
1

Physics, Topology, Logic and Computation:
A Rosetta Stone

John Baez1

Michael Stay2

1Department of Mathematics, University of California, Riverside CA 92521, USA
2Google, 1600 Amphitheatre Pkwy, Mountain View CA 94043, USA

1.1 Introduction

Category theory is a very general formalism, but there is a certain special way that physicists
use categories which turns out to have close analogues in topology, logic and computation. A
category has objects and morphisms, which represent things and ways to go between things.
In physics, the objects are often physical systems, and the morphisms are processes turning
a state of one physical system into a state of another system — perhaps the same one.
In quantum physics we often formalize this by taking Hilbert spaces as objects, and linear
operators as morphisms.

Sometime around 1949, Feynman [54] realized that in quantum field theory it is useful
to draw linear operators as diagrams:

This lets us reason with them pictorially. We can warp a picture without changing the oper-
ator it stands for: all that matters is the topology, not the geometry. In the 1970s, Penrose
realized that generalizations of Feynman diagrams arise throughout quantum theory, and
might even lead to revisions in our understanding of spacetime [75]. In the 1980s, it became
clear that underlying these diagrams is a powerful analogy between quantum physics and
topology! Namely, a linear operator behaves very much like a ‘cobordism’ — that is, an
n-dimensional manifold going between manifolds of one dimension less:

String theory exploits this analogy by replacing the Feynman diagrams of ordinary quantum
field theory with 2-dimensional cobordisms, which represent the worldsheets traced out by
strings with the passage of time. The analogy between operators and cobordisms is also
important in loop quantum gravity and — most of all — the more purely mathematical
discipline of ‘topological quantum field theory’.

Meanwhile, quite separately, logicians had begun using categories where the objects
represent propositions and the morphisms represent proofs. The idea is that a proof is a
process going from one proposition (the hypothesis) to another (the conclusion). Later,
computer scientists started using categories where the objects represent data types and the
morphisms represent programs. They also started using ‘flow charts’ to describe programs.
Abstractly, these are very much like Feynman diagrams!

The logicians and computer scientists were never very far from each other. Indeed, the
‘Curry–Howard correspondence’ relating proofs to programs has been well-known at least
since the early 1970s, with roots stretching back earlier [34, 51]. But, it is only in the 1990s
that the logicians and computer scientists bumped into the physicists and topologists. One
reason is the rise of interest in quantum cryptography and quantum computation [27]. With
this, people begain to think of quantum processes as forms of information processing, and
apply ideas from computer science. It was then realized that the loose analogy between
between flow charts and Feynman diagrams could be made more precise and powerful with
the aid of category theory [3].

By now there is an extensive network of interlocking analogies between physics, topology,
logic and computer science. They suggest that research in the area of common overlap is
actually trying to build a new science: a general science of systems and processes. Building
this science will be very difficult. There are good reasons for this, but also bad ones. One
bad reason is that different fields use different terminology and notation.

The original Rosetta Stone, created in 196 BC, contains versions of the same text in
three languages: demotic Egyptian, hieroglyphic script and classical Greek. Its rediscovery
by Napoleon’s soldiers let modern Egyptologists decipher the hieroglyphs. Eventually this
led to a vast increase in our understanding of Egyptian culture.

At present, the deductive systems in mathematical logic look like hieroglyphs to most
physicists. Similarly, quantum field theory is Greek to most computer scientists, and so
on. So, there is a need for a new Rosetta Stone to aid researchers attempting to translate
between fields. Table 1.1 shows our guess as to what this Rosetta Stone might look like.

Category Theory Physics Topology Logic Computation

object system manifold proposition data type

morphism process cobordism proof program

Table 1.1. The Rosetta Stone (pocket version)

The rest of this paper expands on this table by comparing how categories are used
in physics, topology, logic, and computation. Unfortunately, these different fields focus on
slightly different kinds of categories. Though most physicists don’t know it, quantum physics
has long made use of ‘compact symmetric monoidal categories’. Knot theory uses ‘compact
braided monoidal categories’, which are slightly more general. However, it became clear
in the 1990’s that these more general gadgets are useful in physics too. Logic and com-
puter science used to focus on ‘cartesian closed categories’ — where ‘cartesian’ can be seen,
roughly, as an antonym of ‘quantum’. However, thanks to work on linear logic and quan-
tum computation, some logicians and computer scientists have dropped their insistence on
cartesianness: now they study more general sorts of ‘closed symmetric monoidal categories’.

In Section 1.2 we explain these concepts, how they illuminate the analogy between
physics and topology, and how to work with them using string diagrams. We assume no
prior knowledge of category theory, only a willingness to learn some. In Section 1.3 we ex-
plain how closed symmetric monoidal categories correspond to a small fragment of ordinary
propositional logic, which also happens to be a fragment of Girard’s ‘linear logic’ [44]. In
Section 1.4 we explain how closed symmetric monoidal categories correspond to a simple
model of computation. Each of these sections starts with some background material. In
Section 1.5, we conclude by presenting a larger version of the Rosetta Stone.

Our treatment of all four subjects — physics, topology, logic and computation — is
bound to seem sketchy, narrowly focused and idiosyncratic to practitioners of these subjects.
Our excuse is that we wish to emphasize certain analogies while saying no more than
absolutely necessary. To make up for this, we include many references for those who wish
to dig deeper.

1.2 The Analogy Between Physics and Topology

1.2.1 Background

Currently our best theories of physics are general relativity and the Standard Model of
particle physics. The first describes gravity without taking quantum theory into account;
the second describes all the other forces taking quantum theory into account, but ignores
gravity. So, our world-view is deeply schizophrenic. The field where physicists struggle to
solve this problem is called quantum gravity, since it is widely believed that the solution
requires treating gravity in a way that takes quantum theory into account.

Nobody is sure how to do this, but there is a striking similarity between two of the main
approaches: string theory and loop quantum gravity. Both rely on the analogy between

Physics Topology

Hilbert space (n− 1)-dimensional manifold
(system) (space)

operator between cobordism between
Hilbert spaces (n− 1)-dimensional manifolds

(process) (spacetime)

composition of operators composition of cobordisms

identity operator identity cobordism

Table 1.2. Analogy between physics and topology

physics and topology shown in Table 1.2. On the left we have a basic ingredient of quantum
theory: the category Hilb whose objects are Hilbert spaces, used to describe physical systems,
and whose morphisms are linear operators, used to describe physical processes. On the right
we have a basic structure in differential topology: the category nCob. Here the objects
are (n − 1)-dimensional manifolds, used to describe space, and whose morphisms are n-
dimensional cobordisms, used to describe spacetime.

As we shall see, Hilb and nCob share many structural features. Moreover, both are very
different from the more familiar category Set, whose objects are sets and whose morphisms
are functions. Elsewhere we have argued at great length that this is important for better
understanding quantum gravity [8] and even the foundations of quantum theory [9]. The
idea is that if Hilb is more like nCob than Set, maybe we should stop thinking of a quantum
process as a function from one set of states to another. Instead, maybe we should think of
it as resembling a ‘spacetime’ going between spaces of dimension one less.

This idea sounds strange, but the simplest example is something very practical, used by
physicists every day: a Feynman diagram. This is a 1-dimensional graph going between 0-
dimensional collections of points, with edges and vertices labelled in certain ways. Feynman
diagrams are topological entities, but they describe linear operators. String theory uses
2-dimensional cobordisms equipped with extra structure — string worldsheets — to do
a similar job. Loop quantum gravity uses 2d generalizations of Feynman diagrams called
‘spin foams’ [7]. Topological quantum field theory uses higher-dimensional cobordisms [11].
In each case, processes are described by morphisms in a special sort of category: a ‘compact
symmetric monoidal category’.

In what follows, we shall not dwell on puzzles from quantum theory or quantum gravity.
Instead we take a different tack, simply explaining some basic concepts from category theory
and showing how Set, Hilb, nCob and categories of tangles give examples. A recurring theme,
however, is that Set is very different from the other examples.

To help the reader safely navigate the sea of jargon, here is a chart of the concepts we
shall explain in this section:

categories

monoidal categories

SSSSSSSSSSSSSS

braided
monoidal categories

QQQQQQQQQQQQQ

closed
monoidal categories

QQQQQQQQQQQQQ

symmetric
monoidal categories

QQQQQQQQQQQQQ

closed braided
monoidal categories

QQQQQQQQQQQQQ

compact
monoidal categories

cartesian categories
closed symmetric

monoidal categories

mmmmmmmmmmmmm

QQQQQQQQQQQQQ

compact braided
monoidal categories

cartesian
closed categories

compact symmetric
monoidal categories

The category Set is cartesian closed, while Hilb and nCob are compact symmetric monoidal.

1.2.2 Categories

Category theory was born around 1945, with Eilenberg and Mac Lane [39] defining ‘cate-
gories’, ‘functors’ between categories, and ‘natural transformations’ between functors. By
now there are many introductions to the subject [33, 69, 72], including some available for
free online [18, 47]. Nonetheless, we begin at the beginning:

Definition 1. A category C consists of:

• a collection of objects, where if X is an object of C we write X ∈ C, and

• for every pair of objects (X,Y), a set hom(X,Y) of morphisms from X to Y . We call
this set hom(X,Y) a homset. If f ∈ hom(X,Y), then we write f :X → Y.

such that:

• for every object X there is an identity morphism 1X :X → X ;

• morphisms are composable: given f :X → Y and g:Y → Z, there is a composite
morphism gf :X → Z; sometimes also written g ◦ f .

• an identity morphism is both a left and a right unit for composition: if f :X → Y,
then f1X = f = 1Y f ; and

• composition is associative: (hg)f = h(gf) whenever either side is well-defined.

A category is the simplest framework where we can talk about systems (objects) and
processes (morphisms). To visualize these, we can use ‘Feynman diagrams’ of a very primi-
tive sort. In applications to linear algebra, these diagrams are often called ‘spin networks’,
but category theorists call them ‘string diagrams’, and that is the term we will use. The
term ‘string’ here has little to do with string theory: instead, the idea is that objects of our
category label ‘strings’ or ‘wires’:

X

and morphisms f :X → Y label ‘black boxes’ with an input wire of type X and an output
wire of type Y :

f

X

Y

We compose two morphisms by connecting the output of one black box to the input of the
next. So, the composite of f :X → Y and g:Y → Z looks like this:

f

g

X

Y

Z

Associativity of composition is then implicit:

f

g

h

X

Y

Z

W

is our notation for both h(gf) and (hg)f . Similarly, if we draw the identity morphism
1X :X → X as a piece of wire of type X :

X

then the left and right unit laws are also implicit.

There are countless examples of categories, but we will focus on four:

• Set: the category where objects are sets.

• Hilb: the category where objects are finite-dimensional Hilbert spaces.

• nCob: the category where morphisms are n-dimensional cobordisms.

• Tangk: the category where morphisms are k-codimensional tangles.

As we shall see, all four are closed symmetric monoidal categories, at least when k is
big enough. However, the most familiar of the lot, namely Set, is the odd man out: it is
‘cartesian’.

Traditionally, mathematics has been founded on the category Set, where the objects are
sets and the morphisms are functions. So, when we study systems and processes in physics,
it is tempting to specify a system by giving its set of states, and a process by giving a
function from states of one system to states of another.

However, in quantum physics we do something subtly different: we use categories where
objects are Hilbert spaces and morphisms are bounded linear operators. We specify a system
by giving a Hilbert space, but this Hilbert space is not really the set of states of the system:
a state is actually a ray in Hilbert space. Similarly, a bounded linear operator is not precisely
a function from states of one system to states of another.

In the day-to-day practice of quantum physics, what really matters is not sets of states
and functions between them, but Hilbert space and operators. One of the virtues of category

theory is that it frees us from the ‘Set-centric’ view of traditional mathematics and lets
us view quantum physics on its own terms. As we shall see, this sheds new light on the
quandaries that have always plagued our understanding of the quantum realm [9].

To avoid technical issues that would take us far afield, we will take Hilb to be the cate-
gory where objects are finite-dimensional Hilbert spaces and morphisms are linear operators
(automatically bounded in this case). Finite-dimensional Hilbert spaces suffice for some
purporses; infinite-dimensional ones are often important, but treating them correctly would
require some significant extensions of the ideas we want to explain here.

In physics we also use categories where the objects represent choices of space, and the
morphisms represent choices of spacetime. The simplest is nCob, where the objects are
(n− 1)-dimensional manifolds, and the morphisms are n-dimensional cobordisms. Glossing
over some subtleties that a careful treatment would discuss [79], a cobordism f :X → Y is
an n-dimensional manifold whose boundary is the disjoint union of the (n− 1)-dimensional
manifolds X and Y . Here are a couple of cobordisms in the case n = 2:

X

Y

f

��

Y

Z

g

��

We compose them by gluing the ‘output’ of one to the ‘input’ of the other. So, in the above
example gf :X → Z looks like this:

X

Z

gf

��

Another kind of category important in physics has objects representing collections of
particles, and morphisms representing their worldlines and interactions. Feynman diagrams
are the classic example, but in these diagrams the ‘edges’ are not taken literally as particle
trajectories. An example with closer ties to topology is Tangk.

Very roughly speaking, an object in Tangk is a collection of points in a k-dimensional
cube, while a morphism is a ‘tangle’: a collection of arcs and circles smoothly embedded in
a (k+1)-dimensional cube, such that the circles lie in the interior of the cube, while the arcs
touch the boundary of the cube only at its top and bottom, and only at their endpoints.
A bit more precisely, tangles are ‘isotopy classes’ of such embedded arcs and circles: this

equivalence relation means that only the topology of the tangle matters, not its geometry.
We compose tangles by attaching one cube to another top to bottom.

More precise definitions can be found in many sources, at least for k = 2, which gives
tangles in a 3-dimensional cube [41, 55, 79, 86, 93, 97]. But since a picture is worth a
thousand words, here is a picture of a morphism in Tang2:

X

Y

f

��

Note that we can think of a morphism in Tangk as a 1-dimensional cobordism embedded in
a k-dimensional cube. This is why Tangk and nCob behave similarly in some respects.

Here are two composable morphisms in Tang1:

X

Y

f

��

Y

Z

g

��

and here is their composite:

X

Z

gf

��

Since only the tangle’s topology matters, we are free to squash this rectangle into a square
if we want, but we do not need to.

It is often useful to consider tangles that are decorated in various ways. For example, in
an ‘oriented’ tangle, each arc and circle is equipped with an orientation. We can indicate
this by drawing a little arrow on each curve in the tangle. In applications to physics, these
curves represent worldlines of particles, and the arrows say whether each particle is going
forwards or backwards in time, following Feynman’s idea that antiparticles are particles
going backwards in time. We can also consider ‘framed’ tangles. Here each curve is replaced
by a ‘ribbon’. In applications to physics, this keeps track of how each particle twists. This
is especially important for fermions, where a 2π twist acts nontrivially. Mathematically, the
best-behaved tangles are both framed and oriented [11, 86], and these are what we should
use to define Tangk. The category nCob also has a framed oriented version. However, these
details will barely matter in what is to come.

It is difficult to do much with categories without discussing the maps between them. A
map between categories is called a ‘functor’:

Definition 2. A functor F :C → D from a category C to a category D is map sending:

• any object X ∈ C to an object F (X) ∈ D,

• any morphism f :X → Y in C to a morphism F (f):F (X)→ F (Y) in D,

in such a way that:

• F preserves identities: for any object X ∈ C, F (1X) = 1F (X);

• F preserves composition: for any pair of morphisms f :X → Y , g:Y → Z in C,
F (gf) = F (g)F (f).

In the sections to come, we will see that functors and natural transformations are useful
for putting extra structure on categories. Here is a rather different use for functors: we can
think of a functor F :C → D as giving a picture, or ‘representation’, of C in D. The idea
is that F can map objects and morphisms of some ‘abstract’ category C to objects and
morphisms of a more ‘concrete’ category D.

For example, consider an abstract group G. This is the same as a category with one
object and with all morphisms invertible. The object is uninteresting, so we can just call it
•, but the morphisms are the elements of G, and we compose them by multiplying them.
From this perspective, a representation of G on a finite-dimensional Hilbert space is the
same as a functor F :G→ Hilb. Similarly, an action of G on a set is the same as a functor
F :G→ Set. Both notions are ways of making an abstract group more concrete.

Ever since Lawvere’s 1963 thesis on functorial semantics [66], the idea of functors as
representations has become pervasive. However, the terminology varies from field to field.
Following Lawvere, logicians often call the category C a ‘theory’, and call the functor
F :C → D a ‘model’ of this theory. Other mathematicians might call F an ‘algebra’ of the
theory. In this work, the default choice of D is usually the category Set.

In physics, it is the functor F :C → D that is called the ‘theory’. Here the default choice
of D is either the category we are calling Hilb or a similar category of infinite-dimensional
Hilbert spaces. For example, both ‘conformal field theories’ [83] and topological quantum
field theories [6] can be seen as functors of this sort.

If we think of functors as models, natural transformations are maps between models:

Definition 3. Given two functors F, F ′:C → D, a natural transformation α:F ⇒ F ′

assigns to every object X in C a morphism αX :F (X)→ F ′(X) such that for any morphism
f :X → Y in C, the equation αY F (f) = F ′(f)αX holds in D. In other words, this square
commutes:

F (X) F (Y)

F ′(X) F ′(Y)

-F (f)

?

