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I’ll start with a solid theorem:

Theorem (Alex Hoffnung and Mike Stay)
There is a symmetric monoidal bicategory with:
@ groupoids as objects
@ spans of groupoids as morphisms:

S
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@ maps of spans as 2-morphisms:
S
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http://arxiv.org/abs/1112.0560
http://arxiv.org/abs/1301.1053

We compose spans by weak pullback:
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/\/\

and compose maps of spans in the obvious way. We tensor
spans using products:
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/ \
Y x Y X x X

and similarly for spans of spans.




Morton and Vicary extrapolate this as follows:

Conjecture

There is a symmetric monoidal bicategory Span(Gpd) with:
@ groupoids as objects
@ spans of groupoids as morphisms
@ spans of spans as 2-morphisms:

FAEN
o

where we compose spans of spans using weak pullback.




To connect their theory of annihilation and creation operators to
the work of Khovanov, they use representation theory.

A Kapranov—Voevodsky 2-vector space is a C-linear abelian
category which is semisimple, meaning that every object is a
finite direct sum of simple objects: objects that do not have any
nontrivial subobjects.

Example

The category FinRep(G) of finite-dimensional (complex)
representations of a group is C-linear and abelian. The simple
objects are the irreducible representations. If G is finite,
FinRep(G) is a 2-vector space.




We can generalize this example to groupoids.

There is a category Vect of vector spaces and linear operators.
A representation of a groupoid G is a functor F: G — Vect. A
morphism of representations is a natural transformation

a: F = F’ between such functors.

Example

A groupoid G with one object can be seen as a group. A
representation of G is the same as a representation of this
group. Morphisms between representations are also the same
as usual.




Say a representation of a groupoid G is finite if F(x) is
finite-dimensional for all objects x € G, and zero-dimensional
except for x in finitely many isomorphism classes.

Example

A groupoid G with one object can be seen as a group; then a
finite representation of G is a finite-dimensional representation
of this group.

Let FinRep(G) be the category of finite representations of the
groupoid G.



Example

Let S be the groupoid of finite sets and bijections. S is
equivalent to the coproduct

> Sh

n=0
where S, is the symmetric group on n letters, seen as a
one-object groupoid.

Thus, a representation F: S — Vect is the same as a
representation F, of S, for each n > 0. F is finite and only if
each F, is finite dimensional and only finitely many are nonzero.

It follows that FinRep(S) is a 2-vector space.




More generally, say a groupoid is locally finite if all its homsets
are finite. G is locally finite if and only if it is equivalent to a
coproduct of finite groups. In this case FinRep(G) is a 2-vector
space.

Let Span(FinGpd) be the symmetric monoidal bicategory with:

@ locally finite groupoids as objects
@ spans as morphisms
@ spans of spans as 2-morphisms.

Conjecture
There is a symmetric monoidal functor

FinRep: Span(FinGpd) — 2Vect

sending any locally finite groupoid G to its category of finite
representations.




A few remarks on how the proof should go:

We make 2Vect into a bicategory in the usual way, with:
@ exact C-linear functors as morphisms
@ natural transformations as 2-morphisms.

We give it the usual tensor product, so that
FinVect™ ® FinVect” ~ FinVect™

where FinVect is the category of finite-dimensional vector
spaces, and more generally

FinRep(G) @ FinRep(H) ~ FinRep(G x H)



How does
FinRep: Span(FinGpd) — 2Vect

send a span of groupoids
oo\
Y X
to an exact functor from FinRep(X) to FinRep(Y')?

This was developed in a 2008 paper by Morton.


http://arxiv.org/abs/0810.2361

Given a functor p: X — Y between groupoids, we get

p*: FinRep(Y) — FinRep(X)
F — Fop

which has a left (and right!) adjoint
ps : FinRep(X) — FinRep(Y)
Both these are exact.

In group theory, p* and p, are called restricting and inducing
representations along the homomorphism p. The fact that
they’re adjoint is called Frobenius reciprocity.



So, given a span of groupoids
AN
Y X
we get an exact functor
. FinRep(S) o
4*/ \
FinRep(Y) FinRep(X)

and Morton showed this sends composite spans to composite
functors (up to natural isomorphism).



Using
FinRep: Span(FinGpd) — 2Vect

we can map the whole theory of annihilation and creation
operators into 2Vect!

In particular,
Schur = FinRep(S)

is called the category of Schur functors. It has one simple
object for each Young diagram. It plays a basic role in
representation theory, since it acts on the category of finite
representations of any group, or groupoid:

a: Schur ® FinRep(G) — FinRep(G)


http://ncatlab.org/johnbaez/show/Schur+functors+I

The annihilation operator

S
AN
S S

and creation operator

S
N
S S
are spans from S to itself, so they should give exact functors

A = FinRep(A): Schur — Schur

A" = FinRep(A'): Schur — Schur



Morton and Vicary show Af: Schur — Schur looks like this:



Remember that the canonical commutation relation
ATA 4+ 1g = AAT
gives two ‘inclusions’
it AIA= AAT  ji1g = AAT

such that /, j and their flipped versions i, ji are spans of spans
obeying the relations in Khovanov’s categorified Heisenberg
algebra. FinRep should send all these to 2Vect:

i = FinRep(/) j = FinRep())
i = FinRep(/") jT = FinRep(jT)

where they should obey all the same relations.



Putting this all together, Morton and Vicary obtain:

The 2-vector space of Schur functors is equipped with exact
functors
A, A': Schur — Schur

and natural transformations
i: ATA = AAT j: 1schur = AAT
it AAT = ATA j": AAT = 1gchur

obeying the relations in Khovanov’s categorified Heisenberg
algebra.

This is easy to check directly, but it would be nice to see it as
part of a general theory!



