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Figure 1. Roots of all polynomials of degree 23 whose coefficients are ±1. The brightness shows
the number of roots per pixel.

One of the charms of mathematics is that simple rules can generate complex and fascinating
patterns, which raise questions whose answers require profound thought. For example, if we plot
the roots of all polynomials of degree 23 whose coefficients are all 1 or −1, we get an astounding
picture, shown in Figure 1.

More generally, define a Littlewood polynomial to be a polynomial p(z) =
∑d

i=0 aiz
i with

each coefficient ai equal to 1 or −1. Let Xn be the set of complex numbers that are roots of some
Littlewood polynomial with n nonzero terms (and thus degree n−1). The 4-fold symmetry of Figure
1 comes from the fact that if z ∈ Xn so are −z and z. The set Xn is also invariant under the map
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z 7→ 1/z, since if z is the root of some Littlewood polynomial then 1/z is a root of the polynomial
with coefficients listed in the reverse order.

It turns out to be easier to study the set

X =

∞⋃
n=1

Xn = {z ∈ C| z is the root of some Littlewood polynomial}.

If n divides m then Xn ⊆ Xm, so Xn for a highly divisible number n can serve as an approximation
to X, and this is why we drew X24.

Some general properties of X are understood. It is easy to show that X is contained in the
annulus 1/2 < |z| < 2. On the other hand, Thierry Bousch showed [2] that the closure of X contains
the annulus 2−1/4 ≤ |z| ≤ 21/4. This means that the holes near roots of unity visible in the sets Xd

must eventually fill in as we take the union over all degrees d. More surprisingly, Bousch showed in
1993 that the closure X is connected and locally path-connected [3]. It is worth comparing the work
of Odlyzko and Poonen [7], who previously showed similar result for roots of polynomials whose
coefficients are all 0 or 1.

Figure 2. The region of X24 near the point z = 1
2e

i/5.

The big challenge is to understand the diverse, complicated and beautiful patterns that appear in
different regions of the set X. There are websites that let you explore and zoom into this set online
[4, 5, 8]. Different regions raise different questions.

For example, what is creating the fractal patterns in Figure 2 and elsewhere? An anonymous
contributor suggested a fascinating line of attack which was further developed by Greg Egan [5].
Define two functions from the complex plane to itself, depending on a complex parameter q:

f+q(z) = 1 + qz, f−q(z) = 1− qz.

When |q| < 1 these are both contraction mappings, so by a theorem of Hutchinson [6] there is a
unique nonempty compact set Dq ⊆ C with

Dq = f+q(Dq) ∪ f−q(Dq).

We call this set a dragon, or the q-dragon to be specific. And it seems that for |q| < 1, the portion
of the set X in a small neighborhood of the point q tends to look like a rotated version of Dq.

Figure 3 shows some examples. To precisely describe what is going on, much less prove it, would
take real work. We invite the reader to try. A heuristic explanation is known, which can serve as a
starting point [1, 5]. Bousch [3] has also proved this related result:

Theorem. For q ∈ C with |q| < 1, we have q ∈ X if and only if 0 ∈ Dq. When this holds, the set
Dq is connected.
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Figure 3. Top: the set X near q = 0.594 + 0.254i at left, and the set Dq at right.
Bottom: the set X near q = 0.375453 + 0.544825i at left, and the set Dq at right.
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