αX

?

αY

-
F ′(f)

(Going across and then down equals going down and then across.)

Definition 4. A natural isomorphism between functors F, F ′:C → D is a natural trans-
formation α:F ⇒ F ′ such that αX is an isomorphism for every X ∈ C.

For example, suppose F, F ′:G → Hilb are functors where G is a group, thought of
as a category with one object, say •. Then, as already mentioned, F and F ′ are secretly
just representations of G on the Hilbert spaces F (•) and F ′(•). A natural transformation
α:F ⇒ F ′ is then the same as an intertwining operator from one representation to
another: that is, a linear operator

A:F (•)→ F ′(•)

satisfying
AF (g) = F ′(g)A

for all group elements g.

1.2.3 Monoidal Categories

In physics, it is often useful to think of two systems sitting side by side as forming a single
system. In topology, the disjoint union of two manifolds is again a manifold in its own right.
In logic, the conjunction of two statement is again a statement. In programming we can
combine two data types into a single ‘product type’. The concept of ‘monoidal category’
unifies all these examples in a single framework.

A monoidal category C has a functor ⊗:C × C → C that takes two objects X and Y
and puts them together to give a new object X ⊗ Y . To make this precise, we need the
cartesian product of categories:

Definition 5. The cartesian product C×C ′ of categories C and C ′ is the category where:

• an object is a pair (X,X ′) consisting of an object X ∈ C and an object X ′ ∈ C ′;
• a morphism from (X,X ′) to (Y, Y ′) is a pair (f, f ′) consisting of a morphism f :X → Y

and a morphism f ′:X ′ → Y ′;

• composition is done componentwise: (g, g′)(f, f ′) = (gf, g′f ′);

• identity morphisms are defined componentwise: 1(X,X′) = (1X , 1X′).

Mac Lane [68] defined monoidal categories in 1963. The subtlety of the definition lies
in the fact that (X ⊗ Y) ⊗ Z and X ⊗ (Y ⊗ Z) are not usually equal. Instead, we should
specify an isomorphism between them, called the ‘associator’. Similarly, while a monoidal
category has a ‘unit object’ I , it is not usually true that I⊗X and X⊗ I equal X . Instead,
we should specify isomorphisms I ⊗X ∼= X and X ⊗ I ∼= X . To be manageable, all these
isomorphisms must then satisfy certain equations:

Definition 6. A monoidal category consists of:

• a category C,

• a tensor product functor ⊗:C × C → C,

• a unit object I ∈ C,

• a natural isomorphism called the associator, assigning to each triple of objects X,Y, Z ∈
C an isomorphism

aX,Y,Z : (X ⊗ Y)⊗ Z ∼→ X ⊗ (Y ⊗ Z),

• natural isomorphisms called the left and right unitors, assigning to each object X ∈ C
isomorphisms

lX : I ⊗X ∼→ X

rX : X ⊗ I ∼→ X,

such that:

• for all X,Y ∈ C the triangle equation holds:

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y)

X ⊗ Y

-aX,I,Y

HHHjrX⊗1Y

���� 1X⊗lY

• for all W,X, Y, Z ∈ C, the pentagon equation holds:

((W ⊗X)⊗ Y)⊗ Z

(W ⊗ (X ⊗ Y)) ⊗ Z

(W ⊗X)⊗ (Y ⊗ Z)

W ⊗ ((X ⊗ Y)⊗ Z)

W ⊗ (X ⊗ (Y ⊗ Z))

�
�
�
�
�
�

�
�
��	

aW⊗X,Y,Z

HHHHHHHHj

aW,X,Y ⊗1Z

?

aW,X⊗Y,Z

@
@
@
@
@
@
@
@
@@R

aW,X,Y⊗Z
���������

1W⊗aX,Y,Z

When we have a tensor product of four objects, there are five ways to parenthesize it,
and at first glance the associator lets us build two isomorphisms from W ⊗ (X⊗ (Y ⊗Z)) to
((W⊗X)⊗Y)⊗Z. But, the pentagon equation says these isomorphisms are equal. When we
have tensor products of even more objects there are even more ways to parenthesize them,
and even more isomorphisms between them built from the associator. However, Mac Lane
showed that the pentagon identity implies these isomorphisms are all the same. Similarly,
if we also assume the triangle equation, all isomorphisms with the same source and target
built from the associator, left and right unit laws are equal.

In a monoidal category we can do processes in ‘parallel’ as well as in ‘series’. Doing
processes in series is just composition of morphisms, which works in any category. But in a
monoidal category we can also tensor morphisms f :X → Y and f ′:X ′ → Y ′ and obtain a
‘parallel process’ f ⊗ f ′:X ⊗X ′ → Y ⊗ Y ′. We can draw this in various ways:

f

X

Y

f ′

X ′

Y ′

= f ⊗ f ′
X

Y

X ′

Y ′

= f ⊗ f ′

X ⊗X ′

Y ⊗ Y ′

More generally, we can draw any morphism

f :X1 ⊗ · · · ⊗Xn → Y1 ⊗ · · · ⊗ Ym

as a black box with n input wires and m output wires:

f

X1 X2 X3

Y1 Y2

We draw the unit object I as a blank space. So, for example, we draw a morphism f : I → X
as follows:

f

X

By composing and tensoring morphisms, we can build up elaborate pictures resembling
Feynman diagrams:

f

g

h

j

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Z

The laws governing a monoidal category allow us to neglect associators and unitors when
drawing such pictures, without getting in trouble. The reason is that Mac Lane’s Coherence
Theorem says any monoidal category is ‘equivalent’, in a suitable sense, to one where all
associators and unitors are identity morphisms [68].

We can also deform the picture in a wide variety of ways without changing the morphism
it describes. For example, the above morphism equals this one:

f

g

h

j

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Z

Everyone who uses string diagrams for calculations in monoidal categories starts by worrying
about the rules of the game: precisely how can we deform these pictures without changing the
morphisms they describe? Instead of stating the rules precisely — which gets a bit technical
— we urge you to explore for yourself what is allowed and what is not. For example, show
that we can slide black boxes up and down like this:

f

g

X1

Y1

X2

Y2

= f g

X1

Y1

X2

Y2

=
f

g

X1

Y1

X2

Y2

For a formal treatment of the rules governing string diagrams, try the original papers by
Joyal and Street [52] and the book by Yetter [97].

Now let us turn to examples. Here it is crucial to realize that the same category can
often be equipped with different tensor products, resulting in different monoidal categories:

• There is a way to make Set into a monoidal category where X ⊗ Y is the cartesian
product X×Y and the unit object is any one-element set. Note that this tensor product
is not strictly associative, since (x, (y, z)) 6= ((x, y), z), but there’s a natural isomorphism
(X × Y)×Z ∼= X × (Y ×Z), and this is our associator. Similar considerations give the
left and right unitors. In this monoidal category, the tensor product of f :X → Y and
f ′:X ′ → Y ′ is the function

f × f ′ :X ×X ′ → Y × Y ′
(x, x′) 7→ (f(x), f ′(x′)).

There is also a way to make Set into a monoidal category where X ⊗ Y is the disjoint
union of X and Y , which we shall denote by X + Y . Here the unit object is the empty
set. Again, as indeed with all these examples, the associative law and left/right unit laws
hold only up to natural isomorphism. In this monoidal category, the tensor product of
f :X → Y and f ′:X ′ → Y ′ is the function

f + f ′: X +X ′ → Y + Y ′

x 7→
{
f(x) if x ∈ X ,
f ′(x) if x ∈ X ′.

However, in what follows, when we speak of Set as a monoidal category, we always use
the cartesian product!

• There is a way to make Hilb into a monoidal category with the usual tensor product of
Hilbert spaces: Cn ⊗ Cm ∼= Cnm. In this case the unit object I can be taken to be an
1-dimensional Hilbert space, for example C.

There is also way to make Hilb into a monoidal category where the tensor product is
the direct sum: Cn ⊕ Cm ∼= Cn+m. In this case the unit object is the zero-dimensional
Hilbert space, {0}.
However, in what follows, when we speak of Hilb as a monoidal category, we always use
the usual tensor product!

• The tensor product of objects and morphisms in nCob is given by disjoint union. For
example, the tensor product of these two morphisms:

X

Y

f

��

X ′

Y ′

f ′

��

is this:
X ⊗X ′

Y ⊗ Y ′

f⊗f ′

��

• The category Tangk is monoidal when k ≥ 1, where the the tensor product is given by
disjoint union. For example, given these two tangles:

X

Y

f

��

X ′

Y ′

f ′

��

their tensor product looks like this:

X ⊗X ′

Y ⊗ Y ′

f⊗f ′

��

The example of Set with its cartesian product is different from our other three main
examples, because the cartesian product of sets X × X ′ comes equipped with functions
called ‘projections’ to the sets X and X ′:

X X ×X ′ X ′�p -p
′

Our other main examples lack this feature — though Hilb made into a monoidal category
using ⊕ has projections. Also, every set has a unique function to the the one-element set:

!X :X → I.

Again, our other main examples lack this feature, though Hilb made into a monoidal cate-
gory using ⊕ has it. A fascinating feature of quantum mechanics is that we make Hilb into
a monoidal category using ⊗ instead of ⊕, even though the latter approach would lead to
a category more like Set.

We can isolate the special features of the cartesian product of sets and its projections,
obtaining a definition that applies to any category:

Definition 7. Given objects X and X ′ in some category, we say an object X×X ′ equipped
with morphisms

X X ×X ′ X ′�p -p
′

is a cartesian product (or simply product) of X and X ′ if for any object Q and mor-
phisms

Q

X X ′
�
�	
f

@@R
f ′

there exists a unique morphism g:Q→ X ×X ′ making the following diagram commute:

Q

X X ×X ′ X ′

�
�
�
��	

f
@
@
@
@@R

f ′

?

g

�
p

-
p′

(That is, f = pg and f ′ = p′g.) We say a category has binary products if every pair of
objects has a product.

The product may not exist, and it may not be unique, but when it exists it is unique up
to a canonical isomorphism. This justifies our speaking of ‘the’ product of objects X and
Y when it exists, and denoting it as X × Y .

The definition of cartesian product, while absolutely fundamental, is a bit scary at first
sight. To illustrate its power, let us do something with it: combine two morphisms f :X → Y
and f ′:X ′ → Y ′ into a single morphism

f × f ′:X ×X ′ → Y × Y ′.

The definition of cartesian product says how to build a morphism of this sort out of a pair
of morphisms: namely, morphisms from X ×X ′ to Y and Y ′. If we take these to be fp and
f ′p′, we obtain f × f ′:

X ×X ′

Y Y × Y ′ Y ′

�
�
�
�	

fp
@
@
@
@R

f ′p′

?

f×f ′

�p -p
′

Next, let us isolate the special features of the one-element set:

Definition 8. An object 1 in a category C is terminal if for any object Q ∈ C there exists
a unique morphism from Q to 1, which we denote as !Q:Q→ 1.

Again, a terminal object may not exist and may not be unique, but it is unique up to a
canonical isomorphism. This is why we can speak of ‘the’ terminal object of a category, and
denote it by a specific symbol, 1.

We have introduced the concept of binary products. One can also talk about n-ary
products for other values of n, but a category with binary products has n-ary products for
all n ≥ 1, since we can construct these as iterated binary products. The case n = 1 is trivial,
since the product of one object is just that object itself (up to canonical isomorphism). The
remaining case is n = 0. The zero-ary product of objects, if it exists, is just the terminal
object. So, we make the following definition:

Definition 9. A category has finite products if it has binary products and a terminal
object.

A category with finite products can always be made into a monoidal category by choosing a
specific product X ×Y to be to the tensor product X⊗Y , and choosing a specific terminal
object to be the unit object. It takes a bit of work to show this! A monoidal category of
this form is called cartesian.

In a cartesian category, we can ‘duplicate and delete information’. In general, the defi-
nition of cartesian products gives a way to take two morphisms f1:Q→ X and f2:Q→ Y
and combine them into a single morphism from Q to X × Y . If we take Q = X = Y and
take f1 and f2 to be the identity, we obtain the diagonal or duplication morphism:

∆X :X → X ×X.

In the category Set one can check that this maps any element x ∈ X to the pair (x, x). In
general, we can draw the diagonal as follows:

∆

X

X X

Similarly, we call the unique map to the terminal object

!X :X → 1

the deletion morphism, and draw it as follows:

!

X

Note that we draw the unit object as an empty space.

A fundamental fact about cartesian categories is that duplicating something and then
deleting either copy is the same as doing nothing at all! In string diagrams, this says:

!

∆

X

X
X

=

X

=

!

∆

X

X
X

We leave the proof as an exercise for the reader.

Many of the puzzling features of quantum theory come from the noncartesianness of the
usual tensor product in Hilb. For example, in a cartesian category, every morphism

g

X X ′

is actually of the form

f

X

f ′

X ′

In the case of Set, this says that every point of the set X×X ′ comes from a point of X and
a point of X ′. In physics, this would say that every state g of the combined system X ⊗X ′
is built by combining states of the systems X and X ′. Bell’s theorem [17] says that is not
true in quantum theory. The reason is that quantum theory uses the noncartesian monoidal
category Hilb!

Also, in quantum theory we cannot freely duplicate or delete information. Wootters
and Zurek [96] proved a precise theorem to this effect, focused on duplication: the ‘no-
cloning theorem’. One can also prove a ‘no-deletion theorem’. Again, these results rely on
the noncartesian tensor product in Hilb.

1.2.4 Braided Monoidal Categories

In physics, there is often a process that lets us ‘switch’ two systems by moving them around
each other. In topology, there is a tangle that describes the process of switching two points:

In logic, we can switch the order of two statements in a conjunction: the statement ‘X and
Y ’ is isomorphic to ‘Y and X ’. In computation, there is a simple program that switches the
order of two pieces of data. A monoidal category in which we can do this sort of thing is
called ‘braided’:

Definition 10. A braided monoidal category consists of:

• a monoidal category C,

• a natural isomorphism called the braiding that assigns to every pair of objects X,Y ∈ C
an isomorphism

bX,Y :X ⊗ Y → Y ⊗X,

such that the hexagon equations hold:

X ⊗ (Y ⊗ Z) (X ⊗ Y)⊗ Z (Y ⊗X)⊗ Z

(Y ⊗ Z)⊗X Y ⊗ (Z ⊗X) Y ⊗ (X ⊗ Z)

(X ⊗ Y)⊗ Z X ⊗ (Y ⊗ Z) X ⊗ (Z ⊗ Y)

Z ⊗ (X ⊗ Y) (Z ⊗X)⊗ Y (X ⊗ Z)⊗ Y

-
a−1
X,Y,Z

?
bX,Y⊗Z

-bX,Y ⊗1Z

?
aY,X,Z

�
a−1
Y,Z,X

�
1Y ⊗bX,Z

-aX,Y,Z

?
bX⊗Y,Z

-1X⊗bY,Z

?
a−1
X,Z,Y

�
aZ,X,Y

�
bZ,X⊗1Y

The first hexagon equation says that switching the object X past Y ⊗ Z all at once is the
same as switching it past Y and then past Z (with some associators thrown in to move the
parentheses). The second one is similar: it says switching X ⊗ Y past Z all at once is the
same as doing it in two steps.

In string diagrams, we draw the braiding bX,Y :X ⊗ Y → Y ⊗X like this:

X Y

We draw its inverse b−1
X,Y like this:

YX

This is a nice notation, because it makes the equations saying that bX,Y and b−1
X,Y are

inverses ‘topologically true’:

X

X

Y

Y

= X Y =

Y

Y

X

X

Here are the hexagon equations as string diagrams:

X

X

Y ⊗ Z

Y ⊗ Z

=

X Y Z

Y XZ

X ⊗ Y

X ⊗ Y

Z

Z

=

Y ZX

YXZ

For practice, we urge you to prove the following equations:

f g

X

X ′

Y

Y ′

=

g f

X

X ′

Y

Y ′

ZX Y

XYZ

=

Y ZX

XYZ

If you get stuck, here are some hints. The first equation follows from the naturality of the
braiding. The second is called the Yang–Baxter equation and follows from a combination
of naturality and the hexagon equations [53].

Next, here are some examples. There can be many different ways to give a monoidal
category a braiding, or none. However, most of our favorite examples come with well-known
‘standard’ braidings:

• Any cartesian category automatically becomes braided, and in Set with its cartesian
product, this standard braiding is given by:

bX,Y :X × Y → Y ×X
(x, y) 7→ (y, x).

• In Hilb with its usual tensor product, the standard braiding is given by:

bX,Y :X ⊗ Y → Y ⊗X
x⊗ y 7→ y ⊗ x.

• The monoidal category nCob has a standard braiding where bX,Y is diffeomorphic to
the disjoint union of cylinders X × [0, 1] and Y × [0, 1]. For 2Cob this braiding looks as
follows when X and Y are circles:

X ⊗ Y

Y ⊗X

bX,Y

��

• The monoidal category Tangk has a standard braiding when k ≥ 2. For k = 2 this looks
as follows when X and Y are each a single point:

X ⊗ Y

Y ⊗X

bX,Y

��

The example of Tangk illustrates an important pattern. Tang0 is just a category, because
in 0-dimensional space we can only do processes in ‘series’: that is, compose morphisms.
Tang1 is a monoidal category, because in 1-dimensional space we can also do processes in
‘parallel’: that is, tensor morphisms. Tang2 is a braided monoidal category, because in 2-
dimensional space there is room to move one object around another. Next we shall see what
happens when space has 3 or more dimensions!

