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Gauge Theory

Ordinary gauge theory describes how 0-dimensional par-

ticles transform as we move them along 1-dimensional
paths. It is natural to assign a Lie group element to
each path:

•

g

&&
•

since composition of paths then corresponds to multipli-

cation:

•

g

&&
•

g′

&&
•

while reversing the direction of a path corresponds to

taking inverses:

• •

g−1

xx

and the associative law makes the holonomy along a
triple composite unambiguous:

•

g

&&
•

g′

&&
•

g′′

&&
•

In short: the topology dictates the algebra!

The electromagnetic field is described using the group is
U(1). Other forces are described using other groups.
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Higher Gauge Theory

Higher gauge theory describes the parallel transport not

only of point particles, but also 1-dimensional strings.
For this we must categorify the notion of a group! A
‘2-group’ has objects:

•

g

&&
•

and also morphisms:

•

g

&&

g′

88f
��

•

We can multiply objects:

•

g

&&
•

g′

&&
•

multiply morphisms:

•

g1

&&

g′1

88f1
��

•

g2

&&

g′2

88f2
��

•

and also compose morphisms:

•

g

��g′
//

f
��

g′′

BB
f ′

��

•

Various laws should hold....

In fact, we can make this precise and categorify the whole

theory of Lie groups, Lie algebras, bundles, connections
and curvature!
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2-Groups

A group is a monoid where every element has an inverse.
Let’s categorify this!

A 2-group is a monoidal category where every object x

has a ‘weak inverse’:

x ⊗ y ∼= 1, y ⊗ x ∼= 1

and every morphism f has an inverse:

fg = 1, gf = 1.

A homomorphism between 2-groups is a monoidal func-

tor. A 2-homomorphism is a monoidal natural trans-
formation. So, the 2-groups X and X ′ are equivalent if

there are homomorphisms

f : G → G ′ f̄ : G ′ → G

that are inverses up to 2-isomorphism:

ff̄ ∼= 1, f̄f ∼= 1.

Theorem. 2-groups are classified up to equivalence by
quadruples consisting of:

• a group G,

• an abelian group H,

• an action α of G as automorphisms of H,

• an element [a] ∈ H3(G, H).
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Lie 2-Algebras

To categorify the concept of ‘Lie algebra’ we must first

treat the concept of ‘vector space’:

A 2-vector space L is a category for which the set of
objects and the set of morphisms are vector spaces, and
all the category operations are linear.

We can also define linear functors between 2-vector

spaces, and linear natural transformations between
these, in the obvious way.

Theorem. The 2-category of 2-vector spaces, linear
functors and linear natural transformations is equivalent

to the 2-category of:

• 2-term chain complexes C1
d

−→C0,

• chain maps between these,

• chain homotopies between these.

The objects of the 2-vector space form the space C0. The

morphisms f : 0 → x form the space C1, with df = x.
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A Lie 2-algebra consists of:

• a 2-vector space L

equipped with:

• a functor called the bracket:

[·, ·] : L × L → L,

bilinear and skew-symmetric as a function of objects
and morphisms,

• a natural isomorphism called the Jacobiator:

Jx,y,z : [[x, y], z] → [x, [y, z]] + [[x, z], y],

trilinear and antisymmetric as a function of the ob-
jects x, y, z,

such that:

• the Jacobiator identity holds: the following dia-

gram commutes:

[[[w,x],y],z]

[[[w,y],x],z]+[[w,[x,y]],z] [[[w,x],z],y]+[[w,x],[y,z]]

[[[w,y],z],x]+[[w,y],[x,z]]
+[w,[[x,y],z]]+[[w,z],[x,y]]

[[w,[x,z]],y]
+[[w,x],[y,z]]+[[[w,z],x],y]

[[[w,z],y],x]+[[w,[y,z]],x]

+[[w,y],[x,z]]+[w,[[x,y],z]]+[[w,z],[x,y]]

[[[w,z],y],x]+[[w,z],[x,y]]+[[w,y],[x,z]]

+[w,[[x,z],y]]+[[w,[y,z]],x]+[w,[x,[y,z]]]

[Jw,x,y,z]

uukkkkkkkkkkkkkkkk
J[w,x],y,z

))SSSSSSSSSSSSSSSS

J[w,y],x,z+Jw,[x,y],z

��

[Jw,y,z,x]+1

��'
''

''
''
'

[Jw,x,z,y]+1

��

Jw,[x,z],y+J[w,z],x,y+Jw,x,[y,z]

����
��
��
��

[w,Jx,y,z]+1
//
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We can also define homomorphisms between Lie 2-algebras,
and 2-homomorphisms between these. So, the Lie 2-

algebras L and L′ are equivalent if there are homomor-
phisms

f : L → L′ f̄ : L′ → L

that are inverses up to 2-isomorphism.

Theorem. Lie 2-algebras are classified up to equivalence
by quadruples consisting of:

• a Lie algebra g,

• an abelian Lie algebra (= vector space) h,

• a representation ρ of g on h,

• an element [j] ∈ H3(g, h).

Just like the classification of 2-groups, but with Lie
algebra cohomology replacing group cohomology!

Let’s use this to find some interesting Lie 2-algebras.
Then let’s try to find the corresponding Lie 2-groups. A

Lie 2-group is a 2-group where everything in sight is
smooth.
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The Lie 2-Algebra gk

Suppose g is a finite-dimensional simple Lie algebra over

R. To get a Lie 2-algebra with g as objects we need:

• a vector space h,

• a representation ρ of g on h,

• an element [j] ∈ H3(g, h).

