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In 2010, Mikhail Khovanov defined a ‘categorified Heisenberg
algebra’ obeying some relations that look strange at first:

He motivated these relations using the representation theory of
symmetric groups.

Later Jeffrey Morton and Jamie Vicary showed they arise from
simple ideas about balls in boxes! This sheds new light on the
combinatorics of quantum field theory.

http://arxiv.org/abs/1009.3295
http://arxiv.org/abs/1207.2054


What does the canonical commutation relation

aa† = a†a + 1

really mean?

There is 1 more way to

create a quantum and then annihilate one,

than to

annihilate a quantum and then create one.

The reason: if you create one first, there’s 1 more choice of
which quantum to annihilate.



How can make this idea precise? We use the groupoid of finite
sets, S:
▶ an object of S is a finite set s
▶ a morphism in S is a bijection α : s → t .

There is a functor

+1 : S → S
s 7→ s + 1

sending each finite set s to its disjoint union with a chosen
one-element set, called 1.

This is the real idea behind the creation operator: it adds one
element to a finite set of ‘quanta’.



But what about the annihilation operator? There is no functor
f : S → S that takes a finite set and removes an element.

There are n different ways to remove an element from an
n-element set. There is no functorial way to choose one. But
we don’t want to choose one. We want to consider all possible
ways.

We can do this using spans of groupoids.



A span is a diagram shaped like this:

U
q

��

p

��
Y X

In a span of sets, p : U → X and q : U → Y are functions
between sets.



U
q

��

p

��
Y X

A span of sets gives a matrix of sets:

Uji = {u : q(u) = j , p(u) = i} i ∈ X , j ∈ Y

In physics, Uji is the set of ways for a physical system to go from
state i to state j . Physicists call these ways paths or histories.

Spans are closely connected to Heisenberg’s matrix
mechanics, where Uji is a matrix of numbers describing the
‘amplitude’ for the system to go from i to j .



We compose spans of sets by taking a pullback:

VU
πV
}}

πU

!!
V

qV
��

pV

!!

U
qU

}}
pU
��

Z Y X

where
VU = {(v ,u) ∈ V × U : pV (v) = qU(u)}

Here we are doing matrix multiplication:

(VU)ki =
∑
j∈Y

Vkj × Uji

where
∑

is disjoint union and × is cartesian product. This is a
baby ‘path integral’ where we sum over paths from i to some
intermediate state j and then to k .



U
q

��

p

��
Y X

In a span of groupoids, p : U → X and q : U → Y are functors
between groupoids. Any functor f : X → Y gives a span from X
to Y:

X
f

��

1X

��
Y X

but we can also turn it around and get a span from Y back to X:

X
1X

��

f

��
X Y



So, if S is the groupoid of finite sets, we have spans called the
annihilation operator A:

S
1S

��

+1

��
S S

and creation operator A†:

S
+1

��

1S

��
S S



From an earlier 2006 paper by Jeffrey Morton:

http://arxiv.org/abs/math.QA/0601458


We compose spans of groupoids by taking a homotopy
pullback:

VU
πV

~~

πU

  
V

qV

��

pV

  

∼
=⇒ U

qU

~~

pU

��
Z Y X

Now VU is the groupoid whose objects are triples(
v ∈ V, u ∈ U, α : pV(v)

∼−→ qU(u)
)

and the diamond commutes up to natural isomorphism.



AA†

~~   
S

1S

}}

+1

  

∼
=⇒ S

+1

~~

1S

""
t ∈ S S s ∈ S

An object of the homotopy pullback AA† is a way to first add
one element to a finite set and then remove one:(

t ∈ S, s ∈ S, α : s + 1 ∼−→ t + 1
)

We can think of this as a little ‘history’ starting at s and ending
at t .



A†A

~~   
S

+1

~~

1S

  

∼
=⇒ S

1S

~~

+1

  
t + 1 ∈ S S s + 1 ∈ S

An object of the homotopy pullback A†A is a way to remove one
element from a finite set and then add one:(

t ∈ S, s ∈ S, α : s ∼−→ t
)

How can we relate AA† and A†A?



