
CAN WE UNDERSTAND
THE STANDARD MODEL?

John Baez
Octonions and the Standard Model

5 April 2021



40 years trying to go beyond the Standard Model hasn’t yet led to
any clear success. Maybe we should try a different game!

For example, we could try to understand why the Standard Model
is the way it is. This also seems extremely hard, but at least it’s
different.

In the process we may be forced to go beyond the Standard
Model. Or maybe not.

Either way, the “understanding the Standard Model” game is not
mainly about creating highly symmetrical theories with no clear
connection to the world we actually see. What we see is at least
close to the Standard Model.



There are many things about the Standard Model that would be
great to understand. In rough order of difficulty:

1. the Standard Model gauge group

2. its representation on one generation of fermions

3. the Lorentz group action on fermions, especially the chirality

4. the three generations

5. the Higgs and its couplings (22 dimensionless constants)

6. the gauge field coupling constants (3 dimensionless
constants)

We may decide that some or all of this is hopeless to understand
— but nothing ventured, nothing gained!



Here I will only consider

1. the Standard Model gauge group

2. its representation on one generation of fermions

and attempts to make them seem mathematically natural.

Much of this is a review, but I’ll try to make things pretty, and I’ll
emphasize Lie groups rather than Lie algebras.

For an expository account of some of this, see:

I John Baez and John Huerta, The algebra of grand unified
theories.

https://arxiv.org/abs/0904.1556
https://arxiv.org/abs/0904.1556


The center of U(1) × SU(2) × SU(3) is U(1) × Z2 × Z3, where:

I Z2 ⊂ SU(2) consists of square roots of 1 times the identity
matrix

I Z3 ⊂ SU(3) consists of cube roots of 1 times the identity
matrix.

Any element in the center of U(1) × SU(2) × SU(3) must act simply
as multiplication by a phase on any irreducible representation of
this group.



The center of U(1) × SU(2) × SU(3) contains an element that acts
trivially on all known particles:

(ζ, ζ3, ζ2) ∈ U(1) × SU(2) × SU(3)

where ζ = e2πi/6 is a 6th root of unity. This fact is equivalent to the
following requirements on the hypercharges Y :

Case Requirement on Y Actual value of Y

Left-handed quark even integer + 1
3 + 1

3

Left-handed lepton odd integer −1

Right-handed quarks odd integer + 1
3 + 4

3 ,−
2
3

Right-handed leptons even integer 0,−2



This element (ζ, ζ3, ζ2) generates a subgroup

Z6 ⊂ U(1) × SU(2) × SU(3)

that acts trivially on all known particles.

So, we can call
U(1) × SU(2) × SU(3)

Z6

the true gauge group of the Standard Model.

But we need to use the right Z6 subgroup here!

There are 12 normal subgroups N ⊂ U(1) × SU(2) × SU(3)
isomorphic to Z6. They are all subgroups of the center. For
at least two, (U(1) × SU(2) × SU(3))/N is isomorphic to the
true gauge group of the Standard Model.

https://golem.ph.utexas.edu/category/2021/03/can_we_understand_the_standard.html


There is a homomorphism

φ : U(1) × SU(2) × SU(3) → SU(5)

(α, g, h) 7−→

(
α3g 0
0 α−2h

)
whose kernel is the Z6 subgroup that acts trivially on all known
particles, and whose image is

S(U(2) × U(3)) =
{
x ∈ SU(5) : x =


∗ ∗ 0 0 0
∗ ∗ 0 0 0
0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗


}

Thus

S(U(2) × U(3)) �
U(1) × SU(2) × SU(3)

Z6

is the true gauge group of the Standard Model.



All the fermions and antifermions in one generation, including a
right-handed neutrino and its antiparticle, fit into the obvious
representation of S(U(2) × U(3)) on

ΛC5 =
5⊕

n=0

ΛnC5

The left-handed fermions and antifermions live in

ΛevenC5 = Λ0C5 ⊕ Λ2C5 ⊕ Λ4C5

while the right-handed ones live in

ΛoddC5 = Λ1C5 ⊕ Λ3C5 ⊕ Λ5C5

They are interchanged by the conjugate-linear Hodge star operator

? : ΛC5 → ΛC5



ΛC5 has a basis labelled by 5-bit strings, answering 5 yes-or-no
questions:
I is the particle isospin up?
I is it isospin down?
I is it red?
I is it green?
I is it blue?

Here “up & down” means isospin 0, “red & blue” means “magenta”
= anti-green, “red, green & blue” means colorless, etc.



How can we understand the group S(U(2) × U(3)) and its
representation on ΛC5? What’s so special about them? It helps to
look at grand unified theories, even if we don’t believe in them.

