think of an object of FinStat as a system with some finite set of states
together with a probability distribution on its states. A morphism (f,s): (X,q) —
(Y, r) then consists of two parts. First, there is a deterministic ‘measurement pro-
cess’” f: X — Y mapping states of some system being measured to states of a
‘measurement apparatus’. The condition that f be measure-preserving says that
the probability that the apparatus winds up in some state y € Y is the sum of the
probabilities of states of X leading to that outcome:

Ty = Z G-

z: f(z)=y

Second, there is a ‘hypothesis’ s: an assumption about the probability s;, that the
system being measured is in the state z given any measurement outcome y € Y.
We assume that this probability vanishes unless f(z) = y, as we would expect
from a hypothesis made by someone who knew the behavior of the measurement
apparatus.

Suppose we have any morphism (f,s): (X, q) — (Y,r) in FinStat. From this we
obtain two probability distributions on the states of the system being measured.
First, we have the probability distribution p: X — R given by

Dz = Sa f(2)7 f(x)- (1.1)

This is our ‘prior’, given our hypothesis and the probability distribution of mea-
surement outcomes. Second, we have the ‘true’ probability distribution ¢: X — R.
It follows that any morphism in FinStat has a relative entropy S(g,p) associated
to it. This is the expected amount of information we gain when we update our
prior p to q.

In fact, this way of assigning relative entropies to morphisms defines a functor

RE: FinStat — [0, o0

where we use [0, 0] to denote the category with one object, the nonnegative real
numbers together with oo as morphisms, and addition as composition. More pre-
cisely, if (f,s): (X,q) — (Y,r) is any morphism in FinStat, we define

RE(f,s) = 5(¢,p)
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where the prior p is defined as in Equation (1.1). The fact that RE is a functor
is nontrivial and rather interesting. It says that given any composable pair of
measurement processes:

(X,q) L (v,) 24 (7,

the relative entropy of their composite is the sum of the relative entropies of the
two parts:

RE((Q) t) © (f7 S)) = RE(Q) t) + RE(f7 8)'
We prove that RE is a functor in Section 3. However, we go much further: we
characterize relative entropy by saying that up to a constant multiple, RE is the
unique functor from FinStat to [0, co] obeying three reasonable conditions.

The first condition is that RE vanishes on morphisms (f,s): (X,q) — (Y,r)
where the hypothesis s is ‘optimal’. By this, we mean that Equation (1.1) gives
a prior p equal to the ‘true’ probability distribution ¢ on the states of the system
being measured.

The second condition is that RE is lower semicontinuous. The set P(X) of
probability distributions on a finite set X naturally has the topology of an (n — 1)-
simplex when X has n elements. The set [0, c0] can be given the topology induced
by the usual order on this set, and it is then homeomorphic to a closed interval.
However, with these topologies, the relative entropy does not define a continuous
function

S: P(X)x P(X) — [0,00
(¢,p) — S(gp)

S(@:p) =) g In (Z)

zeX
and ¢, In(q,/p.) equals oo when p, = 0 and ¢, > 0, but 0 when p, = ¢, = 0.
So, it turns out that S is only lower semicontinuous, meaning that it can suddenly
jump down, but not up. More precisely, if p’, ¢* € P(X) are sequences with p* — p,
q' — g, then

The problem is that

S(g,p) < liminf S(q’, p").
1—> 00

In Section 3 we give the set of morphisms in FinStat a topology, and show that
with this topology, RE maps morphisms to morphisms in a lower semicontinuous
way.

The third condition is that RE is convex linear. In Section 3 we describe how
to take convex linear combinations of morphisms in FinStat. The functor RE is
convex linear in the sense that it maps any convex linear combination of morphisms
in FinStat to the corresponding convex linear combination of numbers in [0, c0].
Intuitively, this means that if we flip a probability-A coin to decide whether to
perform one measurement process or another, the expected information gained is
A times the expected information gain of the first process plus (1 — A) times the
expected information gain of the second.

Our main result is Theorem 7: any lower semicontinuous, convex linear functor

F': FinStat — [0, 00]

that vanishes on morphisms with an optimal hypothesis must equal some constant
times the relative entropy. In other words, there exists some constant ¢ € [0, co]
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such that
F(f,s) = cRE(f,s)

for any morphism (f,s): (X,p) — (Y,q) in FinStat.

This theorem, and its proof, was inspired by results of Petz [7], who sought
to characterize relative entropy both in the ‘classical’ case discussed here and in
the more general ‘quantum’ setting. Our original intent was merely to express his
results in a more category-theoretic framework. Unfortunately his work contained
a flaw, which we had to repair. As a result, our proof is now self-contained. For
details, see the remarks after Theorem 5.

Our characterization of relative entropy implicitly relies on topological categories
and on the operad whose operations are convex linear combinations. However, since
these structures are not strictly necessary for stating or proving our result, and
they may be unfamiliar to some readers, we discuss them only in Appendix A and
Appendix B.

2. THE CATEGORIES IN QUESTION

2.1. FinStoch. To describe the categories used in this paper, we need to start
with a word on the category of finite sets and stochastic maps. A stochastic map
f: X ~ Y is different from an ordinary function, because instead of assigning a
unique element of Y to each element of X, it assigns a probability distribution on
Y to each element of X. Thus f(x) is not a specific element of Y, but instead has
a probability of taking on different values. This is why we use a wiggly arrow to
denote a stochastic map.
More formally:

Definition 1. Given finite sets X and Y, a stochastic map f: X ~» Y assigns a
real number f,. to each pair x € X,y €Y in such a way that fizing any element z,
the numbers f,, form a probability distribution on'Y. We call f,, the probability
of y given x.

In more detail, we require that the numbers f,, obey:
o fiz>0forallze X, yeY,

. nymzlforalla:GX.
yey
Note that we can think of f: X ~» Y as a Y x X-shaped matrix of numbers.
A matrix obeying the two properties above is called stochastic. This viewpoint
is nice because it reduces the problem of composing stochastic maps to matrix
multiplication. It is easy to check that multiplying two stochastic matrices gives a

stochastic matrix. So, we define the composite of stochastic maps f: X ~» Y and
g:Y ~~ Z by
(9 © f)zw = Z gzyfyw'
yey

Since matrix multiplication is associative and identity matrices are stochastic, this
construction gives a category:

Definition 2. Let FinStoch be the category of finite sets and stochastic maps
between them.
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We are restricting attention to finite sets merely to keep the discussion simple
and avoid issues of convergence. It would be interesting to generalize all our work
to more general probability spaces.

2.2. FinProb. Choose any 1l-element set and call it 1. A function f: 1 — X is
just a point of X. But a stochastic map ¢: 1 ~ X is something more interesting:
it is a probability distribution on X.

