Spans and the Categorified Heisenberg Algebra – 3

John Baez

for more, see: http://math.ucr.edu/home/baez/spans/

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

I'll start with a solid theorem:

Theorem (Alex Hoffnung and Mike Stay)

There is a symmetric monoidal bicategory with:

- groupoids as objects
- spans of groupoids as morphisms:

• maps of spans as 2-morphisms:

We compose spans by weak pullback:

and compose maps of spans in the obvious way. We tensor spans using products:

・ コ ト ・ 雪 ト ・ ヨ ト ・

and similarly for spans of spans.

Morton and Vicary extrapolate this as follows:

Conjecture

There is a symmetric monoidal bicategory Span(Gpd) with:

- groupoids as objects
- spans of groupoids as morphisms
- spans of spans as 2-morphisms:

where we compose spans of spans using weak pullback.

To connect their theory of annihilation and creation operators to the work of Khovanov, they use representation theory.

A Kapranov–Voevodsky **2-vector space** is a \mathbb{C} -linear abelian category which is **semisimple**, meaning that every object is a finite direct sum of **simple** objects: objects that do not have any nontrivial subobjects.

Example

The category $\operatorname{FinRep}(G)$ of finite-dimensional (complex) representations of a group is \mathbb{C} -linear and abelian. The simple objects are the irreducible representations. If *G* is finite, $\operatorname{FinRep}(G)$ is a 2-vector space.

- ロ ト - 4 戸 ト - 4 戸 ト - 9 0 0 0

We can generalize this example to groupoids.

There is a category Vect of vector spaces and linear operators. A **representation** of a groupoid *G* is a functor $F: G \rightarrow$ Vect. A **morphism** of representations is a natural transformation $\alpha: F \Rightarrow F'$ between such functors.

Example

A groupoid G with one object can be seen as a group. A representation of G is the same as a representation of this group. Morphisms between representations are also the same as usual.

- ロ ト - 4 戸 ト - 4 戸 ト - 9 0 0 0

Say a representation of a groupoid *G* is **finite** if F(x) is finite-dimensional for all objects $x \in G$, and zero-dimensional except for *x* in finitely many isomorphism classes.

Example

A groupoid G with one object can be seen as a group; then a finite representation of G is a finite-dimensional representation of this group.

Let FinRep(G) be the category of finite representations of the groupoid *G*.

うしつ 山 ふ 山 マ エ マ マ マ マ マ マ マ マ

Example

Let **S** be the groupoid of finite sets and bijections. **S** is equivalent to the coproduct

$$\sum_{n=0}^{\infty} S_r$$

where S_n is the symmetric group on *n* letters, seen as a one-object groupoid.

Thus, a representation $F : \mathbf{S} \to \text{Vect}$ is the same as a representation F_n of S_n for each $n \ge 0$. F is finite and only if each F_n is finite dimensional and only finitely many are nonzero.

It follows that FinRep(S) is a 2-vector space.

More generally, say a groupoid is **locally finite** if all its homsets are finite. *G* is locally finite if and only if it is equivalent to a coproduct of finite groups. In this case FinRep(G) is a 2-vector space.

Let Span(FinGpd) be the symmetric monoidal bicategory with:

- locally finite groupoids as objects
- spans as morphisms
- spans of spans as 2-morphisms.

Conjecture

There is a symmetric monoidal functor

```
FinRep \colon Span(FinGpd) \to 2Vect
```

sending any locally finite groupoid G to its category of finite representations.

A few remarks on how the proof should go:

We make 2Vect into a bicategory in the usual way, with:

- exact C-linear functors as morphisms
- natural transformations as 2-morphisms.

We give it the usual tensor product, so that

 $\operatorname{FinVect}^m \otimes \operatorname{FinVect}^n \simeq \operatorname{FinVect}^{mn}$

where FinVect is the category of finite-dimensional vector spaces, and more generally

 $\operatorname{FinRep}(G) \otimes \operatorname{FinRep}(H) \simeq \operatorname{FinRep}(G \times H)$

How does

```
FinRep: Span(FinGpd) \rightarrow 2Vect
```

send a span of groupoids

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

to an exact functor from FinRep(X) to FinRep(Y)?

