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In 2010, Mikhail Khovanov defined a ‘categorified Heisenberg
algebra’ obeying some relations that look strange at first:

He motivated these relations using sophisticated concepts from
algebra.

But Jeffrey Morton and Jamie Vicary showed they arise from
simple ideas about creating and annihilating particles! This
sheds new light on the combinatorics of quantum field theory.

http://arxiv.org/abs/1009.3295
http://arxiv.org/abs/1207.2054


Schrödinger described the position q and momentum p of a
quantum particle on a line as operators on L2(R):

(qψ)(x) = xψ(x)

(pψ)(x) = −i
d
dx
ψ(x)

They do not commute; instead

[p,q] := pq − qp = −i

Our goal is to understand this combinatorially, in terms of
structures on finite sets.



Heisenberg made the first step, by doing a change of basis.

He introduced the annihilation operator and its adjoint, the
creation operator:

a =
q + ip√

2
a† =

q − ip√
2

Note that
[a,a†] = i[p,q] = 1



More abstractly, we can define the Heisenberg algebra to be
the algebra over C generated by two elements a,a† obeying the
canonical commutation relation:

aa† = a†a + 1

Following Heisenberg, we define the number operator by

N = a†a



Suppose we have a representation of the Heisenberg algebra
with a vacuum vector ψ0 such that

aψ0 = 0

If we recursively define

ψn+1 = a†ψn

we can inductively show

Nψn = nψn

Here’s how:
Nψn+1 = a†aa†ψn

= a†(a†a + 1)ψn

= a†(n + 1)ψn

= (n + 1)ψn+1



What this means:

ψn is a state where there are n ‘quanta’. In quantum field
theory these are particles!
The number operator counts these quanta:

Nψn = nψn

The creation operator a† creates one quantum:

a†ψn = ψn+1



What does the annihilation operator do? We have

aψ0 = 0

and for n > 0 we have

aψn = aa†ψn−1

= (a†a + 1)ψn−1

= (n − 1 + 1)ψn−1

= nψn−1

Thus
aψn = nψn−1

for all n = 0,1,2,3, . . .



What does it mean that

aψn = nψn−1?

It means the annihilation operator is a sum over all ways of
choosing one quantum and then annihilating it. We get a factor
of n because there are n choices.



What does the canonical commutation relation

aa† = a†a + 1

really mean?

There is 1 more way to

create a quantum and then annihilate one,

than to

annihilate a quantum and then create one.

The reason: if you create one first, there’s 1 more choice of
which quantum to annihilate.



How can make this idea precise? We use the groupoid of finite
sets, S:

an object of S is a finite set s
a morphism in S is a bijection α : s → t .

There is a functor

+1 : S → S
s 7→ s + 1

sending each finite set s to its disjoint union with a chosen
one-element set, called 1.

This is the real idea behind the creation operator: it adds one
element to a finite set of ‘quanta’.



But what about the annihilation operator? There is no functor
f : S→ S that takes a finite set and removes an element.

There are n different ways to remove an element from an
n-element set. There is no functorial way to choose one. But
we don’t want to choose one. We want to consider all possible
ways.

We can do this using spans of groupoids.



A span is a diagram shaped like this:

S
q

��

p

��
Y X

In a span of sets, p : S → X and q : S → Y are functions
between sets.



S
q

��

p

��
Y X

A span of sets gives a matrix of sets:

Sji = {s : q(s) = j , p(s) = i} i ∈ X , j ∈ Y

In physics, Sji is the set of ways for a physical system to go from
state i to state j . Physicists call these ways paths or histories.

Spans are closely connected to Heisenberg’s matrix
mechanics, where Sji is a matrix of numbers describing the
‘amplitude’ for the system to go from i to j .



We compose spans of sets by taking a pullback:

TS
πT

}}
πS

!!
T

qT
��

pT
!!

S
qS
}}

pS
��

Z Y X

where
TS = {(t , s) ∈ T × S : pT (t) = qS(s)}

Here we are doing matrix multiplication:

(TS)ki =
∑
j∈Y

Tkj × Sji

where
∑

is disjoint union and × is cartesian product. This is a
baby ‘path integral’ where we sum over paths from i to some
intermediate state j and then to k .



S
q

��

p

��
Y X

In a span of groupoids, p : S → X and q : S → Y are functors
between groupoids. Any functor f : X → Y gives a span from X
to Y :

X
f

��

1X

��
Y X

but we can also turn it around and get a span from Y back to X :

X
1X

��

f

��
X Y



So, if S is the groupoid of finite sets, we have spans called the
annihilation operator A:

S
1S

��

+1

��
S S

and creation operator A†:

S
+1

��

1S

��
S S



From an earlier 2006 paper by Jeffrey Morton:

http://arxiv.org/abs/math.QA/0601458


We compose spans of groupoids by taking a weak pullback:

TS
πT

~~

πS

  
T

qT

��

pT

  

∼
=⇒ S

qS

~~

pS

��
Z Y X

Now TS is the groupoid whose objects are triples(
t ∈ T , s ∈ S, α : pT (t)

∼−→ qS(s)
)

and the diamond commutes up to natural isomorphism.



