Physics, Topology, Logic and Computation:
a Rosetta Stone

John Baez and Mike Stay

April 9, 2010
California State University, Fresno

<table>
<thead>
<tr>
<th>Categories</th>
<th>Physics</th>
<th>Topology</th>
<th>Logic</th>
<th>Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>system</td>
<td>manifold</td>
<td>proposition</td>
<td>data type</td>
</tr>
<tr>
<td>morphism</td>
<td>process</td>
<td>cobordism</td>
<td>proof</td>
<td>program</td>
</tr>
</tbody>
</table>

\[
X \& Y \vdash Z \quad \lambda x. \lambda y. \, x(y)
\]
The Big Idea

Once upon a time, mathematics was all about *sets*:

In 1945, Eilenberg and Mac Lane introduced *categories*:

These put *processes* on an equal footing with *things*.
In physics, we often use categories where:
- objects represent physical systems;
- morphisms represent physical processes.

In classical physics we often use the category Set, where:
- an object is a set
- a morphism is a function

In quantum physics we often use Hilb, where:
- an object is a Hilbert space
- a morphism is a linear operator
A category C consists of:

- A collection of objects. If X is an object of C we write $X \in C$.
- For any $X, Y \in C$, a set of morphisms $f : X \to Y$.

We require that:

- Every $X \in C$ has an identity morphism $1_X : X \to X$.
- Given $f : X \to Y$ and $g : Y \to Z$, there is a composite morphism $g f : X \to Z$.
- The unit laws hold: if $f : X \to Y$, then $f 1_X = f = 1_Y f$.
- Composition is associative: $(h g) f = h (g f)$.
Feynman used diagrams to describe processes in quantum physics:

Now we know that these are pictures of *morphisms* — so we can use these diagrams in other contexts!
We can draw a morphism

\[f : X \to Y \]

like this:
We draw the composite of $f: X \to Y$ and $g: Y \to Z$ like this:
Then the associative law is implicit:

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} W$$

If we draw the identity morphism $1_X : X \to X$ like this:

$$X \xrightarrow{1_X} X$$

the unit laws are implicit too!
For theories with at least 1 dimension of space, we need *monoidal* categories.

Here any pair of morphisms $f : X \rightarrow Y, f' : X' \rightarrow Y'$ has a tensor product

$$f \otimes f' : X \otimes X' \rightarrow Y \otimes Y'$$

We use this to describe parallel processes:

$$\begin{array}{c}
\begin{array}{c}
X \\
\uparrow f \\
\hline
Y
\end{array}
\begin{array}{c}
X' \\
\uparrow f' \\
\hline
Y'
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
X \otimes X' \\
\uparrow f \otimes f' \\
\hline
Y \otimes Y'
\end{array}
\end{array}$$

Examples:

- The category Hilb, with its usual tensor product \otimes.
- The category Set, with the cartesian product \times.
More generally, we can draw any morphism

$$f : X_1 \otimes \cdots \otimes X_n \rightarrow Y_1 \otimes \cdots \otimes Y_m$$

like this:

In physics we use this to depict an interaction between particles.
By composing and tensoring, we can build up bigger diagrams:

The monoidal category axioms let us deform the picture without changing the morphism:
In theories with least 2 dimensions of space, we use *braided* monoidal categories. We can draw the braiding

\[B_{X,Y} : X \otimes Y \to Y \otimes X \]

like this:

\[X \leftrightarrow Y \]

It has an inverse, drawn like this:

\[Y \leftrightarrow X \]
Then we have:

\[
\begin{align*}
X & \quad Y \\
\downarrow & \quad \downarrow \\
\quad & \quad \\
\swarrow & \quad \swarrow \\
X & \quad Y \\
\end{align*}
\]

= \quad \quad X \quad Y

In theories with at least 3 dimensions of space, we use symmetric monoidal categories, where:

\[
\begin{align*}
X & \quad Y \\
\downarrow & \quad \downarrow \\
\quad & \quad \\
\swarrow & \quad \swarrow \\
X & \quad Y \\
\end{align*}
\]

= \quad \quad X \quad Y

The most familiar braided monoidal categories are symmetric:

- In Set with its cartesian product, the standard braiding is:

 \[B_{X,Y} : X \times Y \to Y \times X \]
 \[(x, y) \mapsto (y, x) \]

- In Hilb with its usual tensor product, the standard braiding is:

 \[B_{X,Y} : X \otimes Y \to Y \otimes X \]
 \[x \otimes y \mapsto y \otimes x \]
However, in thin films there can be ‘anyons’. These are particle-like excitations described by braided monoidal categories that are \textit{not} symmetric!

- Superconducting films: the quantum Hall effect.
- Graphene (single-layer graphite): fractional-charge anyons are possible, not yet seen.
But there’s a lot more to this story...

THE ROSETTA STONE

<table>
<thead>
<tr>
<th>Categories</th>
<th>Physics</th>
<th>Topology</th>
<th>Logic</th>
<th>Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>system</td>
<td>manifold</td>
<td>proposition</td>
<td>data type</td>
</tr>
<tr>
<td>morphism</td>
<td>process</td>
<td>cobordism</td>
<td>proof</td>
<td>program</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
X & \& Y + Z \\
\lambda x \lambda y . x(y)
\end{align*}
\]
In topology, there is a category nCob where:
- objects are $(n - 1)$-dimensional manifolds;
- morphisms are cobordisms.

