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Lie 2-Algebras

A 2-vector space L is a category in Vect, the category
of vector spaces.

We can also define linear functors between 2-vector
spaces, and linear natural transformations between
these, in the obvious way.

Theorem. The 2-category of 2-vector spaces, linear
functors and linear natural transformations is equivalent
to the 2-category of:

e 2-term chain complexes C'; 4, Co,
e chain maps between these,

e chain homotopies between these.

Moral: Homological algebra is secretly categorified
linear algebral



A Lie 2-algebra consists of:
e a 2-vector space L
equipped with:
e a functor called the bracket:
)] Lx L — L
bilinear and skew-symmetric as a function of objects
and morphisms,
e a natural isomorphism called the Jacobiator:
Jrye: 2,9l 2] = |z, [y, 2] + [z, 2], v,

trilinear and antisymmetric as a function of the objects
x? y? Z?

such that:

e the Jacobiator identity holds, meaning the follow-
ing diagram commutes:

([[w,x],y],2]
o2 \

([fw,yl, 2], 2]+ [[w,[2,y]],2] [[[w,z],y],2]
Jw ezt w2y, Jw,aly,

([[w,yl,2] 2] +[[w,y],[2,2]] ([[w,z],z],y]+[[w,z],[y,z]]

[w, [[z,y],2]]+[[w,2],[2,y]]
[Jw,y,zax] [Juuz,my]

([[w,2],y],2]+[[w,[y,2]],2] ([w,[z,2]],y]

+[w,yl, [z, 2]+ [w, [[2,y],2]]+[[w,z],[2,y]] +H[w,z],[y,2]]+[[[w,z],2],y]

w,[z,z],y
[’LU7\JW‘\ +J[w,z]7m7y+Jw,z,[y7z]

[[[w,2],y],x] +[[w,2], [yl + [[w,y],[2,2]]
Flw[[z.2]y]l+Hwly 2] 2]+ [w,[2,[y,2]]]



Given a vector space V' and an isomorphism
B:VV-=VQYV,

we say B is a Yang—Baxter operator if it
satisfies the Yang—Baxter equation, which
says that:

(B®1)(1®B)(B®1)=(13B)(B®1)(1 B),

or in other words, that this diagram commutes:

1B V “ V “ V B®1
V®V®§//// \\\\?®V®v
B®1 1®B
VeVeV VeVeV
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[fwedraw B: V®V — V ®YV as a braiding:

the Yang-Baxter equation says that:
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Proposition. Let L be a vector space over k
equipped with a skew-symmetric bilinear
operation

)] Lx L — L.
Let L' = k @ L and define the isomorphism
B:I'oLl - L' oL by
B((a,z)®(b,y)) = (b, y)®(a, 2)+(1,0)®(0, [z, y]).

Then B is a solution of the Yang—Baxter
equation if and only if |-, -] satisfies the Jacobi
identity.



Zamolodchikov tetrahedron equation

Given a 2-vector space V' and an invertible linear
functor B: V®V — V&V, alinear natural isomorphism

Y:Be )19 B)(B®1)= (12 B)(B® 1)1 B)

satisfies the Zamolodchikov tetrahedron equation
if:

Y o (1010B)(10B®1)(B11)][(19 B1)(BR1®1) oY o (BR1R1 )]
[(I®B®1)(1012B) oY o (101RB)|[Y o (BR1®1)(10BR1)(101®B)]

(BR1®1)(10B31)(1010B8) o Y][(BRI®1) oY o (BR1X1)(10B®1)]
(I®1®B)oY o (181®B)(12BR1)][(1010B)(12B&1)( BR1®1) o Y]

We should think of Y as the surface in 4-space traced
out by the process of performing the third Reidemeister

B
B



Left side of Zamolodchikov tetrahedron
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Right side of Zamolodchikov tetrahedron

equation:
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In short, the Zamolodchikov tetrahedron

equation is a formalization of this commutative
octagon:

////\\ \»\\



Theorem. Let L be a 2-vector space, let [-,+]: L x L — L be a
skew-symmetric bilinear functor, and let J be a completely antisym-
metric trilinear natural transformation with

Jiﬂ,?hz: H.CU, y]? Z] — [CU? [yv ZH + HQS, ZL y]
Let L' = K & L, where K is the categorified ground field.
Let B: L'’ ® L' — L’ ® L' be defined as follows:
B((a,2) ® (b)) = (b:9) ® 0,2) + (1,0) ® (0, [7,)

whenever (a,z) and (b,y) are both either objects or morphisms in
L'. Finally, let

Y. (Be)(1®B)B®1)= (12 B)(B®1)(1 B)

be defined as follows:
L/ ® L/ ® L/
PRPRP

L®L®L

(z,y,2)

L/ ® L/ ® L/
(1,0)®(1,0)®(0,a)
where a is either an object or morphism of L. Then Y is a solution

of the Zamolodchikov tetrahedron equation if and only if J satisfies
the Jacobiator identity.



Hierarchy of Higher Commutativity

Topology Algebra
Crossing Commutator
Crossing of crossings | Jacobi identity
Crossing of crossing | Jacobiator
of crossings identity




We can define homomorphisms between Lie 2-algebras,
and 2-homomorphisms between these.

Theorem. The 2-category of Lie 2-algebras, homo-
morphisms and 2-homomorphisms is equivalent to the
2-category of:

e 2-term L. .-algebras,

e L.-homomorphisms between these,

e [ -2-homomorphisms between these.

The Lie 2-algebras L and L’ are equivalent if there are
homomorphisms

f:L—L f. L' - L
that are inverses up to 2-isomorphism:

frE1 frEL

Theorem. Lie 2-algebras are classified up to equivalence
by quadruples consisting of:

e a Lie algebra g,
e an abelian Lie algebra (= vector space) b,
e a representation p of g on b,

e an clement [j] € H3(g, b).



