
Category Theory and Systems

John Baez, U. C. Riverside

Compositional Robotics: Mathematics and Tools
ICRA 2021



Compositional design requires a formalism for assembling networks
of many kinds:

We can think of a network of any particular kind as a morphism in
some “symmetric monoidal category”.

http://math.ucr.edu/home/baez/networks/networks_1.html


Categories are great for describing networks. A network with input
X and output Y is a morphism f : X → Y , and we can draw it
like this:

X

f

Y

X and Y are objects of the category.



We can attach networks in series if the output of the first equals
the input of the second:

f

X

g
Y

Z

Here we are composing morphisms f : X → Y and g : Y → Z to
get a morphism g ◦ f : X → Z .



In a monoidal category, we can also put networks “in parallel”:

X

f

Y

X ′

g

Y ′

We say we are tensoring f : X → Y and g : X ′ → Y ′ to get the
morphism f ⊗ g : X ⊗ X ′ → Y ⊗ Y ′.



In a monoidal category, composition and tensoring must obey some
laws, which all look obvious when drawn as diagrams. for example

(g ◦ f )⊗ (g ′ ◦ f ′) = (g ⊗ g ′) ◦ (f ⊗ f ′)

says two ways of reading this diagram agree:

f

X

g

Y

Z

f ′

X ′

g ′
Y ′

Z ′

http://arxiv.org/abs/0903.0340


In a braided monoidal category we also have morphisms
Bx ,y : x ⊗ y → y ⊗ x called braidings:

These let us draw diagrams where wires cross. Again, some
obvious-looking laws must hold.

A braided monoidal category is symmetric if it doesn’t matter
which wire crosses over which:

=

http://arxiv.org/abs/0903.0340


Networks of some particular kind, with specified inputs and
outputs, can often be seen as morphisms in a symmetric monoidal
category:

X Y

Such networks let us describe open systems, meaning systems
where:
I stuff (matter, energy, signals, etc.) can flow in or out;
I we can combine systems to form larger systems by

composition and tensoring.



To use design open systems, we follow Lawvere’s idea of
“functorial semantics”:
I Networks of some kind, with specified input and outputs, will

be morphisms in some symmetric monoidal category X.
I To describe what these networks actually do, we use a map

F : X→ Y that sends any network to its behavior. The
behavior of a network is a morphism in Y.

For example X could have circuit diagrams as morphisms, and Y
could have differential equations as morphisms.

A map F : X→ Y between symmetric monoidal categories is called
a “symmetric monoidal functor”.

We can also design using more layers of abstraction:

X F−→ Y G−→ Z→ · · ·

https://en.wikipedia.org/wiki/Monoidal_functor


How can we construct symmetric monoidal categories and functors
to implement this strategy for designing open systems?

One way, pioneered by Brendan Fong, is to use “decorated
cospans”. For example, this:

X Y

is really a cospan of finite sets:

S

X
i ??

Y
o__

where S is “decorated” with extra structure making it into the set
of vertices of a graph.



Let’s look at a more interesting example: Petri nets.

A Petri net is a bipartite graph. The two kinds of vertices are
called places and transitions.

In computer science, Petri nets became popular as models of
concurrency starting in the 1970s.

“Petri nets with rates” can be used to describe a large class of
first-order differential equations with polynomial coefficients.



In a Petri net with rates, each transition is assigned a rate
constant: a positive real number. We can then write down a rate
equation describing dynamics. For example, this Petri net with
rates:

A3
A2

A1

r1

r2

gives this rate equation:

dA1
dt = −r1 A1A2

dA2
dt = −r1 A1A2 + 2r2 A3

dA3
dt = r1 A1A2 − r2 A3



In a Petri net with rates, each transition is assigned a rate
constant: a positive real number. We can then write down a rate
equation describing dynamics. For example, this Petri net with
rates:

A3
A2

A1
r1

r2

gives this rate equation:

dA1
dt = −r1 A1A2

dA2
dt = −r1 A1A2 + 2r2 A3

dA3
dt = r1 A1A2 − r2 A3



So far these Petri nets describe closed systems.