SU(5) is a subgroup of SO(10). But because it is simply
connected, it lifts to become a subgroup of Spin(10):

Spin(10)

2−1
��

SU(5) �
�

//

+ �

99

SO(10)

The representation of SU(5) on ΛC5 extends to a representation of
Spin(10) on ΛC5: the Dirac spinor representation. This contains all
all the fermions and antifermions in one generation, including a
right-handed neutrino and its antiparticle.



S(U(2) × U(3)) is the intersection of two subgroups of Spin(10):

S(U(2) × U(3)) �
�

//
� _

��

(Spin(4) × Spin(6))/Z2� _

��

SU(5) �
�

// Spin(10)

S(U(2) × U(3)) = SU(5) ∩ (Spin(4) × Spin(6))/Z2

I SU(5) is the gauge group of the Georgi–Glashow model.
I Spin(4) × Spin(6) is the usual gauge group of the Pati–Salam

model:

Spin(4) � SU(2) × SU(2) Spin(6) � SU(4)

but there’s a subgroup Z2 ⊂ Spin(4) × Spin(6) that acts
trivially on all known particles.



Standard Model = Georgi–Glashow ∩ Pati–Salam

SU(5) ⊂ Spin(10) is the subgroup that preserves:

I a complex structure J : R10 → R10, J2 = −1, which lets us
say R10 � C5.

I a complex volume form ω ∈ Λ5C5, ω , 0.

(Spin(4) × Spin(6))/Z2 ⊂ Spin(10) is the subgroup that preserves:

I a 4+6 splitting R10 = R4 ⊕ R6.

The true gauge group of the Standard Model, S(U(2) × U(3)), is
the subgroup of Spin(10) that preserves a complex structure on
R10, a complex volume form, and a compatible 4+6 splitting: one
that gives a splitting C5 � C2 ⊕ C3.



We can dramatize this. A Riemannian manifold M where each
tangent space has a complex structure J : TxM → TxM preserved
by parallel transport is called a Kähler manifold. A Kähler
manifold where each tangent space has a complex volume form ω

preserved by parallel transport is called a Calabi–Yau manifold.

Take any 10-dimensional manifold M that’s the product of 4d and
6d Calabi–Yau manifolds. Then M is equipped with a principal
S(U(2) × U(3)) bundle, and Dirac spinors on M transform in the
representation corresponding to the fermions and antifermions in
one generation, including a right-handed neutrino and its
antiparticle.

I John Baez, Calabi–Yau manifolds and the Standard Model.

https://arxiv.org/abs/hep-th/0511086


So, there is a connection between the Standard Model
and 10-dimensional space. But it’s also connected to
10-dimensional spacetime!

I Ivan Todorov and Michel Dubois-Violette, Deducing the
symmetry of the standard model from the automorphism and
structure groups of the exceptional Jordan algebra.

4d Minkowski spacetime can be seen as the space of 2 × 2
hermitian complex matrices

h2(C) =

{(
t + x y

y∗ t − x

)
: t , x ∈ R, y ∈ C

}
with its Minkowski metric:

det

(
t + x y

y∗ t − x

)
= t2 − x2 − |y |2

https://arxiv.org/abs/1806.09450
https://arxiv.org/abs/1806.09450
https://arxiv.org/abs/1806.09450


So, there is a connection between the Standard Model
and 10-dimensional space. But it’s also connected to
10-dimensional spacetime!

I Ivan Todorov and Michel Dubois-Violette, Deducing the
symmetry of the standard model from the automorphism and
structure groups of the exceptional Jordan algebra.

10d Minkowski spacetime can be seen as the space of 2 × 2
hermitian octonionic matrices

h2(O) =

{(
t + x y

y∗ t − x

)
: t , x ∈ R, y ∈ O

}
with its Minkowski metric:

det

(
t + x y

y∗ t − x

)
= t2 − x2 − |y |2

https://arxiv.org/abs/1806.09450
https://arxiv.org/abs/1806.09450
https://arxiv.org/abs/1806.09450


Choosing a unit imaginary octonion i ∈ O gives an inclusion

C ↪→ O

This gives a splitting

O︸︷︷︸
8 real dimensions

= C︸︷︷︸
2 real dimensions

⊕ C⊥︸︷︷︸
6 real dimensions

where C⊥ is the orthogonal complement of C in O.



