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I’ll start with a solid theorem:

Theorem (Alex Hoffnung and Mike Stay)
There is a symmetric monoidal bicategory with:

groupoids as objects
spans of groupoids as morphisms:

S
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maps of spans as 2-morphisms:
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http://arxiv.org/abs/1301.1053


We compose spans by weak pullback:
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and compose maps of spans in the obvious way. We tensor
spans using products:

S × S′
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Y × Y ′ X × X ′

and similarly for spans of spans.



Morton and Vicary extrapolate this as follows:

Conjecture
There is a symmetric monoidal bicategory Span(Gpd) with:

groupoids as objects
spans of groupoids as morphisms
spans of spans as 2-morphisms:

S
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∼
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where we compose spans of spans using weak pullback.



To connect their theory of annihilation and creation operators to
the work of Khovanov, they use representation theory.

A Kapranov–Voevodsky 2-vector space is a C-linear abelian
category which is semisimple, meaning that every object is a
finite direct sum of simple objects: objects that do not have any
nontrivial subobjects.

Example
The category FinRep(G) of finite-dimensional (complex)
representations of a group is C-linear and abelian. The simple
objects are the irreducible representations. If G is finite,
FinRep(G) is a 2-vector space.



We can generalize this example to groupoids.

There is a category Vect of vector spaces and linear operators.
A representation of a groupoid G is a functor F : G→ Vect. A
morphism of representations is a natural transformation
α : F ⇒ F ′ between such functors.

Example
A groupoid G with one object can be seen as a group. A
representation of G is the same as a representation of this
group. Morphisms between representations are also the same
as usual.



Say a representation of a groupoid G is finite if F (x) is
finite-dimensional for all objects x ∈ G, and zero-dimensional
except for x in finitely many isomorphism classes.

Example
A groupoid G with one object can be seen as a group; then a
finite representation of G is a finite-dimensional representation
of this group.

Let FinRep(G) be the category of finite representations of the
groupoid G.



Example
Let S be the groupoid of finite sets and bijections. S is
equivalent to the coproduct

∞∑
n=0

Sn

where Sn is the symmetric group on n letters, seen as a
one-object groupoid.

Thus, a representation F : S→ Vect is the same as a
representation Fn of Sn for each n ≥ 0. F is finite and only if
each Fn is finite dimensional and only finitely many are nonzero.

It follows that FinRep(S) is a 2-vector space.



More generally, say a groupoid is locally finite if all its homsets
are finite. G is locally finite if and only if it is equivalent to a
coproduct of finite groups. In this case FinRep(G) is a 2-vector
space.

Let Span(FinGpd) be the symmetric monoidal bicategory with:

locally finite groupoids as objects
spans as morphisms
spans of spans as 2-morphisms.

Conjecture
There is a symmetric monoidal functor

FinRep : Span(FinGpd)→ 2Vect

sending any locally finite groupoid G to its category of finite
representations.



A few remarks on how the proof should go:

We make 2Vect into a bicategory in the usual way, with:
exact C-linear functors as morphisms
natural transformations as 2-morphisms.

We give it the usual tensor product, so that

FinVectm ⊗ FinVectn ' FinVectmn

where FinVect is the category of finite-dimensional vector
spaces, and more generally

FinRep(G)⊗ FinRep(H) ' FinRep(G × H)



How does
FinRep : Span(FinGpd)→ 2Vect

send a span of groupoids

S
q
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p
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to an exact functor from FinRep(X ) to FinRep(Y )?

This was developed in a 2008 paper by Morton.

http://arxiv.org/abs/0810.2361


Given a functor p : X → Y between groupoids, we get

p∗ : FinRep(Y ) → FinRep(X )
F 7→ F ◦ p

which has a left (and right!) adjoint

p∗ : FinRep(X )→ FinRep(Y )

Both these are exact.

In group theory, p∗ and p∗ are called restricting and inducing
representations along the homomorphism p. The fact that
they’re adjoint is called Frobenius reciprocity.



So, given a span of groupoids
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q
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we get an exact functor

FinRep(S)
q∗
vv

FinRep(Y ) FinRep(X )

p∗hh

and Morton showed this sends composite spans to composite
functors (up to natural isomorphism).



Using
FinRep : Span(FinGpd)→ 2Vect

we can map the whole theory of annihilation and creation
operators into 2Vect!

In particular,
Schur = FinRep(S)

is called the category of Schur functors. It has one simple
object for each Young diagram. It plays a basic role in
representation theory, since it acts on the category of finite
representations of any group, or groupoid:

α : Schur⊗ FinRep(G)→ FinRep(G)

http://ncatlab.org/johnbaez/show/Schur+functors+I


The annihilation operator
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and creation operator
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are spans from S to itself, so they should give exact functors

A = FinRep(A) : Schur→ Schur

A† = FinRep(A†) : Schur→ Schur



Morton and Vicary show A† : Schur→ Schur looks like this:



Remember that the canonical commutation relation

A†A + 1S
∼

=⇒ AA†

gives two ‘inclusions’

i : A†A⇒ AA† j : 1S ⇒ AA†

such that i , j and their flipped versions i†, j† are spans of spans
obeying the relations in Khovanov’s categorified Heisenberg
algebra. FinRep should send all these to 2Vect:

i = FinRep(i) j = FinRep(j)

i† = FinRep(i†) j† = FinRep(j†)

where they should obey all the same relations.



Putting this all together, Morton and Vicary obtain:

The 2-vector space of Schur functors is equipped with exact
functors

A,A† : Schur→ Schur

and natural transformations

i : A†A⇒ AA† j : 1Schur ⇒ AA†

i† : AA† ⇒ A†A j† : AA† ⇒ 1Schur

obeying the relations in Khovanov’s categorified Heisenberg
algebra.

This is easy to check directly, but it would be nice to see it as
part of a general theory!


