
Loop Groups and Lie 2-Algebras

Alissa S. Crans

Joint work with:

John Baez

Urs Schreiber

& Danny Stevenson

in honor of
Ross Street’s 60th birthday

July 15, 2005

HH

BB

77
7

;;

LL

LL

777

;;

CC

BB

77
;;

v~ tt
tt

tt

tt
tt

tt

 (
JJ

JJ
JJ

JJ
JJ

JJ

�#
??

??
??

?

??
??

??
?

{� ��
��

��
�

��
��

��
�

�#
??

??
??

?

??
??

??
?

{� �
��

��
��

��
��

��
�

 (
JJ

JJ
JJ

JJ
JJ

JJ

v~ tt
tt

tt

tt
tt

tt



Lie 2-Algebras

A 2-vector space L is a category in Vect, the category
of vector spaces.

We can also define linear functors between 2-vector
spaces, and linear natural transformations between
these, in the obvious way.

Theorem. The 2-category of 2-vector spaces, linear
functors and linear natural transformations is equivalent
to the 2-category of:

• 2-term chain complexes C1
d
−→C0,

• chain maps between these,

• chain homotopies between these.

Moral: Homological algebra is secretly categorified
linear algebra!



A Lie 2-algebra consists of:

• a 2-vector space L

equipped with:

• a functor called the bracket:

[·, ·] : L× L→ L

bilinear and skew-symmetric as a function of objects
and morphisms,

• a natural isomorphism called the Jacobiator:

Jx,y,z : [[x, y], z]→ [x, [y, z]] + [[x, z], y],

trilinear and antisymmetric as a function of the objects
x, y, z,

such that:
• the Jacobiator identity holds, meaning the follow-

ing diagram commutes:
[[[w,x],y],z]

[[[w,y],x],z]+[[w,[x,y]],z] [[[w,x],y],z]

[[[w,y],z],x]+[[w,y],[x,z]]
+[w,[[x,y],z]]+[[w,z],[x,y]]

[[[w,x],z],y]+[[w,x],[y,z]]

[[[w,z],y],x]+[[w,[y,z]],x]
+[[w,y],[x,z]]+[w,[[x,y],z]]+[[w,z],[x,y]]

[[w,[x,z]],y]
+[[w,x],[y,z]]+[[[w,z],x],y]

[[[w,z],y],x]+[[w,z],[x,y]]+[[w,y],[x,z]]
+[w,[[x,z],y]]+[[w,[y,z]],x]+[w,[x,[y,z]]]

Jw,[x,z],y
+J[w,z],x,y+Jw,x,[y,z]

[Jw,x,y,z]
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Given a vector space V and an isomorphism

B : V ⊗ V → V ⊗ V,

we say B is a Yang–Baxter operator if it
satisfies the Yang–Baxter equation, which
says that:

(B⊗1)(1⊗B)(B⊗1) = (1⊗B)(B⊗1)(1⊗B),

or in other words, that this diagram commutes:

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V

V ⊗ V ⊗ V

B⊗1

**UUUUUUUUUUUUUUUUUUUUUU

1⊗B

uujjjjjjjjjjjjjjjjjjjj

B⊗1

��

1⊗B
))TTTTTTTTTTTTTTTTTTTT

B⊗1
ttiiiiiiiiiiiiiiiiiiiiii

1⊗B

��



If we draw B : V ⊗ V → V ⊗ V as a braiding:

V V

B =

V V

the Yang–Baxter equation says that:

VVV

VVV
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%
%
%
%
%
%
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VVV

VVV



Proposition. Let L be a vector space over k
equipped with a skew-symmetric bilinear
operation

[·, ·] : L× L→ L.

Let L′ = k ⊕ L and define the isomorphism

B : L′ ⊗ L′ → L′ ⊗ L′ by

B((a, x)⊗(b, y)) = (b, y)⊗(a, x)+(1, 0)⊗(0, [x, y]).

Then B is a solution of the Yang–Baxter
equation if and only if [·, ·] satisfies the Jacobi
identity.