AA†

~~   
S

1S

}}

+1

  

∼
=⇒ S

+1

~~

1S

""
t ∈ S S s ∈ S

An object of the weak pullback AA† is a way to first add one
element to a finite set and then remove one:(

t ∈ S, s ∈ S, α : s + 1 ∼−→ t + 1
)

We can think of this as a little ‘history’ starting at s and ending
at t .



A†A

~~   
S

+1

~~

1S

  

∼
=⇒ S

1S

~~

+1

  
t + 1 ∈ S S s + 1 ∈ S

An object of the weak pullback A†A is a way to remove one
element from a finite set and then add one:(

t ∈ S, s ∈ S, α : s ∼−→ t
)

How can we relate AA† and A†A?



A map of spans is roughly a diagram of groupoids and
functors like this:

S

Y

q

X

p

S′
q′ p′

f
∼=⇒ ∼

⇐=

where the triangles commute up to chosen natural
isomorphisms. (It’s really an equivalence class of these.)

An isomorphism of spans is a map of spans where f is an
equivalence of groupoids.

http://arxiv.org/abs/1301.1053


Since there’s 1 more way to add an element to a finite set and
then remove one than to remove an element and then add one,
we get an isomorphism of spans:

A†A + S

S S

AA†

∼=⇒ ∼
⇐=

∼

Here A†A + S is the disjoint union or coproduct of the
groupoids A†A and S.



Even better, for any groupoid X there is an identity span
1X : X  X given by

X
1X
~~

1X
  

X X

We can also add two spans

S
�� ��

T
�� ��

Y X Y X

getting a span
S + T

zz $$
Y X

where S + T is the coproduct of the groupoids S and T .



Using these ideas, our isomorphism of spans

A†A + S

S S

AA†

∼=⇒ ∼
⇐=

∼
can be written as

f : A†A + 1S
∼

=⇒ AA†

where the double arrow denotes a map of spans.



This isomorphism of spans

f : A†A + 1S
∼

=⇒ AA†

is the categorified version of the canonical commutation
relation.

James Dolan and I noticed this in 2000, and used it to describe
the combinatorics of Feynman diagrams using spans of
groupoids. Jeffrey Morton developed this further, showing how
to include complex numbers. But this is just the beginning!

Morton and Vicary showed f obeys certain nontrivial equations
— which are precisely the relations in Khovanov’s categorified
Heisenberg algebra!

http://arxiv.org/abs/math/0004133
http://arxiv.org/abs/math/0601458
http://arxiv.org/abs/1207.2054


To see these relations, we need to go beyond maps of spans.
We need spans of spans:

S

S′

ZY X

∼
=⇒ ∼
=⇒

Just as any functor gives a span of groupoids, any map of
spans gives a span of spans.

But a span of spans Z : S ⇒ S′ can be ‘flipped’ to give a span
of spans Z † : S′ ⇒ S, just by turning the diagram upside down.



So, the isomorphism of spans

f : A†A + 1S
∼

=⇒ AA†

gives two ‘inclusions’

i : A†A =⇒ AA†

j : 1S =⇒ AA†

and we can flip these to get ‘projections’

i† : AA† =⇒ A†A

j† : AA† =⇒ 1S

which are spans of spans.



Just as a span of groupoids

S
q
��

p
��

X S

is a collection of ‘histories’ x ∈ X that start at some finite set
p(x) and end at some finite set q(x)...

... a span of spans

X

X ′

ZS S
f

g
∼

=⇒ ∼
=⇒

is a collection of ‘histories of histories’ z ∈ Z going from some
history f (z) to some history g(z).



Here is one of Khovanov’s relations, as he drew it and as a
commutative triangle where the double arrows are spans of
spans:

A†A

AA†

i

A†A
i†

1

What does this mean? We begin with a way to remove one
element x from a finite set and then add one element y . i†

relates this to a way to add y and then remove x . i relates this
back to a way where we remove x and add y . This gives the
identity: we come back to the same ‘history’!



To set this work in a good context, we should prove this:

Conjecture (Morton and Vicary)
There is a symmetric monoidal bicategory with:

groupoids as objects
spans of groupoids as morphisms
spans of spans as 2-morphisms

http://arxiv.org/abs/1207.2054


Here is a big step toward proving the conjecture:

Theorem (Alex Hoffnung and Mike Stay)
There is a symmetric monoidal bicategory with:

groupoids as objects
spans of groupoids as morphisms
maps of spans as 2-morphisms

Next time I’ll explain what a ‘symmetric monoidal bicategory’ is!

http://arxiv.org/abs/1112.0560
http://arxiv.org/abs/1301.1053