We use the term finite probability measure space to mean a finite set with
a probability distribution on it. As we have just seen, there is a very quick way to
describe such a thing within FinStoch:

—

X

This gives a quick way to think about a measure-preserving function between finite
probability measure spaces! It is simply a commutative triangle like this:

/\

X— Y
I

Note that the horizontal arrow f: X — Y is not wiggly. The straight arrow means
it is an honest function, not a stochastic map. But a function can be seen as a
special case of a stochastic map. So it makes sense to compose a straight arrow
with a wiggly arrow—and the result is, in general, a wiggly arrow. If we then
demand that the above triangle commute, this says that the function f: X — Y is
measure-preserving.

We now work through the details. First: how can we see a function as special
case of a stochastic map? A function f: X — Y gives a matrix of numbers

fyo =0y p(a)

where ¢ is the Kronecker delta. This matrix is stochastic, and it defines a stochastic
map sending each point z € X to the probability distribution supported at f(x).

Given this, we can see what the commutativity of the above triangle means. If
we use ¢, to stand for the probability that ¢q: 1 ~» X assigns to each element x € X,
and similarly for r,, then the triangle commutes if and only if

Ty = Z Oy f ()G

zeX

or in other words:

z: f(z)=y
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In this situation we say p is ¢ pushed forward along f, and that f is a measure-
preserving function.
So, we have used FinStoch to describe another important category:

Definition 3. Let FinProb be the category of finite probability measure spaces and
measure-preserving functions between them.

Another variation may be useful at times:

1

X ~—rrr>Y

f

A commuting triangle like this is a measure-preserving stochastic map. In
other words, q gives a probability measure on X, r gives a probability measure on
Y, and f: X ~» Y is a stochastic map that is measure-preserving in the following

sense:
Ty = E fqu:b-

zeX

2.3. FinStat. The category we need for our characterization of relative entropy is
a bit more subtle. In this category, an object is a finite probability measure space:

1

but a morphism looks like this:

e
f

foq =1

fos = ly

The diagram need not commute, but the two equations shown must hold. The first
equation says that f: X — Y is a measure-preserving function. In other words,
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this triangle, which we have seen before, commutes:

1

X—Y
I
The second equation says that fos is the identity, or in other words, s is a ‘section’
for f. This requires a bit of discussion.

We can think of X as the set of ‘states’ of some system, while Y is a set of
possible states of some other system: a ‘measuring apparatus’. The function f is a
‘measurement process’. One ‘measures’ the system using f, and if the system is in
any state € X the measuring apparatus goes into the state f(x). The probability
distribution g gives the probability that the system is in any given state, while r
gives the probability that the measuring apparatus ends up in any given state after
a measurement is made.

Under this interpretation, we think of the stochastic map s as a ‘hypothesis’
about the system’s state given the state of the measuring apparatus. If one measures
the system and the apparatus goes into the state y € Y, this hypothesis asserts that
the system is in the state x with probability sg,,.

The equation f o s = 1y says that if the measuring apparatus ends up in some
state y € Y, our hypothesis assigns a nonzero probability only to states of the
measured system for which a measurement actually leads to this state y:

Lemma 4. If f: X — Y is a function between finite sets and s:' Y ~~ X is a
stochastic map, then fos =1y if and only for ally € Y, sy, = 0 unless f(z) =y.

Proof. The condition f os = 1y says that for any fixed y,3’ € Y,
Z Szy = Z Oy’ f(a)Szy = Oyry-
z: f(z)=y’ reX

It follows that the sum at left vanishes if ¥’ # y. If s is stochastic, the terms in this
sum are nonnegative. So, sz, must be zero if f(z) =y" and ¥ # y.

Conversely, suppose we have a stochastic map s: ¥ ~» X such that s;, = 0
unless f(x) = y. Then for any y € Y we have

1= Z Sey = Z Szy = Z Oy f(x)Say
reX z: f(z)=y reX
while for ¢’ # y we have
0= Z Szy = Z Oy’ f(x)Szy>
z: f(x)=y’ zeX

so for all y,y’ € Y
Z Oy f(2)Say = Oyry,
zeX
which says that fos=1y. [
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It is also worth noting that f o s = 1y implies that f is onto: if y € Y were not
in the image of f, we could not have

E Spy =1
reX

as required, since s,y = 0 unless f(z) = y. So, the equation f os = 1y also rules
out the possibility that our measuring apparatus has ‘extraneous’ states that never
arise when we make a measurement.

This is how we compose morphisms of the above sort:

1

s t
i N i SN
Xz Y= =7
f g
foq = r gor = u
f os = ly go t = 1Z
We get a measure-preserving function g o f: X — Z and a stochastic map going
back, sot: Z — X. It is easy to check that these obey the required equations:

gofoq=u
gofosot=1gz

So, this way of composing morphisms gives a category, which we call FinStat, to
allude to its role in statistical reasoning:

Definition 5. Let FinStat be the category where an object is a finite probability
measure space:

1

a morphism is a diagram

—_—
f
obeying these equations:
foq = 7
Jos = 1y

and composition is defined as above.
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2.4. FP. We have described how to think of a morphism in FinStat as consisting
of a ‘measurement process’ f and a ‘hypothesis’ s, obeying two equations:

1

—_—
f

foq = r

fos = 1y

We say the hypothesis is optimal if also
sor=gq.
Conceptually, this says that if we take the probability distribution r on our obser-

vations and use it to infer a probability distribution for the system’s state using
our hypothesis s, we get the correct answer: ¢q. Mathematically, it says that this

diagram commutes:
1
S

X e Y
In other words, s is a measure-preserving stochastic map.
It is easy to check that this optimality property is preserved by composition of
morphisms. Hence there is a subcategory of FinStat with all the same objects, but
only morphisms where the hypothesis is optimal:

Definition 6. Let FP be the subcategory of FinStat where an object is a finite
probability measure space
1

and a morphism is a diagram
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obeying these equations:

foq =71
fOS = ly
sor = q

The category FP was introduced by Leinster [5]. He gave it this name for two
reasons. First, it is a close relative of FinProb, where a morphism looks like this:

/\

X——Y

!

We now explain the similarities and differences between FP and FinProb by studying
the properties of the forgetful functor FP — FinProb, which sends every morphism
(f,s) to its underlying measure-preserving function f.

For a morphism in FP, the conditions on s are so strong that they completely
determine it, unless there are states of the measurement apparatus that happen
with probability zero: that is, unless there are y € Y with r, = 0. To see this, note
that

sor=gq

E SeyTy = qx

yey
for any choice of x € X. But we have already seen in Lemma 4 that s;, = 0 unless
f(z) =y, so the sum has just one term, and the equation says

says that

SxyTy = Qu
where y = f(x). We can solve this for s, unless r, = 0. Furthermore, we have
already seen that every y € Y is of the form f(z) for some z € X.

Thus, for a morphism (f,s): (X,q) — (Y,r) in FP, we can solve for s in terms
of the other data unless there exists y € Y with r, = 0. Except for this special
case, a morphism in FP is just a morphism in FinProb. But in this special case, a
morphism in FP has a little extra information: an arbitrary probability distribution
on the inverse image of each point y with 7, = 0. The point is that in FinStat,
and thus FP, a ‘hypothesis’ must provide a probability for each state of the system
given a state of the measurement apparatus, even for states of the measurement
apparatus that occur with probability zero.