Zamolodchikov tetrahedron equation

Given a 2-vector space V and an invertible linear
functorB : V ⊗V → V ⊗V , a linear natural isomorphism

Y : (B ⊗ 1)(1⊗ B)(B ⊗ 1)⇒ (1⊗B)(B ⊗ 1)(1⊗B)

satisfies the Zamolodchikov tetrahedron equation
if:

[Y ◦ (1⊗1⊗B)(1⊗B⊗1)(B⊗1⊗1)][(1⊗B⊗1)(B⊗1⊗1)◦Y ◦ (B⊗1⊗1)]

[(1⊗B⊗1)(1⊗1⊗B)◦Y ◦ (1⊗1⊗B)][Y ◦ (B⊗1⊗1)(1⊗B⊗1)(1⊗1⊗B)]

=

[(B⊗1⊗1)(1⊗B⊗1)(1⊗1⊗B)◦Y ][(B⊗1⊗1)◦Y ◦ (B⊗1⊗1)(1⊗B⊗1)]

[(1⊗1⊗B)◦Y ◦ (1⊗1⊗B)(1⊗B⊗1)][(1⊗1⊗B)(1⊗B⊗1)(B⊗1⊗1)◦Y ]

We should think of Y as the surface in 4-space traced
out by the process of performing the third Reidemeister
move:

Y :

%
%
%
%
%
%
%
%
%
%
%

⇒



Left side of Zamolodchikov tetrahedron
equation:
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Right side of Zamolodchikov tetrahedron
equation:
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In short, the Zamolodchikov tetrahedron
equation is a formalization of this commutative
octagon:

HHHH

BBBB

77
77

7

;;
;;
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L

LLL

77777

;;;;
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;;
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Theorem. Let L be a 2-vector space, let [·, ·] : L × L → L be a

skew-symmetric bilinear functor, and let J be a completely antisym-

metric trilinear natural transformation with

Jx,y,z : [[x, y], z]→ [x, [y, z]] + [[x, z], y].

Let L′ = K ⊕ L, where K is the categorified ground field.

Let B : L′ ⊗ L′ → L′ ⊗ L′ be defined as follows:

B((a, x)⊗ (b, y)) = (b, y)⊗ (a, x) + (1, 0)⊗ (0, [x, y])

whenever (a, x) and (b, y) are both either objects or morphisms in

L′. Finally, let

Y : (B ⊗ 1)(1⊗B)(B ⊗ 1)⇒ (1⊗B)(B ⊗ 1)(1⊗B)

be defined as follows:

L′ ⊗ L′ ⊗ L′

L′ ⊗ L′ ⊗ L′

L⊗ L⊗ L

L

Y =

a

(1,0)⊗(1,0)⊗(0,a)

[[x,y],z] [x,[y,z]]+[[x,z],y]

(x,y,z)

p⊗p⊗p

��

_�

j

��

zz$$

J
+3

where a is either an object or morphism of L. Then Y is a solution
of the Zamolodchikov tetrahedron equation if and only if J satisfies
the Jacobiator identity.



Hierarchy of Higher Commutativity

Topology Algebra
Crossing Commutator

Crossing of crossings Jacobi identity
Crossing of crossing Jacobiator

of crossings identity
... ...



We can define homomorphisms between Lie 2-algebras,
and 2-homomorphisms between these.

Theorem. The 2-category of Lie 2-algebras, homo-
morphisms and 2-homomorphisms is equivalent to the
2-category of:

• 2-term L∞-algebras,

• L∞-homomorphisms between these,

• L∞-2-homomorphisms between these.

The Lie 2-algebras L and L′ are equivalent if there are
homomorphisms

f : L→ L′ f̄ : L′ → L

that are inverses up to 2-isomorphism:

ff̄ ∼= 1, f̄f ∼= 1.

Theorem. Lie 2-algebras are classified up to equivalence
by quadruples consisting of:

• a Lie algebra g,

• an abelian Lie algebra (= vector space) h,

• a representation ρ of g on h,

• an element [j] ∈ H3(g, h).



The Lie 2-Algebra gk

Suppose g is a finite-dimensional simple Lie algebra over
R. To get a Lie 2-algebra having g as objects we need:

• a vector space h,

• a representation ρ of g on h,

• an element [j] ∈ H3(g, h).

Assume without loss of generality that ρ is irreducible.
To get Lie 2-algebras with nontrivial Jacobiator, we need
H3(g, h) 6= 0. By Whitehead’s lemma, this only happens
when h = R is the trivial representation. Then we have

H3(g,R) = R

with a nontrivial 3-cocycle given by:

ν(x, y, z) = 〈[x, y], z〉.

The Lie algebra g together with the trivial representation
of g on R and k times the above 3-cocycle give the Lie
2-algebra gk.



The 2-term L∞-algebra V corresponding to the Lie
2-algebra gk is given by:

• V0 = the Lie algebra g,

• V1 = R,

• d : V1→ V0 is the zero map,

• l2 : V0 × V0 → V0 given by the bracket in g:

l2(x, y) = [x, y],

and l2 : V0 × V1 → V1 given by the trivial
representation ρ of g on R,

• l3 : V0 × V0 × V0 → V1 given by:

l3(x, y, z) = k〈[x, y], z〉

for all x, y, z ∈ g.

In summary: every simple Lie algebra g gives a one-

parameter family of Lie 2-algebras, gk, which reduces

to g when k = 0!