A map of spans is roughly a diagram of groupoids and
functors like this:

S

Y

q

X

p

S′
q′ p′

f
∼=⇒ ∼

⇐=

where the triangles commute up to chosen natural
isomorphisms.

An equivalence of spans is a map of spans where f is an
equivalence of groupoids.



Since there’s 1 more way to add an element to a finite set and
then remove one than to remove an element and then add one,
we get an equivalence of spans:

A†A + S

S S

AA†

∼=⇒ ∼
⇐=

∼

Here A†A + S is the disjoint union or coproduct of the
groupoids A†A and S.



For any groupoid X there is an identity span given by

X
1X
��

1X
��

X X

We can also add two spans

U
�� ��

V
�� ��

Y X Y X

getting a span
U + V

{{ ##
Y X

where U + V is the coproduct of the groupoids U and V.



Using these ideas, our isomorphism of spans

A†A + S

S S

AA†

∼=⇒ ∼
⇐=

∼
can be written as

f : A†A + 1S
∼

=⇒ AA†

where the double arrow denotes a map of spans and 1S is the
identity span of S.



This isomorphism of spans

f : A†A + 1S
∼

=⇒ AA†

is the categorified version of the canonical commutation
relation.

James Dolan and I noticed this in 2000, and used it to describe
the combinatorics of Feynman diagrams using spans of
groupoids. Jeffrey Morton developed this further, showing how
to include complex numbers. But this is just the beginning!

Morton and Vicary showed f obeys certain nontrivial equations
— which are precisely the relations in Khovanov’s categorified
Heisenberg algebra!

http://arxiv.org/abs/math/0004133
http://arxiv.org/abs/math/0601458
http://arxiv.org/abs/1207.2054


To see these relations, we need to go beyond maps of spans.
We need spans of spans:

U

U′

VY X

∼
=⇒ ∼
=⇒

Just as any functor gives a span of groupoids, any map of
spans gives a span of spans.

But a span of spans V : U ⇒ U′ can be ‘flipped’ to give a span
of spans V† : U′ ⇒ U, just by turning the diagram upside down.



So, the isomorphism of spans

f : A†A + 1S
∼

=⇒ AA†

gives two ‘inclusions’

i : A†A =⇒ AA†

j : 1S =⇒ AA†

and we can flip these to get ‘projections’

i† : AA† =⇒ A†A

j† : AA† =⇒ 1S

which are spans of spans.



Just as a span of groupoids

U
q
��

p
��

S S

is a collection of ‘histories’ u ∈ U going from some finite set
p(x) to some finite set q(x)...

... a span of spans

U

U′

VS S
f

g
∼

=⇒ ∼
=⇒

is a collection of ‘histories of histories’ v ∈ V going from some
history f (v) to some history g(v).



Here is one of Khovanov’s relations, as he drew it and as a
commutative triangle where the double arrows are spans of
spans:

A†A

AA†

i

A†A
i†

1

What does this mean? We begin with a way to remove one
element x from a finite set and then add one element y .
i relates this to a way to add y and then remove x .
i† relates this back to a way where we remove x and add y .
We come back to the same ‘history’, so i†i = 1.



To connect their theory of annihilation and creation operators to
the work of Khovanov, they use representation theory.

A Kapranov–Voevodsky 2-vector space is a C-linear abelian
category which is semisimple, meaning that every object is a
finite direct sum of simple objects: objects that do not have any
nontrivial subobjects.

Example
The category FinRep(G) of finite-dimensional (complex)
representations of a group is C-linear and abelian. The simple
objects are the irreducible representations. If G is finite,
FinRep(G) is a 2-vector space.



We can generalize this example to groupoids.

There is a category Vect of vector spaces and linear operators.
A representation of a groupoid G is a functor F : G → Vect.
A morphism of representations is a natural transformation
α : F ⇒ F ′ between such functors.

Example
A groupoid G with one object can be seen as a group. A
representation of G is the same as a representation of this
group. Morphisms between representations are also the same
as usual.



Say a representation of a groupoid G is finite if F (x) is
finite-dimensional for all objects x ∈ G, and zero-dimensional
except for x in finitely many isomorphism classes.

Example
A groupoid G with one object can be seen as a group; then a
finite representation of G is a finite-dimensional representation
of this group.