A cobordism $f : X \to Y$ is an n-dimensional manifold whose boundary is the disjoint union of X and Y. For example, when $n = 2$:
We compose cobordisms by gluing the ‘output’ of one to the ‘input’ of the other:
nCob is a monoidal category. We tensor cobordisms by taking their disjoint union:
In fact, \(n\text{Cob} \) is a symmetric monoidal category:
In general relativity, objects in nCob describe choices of *space*, while morphisms describe choices of *space-time*. I believe that:

Quantum theory will eventually make more sense, as part of a theory of quantum gravity — but this can only be understood using categories.

Why? The weird features of quantum theory come from the ways that Hilb is less like Set than nCob. But nCob is what we use to describe space and spacetime in general relativity!

‘Weird’ properties of quantum theory correspond to unsurprising properties of spacetime.
<table>
<thead>
<tr>
<th></th>
<th>object</th>
<th>morphism</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>•</td>
<td>• → •</td>
</tr>
<tr>
<td>SET THEORY</td>
<td>set</td>
<td>function between</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sets</td>
</tr>
<tr>
<td>QUANTUM THEORY</td>
<td>Hilbert space</td>
<td>operator between</td>
</tr>
<tr>
<td></td>
<td>(state)</td>
<td>Hilbert spaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(process)</td>
</tr>
<tr>
<td>GENERAL RELATIVITY</td>
<td>manifold</td>
<td>cobordism between</td>
</tr>
<tr>
<td></td>
<td>(space)</td>
<td>manifolds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(spacetime)</td>
</tr>
</tbody>
</table>
For example: Set is ‘cartesian’, while nCob and Hilb are not.

If a symmetric monoidal category is cartesian, you can do various things including *duplication*:

$$\Lambda_X : X \to X \otimes X$$

In Set we can duplicate as follows:

$$\Delta_X : X \to X \times X$$

$$x \mapsto (x, x)$$
In Hilb we cannot duplicate: the function
\[X \rightarrow X \otimes X \]
\[x \mapsto x \otimes x \]

is not linear! It’s not a morphism in Hilb. So: we ‘cannot clone a quantum state’.

Similarly, in \(n \text{Cob} \) there is no duplication, despite this misleading picture for \(n = 2 \):

When \(n = 1 \) there’s typically no cobordism from a manifold \(X \) to \(X \otimes X \), and similarly for \(n = 4 \).
What about logic and computer science? These too study categories of things and processes:

In proof theory, we use categories where:

• an object is a *proposition*
• a morphism is a *proof*

In computer science, we use categories where:

• an object is a *data type*
• a morphism is a *program*
In proof theory $X \vdash Y$ means *assuming* X, *we can prove* Y. But we can also let it mean *the set of proofs leading from assumption* X *to conclusion* Y.

Since proofs are morphisms, we can compose them:

\[
\frac{X \vdash Y \quad Y \vdash Z}{X \vdash Z}
\]

The identity morphism:

\[
X \vdash X
\]
Logic uses *monoidal* categories where the tensor product is ‘and’. We can tensor propositions, and tensor proofs:

\[
\frac{W \vdash X \quad Y \vdash Z}{W \& Y \vdash X \& Z}
\]

In fact, logic uses symmetric monoidal categories:

\[
\frac{X \vdash Y \& Z}{X \vdash Z \& Y}
\]

Classical logic is cartesian, so it permits duplication:

\[
\frac{X \vdash Y}{X \vdash Y \& Y}
\]

Linear logic does not!
A program that takes data of type X as input and returns data of type Y can be seen as a morphism $f : X \to Y$.

Categories of data types and programs are monoidal. Given data types X and X' there is a data type $X \otimes X'$. And given programs $f : X \to Y$, $f' : X' \to Y'$, we can write a program $f \otimes f'$ that does these two jobs in parallel:

\[
\begin{array}{ccc}
X & X' \\
\downarrow f & \downarrow f' \\
Y & Y'
\end{array}
= \begin{array}{c}
X \otimes X' \\
\downarrow f \otimes f' \\
Y \otimes Y'
\end{array}
\]
These categories are typically symmetric monoidal:

\[
\begin{array}{c}
X \\
\downarrow \\
\uparrow \\
Y
\end{array}
\]

They’re also cartesian. For example, we can write programs that duplicate data:

\[\Delta_X : X \to X \otimes X\]

But for quantum computation, we need programming languages that apply to noncartesian categories — because you can’t duplicate quantum data!

And in quantum computation using anyons, the relevant categories are braided!
For more detail, read our paper in Bob Coecke’s forthcoming book *New Structures in Physics*. You can find it now on the arXiv.

<table>
<thead>
<tr>
<th>Categories</th>
<th>Physics</th>
<th>Topology</th>
<th>Logic</th>
<th>Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>system</td>
<td>manifold</td>
<td>proposition</td>
<td>data type</td>
</tr>
<tr>
<td>morphism</td>
<td>process</td>
<td>cobordism</td>
<td>proof</td>
<td>program</td>
</tr>
</tbody>
</table>

\[
X & Y \vdash Z \quad \lambda x \lambda y . x(y)
\]