A more mathematical way to describe the situation is that our functor FP —
FinProb is ‘generically’ full and faithful: the function

FP((X,q),(Y,r)) — FinProb((X,q),(Y,r))
(f,s) > f
is a bijection if the support of r is the whole set Y, which is the generic situation.

The second reason Leinster called this category FP is that it is freely formed
from an operad called P. This is a topological operad whose n-ary operations are
probability distributions on the set {1,...,n}. These operations describe convex
linear combinations, so algebras of this operad include convex subsets of R™, more
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general convex spaces [2], and even more. As Leinster explains [5], the category
FP (or more precisely, an equivalent one) is the free P-algebra among categories
containing an internal P-algebra. We will not need this fact here, but it is worth
mentioning that Leinster used this fact to characterize entropy as a functor from
FP to [0,00). He and the authors then rephrased this in simpler language [1],
obtaining a characterization of entropy as a functor from FinProb to [0,00). The
characterization of relative entropy in the current paper is a closely related result.
However, the proof is completely different.

3. CHARACTERIZING ENTROPY

3.1. The theorem. We begin by stating our main result. Then we clarify some
of the terms involved and begin the proof.

Theorem 7. Relative entropy determines a functor

RE: FinStat — [0, 0]

S

(=2 wn ) » stson

_ >

f

(3.1)

that is lower semicontinuous, convex linear, and vanishes on morphisms in the
subcategory FP.

Conversely, these properties characterize the functor RE up to a scalar multiple.
In other words, if F is another functor with these properties, then for some 0 <
¢ < oo we have F(f,s) = ¢cRE(f,s) for all morphisms (f,s) in FinStat. (Here we
define co-a=a-00=00 for 0 <a<oo, butco-0=0-00=0.)

In the rest of this section we begin by describing [0, o] as a category and checking
that RE is a functor. Then we describe what it means for the functor RE to be
lower semicontinuous and convex linear, and check these properties. We postpone
the hard part of the proof, in which we characterize RE up to a scalar multiple by
these properties, to Section 4.

In what follows, it will be useful to have an explicit formula for S(gq,sor). By

definition,
,807)
S@oen =2 e ( Gor )
rzeX
We have
(sor) Z SzyTys
yey

but by Lemma 4, s;, = 0 unless f(z) =y, so the sum has just one term:

(807)s = 84 f(a)Tf(x)

and we obtain

S(g,sor) ¢z In ( > (3.2)
Z S f( z)rf(z)

zeX
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3.2. Functoriality. We make [0, oo] into a monoid using addition, where we define
addition in the usual way for numbers in [0, 00) and set

oco+a=a+00 =00

for all a € [0, 00]. There is thus a category with one object and elements of [0, oo] as
endomorphisms of this object, with composition of morphisms given by addition.
With a slight abuse of language we also use [0, oo] to denote this category.

Lemma 8. The map RE: FinStat — [0, 00] described in Theorem 7 is a functor.

Proof. Let
s t
PSS-Sy PSSy
X —ZWr)_ "~ (Zu
f g

be a composable pair of morphisms in FinStat. Then the functoriality of RE can
be shown by repeated use of Equation (3.2):

RE(go f,sot) = S(g,sotou)

> ¢In ( g )
= Sz f(@)Lf(x) g(f () Ug(f ()

0 Y g (qw> Y g ( @) >

= Sef(@)Tf) ) L% ti(@) 9(f(2) Ug(f(2))

S(q,sor)—i—Zryln (ry )
by o

yey y)Ug(y)

—~
*
~

= S(g,sor)+ S(r,tou)

= RE(f,s) + RE(g,1).

Here the main step is (), where we have simply inserted

0= ancln ! +qulnrf(w).

Tf(x)

This is unproblematic as long as rf(,) > 0 for all z. When there are x with r¢(,) = 0,

then we necessarily have ¢, = 0 as well, and both ¢, In % and g Inrg(,) actually

vanish, so this case is also fine. In the step after (x), we use the fact that for each
y €Y, ry, is the sum of ¢, over all z with f(z) =y. O

3.3. Lower semicontinuity. Next we explain what it means for a functor to be
lower semicontinuous, and prove that RE has this property. There is a way to
think about semicontinuous functors in terms of topological categories, but this is
not really necessary for our work, so we postpone it to Appendix A. Here we take
a more simple-minded approach.

If we fix two finite sets X and Y, the set of all morphisms

(f,s): (X,q) = (Y,p)
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in FinStat forms a topological space in a natural way. To see this, let

P(X)={g: X = [0,1]: Y ¢ =1}
reX

be the set of probability distributions on a finite set X. This is a subset of a
finite-dimensional real vector space, so we give it the subspace topology. With
this topology, P(X) is homeomorphic to a simplex. The set of stochastic maps
s:Y ~~ X is also a subspace of a finite-dimensional real vector space, namely the
space of matrices RX*Y | so we also give it the subspace topology. We then give
P(X)x P(Y)x RX*Y the product topology. The set of morphisms (f,s): (X,q) —
(Y,p) in FinStat can be seen as a subspace of this, and we give it the subspace
topology. We then say:

Definition 9. A functor F': FinStat — [0, 00| is lower semicontinuous if for
any sequence of morphisms (f,s'): (X, q') — (Y,r?) that converges to a morphism
(f,8): (X,q) = (Y,r), we have

F(f,s) < li_rgian(f, s%).

We could use nets instead of sequences here, but it would make no difference. We
can then check another part of our main theorem:

Lemma 10. The functor RE: FinStat — [0, 00] described in Theorem 7 is lower
semicontinuous.

Proof. Suppose that (f,s*): (X, q") — (Y,r?) is a sequence of morphisms in FinStat
that converges to (f,s): (X,q) — (Y,r). We need to show that

S(g,sor) <liminf S(q", s* o 7).
1—> 00

If there is no @ € X with s, y(4)7f(z) = 0 then this is clear, since all the elementary
functions involved in the definition of relative entropy are continuous away from 0.
If all z € X with s, ¢(;) = 0 also satisfy ¢, = 0, then S(g,s or) is still finite since
none of these z contribute to the sum for S. In this case S(q%, s o r?) may remain
arbitrarily large, even infinite as ¢ — co. But the inequality

S(q,sor) <liminf S(q", s o r?)
1—00

remains true. The same argument applies if there are x € X with ry) = 0, which
implies ¢, = 0. Finally, if there are x € X with s, y(,) = 0 but r¢,) > g, > 0, then
S(q,sor) =00. The above inequality is still valid in this case. ([l

That lower semicontinuity of relative entropy is an important property was al-
ready known to Petz; see the closing remark in [7].

3.4. Convex linearity. Next we explain what it means to say that relative entropy
gives a convex linear functor from FinProb to [0, 00|, and we prove this is true. In
general, convex linear functors go between convex categories. These are topological
categories equipped with an action of the operad P discussed by Leinster [5]. Since
we do not need the general theory here, we postpone it to Appendix B.