But there’s a symmetric monoidal category of open Petri nets
with rates, called Petri, where:
I an object is a finite set;
I a morphism f : X → Y is a Petri net with rates together with

functions from X and Y to its set of places:

r1X Y



I To compose morphisms f : X → Y and g : Y → Z :

X

r2

Z

r1

Y

we put them in series, identifying outputs of f with inputs of g :

r1 r2

X Z

I To tensor morphisms, we put them in parallel.



An open Petri net with rates f : X → Y gives an open rate
equation involving flows in and out, which can be arbitrary
smooth functions of time. For example this:

A1
A3

A2

r1

X Y

I1
I2
I3

O1

gives:
dA1
dt = −r1 A1A2 + I1(t)

dA2
dt = −r1 A1A2 + I2(t) + I3(t)

dA3
dt = 2r1 A1A2 − O1(t)



An open Petri net with rates f : X → Y gives an open rate
equation involving flows in and out, which can be arbitrary
smooth functions of time. For example this:

A1
A3

A2

r1

X Y
I1
I2
I3

O1

gives:
dA1
dt = −r1 A1A2 + I1(t)

dA2
dt = −r1 A1A2 + I2(t) + I3(t)

dA3
dt = 2r1 A1A2 − O1(t)



Let’s understand this using functorial semantics! We’ll get a
symmetric monoidal functor

� : Petri→ Dynam

Other choices of semantics correspond to other symmetric
monoidal functors.



There is a symmetric monoidal category Dynam where:
I an object is a finite set;
I a morphism f : X → Y is an open dynamical system,

meaning a cospan of finite sets

S

X
i ??

Y
o__

equipped with a smooth vector field v on RS .

Given time-dependent inputs and outputs I : R→ RX ,
O : R→ RY , an open dynamical system gives an open rate
equation as in the example.



Theorem (JB–Blake Pollard)
There is a symmetric monoidal functor � : Petri→ Dynam
sending any open Petri net with rates to its open dynamical
system.

This is a statement of compositionality: we can determine the rate
equation of a Petri net with rates by breaking it down into a
composite and/or tensor product of simpler open Petri nets with
rates, and repeatedly using:

�(f ◦ g) = �(f ) ◦�(g)

�(f ⊗ g) = �(f )⊗�(g).

http://math.ucr.edu/home/baez/RxNet.pdf


How do we show this? We use Fong’s theory of decorated cospans,
later refined by Kenny Courser, Christina Vasilakopolou and myself.

http://arxiv.org/abs/1502.00872
https://arxiv.org/abs/2101.09363


Let FinSet be the category of finite sets and functions. Given
cospans in FinSet like this:

S

X
i ??

Y
o__

S ′

Y
i ′ ??

Z
o′__

we can compose them by taking a pushout:

S +Y S ′

S

??

S ′
__

X

i ??

Y

o__ i ′ ??

Z

o′__

Here the pushout S +Y S ′ is the disjoint union S + S ′ modulo the
smallest equivalence relation such that o(y) ∼ i ′(y) for all y ∈ Y .



Next, if we choose a functor F : FinSet→ Cat, we can try to build
a category where a morphism is a decorated cospan: a cospan of
finite sets

S

X
i ??

Y
o__

with a decoration d ∈ F (S).

To build Petri, we take F (S) to be the category of all Petri nets
with rates having S as their set of places. Then a decorated
cospan looks like this:

r1 r2X Y



But how do we compose decorated cospans?

Given decorated cospans like this:

S

X
i ??

Y
o__

d ∈ F (S)

S ′

Y
i ??

Z
o__

d ′ ∈ F (S ′)

we compose the cospans by taking a pushout as before.

