LOOP GROUPS AND CATEGORIFIED GEOMETRY

Notes for talk at Streetfest

(joint work with John Baez, Alissa Crans and Urs Schreiber)

Lie 2-groups

A (strict) Lie 2-group is a small category \mathcal{G} such that

- the set of objects \mathcal{G}_0 and
- the set of morphisms \mathcal{G}_1

are Lie groups;

- source and target $s, t: \mathcal{G}_1 \to \mathcal{G}_0$,
- the identity assigning function $i: \mathcal{G}_0 \to \mathcal{G}_1$,
- composition $\circ: \mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1 \to \mathcal{G}_1$

are all homomorphisms of Lie groups.

By **Lie group** we mean a group G which is also a manifold such that the map

$$G \times G \to G$$
$$(g,h) \mapsto gh^{-1}$$

is smooth, but by **manifold** we could mean an infinite dimensional manifold modelled on a locally convex topological vector space, for example a **Fréchet space**. In particular, we will consider **Fréchet Lie groups** and hence **Fréchet Lie 2-groups**.

Remarks

- 1. There is a notion of **weak** Lie 2-group.
- 2. Lie 2-groups are the same as Lie crossed modules

$$\partial \colon H \to G$$
$$\alpha \colon G \to \operatorname{Aut}(H)$$

3. Every Lie 2-group $\mathcal{G} = (\mathcal{G}_0, \mathcal{G}_1)$ has an associated Lie 2-algebra $\mathfrak{g} = (\mathfrak{g}_0, \mathfrak{g}_1)$

$$\mathfrak{g}_0 = \operatorname{Lie}(\mathcal{G}_0)$$

 $\mathfrak{g}_1 = \operatorname{Lie}(\mathcal{G}_1)$

The differentials ds, dt, di and $d \circ \mathfrak{g}_1 \times_{\mathfrak{g}_0} \mathfrak{g}_1 \to \mathfrak{g}_1$ are all Lie algebra homomorphisms.

Let G be a compact, simple, simply connected Lie group with Lie algebra \mathfrak{g} . For any $k \in \mathbb{R}$ Baez and Crans construct a (weak) Lie 2-algebra \mathfrak{g}_k with

$$Ob(\mathfrak{g}_k) = \mathfrak{g}$$
$$Mor(\mathfrak{g}_k) = \mathfrak{g} \oplus i\mathbb{R}$$

but where the 'Jacobiator' is given by the **basic** 3-form $k\langle x, [y, z] \rangle$ on G.

Question: Is \mathfrak{g}_k the Lie 2-algebra of some Lie 2-group??

For any $k \in \mathbb{Z}$ Baez and Lauda construct a (weak) 2-group G_k but this is **not** a Lie 2-group.

We will explain how to construct a **Fréchet** Lie 2-group $\mathcal{P}_k G$ whose Lie 2-algebra is equivalent to \mathfrak{g}_k . $\mathcal{P}_k G$ is closely related to central extensions of **loop groups** and to the **basic gerbe** on G.

Loop Groups

Let G be a compact, simple, simply connected Lie group. We define

$$LG = \{f \colon [0, 2\pi] \to G | f \text{ is } C^{\infty}, f(0) = f(2\pi)\}$$
 – the **loop group**

and

 $\Omega G = \{ f \in LG | f(0) = 1 \}$ – the **based** loop group

LG and ΩG are Fréchet Lie groups. ΩG behaves like a compact Lie group in many ways except that there exist **topologically non-trivial central extensions**

 $1 \to \mathbb{T} \to \widehat{\Omega_k G} \to \Omega G \to 1$ – the **Kac-Moody** group

where $\widehat{\Omega_k G}$ is the **Kac-Moody** group. There is a corresponding central extension of Lie algebras

$$0 \to i\mathbb{R} \to \Omega_k \mathfrak{g} \to \Omega g \to 0$$

This is easier to understand: it is determined up to isomorphism by the **Kac-Moody** 2-cocycle

$$\omega(f,g) = 2 \int_0^{2\pi} \langle f(\theta), g'(\theta) \rangle d\theta$$

where $f, g \in \Omega g = \{f : [0, 2\pi] \to \mathfrak{g} | f \text{ is } C^{\infty}, f(0) = f(2\pi) = 0\}$ and \langle , \rangle denotes the Killing form normalised so that $|h_{\theta}| = \frac{1}{\sqrt{2\pi}}$ where h_{θ} is the co-root associated to the longest root θ .