Let FinRep(G) be the category of finite representations of the
groupoid G.



Example
Let S be the groupoid of finite sets and bijections. S is
equivalent to the coproduct

∞∑
n=0

Sn

where Sn is the symmetric group on n letters, seen as a
one-object groupoid.

Thus, a representation F : S → Vect is the same as a
representation Fn of Sn for each n ≥ 0. F is finite and only if
each Fn is finite dimensional and only finitely many are nonzero.

It follows that FinRep(S) is a 2-vector space.



More generally, say a groupoid is locally finite if all its homsets
are finite. G is locally finite if and only if it is equivalent to a
coproduct of finite groups. In this case FinRep(G) is a 2-vector
space.

Conjecture (Morton, Vicary)
There is a bicategory Span(FinGpd) with:
▶ locally finite groupoids as objects
▶ spans as morphisms
▶ (equivalence classes of) spans of spans as 2-morphisms

and a 2-functor

FinRep : Span(FinGpd) → 2Vect

sending any locally finite groupoid G to its category of finite
representations.



A few remarks on how the proof should go:

2Vect is a bicategory (in fact a 2-category) with:
▶ 2-vector spaces as objects
▶ exact C-linear functors as morphisms
▶ natural transformations as 2-morphisms.



How does
FinRep : Span(FinGpd) → 2Vect

send a span of groupoids

U
q
��

p
��

Y X

to an exact functor from FinRep(X) to FinRep(Y)?

This was developed in a 2008 paper by Morton.

http://arxiv.org/abs/0810.2361


Given a functor p : X → Y between locally finite groupoids, we
get

p∗ : FinRep(Y) → FinRep(X)
F 7→ F ◦ p

which has a left (and right!) adjoint

p∗ : FinRep(X) → FinRep(Y)

Both these are exact.

In group theory, p∗ and p∗ are called restricting and inducing
representations along the homomorphism p. The fact that p∗ is
both left and right adjoint to p∗ is called Frobenius reciprocity.



So, given a span of groupoids

U
q
��

p
��

Y X

we get an exact functor

FinRep(U)
q∗
vv

FinRep(Y) FinRep(X)

p∗hh

and Morton showed this sends composite spans to composite
functors (up to natural isomorphism).



Using
FinRep : Span(FinGpd) → 2Vect

we can map the whole theory of annihilation and creation
operators into 2Vect!

In particular,
Schur = FinRep(S)

is called the category of Schur functors. It has one simple
object for each Young diagram.

https://arxiv.org/abs/2106.00190


The annihilation operator A:

S
1S

��

+1

��
S S

and the creation operator A†:

S
+1

��

1S

��
S S

are spans from S to itself, so they should give exact functors

A = FinRep(A) : Schur → Schur

A† = FinRep(A†) : Schur → Schur



A† : Schur → Schur has this effect on simple objects — that is,
Young diagrams:



Remember that the canonical commutation relation

A†A + 1S
∼

=⇒ AA†

gives two ‘inclusions’

i : A†A ⇒ AA† j : 1S ⇒ AA†

which together with their flipped versions i†, j† are spans of
spans obeying the relations in Khovanov’s categorified
Heisenberg algebra.

FinRep sends all these to exact functors from Schur to itself:

i = FinRep(i) j = FinRep(j)

i† = FinRep(i†) j† = FinRep(j†)

which should obey all the same relations.



Putting this all together, we get:

Theorem (Morton and Vicary)
The 2-vector space of Schur functors is equipped with exact
functors

A,A† : Schur → Schur

and natural transformations

i : A†A ⇒ AA† j : 1Schur ⇒ AA†

i† : AA† ⇒ A†A j† : AA† ⇒ 1Schur

obeying the relations in Khovanov’s categorified Heisenberg
algebra.



This would follow instantly from Morton and Vicary’s
calculations if we knew we had a 2-functor

FinRep : Span(FinGpd) → 2Vect

that preserves addition (both for spans and span of spans).

Surely this is true, but I haven’t seen a rigorous proof. Luckily it
can also be checked directly!

Moral: in constructing Khovanov’s categorified Heisenberg
algebra, the use of linear algebra is just the icing on the cake.
The real structures involve combinatorics captured by groupoid
of finite sets.
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