Loop Groups and Lie 2-Algebras

Alissa S. Crans

Joint work with:

John Baez Urs Schreiber & Danny Stevenson

in honor of Ross Street's 60th birthday

July 15, 2005

Lie 2-Algebras

A **2-vector space** L is a category in Vect, the category of vector spaces.

We can also define **linear functors** between 2-vector spaces, and **linear natural transformations** between these, in the obvious way.

Theorem. The 2-category of 2-vector spaces, linear functors and linear natural transformations is equivalent to the 2-category of:

- 2-term chain complexes $C_1 \xrightarrow{d} C_0$,
- chain maps between these,
- chain homotopies between these.

Moral: Homological algebra is secretly categorified linear algebra!

A Lie 2-algebra consists of:

• a 2-vector space L

equipped with:

• a functor called the **bracket**:

 $[\cdot,\cdot]\colon L\times L\to L$

bilinear and skew-symmetric as a function of objects and morphisms,

• a natural isomorphism called the **Jacobiator**:

 $J_{x,y,z}: [[x,y],z] \to [x,[y,z]] + [[x,z],y],$

trilinear and antisymmetric as a function of the objects x, y, z,

such that:

• the **Jacobiator identity** holds, meaning the following diagram commutes:

Given a vector space V and an isomorphism

 $B\colon V\otimes V\to V\otimes V,$

we say *B* is a **Yang–Baxter operator** if it satisfies the **Yang–Baxter equation**, which says that:

 $(B \otimes 1)(1 \otimes B)(B \otimes 1) = (1 \otimes B)(B \otimes 1)(1 \otimes B),$ or in other words, that this diagram commutes:

If we draw $B: V \otimes V \to V \otimes V$ as a braiding:

the Yang–Baxter equation says that:

Proposition. Let L be a vector space over k equipped with a skew-symmetric bilinear operation

 $[\cdot, \cdot] \colon L \times L \to L.$

Let $L' = k \oplus L$ and define the isomorphism

 $B: L' \otimes L' \to L' \otimes L'$ by

 $B((a,x)\otimes(b,y))=(b,y)\otimes(a,x)+(1,0)\otimes(0,[x,y]).$

Then B is a solution of the Yang–Baxter equation if and only if $[\cdot, \cdot]$ satisfies the Jacobi identity.

Zamolodchikov tetrahedron equation

Given a 2-vector space V and an invertible linear functor $B: V \otimes V \to V \otimes V$, a linear natural isomorphism

 $Y \colon (B \otimes 1)(1 \otimes B)(B \otimes 1) \Rightarrow (1 \otimes B)(B \otimes 1)(1 \otimes B)$

satisfies the **Zamolodchikov tetrahedron equation** if:

 $[Y \circ (1 \otimes 1 \otimes B)(1 \otimes B \otimes 1)(B \otimes 1 \otimes 1)][(1 \otimes B \otimes 1)(B \otimes 1 \otimes 1) \circ Y \circ (B \otimes 1 \otimes 1)]$ $[(1 \otimes B \otimes 1)(1 \otimes 1 \otimes B) \circ Y \circ (1 \otimes 1 \otimes B)][Y \circ (B \otimes 1 \otimes 1)(1 \otimes B \otimes 1)(1 \otimes 1 \otimes B)]$

 $\begin{array}{l} [(B \otimes 1 \otimes 1)(1 \otimes B \otimes 1)(1 \otimes 1 \otimes B) \circ Y][(B \otimes 1 \otimes 1) \circ Y \circ (B \otimes 1 \otimes 1)(1 \otimes B \otimes 1)] \\ [(1 \otimes 1 \otimes B) \circ Y \circ (1 \otimes 1 \otimes B)(1 \otimes B \otimes 1)][(1 \otimes 1 \otimes B)(1 \otimes B \otimes 1)(B \otimes 1 \otimes 1) \circ Y] \end{array}$

We should think of Y as the surface in 4-space traced out by the *process of performing* the third Reidemeister move:

Left side of Zamolodchikov tetrahedron equation:

Right side of Zamolodchikov tetrahedron equation:

In short, the Zamolodchikov tetrahedron equation is a formalization of this commutative octagon:

Theorem. Let L be a 2-vector space, let $[\cdot, \cdot]: L \times L \to L$ be a skew-symmetric bilinear functor, and let J be a completely antisymmetric trilinear natural transformation with

$$J_{x,y,z}: [[x,y],z] \to [x,[y,z]] + [[x,z],y].$$

Let $L' = K \oplus L$, where K is the categorified ground field. Let $B: L' \otimes L' \to L' \otimes L'$ be defined as follows:

$$B((a,x)\otimes (b,y))=(b,y)\otimes (a,x)+(1,0)\otimes (0,[x,y])$$

whenever (a, x) and (b, y) are both either objects or morphisms in L'. Finally, let

 $Y \colon (B \otimes 1)(1 \otimes B)(B \otimes 1) \Rightarrow (1 \otimes B)(B \otimes 1)(1 \otimes B)$

be defined as follows:

where a is either an object or morphism of L. Then Y is a solution of the Zamolodchikov tetrahedron equation if and only if J satisfies the Jacobiator identity.