We compose the decorations by taking (d , d ′) ∈ F (S)× F (S ′) and
applying the composite function

F (S)× F (S ′) −→ F (S + S ′) −→ F (S +Y S ′)

where the first step comes from F being “lax monoidal”.

https://en.wikipedia.org/wiki/Monoidal_functor


Theorem (JB, K. Courser, C. Vasilakopolou)
Suppose that

F : (FinSet, +) −→ (Cat,×)

is a lax symmetric monoidal functor. Then there is a symmetric
monoidal category of F -decorated cospans, FCospan, where:
I an object is a finite set;
I a morphism from X to Y is a cospan of finite sets

S

X
i ??

Y
o__

together with a decoration d ∈ F (S).

https://arxiv.org/abs/2101.09363


As a consequence, there is a symmetric monoidal category Petri
where:
I an object is a finite set;
I a morphism f : X → Y is a cospan of finite sets

S

X
i ??

Y
o__

together with a Petri net with rates having S as its set of
places.

So, a morphism in Petri looks like this:

r1 r2X Y



Also as a consequence, there is a symmetric monoidal category
Dynam where:
I an object is a finite set;
I a morphism f : X → Y is a cospan of finite sets

S

X
i ??

Y
o__

together with a smooth vector field on RS .



The theory also lets us build maps between decorated cospan
categories, as needed in functorial semantics:

Theorem (JB, K. Courser, B. Pollard, C. Vasilakopolou)
There is a symmetric monoidal functor � : Petri→ Dynam
sending any open Petri net with rates to the corresponding open
dynamical system.

Note: this was just an example chosen to illustrate ideas — not
necessarily of most importance to robotics!

https://arxiv.org/abs/2101.09363


Decorated cospans and other methods let us work with many
symmetric monoidal categories of networks.

I Electrical circuits

• JB and B. Fong, A compositional framework for passive
linear networks.
• JB, Brandon Coya and Franciscus Rebro, Props in network
theory.

X Y

2

3
1 1

http://http://arxiv.org/abs/1504.05625
http://http://arxiv.org/abs/1504.05625
https://arxiv.org/abs/1707.08321
https://arxiv.org/abs/1707.08321


I Signal-flow graphs in control theory

• JB and Jason Erbele, Categories in control.
• Fillipo Bonchi, Pawel Sobocinski and Fabio Zanasi, The
calculus of signal flow diagrams I.

−mg

1
M

∫

∫

−1
l

∫
g
l ∫

http://arxiv.org/abs/1405.6881
https://www.sciencedirect.com/science/article/pii/S0890540116000390
https://www.sciencedirect.com/science/article/pii/S0890540116000390


I Markov processes

• JB, B. Fong and B. Pollard, A compositional framework for
Markov processes.
• JB and K. Courser, Coarse-graining open Markov processes.

X Y
4.3

2.1
1.7

0.6

3.9

http://arxiv.org/abs/1508.06448
http://arxiv.org/abs/1508.06448
https://arxiv.org/abs/1710.11343


I Petri nets

• JB and Jade Master, Open Petri nets.

X Y

I Finite state machines

• Robin Piedeleu and Fabio Zanasi, A string diagrammatic
axiomatisation of finite-state automata.

https://arxiv.org/abs/1808.05415
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984119/pdf/978-3-030-71995-1_Chapter_24.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7984119/pdf/978-3-030-71995-1_Chapter_24.pdf


All these frameworks are — or will be — unified by a “network of
network languages”. In other words, useful symmetric monoidal
categories are connected by symmetric monoidal functors:

Petri

Dynam

Rel

MarkovResCirc

Circ

SigFlow LinRel(C(z))

�

steady states

� steady states



For the overall philosophy, read:

• Brendan Fong, The Algebra of Open and Interconnected
Systems.

https://arxiv.org/abs/1609.05382
https://arxiv.org/abs/1609.05382