First, note that there is a way to take convex linear combinations of objects
and morphisms in FinProb. Let (X,p) and (Y,q) be finite sets equipped with
probability measures, and let A € [0,1]. Then there is a probability measure

Ap® (1= A)g
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on the disjoint union X + Y, whose value at a point x is given by

AP ifreX
A 1—-MNgq), =
A @ (1 =ANg) {(1/\)(130 ifzeY.

Given a pair of morphisms
fr(Xop) = (XN, g: (Vig) = (V')
in FinProb, there is a unique morphism
M1 =Ng: (X+Y, pd(1-XN)q) — X' +Y' X a(1-Nq)

that restricts to f on X and to g on Y.
A similar construction applies to FinStat. Given a pair of morphisms
s t
WW\/\ é\/\/\/\/\/\/\‘
Xop)Z— (XD Yo .49

f g
in FinStat, we define their convex linear combination to be

st
M
(X +Y, \p@® (1= Ngq) (X' +Y" 0 @ (1—-)N)d)

\/

Af@O(1-XN)g

where s®t: X' +Y’ ~ X +Y is the stochastic map which restricts to s on X’ and
t on Y'. As a stochastic matrix, it is of block-diagonal form. It is right inverse to
Af @ (1 — X\)g by construction.

We may also define convex linear combinations of objects and morphisms in the
category [0,00]. Since this category has only one object, there is only one way
to define convex linear combinations of objects. Morphisms in this category are
elements of the set [0,00]. We have already made this set into a monoid using ad-
dition. We can also introduce multiplication, defined in the usual way for numbers
in [0, 00), and with

O0a=a0=0

for all a € [0, 00]. This gives meaning to the convex linear combination Aa+ (1—A)b
of two morphisms a, b in [0, 0c]. For more details, see Appendices A and B.

Definition 11. A functor F': FinStat — [0,00] is convex linear if it preserves
convex combinations of objects and morphisms.

For objects this requirement is trivial, so all this really means is that for any
pair of morphisms (f,s) and (g,t¢) in FinStat and any A € [0, 1], we have

FA(f,s)© (1 =2A)(g,1) = AF(f,5)+ (1 =A)F(g,1).

Lemma 12. The functor RE: FinStat — [0, 00| described in Theorem 7 is convex
linear.

Proof. This follows from a direct computation:
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RE((A(f,s)®(1 = A)(g,t)) = SOp® (1 = N)g,Asop’ ® (1 = N)toq')

(1—Ngy
= ApyIn | ————— | + A)gy In
B> <3rf( ) Apfm) 2 (1= Ny (tyg@) (1= XNg

zeX yeyY
dy
= Do In +(1-X) ln( )
g( <8rf<z>Pf(m>> y%; ty g(y) 0y

=AS(p,sop’)+(1—=N)S(g,toq’)
= ARE(f,s) + (1 — A\)RE(g, ?) 0

4. PROOF OF THE THEOREM
Now we prove the main part of Theorem 7.

Lemma 13. Suppose that a functor
F: FinStat — [0, o0

is lower semicontinuous, convez linear, and vanishes on morphisms in the subcate-
gory FP. Then for some 0 < ¢ < co we have F(f,s) = cRE(f, s) for all morphisms
(f,s) in FinStat.

Proof. Let F: FinStat — [0,00] be any functor satisfying these hypotheses. By
functoriality and the fact that 0 is the only morphism in [0, co] with an inverse, F'
vanishes on isomorphisms. Thus, given any commutative square in FinStat where
the vertical morphisms are isomorphisms:
S
(X.p) T T (V)

X C(Y.)
fl
functoriality implies that F' takes the same value on the top and bottom morphisms:

F(f,s)=F(f',s).

So, in what follows, we can replace an object by an isomorphic object without
changing the value of F' on morphisms from or to this object.
Given any morphism in FinStat, complete it to a diagram of this form:

(X p)&(l/ q)
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Here 1 denotes any one-element set equipped with the unique probability measure
1, and !x: X — 1 is the unique function, which is automatically measure-preserving
since p is assumed to be normalized. Since this diagram commutes, and the mor-
phism on the lower right lies in FP, we obtain

F((&@@(M)) —F((X,mia,l)).

In other words: the value of F' on a morphism depends only on the two distributions
p and s o ¢ living on the domain of the morphism. For this reason, it is enough to
prove the claim only for those morphisms whose codomain is (1,1).

We now consider the family of distributions

g(a) = (@, 1 - a),

on a two-element set 2 = {0, 1}, and consider the function

q(a)
g(a) = F( (2.q0) =", ) (4.1)

l2

for « € [0,1]. Note that for all 8 € [0,1), this square in FinStat commutes:

q(B)e1
Pt SN

(3,(1,0,0)) (2,(1,0))

—_—
0,1—0
2—1

0—0

a(l-8)
1,201 1@q(m) l2 q(a)

ooy

l2

where the left vertical morphism is in FP, while the top horizontal morphism is the
convex linear combination

q(B)
Ll (201) 72 | @0 (1) -

l2

Applying the functoriality and convex linearity of F' to this square, we thus obtain
the equation

g9(af) = g(a) + g(B)- (4.2)
We claim that all solutions of this equation are of the form g(a) = —cln « for some
¢ € [0, 00]. First we show this for a € (0, 1].

If g(a) < oo for all @ € (0,1], this equation is Cauchy’s functional equation
in its multiplicative-to-additive form, and it is known [6] that any solution with
g measurable is of the desired form for some ¢ < oo. By our hypotheses on F,
g is lower semicontinuous, hence measurable. Thus, for some ¢ < oo we have
g(a) = —clna for all @ € (0,1].
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If g(a) = oo for some « € (0,1], then Equation (4.2) implies that g(8) = oo
for all § < «a. Since it also implies that g(28) = %g(ﬁ), we conclude that then
g(B) = oo for all B € (0,1). Thus, if we take ¢ = co we again have g(a) = —clna
for all @ € (0,1].

Next consider o = 0. If ¢ > 0, then g(0) = g(0) + g(5) shows that we necessarily
have ¢(0) = oo. If ¢ = 0, then lower semicontinuity implies g(0) = 0. In both cases,
the equation g(a) = —cln « also holds for o = 0.

In what follows, choosing the value of ¢ that makes g(a) = —cln, we shall
prove that the equation

T

Fl (X,p)Z 772 (1,1) | =cS,r)

Ix

holds for any two probability distributions p and r on any finite set X. Using
Equation (3.2), it suffices to show that

T

Flxp=7">@1) |=cd pln <ZT’> . (4.3)
Ix zeX z

We prove this for more and more general cases in the following series of lemmas.
We start with the generic case, where ¢ < oo and the probability distribution r has
full support. In Lemma 16 we treat all cases with 0 < ¢ < co. In Lemma 17 we
treat the case ¢ = 0, and in Lemma 24 we treat the case ¢ = oo, which seems much
harder than the rest. O

Lemma 14. Fquation (4.3) holds if ¢ < oo and the support of r is all of X.