1.2.5 Symmetric Monoidal Categories

Sometimes switching two objects and switching them again is the same as doing nothing
at all. Indeed, this situation is very familiar. So, the first braided monoidal categories to be
discovered were ‘symmetric’ ones [68]:

Definition 11. A symmetric monoidal category is a braided monoidal category where
the braiding satisfies bX,Y = b−1

Y,X .

So, in a symmetric monoidal category,

X Y

YX

= X Y

or equivalently:

X Y

=

YX

Any cartesian category automatically becomes a symmetric monoidal category, so Set
is symmetric. It is also easy to check that Hilb, nCob are symmetric monoidal categories.
So is Tangk for k ≥ 3.

Interestingly, Tangk ‘stabilizes’ at k = 3: increasing the value of k beyond this value
merely gives a category equivalent to Tang3. The reason is that we can already untie all
knots in 4-dimensional space; adding extra dimensions has no real effect. In fact, Tangk for
k ≥ 3 is equivalent to 1Cob. This is part of a conjectured larger pattern called the ‘Periodic
Table’ of n-categories [11]. A piece of this is shown in Table 1.3.

An n-category has not only morphisms going between objects, but 2-morphisms going
between morphisms, 3-morphisms going between 2-morphisms and so on up to n-morphisms.
In topology we can use n-categories to describe tangled higher-dimensional surfaces [12],
and in physics we can use them to describe not just particles but also strings and higher-
dimensional membranes [11, 13]. The Rosetta Stone we are describing concerns only the
n = 1 column of the Periodic Table. So, it is probably just a fragment of a larger, still
buried n-categorical Rosetta Stone.

n = 0 n = 1 n = 2

k = 0 sets categories 2-categories

k = 1 monoids monoidal monoidal
categories 2-categories

k = 2 commutative braided braided
monoids monoidal monoidal

categories 2-categories

k = 3 ‘’ symmetric sylleptic
monoidal monoidal
categories 2-categories

k = 4 ‘’ ‘’ symmetric
monoidal

2-categories

k = 5 ‘’ ‘’ ‘’

k = 6 ‘’ ‘’ ‘’

Table 1.3. The Periodic Table: conjectured descriptions of (n + k)-categories with only one j-
morphism for j < k.

1.2.6 Closed Categories

In quantum mechanics, one can encode a linear operator f :X → Y into a quantum state
using a technique called ‘gate teleportation’ [48]. In topology, there is a way to take any

tangle f :X → Y and bend the input back around to make it part of the output. In logic, we
can take a proof that goes from some assumption X to some conclusion Y and turn it into a
proof that goes from no assumptions to the conclusion ‘X implies Y ’. In computer science,
we can take any program that takes input of type X and produces output of type Y , and
think of it as a piece of data of a new type: a ‘function type’. The underlying concept that
unifies all these examples is the concept of a ‘closed category’.

Given objects X and Y in any category C, there is a set of morphisms from X to Y ,
denoted hom(X,Y). In a closed category there is also an object of morphisms from X to
Y , which we denote by X (Y . (Many other notations are also used.) In this situation we
speak of an ‘internal hom’, since the object X (Y lives inside C, instead of ‘outside’, in
the category of sets.

Closed categories were introduced in 1966, by Eilenberg and Kelly [38]. While these
authors were able to define a closed structure for any category, it turns out that the internal
hom is most easily understood for monoidal categories. The reason is that when our category
has a tensor product, it is closed precisely when morphisms from X⊗Y to Z are in natural
one-to-one correspondence with morphisms from Y to X (Z. In other words, it is closed
when we have a natural isomorphism

hom(X ⊗ Y, Z) ∼= hom(Y,X (Z)

f 7→ f̃

For example, in the category Set, if we take X⊗Y to be the cartesian product X×Y , then
X (Z is just the set of functions from Y to Z, and we have a one-to-one correspondence
between

• functions f that eat elements of X × Y and spit out elements of Z

and

• functions f̃ that eat elements of Y and spit out functions from X to Z.

This correspondence goes as follows:

f̃(x)(y) = f(x, y).

Before considering other examples, we should make the definition of ‘closed monoidal
category’ completely precise. For this we must note that for any category C, there is a
functor

hom:Cop × C → Set.

Definition 12. The opposite category Cop of a category C has the same objects as C,
but a morphism f :x → y in Cop is a morphism f : y → x in C, and the composite gf in
Cop is the composite fg in C.

Definition 13. For any category C, the hom functor

hom:Cop × C → Set

sends any object (X,Y) ∈ Cop ×C to the set hom(X,Y), and sends any morphism (f, g) ∈
Cop × C to the function

hom(f, g): hom(X,Y) → hom(X ′, Y ′)
h 7→ ghf

when f :X ′ → X and g:Y → Y ′ as morphisms in C.

Definition 14. A monoidal category C is left closed if there is an internal hom functor

(:Cop × C → C

together with a natural isomorphism c called currying that assigns to any objects X,Y, Z ∈
C a bijection

cX,Y,Z : hom(X ⊗ Y, Z)
∼→ hom(X,Y (Z)

It is right closed if there is an internal hom functor as above and a natural isomorphism

cX,Y,Z : hom(X ⊗ Y, Z)
∼→ hom(Y,X (Z).

The term ‘currying’ is mainly used in computer science, after the work of Curry [34]. In the
rest of this section we only consider right closed monoidal categories. Luckily, there is no
real difference between left and right closed for a braided monoidal category, as the braiding
gives an isomorphism X ⊗ Y ∼= Y ⊗X .

All our examples of monoidal categories are closed, but we shall see that, yet again, Set
is different from the rest:

• The cartesian category Set is closed, where X (Y is just the set of functions from X
to Y . In Set or any other cartesian closed category, the internal hom X (Y is usually
denoted Y X . To minimize the number of different notations and emphasize analogies
between different contexts, we shall not do this: we shall always use X (Y . To treat
Set as left closed, we define the curried version of f :X × Y → Z as above:

f̃(x)(y) = f(x, y).

To treat it as right closed, we instead define it by

f̃(y)(x) = f(x, y).

This looks a bit awkward, but it will be nice for string diagrams.

• The symmetric monoidal category Hilb with its usual tensor product is closed, where
X (Y is the set of linear operators from X to Y , made into a Hilbert space in a
standard way. In this case we have an isomorphism

X (Y ∼= X∗ ⊗ Y
where X∗ is the dual of the Hilbert space X , that is, the set of linear operators f :X → C,
made into a Hilbert space in the usual way.

• The monoidal category Tangk (k ≥ 1) is closed. As with Hilb, we have

X (Y ∼= X∗ ⊗ Y

where X∗ is the orientation-reversed version of X .

• The symmetric monoidal category nCob is also closed; again

X (Y ∼= X∗ ⊗ Y

where X∗ is the (n− 1)-manifold X with its orientation reversed.

Except for Set, all these examples are actually ‘compact’. This basically means that
X (Y is isomorphic to X∗ ⊗ Y , where X∗ is some object called the ‘dual’ of X . But
to make this precise, we need to define the ‘dual’ of an object in an arbitrary monoidal
category.

To do this, let us generalize from the case of Hilb. As already mentioned, each object
X ∈ Hilb has a dual X∗ consisting of all linear operators f :X → I , where the unit object
I is just C. There is thus a linear operator

eX : X ⊗X∗ → I
x⊗ f 7→ f(x)

called the counit of X . Furthermore, the space of all linear operators from X to Y ∈ Hilb
can be identified with X∗ ⊗ Y . So, there is also a linear operator called the unit of X :

ix: I → X∗ ⊗X
c 7→ c 1X

sending any complex number c to the corresponding multiple of the identity operator.

The significance of the unit and counit become clearer if we borrow some ideas from
Feynman. In physics, if X is the Hilbert space of internal states of some particle, X∗ is the
Hilbert space for the corresponding antiparticle. Feynman realized that it is enlightening
to think of antiparticles as particles going backwards in time. So, we draw a wire labelled
by X∗ as a wire labelled by X , but with an arrow pointing ‘backwards in time’: that is, up
instead of down:

X∗ = X

(Here we should admit that most physicists use the opposite convention, where time marches
up the page. Since we read from top to bottom, we prefer to let time run down the page.)

If we draw X∗ as X going backwards in time, we can draw the unit as a cap:

X X

and the counit as a cup:

X X

In Feynman diagrams, these describe the creation and annihilation of virtual particle-
antiparticle pairs!

It then turns out that the unit and counit satisfy two equations, the zig-zag equations:

X

X

= X

X

X

= X

Verifying these is a fun exercise in linear algebra, which we leave to the reader. If we write
these equations as commutative diagrams, we need to include some associators and unitors,
and they become a bit intimidating:

X ⊗ I X ⊗ (X∗ ⊗X) (X ⊗X∗)⊗X

X I ⊗X

I ⊗X∗ (X∗ ⊗X)⊗X∗ X∗ ⊗ (X ⊗X∗)

X∗ X∗ ⊗ I

-1X⊗iX

?

rX

-
a−1
X,X∗,X

?

eX⊗1X

�
lX

-iX⊗1X

?

lX

-aX∗,X,X∗

?

1X∗⊗eX

�
rX∗

But, they really just say that zig-zags in string diagrams can be straightened out.

This is particularly vivid in examples like Tangk and nCob. For example, in 2Cob, taking
X to be the circle, the unit looks like this:

I

X∗ ⊗X

iX

��

while the counit looks like this:

X ⊗X∗

I

eX

��

In this case, the zig-zag identities say we can straighten a wiggly piece of pipe.

Now we are ready for some definitions:

Definition 15. Given objects X∗ and X in a monoidal category, we call X∗ a right dual
of X, and X a left dual of X∗, if there are morphisms

iX : I → X∗ ⊗X

and
eX :X ⊗X∗ → I,

called the unit and counit respectively, satisfying the zig-zag equations.

One can show that the left or right dual of an object is unique up to canonical isomorphism.
So, we usually speak of ‘the’ right or left dual of an object, when it exists.

Definition 16. A monoidal category C is compact if every object X ∈ C has both a left
dual and a right dual.

Often the term ‘autonomous’ is used instead of ‘compact’ here. Many authors reserve the
term ‘compact’ for the case where C is symmetric or at least braided; then left duals are the
same as right duals, and things simplify [41]. To add to the confusion, compact symmetric
monoidal categories are often called simply ‘compact closed categories’.

A partial explanation for the last piece of terminology is that any compact monoidal
category is automatically closed! For this, we define the internal hom on objects by

X (Y = X∗ ⊗ Y.

We must then show that the ∗ operation extends naturally to a functor ∗:C → C, so that
(is actually a functor. Finally, we must check that there is a natural isomorphism

hom(X ⊗ Y, Z) ∼= hom(Y,X∗ ⊗ Z)

In terms of string diagrams, this isomorphism takes any morphism

f

X Y

Z

and bends back the input wire labelled X to make it an output:

f

X

Y

Z

Now, in a compact monoidal category, we have:

X Z = X (Z

But in general, closed monoidal categories don’t allow arrows pointing up! So for these,
drawing the internal hom is more of a challenge. We can use the same style of notation as
long as we add a decoration — a clasp — that binds two strings together:

X Z := X (Z

Only when our closed monoidal category happens to be compact can we eliminate the clasp.

Suppose we are working in a closed monoidal category. Since we draw a morphism
f :X ⊗ Y → Z like this:

f

X Y

Z

we can draw its curried version f̃ :Y → X (Z by bending down the input wire labelled X
to make it part of the output:

f

X

Y

Z

Note that where we bent back the wire labelled X , a cap like this appeared:

X X

Closed monoidal categories don’t really have a cap unless they are compact. So, we drew
a bubble enclosing f and the cap, to keep us from doing any illegal manipulations. In the
compact case, both the bubble and the clasp are unnecessary, so we can draw f̃ like this:

f

X

Y

Z

An important special case of currying gives the name of a morphism f :X → Y ,

pfq: I → X (Y.

This is obtained by currying the morphism

frx: I ⊗X → Y.

In string diagrams, we draw pfq as follows:

f

X
Y

In the category Set, the unit object I is the one-element set. So, a morphism from I to any
set Q picks out a point of Q. In particular, the name pfq: I → X (Y picks out the element
of X (Y corresponding to the function f :X → Y . More generally, in any cartesian closed
category, a morphism from 1 to an object Q is called a point of Q. So, even in this case,
we can say the name of a morphism f :X → Y is a point of X (Y .

Something similar works for Hilb, though this example is compact rather than cartesian.
In Hilb, the unit object I is just C. So, a nonzero morphism from I to any Hilbert space Q
picks out a nonzero vector in Q, which we can normalize to obtain a state in Q: that is,
a unit vector. In particular, the the name of a nonzero morphism f :X → Y gives a state
of X∗ ⊗ Y . This method of encoding operators as states is the basis of ‘gate teleportation’
[48].

Currying is a bijection, so we can also uncurry:

c−1
X,Y,Z : hom(Y,X (Z)

∼→ hom(X ⊗ Y, Z)

g 7→ g
˜
.

Since we draw a morphism g:Y → X (Z like this:

g

X

Y

Z

we draw its ‘uncurried’ version g
˜
:X ⊗ Y → Z by bending the output X up to become an

input:

gX
Y

Z

Again, we must put a bubble around the ‘cup’ formed when we bend down the wire labelled
Y , unless we are in a compact monoidal category.

A good example of uncurrying is the evaluation morphism:

evX,Y :X ⊗ (X (Y)→ Y.

This is obtained by uncurrying the identity

1X(Y : (X (Y)→ (X (Y).

In Set, evX,Y takes any function from X to Y and evaluates it at any element of X to give
an element of Y . In terms of string diagrams, the evaluation morphism looks like this:

ev

X
X

Y

Y

=

X
X

Y

Y

In any closed monoidal category, we can recover a morphism from its name using eval-
uation. More precisely, this diagram commutes:

X ⊗ I X

X ⊗ (X (Y) Y

?
1X⊗pfq

� r−1

?
f

-
evX,Y

Or, in terms of string diagrams:

f

X
X

Y

Y

= f

X

Y

We leave the proof of this as an exercise. In general, one must use the naturality of currying.
In the special case of a compact monoidal category, there is a nice picture proof! Simply
pop the bubbles and remove the clasp:

f

X
X

Y

Y

= f

X

Y

The result then follows from one of the zig-zag identities.

In our rapid introduction to string diagrams, we have not had time to illustrate how
these diagrams become a powerful tool for solving concrete problems. So, here are some
starting points for further study:

• Representations of Lie groups play a fundamental role in quantum physics, especially
gauge field theory. Every Lie group has a compact symmetric monoidal category of
finite-dimensional representations. In his book Group Theory, Cvitanovic [35] develops
detailed string diagram descriptions of these representation categories for the classical
Lie groups SU(n), SO(n), SU(n) and also the more exotic ‘exceptional’ Lie groups. His
book also illustrates how this technology can be used to simplify difficult calculations in
gauge field theory.

• Quantum groups are a generalization of groups which show up in 2d and 3d physics.
The big difference is that a quantum group has compact braided monoidal category of
finite-dimensional representation. Kauffman’s Knots and Physics [56] is an excellent in-
troduction to how quantum groups show up in knot theory and physics; it is packed with
string diagrams. For more details on quantum groups and braided monoidal categories,
see the book by Kassel [55].

• Kauffman and Lins [57] have written a beautiful string diagram treatment of the category
of representations of the simplest quantum group, SUq(2). They also use it to construct
some famous 3-manifold invariants associated to 3d and 4d topological quantum field
theories: the Witten–Reshetikhin–Turaev, Turaev–Viro and Crane–Yetter invariants.
In this example, string diagrams are often called ‘q-deformed spin networks’ [87]. For
generalizations to other quantum groups, see the more advanced texts by Turaev [93]
and by Bakalov and Kirillov [14]. The key ingredient is a special class of compact braided
monoidal categories called ‘modular tensor categories’.

• Kock [61] has written a nice introduction to 2d topological quantum field theories which
uses diagrammatic methods to work with 2Cob.

• Abramsky, Coecke and collaborators [2, 3, 4, 29, 31, 32] have developed string diagrams
as a tool for understanding quantum computation. The easiest introduction is Coecke’s
‘Kindergarten quantum mechanics’ [30].

1.2.7 Dagger Categories

Our discussion would be sadly incomplete without an important admission: nothing we have
done so far with Hilbert spaces used the inner product! So, we have not yet touched on the
essence of quantum theory.

In fact, everything we have said about Hilb applies equally well to Vect: the category
of finite-dimensional vector spaces and linear operators. Both Hilb and Vect are compact
symmetric monoidal categories. In fact, these compact symmetric monoidal categories are
‘equivalent’ in a certain precise sense [69].