Hierarchy of Higher Commutativity

Topology	Algebra
Crossing	Commutator
Crossing of crossings	Jacobi identity
Crossing of crossing	Jacobiator
of crossings	identity
	:

We can define **homomorphisms** between Lie 2-algebras, and **2-homomorphisms** between these.

Theorem. The 2-category of Lie 2-algebras, homomorphisms and 2-homomorphisms is equivalent to the 2-category of:

- 2-term L_{∞} -algebras,
- L_{∞} -homomorphisms between these,
- L_{∞} -2-homomorphisms between these.

The Lie 2-algebras L and L' are **equivalent** if there are homomorphisms

 $f: L \to L' \qquad \overline{f}: L' \to L$

that are inverses up to 2-isomorphism:

 $f\bar{f}\cong 1, \qquad \bar{f}f\cong 1.$

Theorem. Lie 2-algebras are classified up to equivalence by quadruples consisting of:

- \bullet a Lie algebra ${\mathfrak g},$
- an abelian Lie algebra (= vector space) \mathfrak{h} ,
- a representation ρ of \mathfrak{g} on \mathfrak{h} ,
- an element $[j] \in H^3(\mathfrak{g}, \mathfrak{h})$.

The Lie 2-Algebra \mathfrak{g}_k

Suppose \mathfrak{g} is a finite-dimensional simple Lie algebra over \mathbb{R} . To get a Lie 2-algebra having \mathfrak{g} as objects we need:

- \bullet a vector space $\mathfrak{h},$
- a representation ρ of \mathfrak{g} on \mathfrak{h} ,
- an element $[j] \in H^3(\mathfrak{g}, \mathfrak{h})$.

Assume without loss of generality that ρ is irreducible. To get Lie 2-algebras with nontrivial Jacobiator, we need $H^3(\mathfrak{g},\mathfrak{h})\neq 0$. By Whitehead's lemma, this only happens when $\mathfrak{h} = \mathbb{R}$ is the trivial representation. Then we have

 $H^3(\mathfrak{g},\mathbb{R})=\mathbb{R}$

with a nontrivial 3-cocycle given by:

$$\nu(x,y,z) = \langle [x,y],z\rangle.$$

The Lie algebra \mathfrak{g} together with the trivial representation of \mathfrak{g} on \mathbb{R} and k times the above 3-cocycle give the Lie 2-algebra \mathfrak{g}_k . The 2-term L_{∞} -algebra V corresponding to the Lie 2-algebra \mathfrak{g}_k is given by:

- V_0 = the Lie algebra \mathfrak{g} ,
- $V_1 = \mathbb{R},$
- $d: V_1 \to V_0$ is the zero map,
- $l_2: V_0 \times V_0 \to V_0$ given by the bracket in \mathfrak{g} :

$$l_2(x,y) = [x,y],$$

and $l_2: V_0 \times V_1 \to V_1$ given by the trivial representation ρ of \mathfrak{g} on \mathbb{R} ,

• $l_3: V_0 \times V_0 \times V_0 \to V_1$ given by: $l_3(x, y, z) = k\langle [x, y], z \rangle$ for all $x, y, z \in \mathbf{q}$

for all $x, y, z \in \mathfrak{g}$.

In summary: every simple Lie algebra \mathfrak{g} gives a oneparameter family of Lie 2-algebras, \mathfrak{g}_k , which reduces to \mathfrak{g} when k = 0!

Puzzle: Does \mathfrak{g}_k come from a Lie 2-group?

Suppose we try to copy the construction of \mathfrak{g}_k for a particularly nice kind of Lie group. Let G be a simplyconnected compact simple Lie group whose Lie algebra is \mathfrak{g} . We have

$$H^3(G, \mathrm{U}(1)) \stackrel{\iota}{\longleftrightarrow} \mathbb{Z} \hookrightarrow \mathbb{R} \cong H^3(\mathfrak{g}, \mathbb{R})$$

Using the classification of 2-groups, we can build a skeletal 2-group G_k for $k \in \mathbb{Z}$:

- G as its group of objects,
- U(1) as the group of automorphisms of any object,
- the trivial action of G on U(1),
- $[a] \in H^3(G, U(1))$ given by $k \iota[\nu]$, which is nontrivial when $k \neq 0$.

Question: Can G_k be made into a Lie 2-group?

Here's the bad news:

(Bad News) Theorem. Unless k = 0, there is no way to give the 2-group G_k the structure of a Lie 2-group for which the group G of objects and the group U(1) of endomorphisms of any object are given their usual topology.