Proof. Choose « € (0,1) such that o < r, for all z € X. The decisive step is to
consider the commutative square

é\/\/\NV\,\,\,\,\I\’\’
(X +X,p®0) (X,p)
\—/
(1x,1x)
I'x+!x t Iy I
q(a)

(2,(1,0)) (1,1)
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where the stochastic matrices s and ¢ are given by

a% O

’ T1—&p1
O aln P1 T
Tn
s = , t= . .
1-— aﬂ Tn—QPn
LA O Pn nl_a -

0 1—ak
The second column of ¢ is only relevant for commutativity. The left vertical mor-
phism is in FP, while we already know that the lower horizontal morphism eval-
uates to g(a) = —cIlna under the functor F. Hence the diagonal of the square
gets assigned the value —cln« under F. On the other hand, the upper horizontal
morphism is actually a convex linear combination of morphisms

one for each x € X, with the probabilities p, as coefficients. Thus, composing this
with the right vertical morphism we get a morphism to which F' assigns the value

T

> pln (a“) +F | (X0 ()

T \

zeX X
Thus, we obtain
D o~
—cY poIn(a= )+ F( (X, 1,1) | = —cl
c P n(am)—f— ( p)\'_/)_( ) clhha

rzeX X
and because ¢ < oo, we can simplify this to
i pm
Fl X,p= 77>, | = o In [ =2
G | = Y e ()

x zEX

This is the desired result, Equation (4.3). O

Lemma 15. Equation (4.3) holds if ¢ < oo and supp(p) C supp(r).
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Proof. This can be reduced to the previous case by considering the commutative
triangle

(X,p)

Vsupp(r)

(supp(r),p)
in which p = plsupp(r) and 7 = 7|supp(r), and the vertical morphism consists of any

map X — supp(r) that restricts to the identity on supp(r) and, as its stochastic
right inverse, the inclusion supp(r) < X. This morphism lies in FP. O

Lemma 16. Fquation (4.3) holds if 0 < ¢ < o0.

Proof. We already know by Lemma 15 that this holds when supp(p) C supp(r), so
assume otherwise. Our task is then show that

r

Fl(Xp) T 77210 | =0

!x

To do this, choose x € X with p, > 0 = r,, and consider the commutative triangle

(X +1,p®0)

(X,p)

in which f maps X to itself by the identity and sends the unique element of 1 to x.
This function has a one-parameter family of stochastic right inverses, and we take
the arrow s: X ~» X 4+ 1 to be any element of this family.

To construct these stochastic right inverses, let ¥ = X — {z}. This set is
nonempty because the probability distribution r is supported on it. If p, < 1
let g be the probability distribution on Y given by

1
1_px

q= p|Y7
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while if p, = 1 let ¢ be an arbitrary probability distribution on Y. For any « € [0, 1],
the convex linear combination

ly q(@)
A-p) (V) ()| @p. (201,005 1,0 (44)

is a morphism in FinStat. There is a natural isomorphism from its domain to that
of the desired morphism (f, s):
(1=p2)(Y,q0) ® p2(2,(1,0)) = (X +1,p50)

and similarly for its codomain:
(1 *pm)(Y*v Q) D pm(la 1) = (Xap)'

Composing (4.4) with these fore and aft, we obtain the desired morphism

f
(X +1,p®0) T (X,p) .

Using convex linearity and the fact that F vanishes on isomorphisms, (4.4) im-
plies that F(f,s) = —pzclna. Applying F to our commutative triangle, we thus
obtain

@0 r
Fl(X+1p000 " 7711 | =—peelna+F | (X,p) =2 (1,1)
'x41 Ix

Since p;,c > 0, the first term on the right-hand side depends on «, but no other
terms do. This is only possible if both other terms are infinite. This proves

r

Fl (X,p)Z 772,10 | =00,

!x

as was to be shown. ]
Lemma 17. Equation (4.3) holds if ¢ = 0.

Proof. That (4.3) holds in this case is a simple consequence of lower semicontinuity:
approximate r by a family of probability distributions whose support is all of X.
By Lemma 16, F' maps all the resulting morphisms to 0. Thus, the same must be
true for the original r. |

To conclude the proof of Lemma 13, we need to show Equation (4.3) holds if
¢ = 0o. To do this, it suffices to assume ¢ = oo and show that

Pl )=

'x

= 0

whenever p # r. The reasoning in the previous lemmas will not help us now, since
in Lemma 14 we needed ¢ < co. As we shall see in Proposition 25, the proof for
¢ = oo must use lower semicontinuity. However, since lower semicontinuity only
produces an upper bound on the value of F' at a limit point, it will have to be
used in proving the contrapositive statement: if F' is finite on some morphism of
the above form with p # r, then it is finite on some morphism of the form (4.1).
Now in order to infer that the value of F' at the limit point of a converging family
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of distributions is finite, it is not enough to know that the value of F' is finite at
each element of the family: one needs a uniform bound. The need to derive such a
uniform bound is the reason for the complexity of the following argument.

In what follows we assume that p and r are probability distributions on X with
p # r and

Fl (X.p) g (1,1)

'x

< 00.

We develop a series of consequences culminating in Lemma 24, in which we see
that g(a) is finite for some a < 1. This implies ¢ < oo, thus demonstrating the
contrapositive of our claim that Equation (4.3) holds if ¢ = co.

Lemma 18. There exist o, 8 € [0, 1] with a # 8 such that

q(B)
h(a, B) = F | (2,9(0)) = 77> (1,1) (4.5)

l2

is finite.
Proof. Choose some y € X with p, # r,, and define f: X — 2 by
1 ifz=y
flz) = .
0 ifx#y.

Put 8 =1—ry. Then f has a stochastic right inverse s given by

r
o1 _5,) ifj=0
Sy ifj=1

where, if § = 0, we interpret the fractions as forming an arbitrarily chosen proba-
bility distribution on X — {y}. Setting a = 1 — p,,, we have a commutative triangle

(X,p)

(2,9(a))

and the claim follows from functoriality. ]

Lemma 19. h(c/, 3) is finite for some o/ < .



22 JOHN C. BAEZ AND TOBIAS FRITZ

Proof. Choose a, 8 as in Lemma 18. Consider the commutative square

S

<~
(4, 3q(a) ® 54(8)) (2,9(3))
v/
0,10
2,3—1
0,2+ 0
1,3 : 1 t 2 q@)
a(B)
a M
(2,9(%52)) (1,1)
\_/
l2
with the stochastic matrices
B0 3 0
- 1-7 0 . . 0 5
0 1-p 0 1

The right vertical morphism in this square lies in FP, so F' vanishes on this. The
top horizontal morphism is a convex linear combination

1 a(B) 1 a(B)
5| @a) T Jeg | (2a) T @ |,

I 2
where the second term is in FP. Thus, by convex linearity and Lemma 18, F' of the
top horizontal morphism equals %h(a, B) < oo. By functoriality, F' is %h(a, B) on
the composite of the top and right morphisms.