So, what makes Hilb different? In terms of category theory, the special thing is that
we can take the Hilbert space adjoint of any linear operator f :X → Y between finite-
dimensional Hilbert spaces, getting an operator f †:Y → X . This ability to ‘reverse’ mor-
phisms makes Hilb into a ‘dagger category’:

Definition 17. A dagger category is a category C such that for any morphism f :X → Y
in C there is a specified morphism f †:Y → X such that

(gf)† = f †g†

for every pair of composable morphisms f and g, and

(f †)† = f

for every morphism f .

Equivalently, a dagger category is one equipped with a functor †:C → Cop that is the
identity on objects and satisfies (f †)† = f for every morphism.

In fact, all our favorite examples of categories can be made into dagger categories, except
for Set:

• There is no way to make Set into a dagger category, since there is a function from the
empty set to the 1-element set, but none the other way around.

• The category Hilb becomes a dagger category as follows. Given any morphism f :X → Y
in Hilb, there is a morphism f †:Y → X , the Hilbert space adjoint of f , defined by

〈f †ψ, φ〉 = 〈ψ, fφ〉

for all φ ∈ X , ψ ∈ Y .

• For any k, the category Tangk becomes a dagger category where we obtain f †:Y → X
by reflecting f :X → Y in the vertical direction, and then switching the direction of the
little arrows denoting the orientations of arcs and circles.

• For any n, the category nCob becomes a dagger category where we obtain f †:Y → X
by switching the input and output of f :X → Y , and then switching the orientation of
each connected component of f . Again, a picture speaks a thousand words:

X

Y

f

��

Y

X

f†

��

In applications to physics, this dagger operation amounts to ‘switching the future and
the past’.

In all the dagger categories above, the dagger structure interacts in a nice way with the
monoidal structure and also, when it exists, the braiding. One can write a list of axioms
characterizing how this works [2, 3, 85]. So, it seems that the ability to ‘reverse’ morphisms
is another way in which categories of a quantum flavor differ from the category of sets
and functions. This has important implications for the foundations of quantum theory [9]
and also for topological quantum field theory [11], where dagger categories seem to be part
of larger story involving ‘n-categories with duals’ [12]. However, this story is still poorly
understood — there is much more work to be done.

1.3 Logic

1.3.1 Background

Symmetric monoidal closed categories show up not only in physics and topology, but also
in logic. We would like to explain how. To set the stage, it seems worthwhile to sketch a
few ideas from 20th-century logic.

Modern logicians study many systems of reasoning beside ordinary classical logic. Of
course, even classical logic comes in various degrees of strength. First there is the ‘proposi-
tional calculus’, which allows us to reason with abstract propositions X,Y, Z, . . . and these
logical connectives:

and ∧
or ∨

implies ⇒
not ¬
true >
false ⊥

Then there is the ‘predicate calculus’, which also allows variables like x, y, z, . . ., predicates
like P (x) and Q(x, y, z), and the symbols ‘for all’ (∀) and ‘there exists’ (∃), which allow us
to quantify over variables. There are also higher-order systems that allow us to quantify over

predicates, and so on. To keep things simple, we mainly confine ourselves to the propositional
calculus in what follows. But even here, there are many alternatives to the ‘classical’ version!

The most-studied of these alternative systems are weaker than classical logic: they make
it harder or even impossible to prove things we normally take for granted. One reason is
that some logicians deny that certain familiar principles are actually valid. But there are
also subtler reasons. One is that studying systems with rules of lesser strength allows for
a fine-grained study of precisely which methods of reasoning are needed to prove which
results. Another reason — the one that concerns us most here — is that dropping familiar
rules and then adding them back in one at at time sheds light on the connection between
logic and category theory.

For example, around 1907 Brouwer [50] began advocating ‘intuitionism’. As part of this,
he raised doubts about the law of excluded middle, which amounts to a rule saying that
from ¬¬X we can deduce X . One problem with this principle is that proofs using it are
not ‘constructive’. For example, we may prove by contradiction that some equation has a
solution, but still have no clue how to construct the solution. For Brouwer, this meant the
principle was invalid.

Anyone who feels the law of excluded middle is invalid is duty-bound to study intu-
itionistic logic. But, there is another reason for studying this system. Namely: we do not
really lose anything by dropping the law of excluded middle! Instead, we gain a fine-grained
distinction: the distinction between a direct proof of X and a proof by contradiction, which
yields merely ¬¬X . If we do not care about this distinction we are free to ignore it, but
there is no harm in having it around.

In the 1930’s, this idea was made precise by Gödel [46] and Gentzen [43]. They showed
that we can embed classical logic in intuitionistic logic. In fact, they found a map sending
any formula X of the propositional calculus to a new formula X◦, such that X is provable
classically if and only if X◦ is provable intuitionistically. (More impressively, this map also
works for the predicate calculus.)

Later, yet another reason for being interested in intuitionistic logic became apparent: its
connection to category theory. In its very simplest form, this connection works as follows.
Suppose we have a set of propositions X,Y, Z, . . . obeying the laws of the intuitionistic
propositional calculus. We can create a category C where these propositions are objects
and there is at most one morphism from any object X to any object Y : a single morphism
when X implies Y , and none otherwise!

A category with at most one morphism from any object to any other is called a preorder.
In the propositional calculus, we often treat two propositions as equal when they both imply
each other. If we do this, we get a special sort of preorder: one where isomorphic objects
are automatically equal. This special sort of preorder is called a partially ordered set,
or poset for short. Posets abound in logic, precisely because they offer a simple framework
for understanding implication.

If we start from a set of propositions obeying the intuitionistic propositional calculus,
the resulting category C is better than a mere poset. It is also cartesian, with X ∧Y as the
product of X and Y , and > as the terminal object! To see this, note that any proposition

Q has a unique morphism to X ∧ Y whenever it has morphisms to X and to Y . This is
simply a fancy way of saying that Q implies X ∧ Y when it implies X and implies Y . It is
also easy to see that > is terminal: anything implies the truth.

Even better, the category C is cartesian closed, with X ⇒ Y as the internal hom. The
reason is that

X ∧ Y implies Z iff Y implies X ⇒ Z.

This automatically yields the basic property of the internal hom:

hom(X ⊗ Y, Z) ∼= hom(Y,X (Z).

Indeed, if the reader is puzzled by the difference between ‘X implies Y ’ and X ⇒ Y , we
can now explain this more clearly: the former involves the homset hom(X,Y) (which has
one element when X implies Y and none otherwise), while the latter is the internal hom,
an object in C.

So, C is a cartesian closed poset. But, it also has one more nice property, thanks to the
presence of ∨ and ⊥ We have seen that ∧ and > make the category C cartesian; ∨ and ⊥
satisfy exactly analogous rules, but with the implications turned around, so they make Cop

cartesian.

And that is all! In particular, negation gives nothing more, since we can define ¬X to be
X ⇒ F , and all its intuitionistically valid properties then follow. So, the kind of category
we get from the intuitionistic propositional calculus by taking propositions as objects and
implications as morphisms is precisely a Heyting algebra: a cartesian closed poset C such
that Cop is also cartesian.

Heyting, a student of Brouwer, introduced Heyting algebras in intuitionistic logic before
categories were even invented. So, he used very different language to define them. But, the
category-theoretic approach to Heyting algebras illustrates the connection between cartesian
closed categories and logic. It also gives more evidence that dropping the law of excluded
middle is an interesting thing to try.

Since we have explained the basics of cartesian closed categories, but not said what
happens when the opposite of such a category is also cartesian, in the sections to come we
will take a drastic step and limit our discussion of logic even further. We will neglect ∨ and
⊥, and concentrate only on the fragment of the propositional calculus involving ∧, > and
⇒.

Even here, it turns out, there are interesting things to say — and interesting ways to
modify the usual rules. This will be the main subject of the sections to come. But to set
the stage, we need to say a bit about proof theory.

Proof theory is the branch of mathematical logic that treats proofs as mathematical
entities worthy of study in their own right. It lets us dig deeper into the propositional
calculus, by studying not merely whether or not some assumption X implies some conclusion
Y , but the whole set of proofs leading from X to Y . This amounts to studying not just posets
(or preorders), but categories that allow many morphisms from one object to another.

In Hilbert’s approach to proof, there were many axioms and just one rule to deduce new
theorems: modus ponens, which says that from X and ‘X implies Y ’ we can deduce Y . Most

of modern proof theory focuses on another approach, the ‘sequent calculus’, due to Gentzen
[43]. In this approach there are few axioms but many inference rules.

An excellent introduction to the sequent calculus is the book Proofs and Types by Girard,
Lafont and Taylor, freely available online [45]. Here we shall content ourselves with some
sketchy remarks. A ‘sequent’ is something like this:

X1, . . . , Xm ` Y1, . . . , Yn

where Xi and Yi are propositions. We read this sequent as saying that all the propositions
Xi, taken together, can be used to prove at least one of the propositions Yi. This strange-
sounding convention gives the sequent calculus a nice symmetry, as we shall soon see.

In the sequent calculus, an ‘inference rule’ is something that produces new sequents from
old. For example, here is the left weakening rule:

X1, . . . , Xm ` Y1, . . . , Yn
X1, . . . , Xm, A ` Y1, . . . , Yn

This says that from the sequent above the line we can get the sequent below the line: we can
throw in the extra assumption A without harm. Thanks to the strange-sounding convention
we mentioned, this rule has a mirror-image version called right weakening:

X1, . . . , Xm ` Y1, . . . , Yn
X1, . . . , Xm ` Y1, . . . , Yn, A

In fact, Gentzen’s whole setup has this mirror symmetry! For example, his rule called left
contraction:

X1, . . . , Xm, A,A ` Y1, . . . , Yn
X1, . . . , Xm, A ` Y1, . . . , Yn

has a mirror partner called right contraction:

X1, . . . , Xm ` Y1, . . . , Yn, A,A

X1, . . . , Xm ` Y1, . . . , Yn, A

Similarly, this rule for ‘and’

X1, . . . , Xm, A ` Y1, . . . , Yn
X1, . . . , Xm, A ∧B ` Y1, . . . , Yn

has a mirror partner for ‘or’:

X1, . . . , Xm,` Y1, . . . , Yn, A

X1, . . . , Xm ` Y1, . . . , Yn, A ∨ B

Logicians now realize that this mirror symmetry arises from the duality between a category
and its opposite. Unfortunately, since we have decided to study ∧ and > but not their
mirror partners ∨ and ⊥, this duality will not be visible in the sections to come.

Gentzen used sequents to write inference rules for the classical propositional calculus,
and also the classical predicate calculus. Now, in these forms of logic we have

X1, . . . , Xm ` Y1, . . . , Yn

if and only if we have
X1 ∧ · · · ∧Xm ` Y1 ∨ · · · ∨ Yn.

So, why did Gentzen use sequents with a list of propositions on each side of the ` symbol,
instead just a single proposition? The reason is that this let him use only inference rules
having the ‘subformula property’. This says that every proposition in the sequent below
the line appears as part of some proposition in the sequent above the line. So, a proof built
from such inference rules becomes a ‘tree’ where all the propositions further up the tree are
subformulas of those below.

This idea has powerful consequences. For example, in 1936 Gentzen was able prove the
consistency of Peano’s axioms of arithmetic! His proof essentially used induction on trees
(Readers familiar with Gödel’s second incompleteness theorem should be reassured that this
sort of induction cannot itself be carried out in Peano arithmetic.)

The most famous rule lacking the subformula property is the ‘cut rule’:

X1, . . . , Xm ` Y1, . . . , Yk, A Xm+1, . . . , Xn, A ` Yk+1, . . . , Y`
X1, . . . , Xn ` Y1, . . . , Y`

From the two sequents on top, the cut rule gives us the sequent below. Note that the
intermediate step A does not appear in the sequent below. It is ‘cut out’. So, the cut rule
lacks the subformula property. But, one of Gentzen’s great achievements was to show that
any proof in the classical propositional (or even predicate) calculus that can be done with
the cut rule can also be done without it. This is called ‘cut elimination’.

Gentzen also wrote down inference rules suitable for the intuitionistic propositional and
predicate calculi. These rules lack the mirror symmetry of the classical case. But in the
1980s, this symmetry was restored by Girard’s invention of ‘linear logic’ [44].

Linear logic lets us keep track of how many times we use a given premise to reach a
given conclusion. To accomplish this, Girard introduced some new logical connectives! For
starters, he introduced ‘linear’ connectives called ⊗ and(, and a logical constant called I .
These act a bit like ∧, ⇒ and >. However, they satisfy rules corresponding to a symmetric
monoidal category instead of a cartesian closed category. In particular, from X we can prove
neither X ⊗X nor I . So, we cannot freely ‘duplicate’ and ‘delete’ propositions using these
new connectives. This is reflected in the fact that linear logic drops Gentzen’s contraction
and weakening rules.

By itself, this might seem unbearably restrictive. However, Girard also kept the con-
nectives ∧, ⇒ and > in his system, still satisfying the usual rules. And, he introduced an
operation called the ‘exponential’, !, which takes a proposition X and turns it into an ‘ar-
bitrary stock of copies of X ’. So, for example, from !X we can prove 1, and X , and X ⊗X ,
and X ⊗X ⊗X , and so on.

Full-fledged linear logic has even more connectives than we have described here. It
seems baroque and peculiar at first glance. It also comes in both classical and intuitionistic
versions! But, just as classical logic can be embedded in intuitionistic logic, intuitionistic
logic can be embedded in intuitionistic linear logic [44]. So, we do not lose any deductive
power. Instead, we gain the ability to make even more fine-grained distinctions.

In what follows, we discuss the fragment of intuitionistic linear logic involving only ⊗,(
and I . This is called ‘multiplicative intuititionistic linear logic’ [49, 80]. It turns out to be
the system of logic suitable for closed symmetric monoidal categories — nothing more or
less.

1.3.2 Proofs as Morphisms

In Section 1.2 we described categories with various amounts of extra structure, start-
ing from categories pure and simple, and working our way up to monoidal categories,
braided monoidal categories, symmetric monoidal categories, and so on. Our treatment
only scratched the surface of an enormously rich taxonomy. In fact, each kind of category
with extra structure corresponds to a system of logic with its own inference rules!

To see this, we will think of propositions as objects in some category, and proofs as giving
morphisms. Suppose X and Y are propositions. Then, we can think of a proof starting from
the assumption X and leading to the conclusion Y as giving a morphism f :X → Y . (In
Section 1.3.3 we shall see that a morphism is actually an equivalence class of proofs — but
for now let us gloss over this issue.)

Let us write X ` Y when, starting from the assumption X , there is a proof leading to
the conclusion Y . An inference rule is a way to get new proofs from old. For example, in
almost every system of logic, if there is a proof leading from X to Y , and a proof leading
from Y to Z, then there is a proof leading from X to Z. We write this inference rule as
follows:

X ` Y Y ` Z
X ` Z

We can call this cut rule, since it lets us ‘cut out’ the intermediate step Y . It is a special case
of Gentzen’s cut rule, mentioned in the previous section. It should remind us of composition
of morphisms in a category: if we have a morphism f :X → Y and a morphism g:Y → Z,
we get a morphism gf :X → Z.

Also, in almost every system of logic there is a proof leading from X to X . We can write
this as an inference rule that starts with nothing and concludes the existence of a proof of
X from X :

X ` X

This rule should remind us of how every object in category has an identity morphism: for
any object X , we automatically get a morphism 1X :X → X . Indeed, this rule is sometimes
called the identity rule.

If we pursue this line of thought, we can take the definition of a closed symmetric
monoidal category and extract a collection of inference rules. Each rule is a way to get new
morphisms from old in a closed symmetric monoidal category. There are various superficially
different but ultimately equivalent ways to list these rules. Here is one:

X ` X (i)
X ` Y Y ` Z

X ` Z (◦)

W ` X Y ` Z
W ⊗ Y ` X ⊗ Z (⊗)

W ` (X ⊗ Y)⊗ Z
W ` X ⊗ (Y ⊗ Z)

(a)

X ` I ⊗ Y
X ` Y (l)

X ` Y ⊗ I
X ` Y (r)

W ` X ⊗ Y
W ` Y ⊗X (b)

X ⊗ Y ` Z
Y ` X (Z

(c)

Double lines mean that the inverse rule also holds. We have given each rule a name, written
to the right in parentheses. As already explained, rules (i) and (◦) come from the presence of
identity morphisms and composition in any category. Rules (⊗), (a), (l), and (r) come from
tensoring, the associator, and the left and right unitors in a monoidal category. Rule (b)
comes from the braiding in a braided monoidal category, and rule (c) comes from currying
in a closed monoidal category.

Now for the big question: what does all this mean in terms of logic? These rules describe
a small fragment of the propositional calculus. To see this, we should read the connective
⊗ as ‘and’, the connective (as ‘implies’, and the proposition I as ‘true’.

In this interpretation, rule (c) says we can turn a proof leading from the assumption ‘Y
and X ’ to the conclusion Z into a proof leading from X to ‘Y implies Z’. It also says we
can do the reverse. This is true in classical, intuitionistic and linear logic, and so are all
the other rules. Rules (a) and (b) say that ‘and’ is associative and commutative. Rule (l)
says that any proof leading from the assumption X to the conclusion ‘true and Y ’ can be
converted to a proof leading from X to Y , and vice versa. Rule (r) is similar.