Assume without loss of generality that ρ is irreducible.
To get Lie 2-algebras with nontrivial Jacobiator, we need

H3(g, h) 6= 0. This only happens when h = R is the
trivial representation. Then we have

H3(g, R) = R

with a nontrivial 3-cocycle given by:

ν(x, y, z) = 〈[x, y], z〉.

Using k times this to define the Jacobiator, we get a Lie

2-algebra we call gk.

In short: every simple Lie algebra g admits a canon-
ical one-parameter deformation gk in the world of Lie
2-algebras!
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Does gk Come From a Lie
2-Group?

The bad news: while there is a 2-group that is ‘trying’
to have gk as its Lie algebra, it cannot be made into a
Lie 2-group. It has G as its set of objects and U(1) as

the endomorphisms of any object, but unless k = 0 we
cannot make its associator everywhere smooth — only

in a neighborhood of the identity!

But all is not lost. gk is equivalent to a Lie 2-algebra
that does come from a Lie 2-group! However, this Lie

2-algebra is infinite-dimensional!

Theorem. For any k ∈ Z, there is an infinite-dimensional

Lie 2-group PkG whose Lie 2-algebra is equivalent to gk.

An object of PkG is a smooth path in G starting at the
identity. A morphism from f1 to f2 is an equivalence

class of pairs (D, α) consisting of a smooth homotopy D
from f1 to f2 together with α ∈ U(1):

�

�

G

1

f1 f2D
+3

There’s an easy way to compose morphisms in PkG, and
the resulting category inherits a Lie 2-group structure

from the Lie group structure of G.
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The Role of Loop Groups

We can also describe PkG using central extensions of the

loop group of G:

Theorem. An object of PkG is a smooth path in G
starting at the identity. Given objects f1, f2 ∈ PkG, a

morphism
̂̀: f1 → f2

is an element ̂̀∈ Ω̂kG with

p(̂̀) = f2/f1 ∈ ΩG

where Ω̂kG is the level-k central extension of the loop

group ΩG:

1−→U(1)−→ Ω̂kG
p

−→ΩG−→ 1

Since central extensions of loop groups play a basic role in

string theory, and higher gauge theory is all about parallel
transport of strings, this suggests PkG is an interesting

Lie 2-group!
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An Application to Topology

Any simply-connected compact simple Lie group G has

π3(G) = Z.

There is a topological group Ĝ obtained by killing the
third homotopy group of G. When G = Spin(n), Ĝ is

called String(n).

Theorem. For any k ∈ Z, the geometric realization of

the nerve of PkG is a topological group |PkG|. When
k = ±1,

|PkG| ' Ĝ.

The group String(n) shows up in string theory, especially

elliptic cohomology — so this again suggests we’re on the
right track!
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Gauge Theory Revisited

Any manifold M gives a smooth groupoid P1(M), its

path groupoid, for which:

• objects are points x ∈ M : • x

• morphisms are thin homotopy classes of smooth paths
γ : [0, 1] → M that are constant near t = 0, 1:

x •

γ
''
• y

For any Lie group G, a principal G-bundle P → M gives

a smooth groupoid Trans(P ), the transport groupoid,
for which:

• objects are the fibers Px (which are G-torsors),

• morphisms are G-torsor morphisms f : Px → Py.

Via parallel transport, any connection on P gives a smooth

functor called its holonomy:

hol : P1(M) → Trans(P )

A trivialization of the bundle P makes Trans(P ) equiv-
alent to G, so we get:

hol : P1(M) → G.

12



Higher Gauge Theory Revisited

We can categorify all the above and get a theory of 2-

connections on principal 2-bundles. See the papers by
Toby Bartels and Urs Schreiber for details... or come
with me to Canberra! With suitable definitions, it turns

out that:

Any manifold M gives a smooth 2-groupoid P2(M), its

path 2-groupoid, for which:

• objects are points of M : • x

• morphisms are smooth paths γ : [0, 1] → M that are

constant near t = 0, 1: x •

γ
''
• y

• 2-morphisms are thin homotopy classes of smooth

maps f : [0, 1]2 → M such that f(s, t) is independent
of s in a neighborhood of s = 0 and s = 1, and

constant in a neighborhood of t = 0 and t = 1:

x •

γ1

''

γ2

77 • yf
��

For any strict Lie 2-group G, a principal G-2-bundle P →

M gives a smooth 2-groupoid Trans(P ), the transport
2-groupoid, for which:

• objects are the fibers Px (which are G-2-torsors),

• morphisms are 2-torsor morphisms f : Px → Py,

• 2-morphisms are 2-torsor 2-morphisms θ : f ⇒ g.
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Theorem. Via parallel transport, a 2-connection on P
gives a smooth 2-functor called its holonomy:

hol : P2(M) → Trans(P )

if and only if its ‘fake curvature’ vanishes.

So, in this case we can define the holonomy of our 2-
connection along paths:

x•
γ

))•y hol
7→ Px

hol(γ)
** Py

and paths-of-paths:

x•

γ1
""

γ2

<<
•yf

��

hol
7→ Px

hol(γ1)
&&

hol(γ2)

88
Pyhol(f)

��

in a manner compatible with all 2-groupoid operations!

A trivialization of P makes Trans(P ) equivalent to G, so
we get:

hol : P2(M) → G.
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What Next?

1. Classify the representations of Lie 2-algebras and Lie

2-groups, especially gk and PkG.

2. Develop more categorified differential geometry: 2-

bundles over smooth categories, the tangent 2-bundle
of a smooth category, classifying 2-spaces of Lie 2-

groups, and so on....

3. Develop physical theories based on 2-connections on
2-bundles — higher gauge theories.

4. Relate higher gauge theories to string theory and
elliptic cohomology.

5. Go even higher: M-theory wants 3-connections on

3-bundles, describing parallel transport of 2-branes.
Read Urs Schreiber’s thesis!
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