This implies that the value of F' on the other two morphisms in the square must
also be finite. Let us compute F' of their composite in another way. By definition,
F of the bottom horizontal morphism is h(a—;rﬁ, ). The left vertical morphism is
a convex linear combination

O aGen T et P @G T

By functoriality and convex linearity, ' on the composite of these two morphisms
is thus

a+p a 1 2—a—p l—a 1 a—+f
2 'h(a+ﬁ’2>+ 2 'h<2—a—5’2)+h( 2 >
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Comparing these computations, we obtain

) = (a+ 5 h( 7555

l1—« 1 a+p
re-amp)n(giatgg) v2en( 25 ls).

This shows that each term on the right-hand side must be finite. Note that the
coefficients in front of these terms do not vanish, since @ # 5. If a < 8 then we
can take o/ = so that o < =, and the first term on the right hand side gives

(4.6)

atp’
h(a’,%) < oo. If a > B we can take o = 1 QB’ so that o’ < 7, and the second
term on the right-hand side gives that h(o’ 5) O

Lemma 20. For o < 8 < 1, we have h(B3,3) < h(a, 3).

Proof. By the intermediate value theorem, there exists v € [0, 1] with

rat+(1-7)(1—-a)=4

Now let g(a) ® q(y) stand for the distribution on 4 with weights (a~y, (1 —~), (1 —
@)y, (1—=a)(1—+)). The equation above guarantees that the left vertical morphism
in this square is well-defined:

S

Pt o SNy

(4, q(a) ® q(7)) (2,9())
\—/
0,1—0
2,3—1

Taoi : B a(3)
a(3)
T
(2,9(8)) (1,1)
\/’
2
where we take:
vy 0 5 0
| 11—~ 0 B 0 1—7
5= 0 ~y ’ b= 0 ~y
0 1—7 1—7 0

The square commutes and the upper horizontal morphism is in FP, so the value of
F on the bottom horizontal morphism is bounded by the value of F' on the right
vertical one, as was to be shown. (Il

In the preceding lemma we are not yet claiming that h(a, %) is finite. We show
this for o = % in Lemma 22, and for all @ € (0,1) in Lemma 23, where we actually
obtain a uniform bound.

Lemma 21. h(a, 1) =h(1 — o, 3) for all a € [0,1].
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Proof. Apply functoriality to the commutative triangle

(2,9(a))

(2,4(a))
where the vertical morphism is in FP. [l
Lemma 22. h(3,1) < oo.
Proof. We use (4.6) with 8 = 3:

1 1 2 1
I 2\ p -
h(o"z) (O‘+2> (1+2a’2)
3 220 1 142 1
2 - ) -
+(2 a)h(s—m’2>+h< 1 ’2)’

which we will apply for a < % On the right-hand side here, the first argument of
h in the second term can be replaced by ﬁ, thanks to Lemma 21. Then the first

(4.7)

arguments in all three terms on the right-hand side are in [0, 3], with the smallest
in the first term, so Lemma 20 tells us that

Wlo2) <an( 22 1Y
2 1+ 2a 2

Now with ag = i, the sequence recursively defined by o, 11 = 13_‘;2
converges to % In particular we can find n with o’ < a,, < %, where o/ is chosen
as in Lemma 19. Using that result together with Lemma 20, we obtain

11 1 1
=, =) <4 ~ ) <4"hlo, S . O
h(4,2> < h(an,2> < h(a,2> <0

Lemma 23. There is a constant B < oo such that h(c, 3) < Bh(3,1) for all
a € (0,1).

increases and

Proof. By the symmetry in Lemma 21, it is sufficient to consider « € (0, %] By
Lemma 20, we may use the bound B =1 for all a € [}, 3]. It thus remains to find
a choice of B that works for all a € (0, %), and we assume « to lie in this interval
from now on.

We reuse Equation (4.7). Both the second and the third term on the right-hand
side have their first argument of h in the interval [i, %], so we can apply Lemmas 20
and 21 to obtain

1 1 20 1 7 11
~) < ) nl— = - =2,
h(o"2>—<o‘+2>h<1+2a’2>+<2 O‘>h<4’2>
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To find a simpler-looking upper bound, we bound the right-hand side from above
by applying Lemma 20 in order to replace the 1_2:5& argument by just 2«, and at
the same time use «a € (0, %) in order to bound the coefficients of both terms by

1 3 7 7.

1\ 3 1\ 7 /11
) <Zh(20,2 ) +=h(=, 2.
h(%) < 4h< a,g) " 2h<4,2)

If we put @« = 27" for n > 2, then we can apply this inequality repeatedly until

only terms of the form h(i, %) are left. This results in a geometric series:

() =((0) 20 5 6)

whose convergence (as n — 00) implies the existence of a constant B < co with

h(27",3) < Bh(3,3)

12

for all n > 2. The present lemma then follows with the help of Lemma 20. (]

Lemma 24. Fquation (4.3) holds if ¢ = co.
Proof. By Lemma 23 and the lower semicontinuity of h, we see that
9(3) = h(0,3) < o0

This implies that the constant ¢ with g(a) = —clna has ¢ < co. Recall that we
have shown this under the assumption that there exist probability distributions p
and r on a finite set X with p # r and

F| (X,p) g (1,1)

'x

< 00.

So, taking the contrapositive, we see that if ¢ = oo, then

F| (X.p) g (1,1)

'x

=0

whenever p and r are distinct probability distributions on X. This proves Equa-
tion (4.3) except in the case where p = r. But in that case, both sides vanish,
since on the left we are taking F' of a morphism in FP, and on the right we obtain
0o0-0=0. (]

5. COUNTEREXAMPLES AND SUBTLETIES

One might be tempted to think that our Theorem 7 also holds if one relaxes the
lower semicontinuity assumption to measurability, upon equipping the hom-spaces
of both FinStat and [0, co] with their o-algebras of Borel sets. For [0, oo], this o-
algebra is the usual Borel o-algebra: the sets of the form (a, c0) are open and hence
measurable, the sets of the form [0, b] are closed and hence measurable, and therefore
all half-open intervals (a, b] are measurable, and these generate the standard Borel
o-algebra. However, for Theorem 7, mere measurability of the functor F' is not
enough:
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Proposition 25. There is a functor FinStat — [0, 00] that is convex linear, mea-
surable on hom-spaces, and vanishes on FP, but is not a scalar multiple of relative
entropy.

Proof. We claim that one such functor G: FinStat — [0, o] is given by

D oo if supp(p) # supp(s o q).

G< (X,p) PO SN ¥.0) ) _ {0 if supp(p) = supp(s o q),
f

This G clearly vanishes on FP. Since taking the support of a probability distribution

is a lower semicontinuous and hence measurable function, the set of all morphisms

obeying supp(p) = supp(s o q) is also measurable, and hence G is measurable.
Concerning functoriality, for a composable pair of morphisms

S t
PUSS-SUN PO
X;pp—_ Yo (Zr),
f g

we have

supp(p) = supp(s 0 q), supp(q) =supp(tor) <= supp(p) =supp(sotor).