What do we do with these rules? We use them to build ‘deductions’. Here is an easy
example:

(i)
X (Y ` X (Y

(c−1)
X ⊗ (X (Y) ` Y

First we use the identity rule, and then the inverse of the currying rule. At the end, we
obtain

X ⊗ (X (Y) ` Y.
This should remind us of the evaluation morphisms we have in a closed monoidal category:

evX,Y :X ⊗ (X (Y)→ Y.

In terms of logic, the point is that we can prove Y from X and ‘X implies Y ’. This fact
comes in handy so often that we may wish to abbreviate the above deduction as an extra
inference rule — a rule derived from our basic list:

(ev)
X ⊗ (X (Y) ` Y

This rule is called modus ponens.

In general, a deduction is a tree built from inference rules. Branches arise when we use
the (◦) or (⊗) rules. Here is an example:

(i)
(A⊗B)⊗ C ` ((A⊗B)⊗ C

(a)
(A⊗B)⊗ C ` A⊗ (B ⊗ C) A⊗ (B ⊗ C) ` D

(◦)
(A⊗B)⊗ C ` D

Again we can abbreviate this deduction as a derived rule. In fact, this rule is reversible:

A⊗ (B ⊗ C) ` D
(α)

(A⊗B)⊗ C ` D

For a more substantial example, suppose we want to show

(X (Y)⊗ (Y (Z) ` X (Z.

The deduction leading to this will not even fit on the page unless we use our abbreviations:

(ev)
X ⊗ (X (Y) ` Y (id)

Y (Z ` Y (Z
(⊗)

(X ⊗ (X (Y)) ⊗ (Y (Z) ` Y ⊗ (Y (Z)
(ev)

Y ⊗ (Y (Z) ` Z
(X ⊗ (X (Y))⊗ (Y (Z) ` Z

(α−1)
X ⊗ ((X (Y)⊗ (Y (Z)) ` Z

(c)
(X (Y)⊗ (Y (Z) ` X (Z

Since each of the rules used in this deduction came from a way to get new morphisms from
old in a closed monoidal category (we never used the braiding), it follows that in every such
category we have internal composition morphisms:

•X,Y,Z : (X (Y)⊗ (Y (Z)→ X (Z.

These play the same role for the internal hom that ordinary composition

◦: hom(X,Y)× hom(Y, Z)→ hom(X,Z)

plays for the ordinary hom.

We can go ahead making further deductions in this system of logic, but the really inter-
esting thing is what it omits. For starters, it omits the connective ‘or’ and the proposition
‘false’. It also omits two inference rules we normally take for granted — namely, contrac-
tion:

X ` Y
(∆)

X ` Y ⊗ Y

and weakening:

X ` Y
(!)

X ` I

which are closely related to duplication and deletion in a cartesian category. Omitting these
rules is a distinctive feature of linear logic [44]. The word ‘linear’ should remind us of the
category Hilb. As noted in Section 1.2.3, this category with its usual tensor product is
noncartesian, so it does not permit duplication and deletion. But, what does omitting these
rules mean in terms of logic?

Ordinary logic deals with propositions, so we have been thinking of the above system of
logic in the same way. Linear logic deals not just with propositions, but also other resources
— for example, physical things! Unlike propositions in ordinary logic, we typically can’t
duplicate or delete these other resources. In classical logic, if we know that a proposition
X is true, we can use X as many or as few times as we like when trying to prove some
proposition Y . But if we have a cup of milk, we can’t use it to make cake and then use it
again to make butter. Nor can we make it disappear without a trace: even if we pour it
down the drain, it must go somewhere.

In fact, these ideas are familiar in chemistry. Consider the following resources:

H2 = one molecule of hydrogen
O2 = one molecule of oxygen
H2O = one molecule of water

We can burn hydrogen, combining one molecule of oxygen with two of hydrogen to obtain
two molecules of water. A category theorist might describe this reaction as a morphism:

f :O2 ⊗ (H2 ⊗H2)→ H2O ⊗H2O.

A linear logician might write:

O2 ⊗ (H2 ⊗H2) ` H2O ⊗H2O

to indicate the existence of such a morphism. But, we cannot duplicate or delete molecules,
so for example

H2 6 `H2 ⊗H2

and
H2 6 `I

where I is the unit for the tensor product: not iodine, but ‘no molecules at all’.

In short, ordinary chemical reactions are morphisms in a symmetric monoidal category
where objects are collections of molecules. As chemists normally conceive of it, this category
is not closed. So, it obeys an even more limited system of logic than the one we have been

discussing, a system lacking the connective(. To get a closed category — in fact a compact
one — we need to remember one of the great discoveries of 20th-century physics: antimatter.
This lets us define Y (Z to be ‘anti-Y and Z’:

Y (Z = Y ∗ ⊗ Z

Then the currying rule holds:

Y ⊗X ` Z
X ` Y ∗ ⊗ Z

Most chemists don’t think about antimatter very often — but particle physicists do. They
don’t use the notation of linear logic or category theory, but they know perfectly well that
since a neutrino and a neutron can collide and turn into a proton and an electron:

ν ⊗ n ` p⊗ e,

then a neutron can turn into a neutrino together with a proton and an electron:

n ` ν∗ ⊗ (p⊗ e).

This is an instance of the currying rule, rule (c).

1.3.3 Logical Theories from Categories

We have sketched how different systems of logic naturally arise from different types of
categories. To illustrate this idea, we introduced a system of logic with inference rules
coming from ways to get new morphisms from old in a closed symmetric monoidal category.
One could substitute many other types of categories here, and get other systems of logic.

To tighten the connection between proof theory and category theory, we shall now
describe a recipe to get a logical theory from any closed symmetric monoidal category. For
this, we shall now use X ` Y to denote the set of proofs — or actually, equivalence classes of
proofs — leading from the assumption X to the conclusion Y . This is a change of viewpoint.
Previously we would write X ` Y when this set of proofs was nonempty; otherwise we would
write X 6 `Y . The advantage of treating X ` Y as a set is that this set is precisely what a
category theorist would call hom(X,Y): a homset in a category.

If we let X ` Y stand for a homset, an inference rule becomes a function from a product
of homsets to a single homset. For example, the cut rule

X ` Y Y ` Z
(◦)

X ` Z
becomes another way of talking about the composition function

◦X,Y,Z : hom(X,Y)× hom(Y, Z)→ hom(X,Z),

while the identity rule

(i)
X ` X

becomes another way of talking about the function

iX : 1→ hom(X,X)

that sends the single element of the set 1 to the identity morphism of X . (Note: the set 1
is a zero-fold product of homsets.)

Next, if we let inference rules be certain functions from products of homsets to homsets,
deductions become more complicated functions of the same sort built from these basic ones.
For example, this deduction:

(i)
X ⊗ I ` X ⊗ I

(r)
X ⊗ I ` X (i)

Y ` Y
(⊗)

(X ⊗ I)⊗ Y ` X ⊗ Y

specifies a function from 1 to hom((X ⊗ I) ⊗ Y,X ⊗ Y), built from the basic functions
indicated by the labels at each step. This deduction:

(i)
(X ⊗ I)⊗ Y ` (X ⊗ I)⊗ Y

(a)
(X ⊗ I)⊗ Y ` X ⊗ (I ⊗ Y)

(i)
I ⊗ Y ` I ⊗ Y

(r)
I ⊗ Y ` Y (i)

X ` X
(⊗)

X ⊗ (I ⊗ Y) ` X ⊗ Y
(◦)

(X ⊗ I)⊗ Y ` X ⊗ Y

gives another function from 1 to hom((X ⊗ I)⊗ Y,X ⊗ Y).

If we think of deductions as giving functions this way, the question arises when two such
functions are equal. In the example just mentioned, the triangle equation in the definition
of monoidal category (Definition 6):

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y)

X ⊗ Y

-aX,I,Y

HHHjrX⊗1Y

���� 1X⊗lY

says these two functions are equal. Indeed, the triangle equation is precisely the statement
that these two functions agree! (We leave this as an exercise for the reader.)

So: even though two deductions may look quite different, they may give the same function
from a product of homsets to a homset if we demand that these are homsets in a closed
symmetric monoidal category. This is why we think of X (Y as a set of equivalence classes
of proofs, rather than proofs: it is forced on us by our desire to use category theory. We
could get around this by using a 2-category with proofs as morphisms and ‘equivalences
between proofs’ as 2-morphisms [82]. This would lead us further to the right in the Periodic
Table (Table 1.3). But let us restrain ourselves and make some definitions formalizing what
we have done so far.

From now on we shall call the objects X,Y, . . . ‘propositions’, even though we have seen
they may represent more general resources. Also, purely for the sake of brevity, we use the
term ‘proof’ to mean ‘equivalence class of proofs’. The equivalence relation must be coarse
enough to make the equations in the following definitions hold:

Definition 18. A closed monoidal theory consists of the following:

• A collection of propositions. The collection must contain a proposition I, and if X
and Y are propositions, then so are X ⊗ Y and X (Y .

• For every pair of propositions X,Y, a set X ` Y of proofs leading from X to Y . If
f ∈ X ` Y, then we write f :X → Y .

• Certain functions, written as inference rules:

X ` X (i)
X ` Y Y ` Z

X ` Z (◦)

W ` X Y ` Z
W ⊗ Y ` X ⊗ Z (⊗)

W ` (X ⊗ Y)⊗ Z
W ` X ⊗ (Y ⊗ Z)

(a)

X ` I ⊗ Y
X ` Y (l)

X ` Y ⊗ I
X ` Y (r)

X ⊗ Y ` Z
Y ` X (Z

(c)

A double line means that the function is invertible. So, for example, for each triple
X,Y, Z we have a function

◦X,Y,Z : (X ` Y)× (Y ` Z) → (X ` Z)

and a bijection
cX,Y,Z : (X ⊗ Y ` Z) → (Y ` X (Z).

• Certain equations that must be obeyed by the inference rules. The inference rules (◦)
and (i) must obey equations describing associativity and the left and right unit laws.
Rule (⊗) must obey an equation saying it is a functor. Rules (a), (l), (r), and (c) must
obey equations saying they are natural transformations. Rules (a), (l), (r) and (⊗) must
also obey the triangle and pentagon equations.

Definition 19. A closed braided monoidal theory is a closed monoidal theory with this
additional inference rule:

W ` X ⊗ Y
W ` Y ⊗X (b)

We demand that this rule give a natural transformation satisfying the hexagon equations.

Definition 20. A closed symmetric monoidal theory is a closed braided monoidal
theory where the rule (b) is its own inverse.

These are just the usual definitions of various kinds of closed category — monoidal,
braided monoidal and symmetric monoidal — written in a new style. This new style lets us
build such categories from logical systems. To do this, we take the objects to be propositions
and the morphisms to be equivalence classes of proofs, where the equivalence relation is
generated by the equations listed in the definitions above.

However, the full advantages of this style only appear when we dig deeper into proof
theory, and generalize the expressions we have been considering:

X ` Y

to ‘sequents’ like this:
X1, . . . , Xn ` Y.

Loosely, we can think of such a sequent as meaning

X1 ⊗ · · · ⊗Xn ` Y.

The advantage of sequents is that they let us use inference rules that — except for the
cut rule and the identity rule — have the ‘subformula property’ mentioned near the end of
Section 1.3.1.

Formulated in terms of these inference rules, the logic of closed symmetric monoidal
categories goes by the name of ‘multiplicative intuitionistic linear logic’, or MILL for short
[49, 80]. There is a ‘cut elimination’ theorem for MILL, which says that with a suitable choice
of other inference rules, the cut rule becomes redundant: any proof that can be done with
it can be done without it. This is remarkable, since the cut rule corresponds to composition
of morphisms in a category. One consequence is that in the free symmetric monoidal closed
category on any set of objects, the set of morphisms between any two objects is finite. There
is also a decision procedure to tell when two morphisms are equal. For details, see the book
by Szabo [90] and Trimble’s thesis [91]. For an alternative viewpoint, see Kelly and Mac
Lane’s coherence theorem for closed symmetric monoidal categories [58], and the related
theorem for compact symmetric monoidal categories [59].

MILL is just one of many closely related systems of logic. Most include extra features,
but some subtract features. Here are just a few examples:

• Algebraic theories. In his famous thesis, Lawvere [66] defined an algebraic theory to be
a cartesian category where every object is an n-fold cartesian power X×· · ·×X (n ≥ 0)
of a specific object X . He showed how such categories regarded as logical theories of
a simple sort — the sort that had previously been studied in ‘universal algebra’ [24].
This work initiated the categorical approach to logic which we have been sketching here.
Crole’s book [33] gives a gentle introduction to algebraic theories as well as some richer
logical systems. More generally, we can think of any cartesian category as a generalized
algebraic theory.

• Intuitionistic linear logic (ILL). ILL supplements MILL with the operations familiar
from intuitionistic logic, as well as an operation ! turning any proposition (or resource)
X into an ‘indefinite stock of copies of X ’. Again there is a nice category-theoretic
interpretation. Bierman’s thesis [22] gives a good overview, including a proof of cut
elimination for ILL and a proof of the result, originally due to Girard, that intuitionistic
logic can be be embedded in ILL.

• Linear logic (LL). For full-fledged linear logic, the online review article by Di Cosmo
and Miller [36] is a good place to start. For more, try the original paper by Girard [44]
and the book by Troelstra [92]. Blute and Scott’s review article [23] serves as a Rosetta
Stone for linear logic and category theory, and so do the lectures notes by Schalk [80].

• Intuitionistic Logic (IL). Lambek and Scott’s classic book [64] is still an excellent intro-
duction to intuitionistic logic and cartesian closed categories. The online review article
by Moschovakis [74] contains many suggestions for further reading.

To conclude, let us say precisely what an ‘inference rule’ amounts to in the setup we have
described. We have said it gives a function from a product of homsets to a homset. While
true, this is not the last word on the subject. After all, instead of treating the propositions
appearing in an inference rule as fixed, we can treat them as variable. Then an inference
rule is really a ‘schema’ for getting new proofs from old. How do we formalize this idea?

First we must realize that X ` Y is not just a set: it is a set depending in a functorial
way on X and Y . As noted in Definition 13, there is a functor, the ‘hom functor’

hom:Cop × C → Set,

sending (X,Y) to the homset hom(X,Y) = X ` Y . To look like logicians, let us write this
functor as `.

Viewed in this light, most of our inference rules are natural transformations. For example,
rule (a) is a natural transformation between two functors from Cop×C3 to Set, namely the
functors

(W,X, Y, Z) 7→W ` (X ⊗ Y)⊗ Z)

and
(W,X, Y, Z) 7→ W ` X ⊗ (Y ⊗ Z).

This natural transformation turns any proof

f :W → (X ⊗ Y)⊗ Z)

into the proof
aX,Y,Zf :W → X ⊗ (Y ⊗ Z).

The fact that this transformation is natural means that it changes in a systematic way as
we vary W,X, Y and Z. The commuting square in the definition of natural transformation,
Definition 3, makes this precise.

Rules (l), (r), (b) and (c) give natural transformations in a very similar way. The (⊗)
rule gives a natural transformation between two functors from Cop × C × Cop × C to Set,
namely

(W,X, Y, Z) 7→ (W ` X) × (Y ` Z)

and
(W,X, Y, Z) 7→W ⊗ Y ` X ⊗ Z

This natural transformation sends any element (f, g) ∈ hom(W,X)× hom(Y, Z) to f ⊗ g.

The identity and cut rules are different: they do not give natural transformations, because
the top line of these rules has a different number of variables than the bottom line! Rule (i)
says that for each X ∈ C there is a function

iX : 1 → X ` X

picking out the identity morphism 1X . What would it mean for this to be natural in X?
Rule (◦) says that for each triple X,Y, Z ∈ C there is a function

◦: (X ` Y) × (Y ` Z) → X ` Z.

What would it mean for this to be natural in X,Y and Z? The answer to both questions
involves a generalization of natural transformations called ‘dinatural’ transformations [68].

As noted in Definition 3, a natural transformation α:F ⇒ G between two functors
F,G:C → D makes certain squares in D commute. If in fact C = Cop

1 ×C2, then we actually
obtain commuting cubes in D. Namely, the natural transformation α assigns to each object
(X1, X2) a morphism αX1,X2 such that for any morphism (f1:Y1 → X1, f2:X2 → Y2) in C,
the cube shown in Figure 1.1 commutes.

If C1 = C2, we can choose a single object X and a single morphism f :X → Y and use
it in both slots. As shown in Figure 1.2, there are then two paths from one corner of the
cube to the antipodal corner that only involve α for repeated arguments: that is, αX,X and
αY,Y , but not αX,Y or αY,X . These paths give a commuting hexagon.

This motivates the following:

Definition 21. A dinatural transformation α:F ⇒ G between functors F,G:Cop×C →
D assigns to every object X in C a morphism αX :F (X,X)→ G(X,X) in D such that for
every morphism f :X → Y in C, the hexagon in Figure 1.2 commutes.

In the case of the identity rule, this commuting hexagon says that the identity morphism
is a left and right unit for composition: see Figure 1.3. For the cut rule, this commuting
hexagon says that composition is associative: see Figure 1.4.

So, in general, the sort of logical theory we are discussing involves:

• A category C of propositions and proofs.

• A functor `:Cop×C → Set sending any pair of propositions to the set of proofs leading
from one to the other.