(Good News) Theorem. For any $k \in \mathbb{Z}$, there is a Fréchet Lie 2-group $\mathcal{P}_k G$ whose Lie 2-algebra $\mathcal{P}_k \mathfrak{g}$ is equivalent to \mathfrak{g}_k .

An object of $\mathcal{P}_k G$ is a smooth path $f: [0, 2\pi] \to G$ starting at the identity. A morphism from f_1 to f_2 is an equivalence class of pairs (D, α) consisting of a disk D going from f_1 to f_2 together with $\alpha \in \mathrm{U}(1)$.

For any two such pairs (D_1, α_1) and (D_2, α_2) there is a 3-ball *B* whose boundary is $D_1 \cup D_2$, and the pairs are equivalent when

$$\exp\left(2\pi ik\int_B\nu\right) = \alpha_2/\alpha_1$$

where ν is the left-invariant closed 3-form on G with

$$\nu(x,y,z) = \langle [x,y],z\rangle$$

and $\langle \cdot, \cdot \rangle$ is the smallest invariant inner product on \mathfrak{g} such that ν gives an integral cohomology class.

The Lie 2-Algebra $\mathcal{P}_k \mathfrak{g}$

 $\mathcal{P}_k G$ is a particularly nice kind of Lie 2-group: a *strict* one! Thus, its Lie 2-algebra is easy to compute.

The 2-term L_{∞} -algebra V corresponding to the Lie 2-algebra $\mathcal{P}_k \mathfrak{g}$ is given by:

• $V_0 = P_0 \mathfrak{g}$

•
$$V_1 = \widehat{\Omega_k \mathfrak{g}} \cong \Omega \mathfrak{g} \oplus \mathbb{R},$$

$$l_2(p_1, p_2) = [p_1, p_2],$$

and $l_2: V_0 \times V_1 \to V_1$ given by the action $d\alpha$ of $P_0\mathfrak{g}$ on $\Omega_k\mathfrak{g}$, or explicitly:

$$l_2(p,(\ell,c)) = \left([p,\ell], \ 2k \int_0^{2\pi} \langle p(\theta), \ell'(\theta) \rangle \ d\theta \right)$$

for all $p \in P_0 \mathfrak{g}, \ \ell \in \Omega G$ and $c \in \mathbb{R}$,

• $l_3: V_0 \times V_0 \times V_0 \to V_1$ equal to zero.

The 2-term L_{∞} -algebra V corresponding to the Lie 2-algebra \mathfrak{g}_k is given by:

- V_0 = the Lie algebra \mathfrak{g} ,
- $V_1 = \mathbb{R},$
- $d: V_1 \to V_0$ is the zero map,
- $l_2: V_0 \times V_0 \to V_0$ given by the bracket in \mathfrak{g} :

$$l_2(x,y) = [x,y],$$

and $l_2: V_0 \times V_1 \to V_1$ given by the trivial representation ρ of \mathfrak{g} on \mathbb{R} ,

• $l_3: V_0 \times V_0 \times V_0 \to V_1$ given by:

$$l_3(x, y, z) = k \langle [x, y], z \rangle$$

for all $x, y, z \in \mathfrak{g}$.

The Equivalence $\mathcal{P}_k \mathfrak{g} \simeq \mathfrak{g}_k$

We describe the two Lie 2-algebra homomorphisms forming our equivalence in terms of their corresponding L_{∞} -algebra homomorphisms:

• $\phi \colon \mathcal{P}_k \mathfrak{g} \to \mathfrak{g}_k$ has:

$$\phi_0(p) = p(2\pi)$$

$$\phi_1(\ell, c) = c$$

where $p \in P_0 \mathfrak{g}, \ell \in \Omega \mathfrak{g}$, and $c \in \mathbb{R}$.

• $\psi \colon \mathfrak{g}_k \to \mathcal{P}_k \mathfrak{g}$ has:

$$\psi_0(x) = xf$$

$$\psi_1(c) = (0, c)$$

where $x \in \mathfrak{g}$, $c \in \mathbb{R}$, and $f: [0, 2\pi] \to \mathbb{R}$ is a smooth function with f(0) = 0 and $f(2\pi) = 1$.

Theorem. With the above definitions we have:

- $\phi \circ \psi$ is the identity Lie 2-algebra homomorphism on \mathfrak{g}_k , and
- $\psi \circ \phi$ is isomorphic, as a Lie 2-algebra homomorphism, to the identity on $\mathcal{P}_k \mathfrak{g}$.

What's Next?

We know how to get Lie n-algebras from Lie algebra cohomology! We should:

- Classify their representations
- Find their corresponding Lie n-groups
- Understand their relation to higher braid theory

Moreover, many other questions remain:

- Weak *n*-categories in Vect?
- Weakening laws governing addition and scalar multiplication?
- Weakening the antisymmetry of the bracket in the definition of Lie 2-algebra?
- What's a free Lie 2-algebra on a 2-vector space?
- Lie 2-algebra cohomology? L_{∞} -algebra cohomology?
- Deformations of Lie 2-algebras?