This proves functoriality. A similar argument proves convex linearity. ]

As a measure of information gain, this functor G is not hard to understand
intuitively: we gain no information whenever the set of possible outcomes is precisely
the set that we expected; otherwise, we gain an infinite amount information.

Since the collection of all functors satisfying our hypotheses is closed under sums
and scalar multiples and also contains the relative entropy functor, we actually
obtain a whole family of such functors. For example, another one of these functors
is G': FinStat — [0, oo] given by

G’( (X.p) Py 9 ) _ {S(p,s °q) if supp(p) = supp(s o g),

¥f/>- ( 00 if supp(p) # supp(s o q).

Our original idea was to use the work of Petz [7, 8] to prove Theorem 7. How-
ever, as it turned out, there is a gap in Petz’s argument. Although his purported
characterization concerns the quantum version of relative entropy, the first part of
his proof in [7] treats the classical case. If his proof were correct, it would prove
this:

Unproved “Theorem”. The relative entropy S(p,r) for pairs of probability mea-
sures on the same finite set such that r has full support is characterized up to a
multiplicative constant by these properties:

(a) Conditional expectation law. Suppose f: X — Y is a function and

s5:Y ~» X a stochastic map with fos = ly. Given probability distributions

p and r on X, and assuming that r has full support and r = so for, we
have

S(p;r)=5(fop,for)+S(p,so fop). (5.1)

(b) Invariance. Given any bijection f: X — Y and probability distributions

p, 7 on X such that r has full support (i.e. its support is all of X ), we
have

S(fop,for)=S(pr)
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(c) Convex linearity. Given probability distributions p,r on X and p’,r" on
Y such that v and v’ have full support, and given X\ € [0,1], we have

SOp@ (1 =Np,  Ar@ (1 =X)r") = AS(p,r) + (1 =N)SH,r").

(d) Nilpotence. For any probability distribution p with full support on a finite
set, S(p,p) = 0.
(e) Measurability property. The function

(p, ) = S(p,7)

18 measurable on the space of pairs of probability distributions on X such
that v has full support.

Note that [7] uses the opposite ordering for the two arguments of S.

The problem with this “theorem” is the range of applicability of Equation (5.1):
what is this formula supposed to mean when s o f o p does not have full support?
After all, S(p,r) is assumed to be defined only when the second argument has full
support, but this need not be the case for so f o p, given the assumptions made
in the statement of the conditional expectation property. (Note that f or has full
support, so the term S(f o p, f or) is fine.)

One can try to correct this problem by assuming that the conditional expectation
property holds only if s o f op has full support as well. However, this means that
the proof of Petz’s Lemma 1 is valid only when (using his notation) ps > 0, which
implies that his Equation (5) is known to hold only for ps > 0 and ps > 0. Upon
following the thread of Petz’s argument, one finds that his Equation (6) has been
proven to follow from his assumptions only for z € (0,1) and u € (0,1). However,
the solution of that functional equation in the references he points to crucially uses
the assumption that the functional equation also holds in case that x = 0 or u = 0.
This is the gap in Petz’s proof.

In fact, if one allows S to take on infinite values, then the above classical version
of Petz’s theorem is not even correct, if one uses the interpretation that (5.1) is to
be applied only when s o f o p has full support. The counterexample is similar to
our functor G’ from above:

Spor) = {S(p, r) if p has full support,

00 otherwise.
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APPENDIX A. SEMICONTINUOUS FUNCTORS

In Section 3.3 we explained what it meant for relative entropy to be a semicon-
tinuous functor. A more sophisticated way to think about semicontinuous functors
uses topological categories. This requires that we put a nonstandard topology on
[0, 00], the so-called ‘upper topology’.

A topological category is a category internal to Top, and a continuous functor is
a functor internal to Top. In other words:
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Definition 26. A topological category C is a small category where the set of
objects Cy and the set of morphisms C1 are equipped with the structure of topological
spaces, and the maps assigning to each morphism its source and target:

s,t: C1 — Cy
the map assigning to each object its identity morphism
1: Cp = C4
and the map sending each pair of composable morphisms to their composite
o: Cy x¢, C1 = Cy

are continuous. Given topological categories C' and D, a continuous functor is
a functor F: C — D such that the map on objects Fy: Cy — Dy and the map on
morphisms Fy: Cy — D1 are continuous.

We now explain how FinStoch and FinStat are topological categories. Strictly
speaking, in order for this to work, we need to deal with size issues. One approach
is to let the objects of Top be ‘large’ sets living in a higher Grothendieck universe,
which allows us to talk about the set of all objects or morphisms of FinStat or
FinStoch. Another is to replace each of these categories by its skeleton, which is
an equivalent small category. From now on, we assume that one of these things has
been done.

For FinStoch, we put the discrete topology on its set of objects FinStochy. Each
hom-set FinStoch(X,Y) is a subset of the Euclidean space RIXXIY1 and we put
the subspace topology on this hom-set; for example, FinStoch(1,Y"), the set of all
probability distributions on Y, is topologized as a simplex. In this way, FinStoch
becomes a category enriched over Top, and in particular internal to Top.

As for FinStat, the identification

FinStato = {(X,p) | X € FinStochg, p € FinStoch(1l, X)} C FinStochyxFinStoch;

induces a topology on FinStatg. In this topology, a net (X*,p*)xca converges to
(X,p) if and only if eventually X* = X, and p* — p for those A with X* = X.
Similarly, every morphism in FinStat consists of a pair of morphisms in FinStoch
satisfying certain conditions, and the resulting inclusion

FinStat; C FinStoch; X FinStoch;

can be used to define a topology on FinStat;. We omit the verification that these
topologies make FinStat into a topological category.

There is a topology on [0, c0] where the open sets are those of the form (a, o0],
together with the whole space and the empty set. This is called the upper topol-
ogy. With this topology, a function ¢: A — [0, 00| from any topological space A
is continuous if and only v is lower semicontinuous, meaning

Y(a) < li)\m inf ¢ (a)

for every convergent net a® € A. It is easy to check that this topology on [0, 00|
makes addition continuous.

In short, [0, co] with its upper topology is a topological monoid under addition.
We thus obtain a topological category with one object and [0, o0] as its topologi-
cal monoid of endomorphisms. By abuse of notation we also call this topological
category simply [0, co]. This lets us state Lemma 10 in a different way:
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Lemma 27. If [0, 00| is viewed as a topological category using the upper topology,
the functor RE: FinStat — [0, 00] is continuous.

On the other hand, if we give the monoid [0, co] the less exotic topology where
it is homeomorphic to a closed interval, then this functor is not continuous.