• A set of dinatural transformations describing inference rules.

G(Y1, X2) G(Y1, Y2)

F (Y1, X2) F (Y1, Y2)

G(X1, X2) G(X1, Y2)

F (X1, X2) F (X1, Y2)

-
G(1Y1

,f2)

?

G(f1,1Y2
)

?

F (f1,1X2
)

-
F (1Y1

,f2)�
�
�
�
���

αY1,X2
G(f1,1X2

)

?

?

F (f1,1Y2
)

�
�
�
�
���

αY1,Y2

G(1X1
,f2) -

-F (1X1
,f2)

�
�
�
�
���
αX1,X2

�
�
�
�
���
αX1,Y2

Fig. 1.1. A natural transformation between functors F,G:Cop
1 ×C2 → D gives a commuting cube

in D for any morphisms fi:Xi → Yi in Ci.

1.4 Computation

1.4.1 Background

In the 1930s, while Turing was developing what are now called ‘Turing machines’ as a model
for computation, Church and his student Kleene were developing a different model, called
the ‘lambda calculus’ [28, 60]. While a Turing machine can be seen as an idealized, simplified
model of computer hardware, the lambda calculus is more like a simple model of software.

By now the are many careful treatments of the lambda calculus in the literature, from
Barendregt’s magesterial tome [15] to the classic category-theoretic treatment of Lambek
and Scott [64], to Selinger’s elegant online notes [84]. So, we shall content ourselves with a
quick sketch.

Poetically speaking, the lambda calculus describes a universe where everything is a
program and everything is data — programs are data — and we can take any program and
apply it to any piece of data to get a new piece of data. More prosaically, everything is a
‘λ-term’, or ‘term’ for short. These are defined inductively:

• Variables: there is a countable set of ‘variables’, which are all terms.

• Application: if f and g are terms, we can ‘apply’ f to g and obtain a term (fg).

G(Y,X) G(Y, Y)

F (Y,X) F (Y, Y)

G(X,X) G(X,Y)

F (X,X) F (X,Y)

?

G(f,1Y)

?

F (f,1X)

-F (1Y ,f)
�
�
�
���αY,Y

-G(1X ,f)

�
�
�
���

αX,X

Fig. 1.2. A natural transformation between functors F,G:Cop ×C → D gives a commuting cube
in D for any morphism f :X → Y , and there are two paths around the cube that only involve α
for repeated arguments.

Y ` Y
1Y

1
•

1
•

X ` X
1X

X ` Y
f ◦ 1X = 1Y ◦ f

1
•

?

−◦f

?

11

-11
�
���

iY

-f◦−

�
���

iX

Fig. 1.3. Dinaturality of the (i) rule, where f :X → Y . Here • ∈ 1 denotes the one element of the
one-element set.

X ` Z
h(fg)

(X ` W) × (Y ` Z)
(g, h)

(X ` Y) × (Y ` Z)
(fg, h)

X ` Z
(hf)g

X ` Z
(hf)g = h(fg)

(X `W) × (W ` Z)
(g, hf)

?

1

?

(1,−◦f)

-(f◦−,1)

�
�
�
��3◦

-1

�
�
�
��3
◦

Fig. 1.4. Dinaturality of the cut rule, where f :W → Y, g:X →W, h:Y → Z.

• Lambda-abstraction: if x is a variable and t is a term, there is a term (λx.t).

We think of (λx.t) as the program that, given x as input, returns t as output. For example,
if x is a variable and f is a term, the term

(λx.(fx))

stands for the program that, given x as input, returns (fx) as output. But this is just a
fancy way of talking about f ! So, the lambda calculus has a rule saying

(λx.(fx)) = f.

But beware: this rule is not an equation in the usual mathematical sense. Instead, it is a
‘rewrite rule’: given the term on the left, we are allowed to rewrite it and get the term on
the right. There are also other rewrite rules. Starting with a term and repeatedly applying
rewrite rules is how we take a program and letting it run.

The lambda calculus is a very simple formalism. However, starting from just this, Church
and Kleene were able to build up Boolean logic, the natural numbers and their usual oper-
ations, and so on. For example, they defined ‘Church numerals’ as follows:

0 = (λx.(λy.y))
1 = (λx.(λy.(xy)))
2 = (λx.(λy.(x(xy))))
3 = (λx.(λy.(x(x(xy)))))

and so on. Thus, the Church numeral n is the program that ‘takes any program to the
nth power’: if you give it any program x as input, it returns the program that applies x
n times to whatever input y it receives. This makes it easy to define terms for addition,
multiplication, and so on, and recover their usual properties. With more cleverness, Church
and Kleene were able to write terms corresponding to more complicated functions. They
eventually came to believe that all computable functions f :N → N can be defined in the
lambda calculus.

Meanwhile, Gödel was developing another approach to computability, the theory of
‘recursive functions’. Around 1936, Kleene proved that the functions definable in the lambda
calculus were the same as Gödel’s recursive functions. In 1937 Turing described his ‘Turing
machines’, and used these to give yet another definition of computable functions. This
definition was later shown to agree with the other two. Thanks to this and other evidence,
it is now widely accepted that the lambda calculus can define any function that can be
computed by any systematic method. We say it is ‘Turing complete’.

It took a while for computer scientists to profit from Church and Kleene’s insights.
However, in 1965 Landin pointed out a powerful analogy between the lambda calculus
and the programming language ALGOL [65]. Landin’s paper was very influential. It led
to a renewed burst of work on the lambda calculus which continues to this day. By now,
a number of computer languages are explicitly based on ideas from the lambda calculus.
The most famous of these include Lisp, ML and Haskell. These languages, called ‘functional
programming languages’, are beloved by theoretical computer scientists for their conceptual
clarity. In fact, for many years, everyone majoring in computer science at MIT has been
required to take an introductory course that involves programming in Scheme, a dialect of
LISP. The cover of the textbook for this course [1] even has a big λ on the cover!

Languages of a different sort — ‘imperative programming languages’ — are more popular
among working programmers. Examples include FORTRAN, BASIC, and C. In imperative
programming, a program consists of statements that tell the computer what to do. In
functional programming, a program describes a function, and running it evaluates this
function.

Here we are mainly interested in ‘typed’ functional programming languages. These are
more regimented than the original lambda calculus. In the original lambda calculus, any
term can be applied to any other. In real-world programming, such an unstructured frame-
work easily leads to mistakes. It is better to treat data as coming in various ‘types’, such
as integers, floating-point numbers, alphanumeric strings, and so on. Then, we can demand
that each program only accept input of a specified type and produce output of a specified
type.

This idea is formalized by the ‘typed’ lambda calculus, where every term has a type. It
also corresponds to a basic idea in category theory, where every morphism is like a black
box with input and output wires of specified types:

f

X

Y

and it makes no sense to hook two black boxes together unless the output of the first has
the same type as the input of the next:

f

g

X

Y

Z

However, in the lambda calculus the basic operation is not composition, but application. As
we shall see, this fits nicely into the framework of closed categories.

Indeed, in 1980 Lambek found a way to interpret the typed lambda calculus in terms
of cartesian closed categories [63]. This idea led to a productive line of research blending
category theory and computer science. There is no way we can summarize the resulting
enormous body of work, though it constitutes a crucial aspect of the Rosetta Stone. Two
good starting points for further reading are the textbook by Crole [33] and the online review
article by Scott [78].

Our goal is more limited: we want to explain how morphisms in a closed symmetric
monoidal category can be seen as programs written in a very limited sort of programming
language. Unlike the lambda calculus, this language forbids duplication and deletion of
data except when expressly permitted. The reason is that while every object in a cartesian
category comes equipped with ‘duplication’ morphisms, a monoidal category typically lacks
these. As we saw in Section 1.2.3, a great example is the category Hilb with its usual tensor
product. So, in quantum computation we cannot freely duplicate or delete data. This makes
it interesting to envisage programming languages with this constraint built in.

Various flavors of ‘linear’ or ‘quantum’ lambda calculus have already been studied, for
example by Benton, Bierman de Paiva and Hyland [20], Dorca and van Tonder [94], and
Selinger [84]. In the sections that follow we shall take a slightly different tack and consider
a linear version, not of the lambda calculus, but of ‘combinatory logic’.

Combinatory logic was born in a 1924 paper by Schönfinkel [81], and extensively devel-
oped by Curry [34]. In retrospect, we can see it as a stripped-down version of the lambda

calculus that completely avoids the use of variables. Starting from a basic stock of terms
called ‘combinators’, the only way to build new ones is application: we can apply any term
a to any term b and get a term (ab).

To build a Turing-complete programming language in such a impoverished setup, we
need a sufficient stock of combinators. In fact, three are enough. The first, called I , acts
like the identity, since it comes with the rewrite rule:

(Ia) = a

for every term a. The second, called K, gives a constant function (Ka) for each term a. In
other words, it comes with a rewrite rule saying

(Ka)b = a.

for every term b. The third, called S, is the tricky one. It takes three terms, applies the first
to the third, and applies the result to the second applied to the third:

(((Sa)b)c) = ((ac)(bc)).

As an illustration of how these rules work, let us apply ((SK)K) to any term a:

(((SK)K)a) = ((Ka)(Ka)) = a.

This is the same as (Ia). So, we say ((SK)K) and I are ‘extensionally equivalent’. This
means that I is redundant! We included it just to make this point. Or, consider ((SI)I):

(((SI)I)a) = ((Ia)(Ia)) = (aa)

So, ((SI)I) takes any term a and applies it to itself. This is a very powerful feature, but it
leads to an infinite loop when we apply ((SI)I) to itself, since we get... nothing but ((SI)I))
applied to itself! We can avoid infinite loops in a ‘typed’ combinatory logic, but there is a
price to pay, since any Turing complete programming langage must allow nonterminating
programs. A good compromise is to use a typed system with extra features that permit
looping.

We can embed combinatory logic into the untyped lambda calculus by defining I,K,
and S as follows:

I = (λx.x)
K = (λx.(λy.x))
S = (λx.(λy.(λz.((xz)(yz))))).

The rewrite rules for these combinators then follow from rewrite rules in the lambda calculus.
The more suprising fact is that any function computable using the lambda calculus can also
be computed using just I,K and S!

We can make this a bit more precise as follows. All the variables in the lambda calculus
formulas for I,K, and S are dummy variables. More generally, in the lambda calculus
we define a ‘combinator’ to be a term in which all variables are dummy variables. Two

combinators c and d are ‘extensionally equivalent’ if they give the same result on any input:
that is, for any term t, we can apply lambda calculus rewrite rules to (ct) and (dt) in a
way that leads to the same term. It is then a theorem that any combinator in the lambda
calculus is extensionally equivalent to one built from I,K, and S using just application.

In the sections to come, we shall describe a linear version of typed combinatory logic,
suitable for closed symmetric monoidal categories. It is a bit irksome to avoid duplication
or deletion of data in the lambda calculus, since we need to count how many times each
variable gets used. It is easier in combinatory logic: we just need to avoid combinators that
duplicate or delete data. For example, the combinator I is okay:

(Ia) = a.

The combinator K is not, since it deletes b here:

((Ka)b) = a.

The combinator S is not okay either, since it duplicates c here:

(((Sa)b)c) = ((ac)(bc)).

Luckily, we can read off a list of acceptable combinators directly from the definition of
‘closed symmetric monoidal category’. The resulting system is not very powerful — but it
will let us show how all the key concepts from previous sections have analogues in the world
of computation.

1.4.2 Categories in Functional Programming

In functional programming, the fundamental operation is application. Mathematicians apply
a function f to an argument x and write the result as f(x); in functional programming we
apply a program f to a piece of data x and write the result as (f x).

To actually evaluate expressions like (f x), we need ‘rewrite rules’. For example, sup-
pose we have programs double and increment, which compute the obvious functions from
integers to integers. Then we might have rewrite rules

(increment 3) = 4

and

(double 4) = 8

We can simplify more complex expressions by repeatedly using these rules:

(double (increment 3)) = (double 4) = 8

We can handle functions that take more than one argument using a trick discussed in
Section 1.2.6: ‘currying’. This turns a function of several arguments into a function that
takes the first argument and returns a function of the remaining arguments. So, for example,
we could have a program plus that adds integers as follows:

((plus 3) 5) = 8

where (plus 3) stands for a program that adds 3 to its input.

With currying, we can define increment and double in terms of addition and multipli-
cation. In other words, we can have rewrite rules

increment = (plus 1)

double = (times 2)

Then, for example, we have

(double (increment 3))

= (double ((plus 1) 3))

= ((times 2) ((plus 1) 3))

= ((times 2) 4)

= 8

So far we have focused on programs that take integers as input. In reality, programming
involves many other kinds of data. For example, suppose we are writing a program that also
involves days of the week. It would not make sense to write (double Tuesday), because
Tuesday is not a number. We might choose to represent Tuesday by a number in some
program, but doubling that number doesn’t have a good interpretation: is the first day of
the week Sunday or Monday? Is the week indexed from zero or one? These are arbitrary
choices that affect the result, so the expression (double Tuesday) has no well-defined
meaning.

We can avoid ill-defined expressions of this sort by ‘type checking.’ To do this, every
piece of data should have a ‘type,’ and our type checker (usually part of a compiler) should
complain if we try to apply a function to a piece of data of the wrong type. For example,
the number 248 is an integer, while Tueday is a day of the week; in programming we denote
this by something like:

248:integer

Tuesday:day

(This notation is used in Ada, Pascal and some other languages. Other notations are also
in widespread use.)

Given some types, we can build up other types in a variety of ways. For example, given
types X and Y, there is a new type for functions that take data of type X as input and return
data of type Y as output. This sort of type is called a function type. In the computer
science literature, it would be denoted X -> Y. However, to be consistent with the rest of

our paper, we will write this function type as X (Y. The functions increment and double

map integers to integers, so we write

increment:integer (integer

double:integer (integer

Addition and multiplication both have two inputs and one output:

plus:integer ((integer (integer)

times:integer ((integer (integer)

(The parentheses here don’t stand for application; they are used for grouping.)

In fact, everything we have done so far can be formalized in terms of a closed monoidal
category. Given such a category, we can call its objects data types. We can call a morphism
f :X → Y a program that takes data of type X as input and produces data of type Y as
output. The simplest sort of program is a piece of data: we call x: I → X is a datum of
type X , and indicate this by writing x:X.

So, when we wrote Tuesday:day above, we can think of this as another way of saying

Tuesday: I → day.

This funny-looking morphism has an easy interpretation in the category Set: here I would
be the one-element set, ‘day’ would be the 7-element set consisting of days of the week,
and ‘Tuesday’ would be the function picking out this particular day of the week. But, we
could equally well be working in some category of data types and programs, and that is the
interpretation we are trying to stress here.

We explained in Section 1.2.6 that in a closed monoidal category, any morphism f :X →
Y has a ‘name’:

pfq: I → X (Y.

Conversely, any morphism g: I → X (Y is the name of a unique morphism f :X → Y .
This makes precise the idea that ‘programs are data’. Namely: any program that takes data
of type X as input and outputs data of type Y can be reinterpreted as a datum of type X (
Y, and conversely.

In functional programming, we use this fact to systematically work with the names of
morphisms rather than the morphisms themselves. This is why ‘application’ becomes more
fundamental than ‘composition’. For example, suppose we have a program:

f

X

Y

and this datum x of type X:

x

X

In category theory, we can feed the datum x into the program by composing them:

x

f

X

Y

In functional programming, we instead ‘apply’ the name of f to x, as follows:

x f

X
X

Y

Y

However, the results agree:

x f

X
X

Y

Y

=

x

f

X

Y

The functional programming approach looks awkward when drawn using string diagrams,
but simple when described on its own terms, especially if we write something short for pfq,
say g. Then we are simply applying g to x and obtaining (g x). In the language of category
theory, this amounts to using a natural transformation called application:

appX,Y : hom(1, X (Y)× hom(1, X)→ hom(1, Y)
(pfq, x) 7→ fx

which can be defined in any closed monoidal category.

Computer scientists call ways of getting new types from old ‘type constructors’. From
the category-theoretic viewpoint these correspond to functors (though in practice, often
just their value on objects is given). For example, we have already seen that for any pair of
types X and Y there is a function type X (Y. In category theory, this corresponds to the
internal hom functor

(:Cop × C → C.

But there is also another functor inherent in the definition of ‘closed monoidal category’,
the tensor product:

⊗:C × C → C.

This gives another type constructor: for any types X and Y there is a product type, denoted
X ⊗ Y.

Product types give another way to deal with programs that take more than one input.
We have already mentioned a program

plus:integer ((integer (integer)

With the help of product types, we could also have a program

+: (integer ⊗ integer) (integer

Even more importantly, product types let us deal with programs that produce more than
one output. So, for example, we might have a program that takes an integer and duplicates
it:

duplicate: integer ((integer ⊗ integer)

Indeed, we would necessarily have such a program in any cartesian closed category — but
not necessarily in quantum computation [27, 96].