This was developed in a 2008 paper by Morton.

Given a functor $p: X \rightarrow Y$ between groupoids, we get

$$p^*: \operatorname{FinRep}(Y) \rightarrow \operatorname{FinRep}(X)$$

 $F \mapsto F \circ p$

which has a left (and right!) adjoint

```
p_*: FinRep(X) \rightarrow FinRep(Y)
```

Both these are exact.

In group theory, p^* and p_* are called **restricting** and **inducing** representations along the homomorphism p. The fact that they're adjoint is called **Frobenius reciprocity**.

<ロト < 回 ト < 三 ト < 三 ト < 三 ・ へのへの</p>

we get an exact functor

and Morton showed this sends composite spans to composite functors (up to natural isomorphism).

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

Using

FinRep: Span(FinGpd) \rightarrow 2Vect

we can map the whole theory of annihilation and creation operators into 2Vect!

In particular,

Schur = FinRep(S)

is called the category of **Schur functors**. It has one simple object for each Young diagram. It plays a basic role in representation theory, since it acts on the category of finite representations of any group, or groupoid:

 α : Schur \otimes FinRep(G) \rightarrow FinRep(G)

The annihilation operator

are spans from S to itself, so they should give exact functors

A = FinRep(A): Schur \rightarrow Schur

 $\mathbf{A}^{\dagger} = \operatorname{FinRep}(\mathbf{A}^{\dagger})$: Schur \rightarrow Schur

- ロ ト - 4 戸 ト - 4 戸 ト - 9 0 0 0

Morton and Vicary show $\textbf{A}^{\dagger}:\textbf{Schur}\rightarrow\textbf{Schur}$ looks like this:

 Remember that the canonical commutation relation

$$A^{\dagger}A + 1_{f S} \stackrel{\sim}{\Longrightarrow} AA^{\dagger}$$

gives two 'inclusions'

$$i: A^{\dagger}A \Rightarrow AA^{\dagger} \qquad j: \mathbf{1}_{\mathbf{S}} \Rightarrow AA^{\dagger}$$

such that *i*, *j* and their flipped versions i^{\dagger} , j^{\dagger} are spans of spans obeying the relations in Khovanov's categorified Heisenberg algebra. FinRep should send all these to 2Vect:

$$\mathbf{i} = \operatorname{FinRep}(i)$$
 $\mathbf{j} = \operatorname{FinRep}(j)$

 $\mathbf{i}^{\dagger} = \operatorname{FinRep}(i^{\dagger})$ $\mathbf{j}^{\dagger} = \operatorname{FinRep}(j^{\dagger})$

where they should obey all the same relations.

Putting this all together, Morton and Vicary obtain:

The 2-vector space of Schur functors is equipped with exact functors

 $\mathbf{A}, \mathbf{A}^{\dagger}$: Schur \rightarrow Schur

and natural transformations

- $\mathbf{i} \colon \mathbf{A}^\dagger \mathbf{A} \Rightarrow \mathbf{A} \mathbf{A}^\dagger \qquad \qquad \mathbf{j} \colon \mathbf{1}_{\mathbf{Schur}} \Rightarrow \mathbf{A} \mathbf{A}^\dagger$
- $\mathbf{i}^{\dagger} \colon \mathbf{A} \mathbf{A}^{\dagger} \Rightarrow \mathbf{A}^{\dagger} \mathbf{A} \qquad \qquad \mathbf{j}^{\dagger} \colon \mathbf{A} \mathbf{A}^{\dagger} \Rightarrow \mathbf{1}_{\mathbf{Schur}}$

obeying the relations in Khovanov's categorified Heisenberg algebra.

This is easy to check directly, but it would be nice to see it as part of a general theory!