Kac-Moody Central Extension

Let \mathcal{G} be a simply connected Lie group forming part of a central extension

$$1 \to \mathbb{T} \to \hat{\mathcal{G}} \to \mathcal{G} \to 1$$

so that \mathcal{G} is the total space of a principal \mathbb{T} -bundle over \mathcal{G} which is also a group containing \mathbb{T} as a central subgroup. Suppose also that \mathcal{G} is equipped with a connection ∇ whose curvature 2-form is F_{∇} . Denote by

$$P_0 \mathcal{G} = \{ f : [0, 2\pi] \to G | f \text{ is } C^\infty, f(0) = 1 \}$$

the group of **based paths** in \mathcal{G} . $P_0\mathcal{G}$ is a group under pointwise multiplication of paths in \mathcal{G} . Note that there is a homomorphism $\pi: P_0\mathcal{G} \to \mathcal{G}$ which evaluates a path at its endpoint: $\pi(f) = f(2\pi)$. The kernel of π is just the based loop group ΩG .

We can use the homomorphism π to pullback the central extension \mathcal{G} to obtain a new group $\pi^* \hat{\mathcal{G}}$ which is a central extension of $P_0 \mathcal{G}$

$$\begin{array}{c} \pi^* \hat{\mathcal{G}} \longrightarrow \hat{\mathcal{G}} \\ \downarrow & \downarrow \\ P_0 \mathcal{G} \xrightarrow{\pi} \mathcal{G} \end{array}$$

 $P_0\mathcal{G}$ is **contractible** and hence the central extension $1 \to \mathbb{T} \to \pi^* \hat{\mathcal{G}} \to P_0\mathcal{G} \to 1$ is **split**. In fact a splitting can be constructed explicitly as follows using the connection ∇ : if f is a based path in $P_0\mathcal{G}$ denote by \hat{f} the unique horizontal lift of f to a path in $\hat{\mathcal{G}}$ starting at 1. Then $\sigma: P_0\mathcal{G} \to \pi^*\hat{\mathcal{G}}$ defined by $\sigma(f) = (f, \hat{f})$ provides such a splitting. In particular we obtain an isomorphism $\pi^*\hat{\mathcal{G}} \cong P_0\mathcal{G} \times \mathbb{T}$. The product on the group $P_0\mathcal{G} \times \mathbb{T}$ is determined however by a \mathbb{T} -valued 2-cocycle

$$c\colon P_0\mathcal{G}\times P_0\mathcal{G}\to\mathbb{T}$$

If $\mathcal{G} = \Omega G$ then

$$c(f,g) = \exp\left(2ik\int_0^{2\pi}\int_0^{2\pi} \langle f(t)^{-1}f'(t), g'(\theta)g(\theta)^{-1}\rangle d\theta \, dt\right)$$

where $f = f(t, \theta), g = g(t, \theta) \in P_0\Omega G$.

So we have the commutative diagram of groups and group homomorphisms

$$\begin{array}{c} P_0 \mathcal{G} \times \mathbb{T} \xrightarrow{\hat{\pi}} \hat{\mathcal{G}} \\ \downarrow & \downarrow \\ P_0 \mathcal{G} \xrightarrow{\pi} \mathcal{G} \end{array}$$

where $\hat{\pi}(f, z) = \hat{f}(2\pi)z$. The kernel ker $\hat{\pi}$ is the normal subgroup

$$\ker \hat{\pi} = \{ (f, z) | \hat{f}(2\pi) = z^{-1}, f(2\pi) = 1 \}$$
$$= \{ (f, z) | z^{-1} = \operatorname{Hol}_{f}(\nabla) \}$$

where $\operatorname{Hol}_f(\nabla)$ denotes the **holonomy** of ∇ around the loop f. Since \mathcal{G} is simply connected,

$$\operatorname{Hol}_{f}(\nabla) = \exp\left(2\pi i \int_{D_{f}} F_{\nabla}\right)$$

where D_f is any disc with boundary the loop f. If $\mathcal{G} = \Omega G$ then F_{∇} is the left invariant 2-form whose value at the identity is just the Kac-Moody 2-cocycle:

$$F_{\nabla}(\xi,\eta) = 2 \int_0^{2\pi} \langle \xi(\theta), \eta'(\theta) \rangle d\theta$$