In computer science, ‘polymorphism’ refers to the ability of certain programs to accept
data, not just of a single fixed type, but of a variable type. The definition of closed monoidal
category leads us naturally to polymorphism. For example, given data x:X and y:Y, we
would like a program that combines them into an ordered pair: a datum x ⊗ y: X ⊗ Y.
But, it would be tiresome to use a separate program to do this for each choice of types X

and Y. So, we will use just one program: a ‘polymorphic combinator’. We call it ⊗, and
write:

⊗:(X ((Y ((X ⊗ Y))

Here X and Y are not fixed types, but variables standing for arbitrary types. To define how
⊗ behaves, we use the following rewrite rule:

((⊗ x) y) = x ⊗ y

All this seems reasonable, but how was it forced upon us by the the definition of ‘closed
monoidal category’? To answer this, we need to think about dinatural transformations. In
Section 1.3.3 we saw that in logic, dinatural transformations give us inference schemas. In
computation, they give us polymorphic combinators!

For example, ⊗ comes from a dinatural transformation which can be defined in any
closed monoidal category. To see how this works, it will be slightly prettier if we henceforth
switch to using left closed monoidal categories, where currying goes like this:

cX,Y,Z : hom(X ⊗ Y, Z)
∼→ hom(X,Y (Z).

With this convention, if we curry the identity

1X⊗Y :X ⊗ Y → X ⊗ Y

we get a morphism called coevaluation:

coevX,Y :X → (Y ((X ⊗ Y)).

Currying once more, we get a morphism

⊗X,Y : I → (X ((Y ((X ⊗ Y))).

We urge the reader to check that this extends to a dinatural transformation! Translating
into the language of computer science, this gives the polymorphic combinator

⊗:(X ((Y ((X ⊗ Y))

We can continue along these lines, transcribing all the dinatural transformations inherent
in the definition of ‘closed monoidal category’ into polymorphic combinators. We can also
work out rewrite rules for these. For example, the dinatural transformation for composition
gives us this:

compose:(Y (Z) (((X (Y) ((X (Z))

(((compose g) f) x) = (g (f x))

while the one for identity morphisms gives us this:

id:X (X

(id x) = x

We should also have a polymorphic combinator called curry:

curry:((X ⊗ Y) (Z) ((X ((Y (Z))

(((curry f) x) y) = (f (x ⊗ y))

Since currying is a bijection, this should have an inverse, uncurry:

uncurry:(X ((Y (Z)) (((X ⊗ Y) (Z)

((uncurry f) (x ⊗ y)) = ((f x) y)

This lets us start with a program

plus:integer ((integer (integer)

and define a new program

+: (integer ⊗ integer) (integer

using the rewrite rule

+ = (uncurry plus)

Then we have

(+ (1 ⊗ 3))

= ((uncurry plus) (1 ⊗ 3))

= ((plus 1) 3)

= 4

The associator also gives a polymorphic combinator:

assoc:((X ⊗ Y) ⊗ Z) ((X ⊗ (Y ⊗ Z))

(assoc (x ⊗ y) ⊗ z)) = x ⊗ (y ⊗ z)

And, since the associator is invertible, we should also have

unassoc:(X ⊗ (Y ⊗ Z)) (((X ⊗ Y) ⊗ Z)

(assoc x ⊗ (y ⊗ z)) = (x ⊗ y) ⊗ z

Furthermore, corresponding to the unit object in a monoidal category, we should have a type
I called the unit type. This type comes with a datum unit:I, and we have combinators
corresponding to the right and left unit laws, along with the obvious rewrite rules:

left:(I ⊗ X) (X

(left (unit ⊗ x)) = x

right:(X ⊗ I) (X

(right (X ⊗ unit)) = x

These too need inverses.

So far we have not mentioned the braiding. But at this point, we hope the reader sees
the pattern and is ready for a more formal treatment.

1.4.3 Combinator Calculi from Categories

In Section 1.3.3 we translated the concept of ‘closed symmetric monoidal category’ into the
language of logic. We obtained a system of logic that works in any such category. Like pidgin
English, this system is not very expressive. Its only virtue is that being so rudimentary, it
works in a vast variety of situations: not just ‘classical’ ones, but also intuitionistic, linear
and quantum ones — and even purely topological ones, like the category nCob.

A similar translation into the language of computer science will give us a rudimentary
programming language. This will let us see any morphism in any closed symmetric monoidal
category as a kind of ‘program’.

We have already sketched how this should work. Suppose C is a closed symmetric
monoidal category. Then any object X ∈ C gives a type X. Any morphism x: I → X gives a
datum of type X. All the functors inherent in the definition of ‘symmetric closed monoidal
category’ give type constructors, and all the dinatural transformations give polymorphic
combinators. Finally, all the equations between morphisms in C give rewrite rules.

We begin by doing this translation for just a closed monoidal category. A datum will be
an equivalence class of ‘terms’:

Definition 22. A closed monoidal combinator calculus consists of:

• a collection of types closed under the following type constructors:

– I is a type;

– if X and Y are types, then X (Y is a type;

– if X and Y are types, then X ⊗ Y is a type.

• a collection of terms, each of some type, such that:

– if X and Y are types and f:X (Y and x:X are terms, then (f x):Y is a term;

– if X and Y are types and x:X and y:Y are terms, then x ⊗ y:X ⊗ Y is a term;

– unit:I is a term.

– if X, Y, and Z are types, then the following polymorphic combinators give terms:

· id:X (X

· compose:(Y (Z) (((X (Y) ((X (Z))

· curry:((X ⊗ Y) (Z) ((X ((Y (Z))

· uncurry:((X (Y) (Z) (((X ⊗ Y) (Z)

· left:(I ⊗ X) (X

· unleft:X ((I ⊗ X)

· right:(X ⊗ I) (X

· unright:X ((X ⊗ I)

• a collection of type-preserving rewrite rules, including:

– (id t) = t

– (((compose t) u) v) = (t (u v))

– (((curry t) u) v) = (t (u ⊗ v))

– ((uncurry t) (u ⊗ v)) = ((t u) v)

– (left (unit ⊗ t)) = t

– (unleft t) = unit ⊗ t

– (right (t ⊗ unit)) = t

– (unright t) = t ⊗ unit

where the variables t, u, v are understood to refer to the subterms in those positions.

We can freely pass back and forth between closed monoidal categories and closed
monoidal combinator calculi. However, the details deserve a little explanation, since mor-
phisms come from equivalence classes of terms.

First, given a closed monoidal category C, there is a way to build a closed monoidal
combinator calculus. The types in this calculus are the objects of C and all expressions
generated from these using the type constructors(and ⊗. When X is an object of C, the
terms x:X are the morphisms x: I → X . Terms of other types are generated following the
rules listed above. In addition to the rewrite rules listed above, we need rules that say how
application and tensoring work in C. Given morphisms x: I → X and g: I → X (Y in C,
we can apply g to x and get a morphism y: I → Y . These give terms x:X, g:X (Y, and
y:Y, and we include a rewrite rule:

(g x) = y

Similarly, given morphisms x: I → X and y: I → Y , tensoring gives an object Z = X ⊗ Y
and a morphism z: I → Z. These give terms x:X, y:Y, and z:Z, and we include a rewrite
rule:

x ⊗ y = z

Second, from a closed monoidal combinator calculus, there is a way to build a closed
monoidal category C. An object X ∈ C is just a type X. A morphism of the form x:X → Y
is an equivalence class of terms of type X (Y. The equivalence relation is generated as
follows:

• if the terms x:X and x′:X are related by a rewrite rule, they are equivalent;

• if the terms x:X and x′:X are equivalent and the terms f:X (Y and f′:X (Y are
equivalent, then (f x):Y and (f′ x′):Y are equivalent;

• if the terms x:X and x′:X are equivalent and the terms y:Y and y′:Y are equivalent,
then x ⊗ y: X ⊗ Y and x′ ⊗ y′: X ⊗ Y are equivalent;

• if terms are ‘extensionally equivalent’, they are equivalent. Here we say f:X (Y and
f′:X (Y are extensionally equivalent if (f x):Y and (f′ x):Y are equivalent for
all terms x:X.

We define composition of morphisms using compose, define identity morphisms using id,
and make C into a closed monoidal category using the other features of the calculus: the
term constructors ⊗ and (, and the various polymorphic combinators and rewrite rules.

Next we include the braiding. For this, we follow an approach going back to Schönfinkel.
Namely, we use the braiding to construct a natural transformation

((X ⊗ Y)(Z)→ ((Y ⊗X)(Z)

which in turn gives a natural transformation

(X ((Y (Z))→ (Y ((X (Z))

which we can curry to give a dinatural transformation:

braidX,Y,Z : I → (X ((Y (Z))((Y ((X (Z))

This gives a polymorphic combinator which Schönfinkel called C. We instead call it braid:

braid:(X ((Y (Z)) ((Y ((X (Z))

At this point, a subtlety arises. The obvious rewrite rule for this combinator is

(((braid f) x) y) = ((f y) x)

But, this is only suited to symmetric monoidal categories, since the terms (braid (braid

f)) and f are equivalent in the sense described above. To describe nonsymmetric braided
monoidal categories using combinatory logic, it seems we would need to specify rewrite rules
in a way that depends explicitly on the desired braiding. To keep things simple, we limit
ourselves to the symmetric case:

Definition 23. A closed monoidal combinator calculus is symmetric if whenever X, Y, and
Z are types, then

braid:(X ((Y (Z)) ((Y ((X (Z))

is a term, and there is a rewrite rule:

(((braid f) x) y) = ((f y) x)

Such calculi give closed symmetric monoidal categories and vice versa. For more de-
tails, see the work of Abramsky, Haghverdi and Scott [5] on ‘linear combinatory algebra’,
and Bierman’s reformulation of intuitionistic linear logic in terms of a ‘linear combinator
calculus’ [22]. Our setup is just a piece of what they have done.

1.5 Conclusions

In this paper we sketched how category theory can serve to clarify the analogies between
physics, topology, logic and computation. Each field has its own concept of ‘thing’ (object)
and ‘process’ (morphism) — and these things and processes are organized into categories
that share many common features. To keep our task manageable, we focused on those fea-
tures that are present in every closed symmetric monoidal category. Table 1.4, an expanded
version of the Rosetta Stone, shows some of the analogies we found.

Category Theory Physics Topology Logic Computation

object X Hilbert space X manifold X proposition X data type X

morphism operator cobordism proof program
f :X → Y f :X → Y f :X → Y f :X → Y f: X -> Y

tensor product Hilbert space disjoint union conjunction product
of objects: of joint system: of manifolds: of propositions: of data types:
X ⊗ Y X ⊗ Y X ⊗ Y X ⊗ Y X ⊗ Y

tensor product of parallel disjoint union of proofs carried out programs executing
morphisms: f ⊗ g processes: f ⊗ g cobordisms: f ⊗ g in parallel: f ⊗ g in parallel: f ⊗ g

internal hom: Hilbert space of disjoint union of conditional function type:
X (Y ‘anti-X and Y ’: orientation-reversed proposition: X -> Y

X∗ ⊗ Y X and Y : X∗ ⊗ Y X (Y

Table 1.4. The Rosetta Stone (larger version)

However, we only scratched the surface! There is much more to say about categories
equipped with extra structure, and how we can use them to strengthen the ties between
physics, topology, logic and computation — not to mention what happens when we go from
categories to n-categories. But the real fun starts when we exploit these analogies to come
up with new ideas and surprising connections. Here is an example.

In the late 1980s, Witten [95] realized that string theory was deeply connected to a 3d
topological quantum field theory and thus the theory of knots and tangles [62]. This led
to a huge explosion of work, which was ultimately distilled into a beautiful body of results
focused on a certain class of compact braided monoidal categories called ‘modular tensor
categories’ [14, 93].

All this might seem of purely theoretical interest, were it not for the fact that supercon-
ducting thin films in magnetic fields seem to display an effect — the ‘fractional quantum
Hall effect’ — that can be nicely modelled with the help of such categories [88, 89]. In a
nutshell, the idea is that excitations of these films can act like particles, called ‘anyons’.
When two anyons trade places, the result depends on how they go about it:

6=

So, collections of anyons are described by objects in a braided monoidal category! The
details depend on things like the strength of the magnetic field; the range of possibilities
can be worked out with the help of modular tensor categories [73, 77].

So far this is all about physics and topology. Computation entered the game around
2000, when Freedman, Kitaev, Larsen and Wang [40] showed that certain systems of anyons
could function as ‘universal quantum computers’. This means that, in principle, arbitrary
computations can be carried out by moving anyons around. Doing this in practice will be far
from easy. However, Microsoft has set up a research unit called Project Q attempting to do
just this. After all, a working quantum computer could have huge practical consequences.

But regardless of whether topological quantum computation ever becomes practical, the
implications are marvelous. A simple diagram like this:

can now be seen as a quantum process, a tangle, a computation — or an abstract morphism
in any braided monoidal category! This is just the sort of thing one would hope for in a
general science of systems and processes.

Acknowledgements

We owe a lot to participants of the seminar at UCR where some of this material was first
presented: especially David Ellerman, Larry Harper, Tom Payne — and Derek Wise, who
took notes [10]. MS would like to thank Google for letting him devote 20% of his time to this
research, and Ken Shirriff for helpful corrections. Finally, this paper was vastly improved
by comments at the n-Category Café, especially from Andrej Bauer, Tim Chevalier, Derek
Elkins, Matt Hellige, Robin Houston, Todd Trimble, and Dave Tweed.

References

1. H. Abelson, G. J. Sussman and J. Sussman, Structure and Interpretation of Computer Pro-
grams, MIT Press, 1996. Available at http://mitpress.mit.edu/sicp/ .

2. S. Abramsky, Abstract scalars, loops, and free traced and strongly compact closed categories,
in Proceedings of CALCO 2005, Lecture Notes in Computer Science 3629, Springer, Berlin,
2005, 1–31. Also available at
http://web.comlab.ox.ac.uk/oucl/work/samson.abramsky/calco05.pdf .

3. S. Abramsky and B. Coecke, A categorical semantics of quantum protocols, available at
arXiv:quant-ph/0402130 .

http://mitpress.mit.edu/sicp/
http://web.comlab.ox.ac.uk/oucl/work/samson.abramsky/calco05.pdf
http://arxiv.org/abs/quant-ph/0402130

4. S. Abramsky and R. Duncan, A categorical quantum logic, to appear in Mathematical Struc-
tures in Computer Science, 2006. Also available as arXiv:quant-ph/0512114 .

5. S. Abramsky, E. Haghverdi and P. Scott, Geometry of interaction and linear combinatory
algebras, Math. Struct. Comp. Sci. 12 (2002), 625–665. Also available at
http://citeseer.ist.psu.edu/491623.html .

6. M. F. Atiyah, Topological quantum field theories, Publ. Math. IHES Paris 68 (1989), 175–186.
M. F. Atiyah, The Geometry and Physics of Knots, Cambridge U. Press, Cambridge, 1990.

7. J. Baez, An introduction to spin foam models of quantum gravity and BF theory, in Geometry
and Quantum Physics, eds. H. Gausterer and H. Grosse, Springer, Berlin, 2000, pp. 25–93.
Also available at arXiv:gr-qc/9905087.

8. J. Baez, Higher-dimensional algebra and Planck-scale physics, in Physics Meets Philosophy at
the Planck Length, eds. C. Callender and N. Huggett, Cambridge U. Press, Cambridge, 2001,
pp. 177–195. Also available as arXiv:gr-qc/9902017 .

9. J. Baez, Quantum quandaries: a category-theoretic perspective, in Structural Foundations of
Quantum Gravity, eds. S. French, D. Rickles and J. Saatsi, Oxford U. Press, Oxford, 2006, pp.
240-265. Also available as arXiv:quant-ph/0404040 .

10. J. Baez, Classical versus quantum computation. Seminar notes by D. Wise available at
http://math.ucr.edu/home/baez/qg-fall2006/ and
http://math.ucr.edu/home/baez/qg-winter2007 .

11. J. Baez and J. Dolan, Higher-dimensional algebra and topological quantum field theory, Jour.
Math. Phys. 36 (1995), 6073–6105. Also available as arXiv:q-alg/9503002.

12. J. Baez and L. Langford, Higher-dimensional algebra IV: 2-tangles, Adv. Math. 180 (2003),
705–764.

13. J. Baez and A. Lauda, A prehistory of n-categorical physics, to appear in proceedings of
Deep Beauty: Mathematical Innovation and the Search for an Underlying Intelligibility of
the Quantum World, Princeton, October 3, 2007, ed. Hans Halvorson. Also available at
http://math.ucr.edu/home/baez/history.pdf .

14. B. Bakalov and A. Kirillov, Jr., Lectures on Tensor Categories and Modular Functors, Amer-
ican Mathematical Society, Providence, Rhode Island, 2001. Preliminary version available at
http://www.math.sunysb.edu/∼kirillov/tensor/tensor.html .

15. H. Barendregt, The Lambda Calculus, its Syntax and Semantics, North–Holland, Amsterdam,
1984.

16. M. Barr and C. Wells, Toposes, Triples and Theories, Springer Verlag, Berlin, 1983. Revised
and corrected version available at http://www.cwru.edu/artsci/math/wells/pub/ttt.html .

17. J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics 1 (1964), 195–200.
18. J. L. Bell, The Development of Categorical Logic, available at

http://publish.uwo.ca/∼jbell/catlogprime.pdf .
19. C. H. Bennett, P. G’acs, M. Li, P. Vit’anyi, and W. Zurek, Information distance, IEEE Trans.