Puzzle: Does gk come from a Lie 2-group?



Suppose we try to copy the construction of gk for a par-
ticularly nice kind of Lie group. Let G be a simply-
connected compact simple Lie group whose Lie algebra
is g. We have

H3(G,U(1))
ι
←↩Z ↪→ R ∼= H3(g,R)

Using the classification of 2-groups, we can build a
skeletal 2-group Gk for k ∈ Z:

• G as its group of objects,

• U(1) as the group of automorphisms of any object,

• the trivial action of G on U(1),

• [a] ∈ H3(G,U(1)) given by k ι[ν], which is nontrivial
when k 6= 0.

Question: Can Gk be made into a Lie 2-group?

Here’s the bad news:

(Bad News) Theorem. Unless k = 0, there is no
way to give the 2-group Gk the structure of a Lie 2-group
for which the group G of objects and the group U(1) of
endomorphisms of any object are given their usual
topology.



(Good News) Theorem. For any k ∈ Z, there is
a Fréchet Lie 2-group PkG whose Lie 2-algebra Pkg is
equivalent to gk.

An object of PkG is a smooth path f : [0, 2π]→ G start-
ing at the identity. A morphism from f1 to f2 is an equiv-
alence class of pairs (D,α) consisting of a disk D going
from f1 to f2 together with α ∈ U(1).

For any two such pairs (D1, α1) and (D2, α2) there is a
3-ball B whose boundary is D1 ∪ D2, and the pairs are
equivalent when

exp

(
2πik

∫

B

ν

)
= α2/α1

where ν is the left-invariant closed 3-form on G with

ν(x, y, z) = 〈[x, y], z〉

and 〈·, ·〉 is the smallest invariant inner product on g such
that ν gives an integral cohomology class.



The Lie 2-Algebra Pkg

PkG is a particularly nice kind of Lie 2-group: a strict

one! Thus, its Lie 2-algebra is easy to compute.

The 2-term L∞-algebra V corresponding to the Lie
2-algebra Pkg is given by:

• V0 = P0g

• V1 = Ω̂kg
∼= Ωg⊕ R,

• d : V1→ V0 equal to the composite

Ω̂kg→ Ωg ↪→ P0g ,

• l2 : V0 × V0 → V0 given by the bracket in P0g:

l2(p1, p2) = [p1, p2],

and l2 : V0 × V1 → V1 given by the action dα of P0g

on Ω̂kg, or explicitly:

l2(p, (`, c)) =
(
[p, `], 2k

∫ 2π

0

〈p(θ), `′(θ)〉 dθ
)

for all p ∈ P0g, ` ∈ ΩG and c ∈ R,

• l3 : V0 × V0 × V0 → V1 equal to zero.



The 2-term L∞-algebra V corresponding to the Lie
2-algebra gk is given by:

• V0 = the Lie algebra g,

• V1 = R,

• d : V1→ V0 is the zero map,

• l2 : V0 × V0 → V0 given by the bracket in g:

l2(x, y) = [x, y],

and l2 : V0 × V1 → V1 given by the trivial
representation ρ of g on R,

• l3 : V0 × V0 × V0 → V1 given by:

l3(x, y, z) = k〈[x, y], z〉

for all x, y, z ∈ g.



The Equivalence Pkg ' gk

We describe the two Lie 2-algebra homomorphisms form-
ing our equivalence in terms of their corresponding
L∞-algebra homomorphisms:

• φ : Pkg→ gk has:

φ0(p) = p(2π)
φ1(`, c) = c

where p ∈ P0g, ` ∈ Ωg, and c ∈ R.

• ψ : gk → Pkg has:

ψ0(x) = xf
ψ1(c) = (0, c)

where x ∈ g, c ∈ R, and f : [0, 2π] → R is a smooth
function with f(0) = 0 and f(2π) = 1.

Theorem. With the above definitions we have:

• φ ◦ ψ is the identity Lie 2-algebra homomorphism on
gk, and

• ψ◦φ is isomorphic, as a Lie 2-algebra homomorphism,
to the identity on Pkg.



What’s Next?

We know how to get Lie n-algebras from Lie algebra
cohomology! We should:

• Classify their representations

• Find their corresponding Lie n-groups

• Understand their relation to higher braid theory

Moreover, many other questions remain:

•Weak n-categories in Vect?

•Weakening laws governing addition and scalar multi-
plication?

•Weakening the antisymmetry of the bracket in the
definition of Lie 2-algebra?

•What’s a free Lie 2-algebra on a 2-vector space?

• Lie 2-algebra cohomology? L∞-algebra cohomology?

• Deformations of Lie 2-algebras?