The point of this construction is that we can recover $\hat{\mathcal{G}}$ by

- 1. equipping $P_0 \mathcal{G} \times \mathbb{T}$ with the product coming from the 2-cocycle c, and
- 2. letting $\hat{\mathcal{G}}$ be the **quotient**

$$\hat{\mathcal{G}} = \frac{P_0 \mathcal{G} \times \mathbb{T}}{N}$$

where N is the **normal subgroup**

$$N = \{(\gamma, z) \mid \gamma \in \Omega G, z^{-1} = \exp\left(2\pi i \int_{D_{\gamma}} F_{\nabla}\right)\}$$

Construction of $\mathcal{P}_k G$

As above, let $P_0G = \{f : [0, 2\pi] \to G | f \text{ is} C^{\infty}, f(0) = 1\}$. P_0G acts on ΩG by conjugation and induces an action on $P_0\Omega G$. Define an action of P_0G on $P_0\Omega G \times \mathbb{T}$ by

$$p \cdot (f, z) = (p^{-1}fp, z \exp\left(ik \int_0^{2\pi} \int_0^{2\pi} \langle f(t)^{-1}f'(t), p'(\theta)p(\theta)^{-1} \rangle d\theta \, dt\right))$$

where $p = p(\theta) \in P_0G$ and $f = f(t, \theta) \in P_0\Omega G$. This action of P_0G preserves the normal subgroup N and induces an action of P_0G on $\widehat{\Omega_k G}$ by automorphisms, so that we have a Fréchet Lie crossed module

$$\alpha \colon P_0 G \to \operatorname{Aut}(\widehat{\Omega}_k \widehat{G})$$
$$\partial \colon \widehat{\Omega_k G} \to P_0 G$$

where ∂ is defined as the composite $\widehat{\Omega_k G} \xrightarrow{p} \Omega G \xrightarrow{i} P_0 G$.

Let $\mathcal{P}_k G$ have Fréchet Lie group $Ob(\mathcal{P}_k G)$ of **objects** given by

$$\operatorname{Ob}(\mathcal{P}_k G) = P_0 G$$

and Fréchet Lie group $Mor(\mathcal{P}_k G)$ of **morphisms** given by the semi-direct product

$$Mor(\mathcal{P}_k G) = P_0 G \ltimes \widehat{\Omega}_k \widehat{G}$$

Then $\mathcal{P}_k G = (P_0 G, P_0 G \ltimes \widehat{\Omega_k G})$ is a Fréchet Lie 2-group when source, target, composition etc are defined as follows:

- source $s(p, \hat{\gamma}) = p$
- target $t(p, \hat{\gamma}) = p\partial(\hat{\gamma})$
- **composition** $(p_1, \hat{\gamma}_1) \circ (p_2, \hat{\gamma}_2) = (p_1, \hat{\gamma}_1 \hat{\gamma}_2)$ when $t(p_1, \hat{\gamma}_1) = s(p_2, \hat{\gamma}_2)$, i.e. $p_2 = p_1 \partial(\hat{\gamma}_1)$.

identities i(p) = (p, 1).

where $p \in P_0 G$ and $\hat{\gamma} \in \widehat{\Omega_k G}$.

Theorem 1. The Lie 2-algebra of $\mathcal{P}_k G$ is equivalent to \mathfrak{g}_k .

Topology of $\mathcal{P}_k G$

The **nerve** of any topological 2-group $\mathcal{G} = (\mathcal{G}_0, \mathcal{G}_1)$ is a **simplicial** topological group and we therefore obtain on passing to **geometric realisations** a topological group

$$|\mathcal{P}_k G|$$

In fact more is true: there is an **exact sequence** of topological 2-groups

$$1 \to \mathcal{L}_k G \to \mathcal{P}_k G \to G \to 1$$

where $\mathcal{L}_k G$ is the topological 2-group with

$$Ob(\mathcal{L}_k G) = \Omega G$$
$$Mor(\mathcal{L}_k G) = \Omega G \ltimes \widehat{\Omega_k G}$$

and where G is considered as a **discrete**2-group (i.e. there only exist identity morphisms). Here by exact sequence we mean only that the sequences of groups $1 \to \operatorname{Ob}(\mathcal{L}_k G) \to \operatorname{Ob}(\mathcal{P}_k G) \to \operatorname{Ob}(G) \to 1$ and $1 \to \operatorname{Mor}(\mathcal{L}_k G) \to \operatorname{Mor}(\mathcal{P}_k G) \to \operatorname{Mor}(G) \to 1$ are both exact.