Inform. Theory, 44 (1998), 1407–1423. Also available at
http://citeseer.ist.psu.edu/166286.html .

20. N. Benton, G. M. Bierman, V. de Paiva and J. M. E. Hyland, Linear lambda-calculus and
categorical models revisited, in Computer Science Logic (CSL’92), Selected Papers, Lec-
ture Notes in Computer Science 702, Springer, Berlin, 1992, pp. 61–84. Also available at
http://citeseer.ist.psu.edu/benton92linear.html

21. N. Benton, G. Bierman, V. de Paiva and M. Hyland, Term Assignment for Intuitionistic Linear
Logic, Technical Report 262, University of Cambridge Computer Laboratory, August 1992. Also
available at http://citeseer.ist.psu.edu/1273.html .

22. G. Bierman, On Intuitionistic Linear Logic, PhD Thesis, Cambridge University. Available at
http://research.microsoft.com/∼gmb/Papers/thesis.pdf .

http://arxiv.org/abs/quant-ph/0512114
http://citeseer.ist.psu.edu/491623.html
http://arxiv.org/abs/gr-qc/9905087
http://arxiv.org/abs/gr-qc/9902017
http://arxiv.org/abs/quant-ph/0404040
http://math.ucr.edu/home/baez/qg-fall2006/index.html#computation
http://math.ucr.edu/home/baez/qg-winter2007/index.html#computation
http://arxiv.org/abs/q-alg/9503002
http://math.ucr.edu/home/baez/history.pdf
http://www.math.sunysb.edu/~kirillov/tensor/tensor.html
http://www.cwru.edu/artsci/math/wells/pub/ttt.html
http://publish.uwo.ca/~jbell/catlogprime.pdf
http://citeseer.ist.psu.edu/166286.html
http://citeseer.ist.psu.edu/benton92linear.html
http://citeseer.ist.psu.edu/1273.html
http://research.microsoft.com/~gmb/Papers/thesis.pdf

23. R. Blute and P. Scott, Category theory for linear logicians, in Linear Logic in Computer Science,
eds. T. Ehrhard, J.-Y. Girard, P. Ruet, P. Scott, Cambridge U. Press, Cambridge, 2004, pp.
3–64. Also available as http://www.site.uottawa.ca/∼phil/papers/catsurv.web.pdf .

24. S. N. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer, Berlin, 1981.
Also available as http://www.math.uwaterloo.ca/∼snburris/htdocs/ualg.html .

25. V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cam-
bridge, 1995.

26. E. Cheng and A. Lauda, Higher-Dimensional Categories: an Illustrated Guidebook. Available
at http://www.dpmms.cam.ac.uk/∼elgc2/guidebook/ .

27. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge
U. Press, Cambridge, 2000.

28. A. Church, An unsolvable problem of elementary number theory, Amer. Jour. Math. 58 (1936),
345–363.

29. B. Coecke, De-linearizing linearity: projective quantum axiomatics from strong compact clo-
sure, Proceedings of the 3rd International Workshop on Quantum Programming Languages
(QPL 2005), Elsevier, 2007, pp. 49–72. Also available as arXiv:quant-ph/0506134 .

30. B. Coecke, Kindergarten quantum mechanics, to appear in Proceedings of QTRF-III. Also
available as arXiv:quant-ph/0510032 .

31. B. Coecke and E. O. Paquette, POVMs and Naimark’s theorem without sums, to appear in
Proceedings of the 4th International Workshop on Quantum Programming Languages. Also
available as arXiv:quant-ph/0608072 .

32. B. Coecke and D. Pavlovic, Quantum measurements without sums, to appear in The Mathe-
matics of Quantum Computation and Technology, eds. Chen, Kauffman and Lomonaco, Taylor
and Francis. Also available as arXiv:quant-ph/0608035 .

33. R. L. Crole, Categories for Types, Cambridge U. Press, Cambridge, 1993.
34. H. B. Curry and R. Feys, Combinatory Logic Vol. I, North–Holland, Amsterdam, 1958.
35. P. Cvitanovic, Group Theory, Princeton U. Press, Princeton, 2003. Available at

http://www.nbi.dk/GroupTheory/ .
36. R. Di Cosmo and D. Miller, Linear logic, Stanford Encyclopedia of Philosophy, available at

http://plato.stanford.edu/entries/logic-linear/ .
37. M. Dorca and A. van Tonder, Quantum computation, categorical semantics and linear logic,

available as arXiv:quant-ph/0312174 .
38. S. Eilenberg and G. M. Kelly, Closed categories, in Proceedings of the Conference on Categorical

Algebra (La Jolla, 1965), Springer, Berlin, 1966, pp. 421–562.
39. S. Eilenberg and S. Mac Lane, General theory of natural equivalences, Trans. Amer. Math.

Soc. 58 (1945), 231–294.
40. M. Freedman, A. Kitaev, M. Larsen and Z. Wang, Topological quantum computation, available

as arXiv:quant-ph/0101025 .
M. Freedman, A. Kitaev and Z. Wang, Simulation of topological field theories by quantum com-
puters, Comm. Math. Phys. 227 (2002), 587–603. Also available as arXiv:quant-ph/0001071 .
M. Freedman, A. Kitaev and Z. Wang, A modular functor which is universal for
quantum computation, Comm. Math. Phys. 227 (2002), 605–622. Also available as
arXiv:quant-ph/0001108 .

41. P. Freyd and D. Yetter, Braided compact monoidal categories with applications to low dimen-
sional topology, Adv. Math. 77 (1989), 156–182.

42. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-oriented Software, Addison–Wesley, New York, 1994.

43. G. Gentzen, Collected Papers of Gerhard Gentzen, ed. M. E. Szabo, North–Holland, Amster-
dam, 1969.

http://www.site.uottawa.ca/~phil/papers/catsurv.web.pdf
http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
http://www.dpmms.cam.ac.uk/~elgc2/guidebook/
http://arxiv.org/abs/quant-ph/0506134
http://arxiv.org/abs/quant-ph/0510032
http://arxiv.org/abs/quant-ph/0608072
http://arxiv.org/abs/quant-ph/0608035
http://www.nbi.dk/GroupTheory/
http://plato.stanford.edu/entries/logic-linear/
http://arxiv.org/abs/quant-ph/0312174
http://arxiv.org/abs/quant-ph/0101025
http://arxiv.org/abs/quant-ph/0001071
http://arxiv.org/abs/quant-ph/0001108

44. J.-Y. Girard, Linear logic, Theor. Comp. Sci. 50 (1987), 1–102. Also available at
http://iml.univ-mrs.fr/ girard/linear.pdf .

45. J.-Y. Girard, Y. Lafont and P. Taylor, Proofs and Types, Cambridge U. Press, Cambridge,
1990. Also available at http://www.monad.me.uk/stable/Proofs%2BTypes.html .

46. K. Gödel, Zur intuitionistischen Arithmetik und Zahlentheorie, Ergebnisse eines mathematis-
chen Kolloquiums 4 (1933), 34–38.

47. R. Goldblatt, Topoi: the Categorial Analysis of Logic, North–Holland, New York, 1984. Also
available at http://cdl.library.cornell.edu/cgi-bin/cul.math/docviewer?did=Gold010 .

48. D. Gottesman and I. L. Chuang, Quantum teleportation is a universal computational primitive,
Nature 402 (1999), 390–393. Also available as arXiv:quant-ph/9908010 .

49. M. Hasegawa, Logical predicates for intuitionistic linear type theories, Typed Lambda
Calculi and Applications: 4th International Conference, TLCA ’99, ed. J.-Y. Girard,
Lecture Notes in Computer Science 1581, Springer, Berlin, 1999. Also available at
http://citeseer.ist.psu.edu/187161.html .

50. A. Heyting, ed., L. E. J. Brouwer: Collected Works 1: Philosophy and Foundations of Mathe-
matics, Elsevier, Amsterdam, 1975.

51. W. A. Howard, The formulae-as-types notion of constructions, in To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, eds. J. P. Seldin and J. R. Hindley,
Academic Press, New York, 1980, pp. 479–490.

52. A. Joyal and R. Street, The geometry of tensor calculus I, Adv. Math. 88 (1991), 55–113.
A. Joyal and R. Street, The geometry of tensor calculus II. Available at
http://www.math.mq.edu.au/ street/GTCII.pdf .

53. A. Joyal and R. Street, Braided monoidal categories, Macquarie Math Reports 860081 (1986).
Available at http://rutherglen.ics.mq.edu.au/∼street/JS86.pdf .
A. Joyal and R. Street, Braided tensor categories, Adv. Math. 102 (1993), 20–78.

54. D. Kaiser, Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics,
U. Chicago Press, Chicago, 2005.

55. C. Kassel, Quantum Groups, Springer, Berlin, 1995.
56. L. H. Kauffman, Knots and Physics, World Scientific, Singapore, 1991.
57. L. H. Kauffman and S. Lins, Temperley–Lieb Recoupling Theory and Invariants of 3-Manifolds,

Princeton U. Press, Princeton, 1994.
58. G. M. Kelly and S. Mac Lane, Coherence in closed categories, Jour. Pure Appl. Alg. 1 (1971),

97–140 and 219.
59. G. M. Kelly and M. L. Laplaza, Coherence for compact closed categories, Jour. Pure Appl.

Alg. 19 (1980), 193–213.
60. S. Kleene, λ-definability and recursiveness, Duke Math. Jour. 2 (1936), 340–353.
61. J. Kock, Frobenius Algebras and 2D Topological Quantum Field Theories, London Mathemat-

ical Society Student Texts 59, Cambridge U. Press, Cambridge, 2004.
62. T. Kohno, ed., New Developments in the Theory of Knots, World Scientific, Singapore, 1990.
63. J. Lambek, From λ-calculus to cartesian closed categories, in To H. B. Curry: Essays on Com-

binatory Logic, Lambda Calculus and Formalism, eds. J. P. Seldin and J. R. Hindley, Academic
Press, New York, 1980, pp. 375–402.

64. J. Lambek and P. J. Scott, Introduction to Higher-order Categorical Logic, Cambridge U.
Press, Cambridge, 1986.

65. P. Landin, A correspondence between ALGOL 60 and Church’s lambda-notation, Comm. ACM
8 (1965), 89–101, 158–165.

66. F. W. Lawvere, Functorial Semantics of Algebraic Theories, Ph.D. Dissertation, Columbia
University, 1963. Also available at
http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html .

http://iml.univ-mrs.fr/~girard/linear.pdf
http://www.monad.me.uk/stable/Proofs%2BTypes.html
http://cdl.library.cornell.edu/cgi-bin/cul.math/docviewer?did=Gold010
http://arxiv.org/abs/quant-ph/9908010
http://citeseer.ist.psu.edu/187161.html
http://www.math.mq.edu.au/~street/GTCII.pdf
http://rutherglen.ics.mq.edu.au/~street/JS86.pdf
http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html

67. T. Leinster, A survey of definitions of n-category, Th. Appl. Cat. 10 (2002), 1–70. Also available
as arXiv:math/0107188.

68. S. Mac Lane, Natural associativity and commutativity, Rice Univ. Stud. 49 (1963) 28–46.
69. S. Mac Lane, Categories for the Working Mathematician, Springer, Berlin, 1998.
70. S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic: a First Introduction to Topos

Theory, Springer Verlag, Berlin, 1992.
71. M. Markl, S. Shnider and J. Stasheff, Operads in Algebra, Topology and Physics, American

Mathematical Society, Providence, Rhode Island, 2002.
72. C. McLarty, Elementary Categories, Elementary Toposes, Clarendon Press, Oxford, 1995.
73. G. Moore and N. Read, Nonabelions in the the fractional quantum Hall effect, Nucl. Phys. B

360 (1991), 362–396.
74. J. Moschovakis, Intuitionistic logic Stanford Encyclopedia of Philosophy, available at

http://plato.stanford.edu/entries/logic-intuitionistic/ .
75. R. Penrose, Applications of negative dimensional tensors, in Combinatorial Mathematics and

its Applications, ed. D. Welsh. Academic Press, 1971, pp. 221–244.
R. Penrose, Angular momentum: an approach to combinatorial space-time, in Quantum Theory
and Beyond, ed. T. Bastin. Cambridge U. Press, 1971, pp. 151–180.
R. Penrose, On the nature of quantum geometry, in Magic Without Magic, ed. J. Klauder.
Freeman, 1972, pp. 333–354.
R. Penrose, Combinatorial quantum theory and quantized directions, in Advances in Twistor
Theory, eds. L. Hughston and R. Ward. Pitman Advanced Publishing Program, 1979, pp.
301–317.

76. G. Restall, An Introduction to Substructural Logics, Routledge, London, 2000.
G. Restall, Substructural logics, Stanford Encyclopedia of Philosophy, available at
http://plato.stanford.edu/entries/logic-substructural/ .

77. E. Rowell, R. Stong and Z. Wang, On classification of modular tensor categories, available as
arXiv:0712.1377.

78. P. Scott, Some aspects of categories in computer science, in Handbook of Algebra, Vol. 2, ed.
M. Hazewinkel, Elsevier, Amsterdam, 2000. Also available at
http://www.site.uottawa.ca/ phil/papers/handbook.ps .

79. S. Sawin, Links, quantum groups and TQFTs, Bull. Amer. Math. Soc. 33 (1996), 413-445.
Also available as arXiv:q-alg/9506002 .

80. A. Schalk, What is a categorical model for linear logic? Available at
http://www.cs.man.ac.uk/∼schalk/notes/llmodel.pdf .

81. M. Schönfinkel, Über die Bausteine der mathematischen Logik, Math. Ann. 92 (1924), 305–316.
Also available as On the building blocks of mathematical logic, trans. S. Bauer-Mengelberg,
in A Source Book in Mathematical Logic, 1879-1931, ed. J. van Heijenoort, Harvard U. Press,
Cambridge, Massachusetts, 1967, pp. 355–366.

82. R. A. G. Seely, Weak adjointness in proof theory, Applications of Sheaves, Lecture Notes in
Mathematics 753, Springer, Berlin, 697–701. Also available at
http://www.math.mcgill.ca/∼rags/WkAdj/adj.pdf .

83. G. Segal, The definition of a conformal field theory, in Topology, Geometry and Quantum Field
Theory: Proceedings of the 2002 Oxford Symposium in Honour of the 60th Birthday of Graeme
Segal, ed. U. L. Tillmann, Cambridge U. Press, 2004.

84. P. Selinger, Lecture notes on the lambda calculus, available at
http://www.mscs.dal.ca/∼selinger/papers/#lambdanotes .

85. P. Selinger, Dagger compact closed categories and completely positive maps, Proceedings of the
3rd International Workshop on Quantum Programming Languages (QPL 2005), Elsevier, 2007,
pp. 139–163. Also available at http://www.mscs.dal.ca/∼selinger/papers.html/#dagger .

http://arxiv.org/abs/math/0107188
http://plato.stanford.edu/entries/logic-intuitionistic/
http://plato.stanford.edu/entries/logic-substructural/
http://arxiv.org/abs/0712.1377
http://www.site.uottawa.ca/~phil/papers/handbook.ps
http://arxiv.org/abs/q-alg/9506002
http://www.cs.man.ac.uk/~schalk/notes/llmodel.pdf
http://www.math.mcgill.ca/~rags/WkAdj/adj.pdf
http://www.mscs.dal.ca/~selinger/papers/lambdanotes.pdf
http://www.mscs.dal.ca/$sim $selinger/papers.html/#dagger

86. M.C. Shum, Tortile tensor categories, Jour. Pure Appl. Alg. 93 (1994), 57–110.
87. L. Smolin, The future of spin networks, The Geometric Universe: Science, Geometry, and the

Work of Roger Penrose, eds. S. Hugget, P. Tod, and L. J. Mason, Oxford U. Press, Oxford,
1998. Also available as arXiv:gr-qc/9702030.

88. A. Stern, Anyons and the quantum Hall effect – a pedagogical review, Ann. Phys. 323 (2008),
204–249. available as arXiv:0711.4697.

89. M. Stone, ed., Quantum Hall Effect, World Scientific, Singapore, 1992.
90. M. Szabo, Algebra of Proofs, North–Holland, Amsterdam, 1978.
91. T. Trimble, Linear Logic, Bimodules, and Full Coherence for Autonomous Categories, Ph.D.

thesis, Rutgers University, 1994.
92. A. S. Troelstra, Lectures on Linear Logic, Center for the Study of Language and Information,

Stanford, California, 1992.
93. V. G. Turaev, Quantum Invariants of Knots and 3-Manifolds, de Gruyter, Berlin, 1994.
94. A. van Tonder, A lambda calculus for quantum computation, SIAM Jour. Comput. 33 (2004),

1109–1135. Also available as arXiv:quant-ph/0307150 .
95. E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989),

351–399.
96. W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature 299 (1982),

802–803.
97. D. N. Yetter, Functorial Knot Theory: Categories of Tangles, Coherence, Categorical Defor-

mations, and Topological Invariants, World Scientific, Singapore, 2001.

http://arxiv.org/abs/gr-qc/9702030
http://arxiv.org/abs/0711.4697
http://arxiv.org/abs/quant-ph/0307150

	1 Physics, Topology, Logic and Computation: A Rosetta Stone
	John Baez1 Michael Stay2