The Lie 2-Algebra g;

Suppose g is a finite-dimensional simple Lie algebra over
R. To get a Lie 2-algebra having g as objects we need:

e a vector space b,
e a representation p of g on b,

e an clement [j] € H%(g, b).

Assume without loss of generality that p is irreducible.
To get Lie 2-algebras with nontrivial Jacobiator, we need

H3(g,h) # 0. By Whitehead’s lemma, this only happens
when h = R is the trivial representation. Then we have

H*(g,R) =R
with a nontrivial 3-cocycle given by:

viz,y,z) = (|z,y],2).

The Lie algebra g together with the trivial representation
of g on R and £k times the above 3-cocycle give the Lie
2-algebra gp.



The 2-term L.-algebra V' corresponding to the Lie
2-algebra gy is given by:

e |y = the Lie algebra g,

o] =R,

e d: Vi — Vis the zero map,

o [y: V) x Vi — Vj given by the bracket in g:
la(z,y) = [z, 9],

and ly: V) x Vi — Vj given by the trivial
representation p of g on R,

o /3: V) x Vo x Vi — V) given by:
l3<$7y7 Z) — k([x,y],z}
for all z,y, z € g.

In summary: every simple Lie algebra g gives a one-
parameter family of Lie 2-algebras, gi., which reduces
to g when k =0/

Puzzle: Does g; come from a Lie 2-group?



Suppose we try to copy the construction of g; for a par-
ticularly nice kind of Lie group. Let G be a simply-
connected compact simple Lie group whose Lie algebra
is g. We have

HY(G,U(1)) = Z — R = H(g,R)

Using the classification of 2-groups, we can build a
skeletal 2-group G, for k € Z:

e (7 as its group of objects,
e U(1) as the group of automorphisms of any object,
e the trivial action of G on U(1),

e [a] € H3(G,U(1)) given by k¢[v], which is nontrivial
when k # 0.

Question: Can G be made into a Lie 2-group?

Here’s the bad news:

(Bad News) Theorem. Unless £ = 0, there is no
way to give the 2-group G the structure of a Lie 2-group
for which the group G of objects and the group U(1) of
endomorphisms of any object are given their usual
topology.



(Good News) Theorem. For any k € 7Z, there is
a Fréchet Lie 2-group PrG whose Lie 2-algebra Prg is
equivalent to gs.

An object of PrG is a smooth path f: |0, 27| — G start-
ing at the identity. A morphism from f; to f, is an equiv-
alence class of pairs (D, a) consisting of a disk D going
from f1 to fo together with o € U(1).

For any two such pairs (D, 1) and (Ds, as) there is a
3-ball B whose boundary is Dy U Dy, and the pairs are
equivalent when

exp <2m'k/ V) = s/
B

where v is the left-invariant closed 3-form on G with

v(z,y,z) = (lz,y], 2)

and (-, -) is the smallest invariant inner product on g such
that v gives an integral cohomology class.



The Lie 2-Algebra P.g

PG is a particularly nice kind of Lie 2-group: a strict
one! Thus, its Lie 2-algebra is easy to compute.

The 2-term L.-algebra V' corresponding to the Lie
2-algebra Prg is given by:

o V) = Iy
o V=g ¥ Qg OR,

o d: Vi — Vj equal to the composite
Qg — Qg — Rog,

o [y: Vy x Vi — Vj given by the bracket in Fyg:
l2(p1, p2) = [p1, D2,

and ly: Vo X Vi — Vi given by the action da of Pog
on (g, or explicitly:

A
b(p, (6,¢) = ([p, €], 2k / (p(6),£(6)) do )
0
for all p € Pyg, £ € Q0G and ¢ € R,

o/3: Vy x Vy x Vi — Vi equal to zero.



The 2-term L.-algebra V' corresponding to the Lie
2-algebra gy is given by:

e |y = the Lie algebra g,

o] =R,

e d: V7 — V| is the zero map,

o [y: V) x Vi — Vj given by the bracket in g:
lo(z,y) = [z, 9],

and ly: V) x Vi — Vj given by the trivial
representation p of g on R,

o /3: V) x Vo x Vy — V) given by:
l3<$7y7 Z) — k([x,y],z}
for all z,y, 2z € g.



The Equivalence Prg >~ g;.

We describe the two Lie 2-algebra homomorphisms form-
ing our equivalence in terms of their corresponding
L.-algebra homomorphisms:

e ¢: Prg — g; has:

Po(p) = (27T)
¢1(€, C) —

where p € Pyg, £ € (1g, and c € R.

e : gr — Prg has:

ho(x) = xf
hi(e) = (0,¢)
where x € g, c € R, and f: [0, 27] — R is a smooth

function with f(0) =0 and f(27) =

Theorem. With the above definitions we have:

e ¢ o 1) is the identity Lie 2-algebra homomorphism on
gk, and

® )0 ¢ is isomorphic, as a Lie 2-algebra homomorphism,
to the identity on Pg.



What’s Next?

We know how to get Lie n-algebras from Lie algebra
cohomology! We should:

e Classify their representations
e ['ind their corresponding Lie n-groups

e Understand their relation to higher braid theory

Moreover, many other questions remain:

e Weak n-categories in Vect?

e Weakening laws governing addition and scalar multi-
plication?”

e Weakening the antisymmetry of the bracket in the
definition of Lie 2-algebra?

e What's a free Lie 2-algebra on a 2-vector space?
e Lie 2-algebra cohomology? L -algebra cohomology?

e Deformations of Lie 2-algebras?