Choosing a unit imaginary octonion i ∈ O gives an inclusion

C ↪→ O

and thus an inclusion of 4d Minkowski spacetime in 10d Minkowski
spacetime:

h2(C) ↪→ h2(O) =

{(
t + x y

y∗ t − x

)
: t , x ∈ R, y ∈ O

}
and a splitting

h2(O)︸︷︷︸
10d spacetime

= h2(C)︸︷︷︸
4d spacetime

⊕ C⊥︸︷︷︸
6d space



The subgroup of Spin(9, 1) preserving the splitting

h2(O)︸︷︷︸
10d spacetime

= h2(C)︸︷︷︸
4d spacetime

⊕ C⊥︸︷︷︸
6d space

contains a copy of the true gauge group of the Standard Model,
S(U(2) × U(3)).

(I’ll explain this next time.)

Thus, the true gauge group of the Standard Model again preserves
a “4+6 splitting”, but now it’s a splitting of 10d Minkowski spacetime
into 4d Minkowski spacetime and 6d Euclidean space.



I In the h2(O) approach, S(U(2) × U(3)) is a subgroup of
Spin(9, 1).

I In grand unified theories, it is a subgroup of Spin(10).

How we can reconcile these facts?

h2(O) is a 10d Euclidean space as well as a 10d Minkowski
spacetime! In the h2(O) approach we actually have

S(U(2) × U(3)) ⊂ Spin(9) = Spin(9, 1) ∩ Spin(10)

We can also see directly how S(U(2) × U(3)) ⊂ Spin(9):

I Kirill Krasnov, SO(9) characterisation of the Standard Model
gauge group.

https://arxiv.org/abs/1912.11282
https://arxiv.org/abs/1912.11282


Let’s see why S(U(2) × U(3)) ⊂ Spin(9).

Start with Pati–Salam:

U(1) × SU(2) × SU(3) → SU(2) × SU(2) × SU(4)

(α, g, h) 7→

(
g,

(
α3 0
0 α−3

)
,

(
αh 0
0 α−3

))

This map is 3-1.



Let’s see why S(U(2) × U(3)) ⊂ Spin(9).

Then ignore the right-handed SU(2):

U(1) × SU(2) × SU(3)
φ
−→ SU(2) × SU(4)

(α, g, h) 7→

(
g,

(
αh 0
0 α−3

))

This map φ is 3-1.



Let’s see why S(U(2) × U(3)) ⊂ Spin(9).

Remember SU(2) � Spin(3) and SU(4) � Spin(6):

U(1) × SU(2) × SU(3)
φ
−→ Spin(3) × Spin(6)

This map φ is 3-1.



Let’s see why S(U(2) × U(3)) ⊂ Spin(9).

Now compose φ with Spin(3) × Spin(6)
2−1
−−−→ Spin(9):

U(1) × SU(2) × SU(3)
φ
−→ Spin(3) × Spin(6)

2−1
−−−→ Spin(9)

The composite is 6-1. Its kernel is exactly the

Z6 ⊂ U(1) × SU(2) × SU(3)

that acts trivially on all known particles!



Let’s see why S(U(2) × U(3)) ⊂ Spin(9).

So, we get a 1-1 map:

U(1) × SU(2) × SU(3)

Z6
↪→ Spin(9)

But (U(1) × SU(2) × SU(3))/Z6 � S(U(2) × U(3)).



Let’s see why S(U(2) × U(3)) ⊂ Spin(9).

So, we get a 1-1 map:

S(U(2) × U(3)) ↪→ Spin(9)



Summary and Speculations

I The true gauge group of the Standard Model, S(U(2) × U(3)),
is precisely the subgroup of Spin(10) that preserves a
complex structure on 10d Euclidean space, a complex volume
form, and a compatible 4+6 splitting.

I But it’s also the subgroup of Spin(9, 1) that preserves a 4+6
splitting of 10d Minkowski spacetime and some extra
structure. Next time I’ll give an octonionic account of this, and
bring h3(O) into the story.

I We should be able to unify these two accounts by
complexifying... but do we want to?



I The 10d Minkowski spacetime (or Euclidean space) in this
story cannot be physical spacetime (or its Euclideanization)
since the SU(2) here:

SU(2) ⊂ S(U(2) × U(3)) ⊂ Spin(9) = Spin(9, 1) ∩ Spin(10)

is acting on isospin, not spin!

I And yet, there is an eerie link between the “left” and “right”
SU(2)’s in the Pati–Salam group

SU(2) × SU(2) × SU(4) � Spin(4) × Spin(6)

and the left-handed and right-handed SU(2)’s acting on the
Euclideanization of physical spacetime

SU(2) × SU(2) � Spin(4)

Somehow the weak force is “more closely tied to 4d
spacetime” than the other forces (it grossly violates parity).