Having gone this far, we cannot resist pointing out that [0, co] with its upper
topology is also a topological rig. Recall that a rig is a ‘ring without negatives’: a
set equipped with an addition making it into a commutative monoid and a multi-
plication making it into a monoid, with multiplication distributing over addition.
In other words, it is a monoid in the monoidal category of commutative monoids.
A topological rig is a rig with a topology in which addition and multiplication
are continuous. To make [0,00] into a rig, we define addition as before, define
multiplication in the usual way for numbers in [0, c0), and set

0a=a0=0

for all a € [0, 00]. One can verify that multiplication is continuous: but again, the
key point is that we need to use the upper topology, since oo - a suddenly jumps
from oo to 0 as a reaches zero. Thus:

Lemma 28. With its upper topology, [0,00] is a topological rig.

More important now is that [0, oo] is a module over the rig [0, c0), where addition
and multiplication in the latter are defined as usual and we define the action of
[0,00) on [0,00] using multiplication, with the proviso that 0-a = 0 even when
a = 00. And here we see:

Lemma 29. The topological monoid [0, 00] with its upper topology becomes a topo-
logical module over the rig [0, 00) with its usual topology.

APPENDIX B. CONVEX ALGEBRAS

We define the monad for convex sets to be the monad on Set sending any
set X to the set of finitely-supported probability distributions on X. For example,
this monad sends {1,...,n} to the set

P,={pel0,1]": Zpizl}

which can be identified with the (n — 1)-simplex. This monad is finitary, so can be
thought about in a few different ways.

First, a finitary monad can thought of as a finitary algebraic theory. The monad
for convex sets can be presented by a family (*x)ae[o,1] of binary operations, subject
to the equations

I*Oy:I’7
T*\T =1,
THNY =Y*1-\T,

(xpy) $x 2 =2 %0, (Y *xa—p) 2)

1-Ap

For A = p = 1, the fraction ’\ﬁ;“) in the last equation may be taken to be an
m

arbitrary number in [0, 1]. See [2] for more detail on how to derive this presentation
from the monad.
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A finitary algebraic theory can also be thought of as an operad with extra
structure. In a symmetric operad O, one has for each bijection o : {1,...,n} —
{1,...,n} an induced map o, : O,, = O,,. In a finitary algebraic theory, one has the
same thing for arbitrary functions between finite sets, not just bijections. In other
words, a finitary algebraic theory amounts to a non-symmetric operad O together
with, for each function 0: {1,...,m} — {1,...,n} between finite sets, an induced
map 0,: O,, = O, satisfying suitable axioms.

Definition 30. The underlying symmetric operad for the monad for convex sets is
called the operad for convex algebras and denoted P. An algebra of P is called
a convex algebra.

The space of n-ary operations for this operad is P,,, the space of probability
distributions on {1,...,n}. The composition of operations works as follows. Given
probability distributions p € P,, and r; € Py, for each ¢ € {1,...,n}, we obtain a
probability distribution po (r1,...,7,) € Pg, 4.4k, , namely

pbo (7”1,---7?%) = (p17’11---’plﬁkl,---])n?“nl,---,pnrnkn)-

The maps 6,: P,, — P, can be defined by pushforward of measures. An algebra
for the algebraic theory of convex algebras is an algebra X for the operad with the
further property that the square

P,xXx"— X" _p o xm

0, x1
P, x X" X
commutes for all 8: {1,...,m} — {1,...,n}, where the unlabelled arrows are given

by the convex algebra structure of X.

Note that P is naturally a topological operad, where the topology on P,, is the
usual topology on the (n — 1)-simplex. In this paper we have implicitly been using
algebras of P in various topological categories E with finite products. We call these
convex algebras in E. Here are some examples:

e Any convex subset of R" is a convex algebra in Top.

e The additive monoid [0, co] with its upper topology becomes a convex al-
gebra in Top if we define convex linear combinations by treating [0, co] as
a topological module of the rig [0,00) as in Lemma 29. We must equip
[0, 0] with its upper topology for this to work, because the convex linear
combination A - oo + (1 — A) - a equals co when A > 0, but suddenly jumps
down to @ when A reaches zero.

e The category Cat(Top) of small topological categories and continuous func-
tors is itself a large topological category. If we regard [0, co] with its upper
topology as a one-object topological category as in Appendix A, then it
becomes a convex algebra in Cat(Top) thanks to the previous remark.

o The categories FinProb, FinStat should be ‘weak convex algebras’ in Cat(Top),
though we have not carefully checked this. By this, we mean that axioms
for an algebra of the operad P hold up to coherent natural isomorphism, in
the sense made precise by Leinster [4].
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e Similarly, Leinster has shown that FP is a weak convex algebra in Cat(Top).
In fact, it is equivalent to the free convex algebra in Cat(Top) on an internal
convex algebra [5].

REFERENCES

J. Baez, T. Fritz and T. Leinster, A characterization of entropy in terms of information loss,
Entropy 13 (2011), 1945-1957. Also available as arXiv:1106.1791. 11

T. Fritz, Convex spaces I: definition and examples, available as arXiv:0903.5522. 111, 29

L. Itti, P.F. Baldi, Bayesian surprise attracts human attention, in Advances
in Neural Information Processing Systems 19 (2005), 547-554. Also available as
http://ilab.usc.edu/publications/doc/Itti-BaldiO6nips.pdf. 12

T. Leinster, Higher Operads, Higher Categories, London Mathematical Society Lecture Note
Series 298, Cambridge U. Press, Cambridge, 2004. Also available as arxivimath.CT/0305049.
130

T. Leinster, An operadic introduction to entropy, The n-Category Café, 18 May 2011. Avail-
able at http://golem.ph.utexas.edu/category/2011/05/an_operadic_introduction_to_en.html.
110, 11, 13, 31

M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities: Cauchy’s
Equation and Jensen’s Inequality, Birkhauser, Basel, 2009. 116

D. Petz, Characterization of the relative entropy of states of matrix algebras, Acta Math.
Hungar. 59 (1992), 449-455. Also available at http://www.renyi.hu/~petz/pdf/52.pdf. 14,
13, 26, 27

D. Petz, Quantum entropy and its use, Texts and Monographs in Physics, Springer (1993).
126

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, RIVERSIDE CA 92521, USA,

AND CENTRE FOR QUANTUM TECHNOLOGIES, NATIONAL UNIVERSITY OF SINGAPORE, SINGAPORE
117543

E-mazil address: baez@math.ucr.edu

PERIMETER INSTITUTE FOR THEORETICAL PHYSICS, 31 CAROLINE ST. N, WATERLOO, ONTARIO

N2L 2Y5, CANADA

E-mail address: tfritz@perimeterinstitute.ca


http://arxiv.org/abs/1106.1791
http://arxiv.org/abs/0903.5522
http://ilab.usc.edu/publications/doc/Itti_Baldi06nips.pdf
 http://arxiv.org/abs/math.CT/0305049
http://golem.ph.utexas.edu/category/2011/05/an_operadic_introduction_to_en.html
http://www.renyi.hu/~petz/pdf/52.pdf

	1. Introduction
	2. The categories in question
	3. Characterizing entropy
	4. Proof of the theorem
	5. Counterexamples and subtleties
	Appendix A. Semicontinuous functors
	Appendix B. Convex algebras
	References