Applying the geometric realisation functor $|\cdot|$ we get a short exact sequence of topological groups

$$1 \to |\mathcal{L}_k G| \to |\mathcal{P}_k G| \to G \to 1$$

We note the following two facts:

- $|\mathcal{L}_k G|$ has the homotopy type of a $K(\mathbb{Z}, 2)$
- $|\mathcal{P}_k G| \to G$ is a locally trivial fibre bundle with fibre $K(\mathbb{Z}, 2)$.

Recall that $K(\mathbb{Z}, 2)$ bundles on a space X are classified up to isomorphism by their **Dixmier-Douady** invariants in $H^3(X; \mathbb{Z})$. We have

Theorem 2. The Dixmier-Douady class of the $K(\mathbb{Z}, 2)$ -bundle $|\mathcal{P}_k G| \to G$ is k times the generator of $H^3(G; \mathbb{Z}) = \mathbb{Z}$. When $k = \pm 1$, $|\mathcal{P}_k G|$ is \hat{G} — the topological group obtained by killing the third homotopy group of G.

Fundamental particles (for example electrons) have extra degrees of freedom (spin) — so we need to enlarge the group of symmetries to Spin(n)

$$1 \to \mathbb{Z}_2 \to \operatorname{Spin}(n) \to \operatorname{SO}(n) \to 1$$

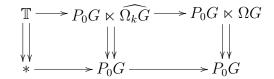
For string theory we need to enlarge the group of symmetries to an even bigger group String(n)

$$1 \to K(\mathbb{Z}, 2) \to \operatorname{String}(n) \to \operatorname{Spin}(n) \to 1$$

When G = Spin(n) and $k = \pm 1$, we obtain the important result that $|\mathcal{P}_k G| = \text{String}(n)$.

$\mathcal{P}_k G$ and gerbes

Note that the Lie 2-group $\mathcal{P}_k G = (P_0 G, P_0 G \ltimes \widehat{\Omega_k G})$ fits into a short exact sequence of groupoids



This exhibits $\mathcal{P}_k G$ as a **T-central extension** of groupoids. So $\mathcal{P}_k G$ is a **T-bundle gerbe** in the sense of **Murray**. In this way $\mathcal{P}_k G$ provides a realisation of the **basic gerbe** on G.

In fact $\mathcal{P}_k G$ is a **multiplicative** \mathbb{T} -bundle gerbe. Recall that a multiplicative gerbe on G consists of the following data:

- a \mathbb{T} -gerbe \mathcal{G} on G
- a morphism $\mathcal{G} \otimes \mathcal{G} \to \mathcal{G}$
- a coherent natural isomorphism

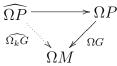
$$\begin{array}{c|c} \mathcal{G} \otimes \mathcal{G} \otimes \mathcal{G} \xrightarrow{m \otimes 1} \mathcal{G} \otimes \mathcal{G} \\ \downarrow^{1 \otimes m} & & \downarrow^{m} \\ \mathcal{G} \otimes \mathcal{G} \xrightarrow{m} \mathcal{G} \end{array}$$

Multiplicative gerbes play a role in Chern-Simons theory and twisted K-theory. It is interesting to note that $\mathcal{P}_k G$ is a **strictly** multiplicative gerbe.

String structures

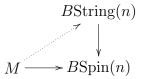
Suppose that $P \xrightarrow{G} M$ is a principal *G*-bundle where *G* is as above. Let $[\nu]$ denote the generator of $H^3(G; \mathbb{Z}) = \mathbb{Z}$. $[\nu]$ is universally transgressive: let $[c] \in H^4(M; \mathbb{Z})$ denote the transgression of $[\nu]$ in the fibre bundle $P \to M$. If G = Spin(n) then $2[c] = p_1$.

A string structure for P is a lift of the structure group of the bundle ΩP to $\widehat{\Omega_k G}$:



where $\Omega P \to \Omega M$ is the principal ΩG -bundle one gets by applying the based loops functor Ω to the pointed spaces P and M.

Assume M is 2-connected. Then a string structure for P exists iff [c] = 0. In this case, one can construct explicitly a **non-abelian gerbe** for the crossed module $\widehat{\Omega_k G} \xrightarrow{\partial} P_0 G$ in the sense of Breen. The existence of a string structure can also be interpreted, when G = Spin(n), as a solution to the obstruction problem



In my opinion, the gerbe referred to above is analogous to an extension of the structure group of P to String(n).