## Higher Gauge Theory

John C. Baez

joint work with: Toby Bartels, Alissa Crans, Aaron Lauda, Urs Schreiber, Danny Stevenson.

# in honor of Ross Street's 60th birthday

## July 15, 2005



More details at:

http://math.ucr.edu/home/baez/street/

#### Gauge Theory

Ordinary gauge theory describes how 0-dimensional particles transform as we move them along 1-dimensional paths. It is natural to assign a Lie group element to each path:



since composition of paths then corresponds to multiplication:



while reversing the direction of a path corresponds to taking inverses:



and the associative law makes the holonomy along a triple composite unambiguous:



In short: the topology dictates the algebra!

The electromagnetic field is described using the group is U(1). Other forces are described using other groups.

#### Higher Gauge Theory

Higher gauge theory describes the parallel transport not only of point particles, but also 1-dimensional strings. For this we must categorify the notion of a group! A '2-group' has objects:



and also morphisms:



We can multiply objects:



multiply morphisms:



and also compose morphisms:



Various laws should hold....

In fact, we can make this precise and categorify the whole theory of Lie groups, Lie algebras, bundles, connections and curvature!

#### 2-Groups

A group is a monoid where every element has an inverse. Let's categorify this!

A **2-group** is a monoidal category where every object x has a 'weak inverse':

$$x \otimes y \cong 1, \qquad y \otimes x \cong 1$$

and every morphism f has an inverse:

$$fg = 1, \qquad gf = 1.$$

A homomorphism between 2-groups is a monoidal functor. A 2-homomorphism is a monoidal natural transformation. So, the 2-groups X and X' are equivalent if there are homomorphisms

$$f: \mathcal{G} \to \mathcal{G}' \qquad \bar{f}: \mathcal{G}' \to \mathcal{G}$$

that are inverses up to 2-isomorphism:

$$f\bar{f} \cong 1, \qquad \bar{f}f \cong 1.$$

**Theorem.** 2-groups are classified up to equivalence by quadruples consisting of:

- a group G,
- an abelian group H,
- an action  $\alpha$  of G as automorphisms of H,
- an element  $[a] \in H^3(G, H)$ .

## Lie 2-Algebras

To categorify the concept of 'Lie algebra' we must first treat the concept of 'vector space':

A 2-vector space L is a category for which the set of objects and the set of morphisms are vector spaces, and all the category operations are linear.

We can also define **linear functors** between 2-vector spaces, and **linear natural transformations** between these, in the obvious way.

**Theorem.** The 2-category of 2-vector spaces, linear functors and linear natural transformations is equivalent to the 2-category of:

- 2-term chain complexes  $C_1 \xrightarrow{d} C_0$ ,
- chain maps between these,
- chain homotopies between these.

The objects of the 2-vector space form the space  $C_0$ . The morphisms  $f: 0 \to x$  form the space  $C_1$ , with df = x.

A Lie 2-algebra consists of:

• a 2-vector space L

equipped with:

• a functor called the **bracket**:

$$[\cdot, \cdot] \colon L \times L \to L$$

bilinear and skew-symmetric as a function of objects and morphisms,

• a natural isomorphism called the **Jacobiator**:

$$J_{x,y,z}: [[x,y],z] \to [x,[y,z]] + [[x,z],y],$$

trilinear and antisymmetric as a function of the objects x, y, z,

such that:

• the Jacobiator identity holds: the following dia-



We can also define homomorphisms between Lie 2-algebras, and 2-homomorphisms between these. So, the Lie 2algebras L and L' are **equivalent** if there are homomorphisms

 $f: L \to L' \qquad \bar{f}: L' \to L$ 

that are inverses up to 2-isomorphism.

**Theorem.** Lie 2-algebras are classified up to equivalence by quadruples consisting of:

- a Lie algebra  $\mathfrak{g}$ ,
- an abelian Lie algebra (= vector space)  $\mathfrak{h}$ ,
- a representation  $\rho$  of  $\mathfrak{g}$  on  $\mathfrak{h}$ ,
- an element  $[j] \in H^3(\mathfrak{g}, \mathfrak{h})$ .

Just like the classification of 2-groups, but with Lie algebra cohomology replacing group cohomology!

Let's use this to find some interesting Lie 2-algebras. Then let's try to find the corresponding Lie 2-groups. A **Lie 2-group** is a 2-group where everything in sight is smooth.

#### The Lie 2-Algebra $\mathfrak{g}_k$

Suppose  $\mathfrak{g}$  is a finite-dimensional simple Lie algebra over  $\mathbb{R}$ . To get a Lie 2-algebra with  $\mathfrak{g}$  as objects we need:

- a vector space  $\mathfrak{h}$ ,
- a representation  $\rho$  of  $\mathfrak{g}$  on  $\mathfrak{h}$ ,
- an element  $[j] \in H^3(\mathfrak{g}, \mathfrak{h})$ .

Assume without loss of generality that  $\rho$  is irreducible. To get Lie 2-algebras with nontrivial Jacobiator, we need  $H^3(\mathfrak{g},\mathfrak{h}) \neq 0$ . This only happens when  $\mathfrak{h} = \mathbb{R}$  is the trivial representation. Then we have

$$H^3(\mathfrak{g},\mathbb{R})=\mathbb{R}$$

with a nontrivial 3-cocycle given by:

$$\nu(x, y, z) = \langle [x, y], z \rangle.$$

Using k times this to define the Jacobiator, we get a Lie 2-algebra we call  $\mathfrak{g}_k$ .

In short: every simple Lie algebra  $\mathfrak{g}$  admits a canonical one-parameter deformation  $\mathfrak{g}_k$  in the world of Lie 2-algebras!

# Does $\mathfrak{g}_k$ Come From a Lie 2-Group?

The bad news: while there is a 2-group that is 'trying' to have  $\mathfrak{g}_k$  as its Lie algebra, it cannot be made into a Lie 2-group. It has G as its set of objects and U(1) as the endomorphisms of any object, but unless k = 0 we cannot make its associator everywhere smooth — only in a neighborhood of the identity!

But all is not lost.  $\mathfrak{g}_k$  is *equivalent* to a Lie 2-algebra that *does* come from a Lie 2-group! However, this Lie 2-algebra is *infinite-dimensional!* 

**Theorem.** For any  $k \in \mathbb{Z}$ , there is an infinite-dimensional Lie 2-group  $\mathcal{P}_k G$  whose Lie 2-algebra is *equivalent* to  $\mathfrak{g}_k$ .

An object of  $\mathcal{P}_k G$  is a smooth path in G starting at the identity. A morphism from  $f_1$  to  $f_2$  is an equivalence class of pairs  $(D, \alpha)$  consisting of a smooth homotopy D from  $f_1$  to  $f_2$  together with  $\alpha \in \mathrm{U}(1)$ :



There's an easy way to compose morphisms in  $\mathcal{P}_k G$ , and the resulting category inherits a Lie 2-group structure from the Lie group structure of G.

#### The Role of Loop Groups

We can also describe  $\mathcal{P}_k G$  using central extensions of the loop group of G:

**Theorem.** An object of  $\mathcal{P}_k G$  is a smooth path in G starting at the identity. Given objects  $f_1, f_2 \in \mathcal{P}_k G$ , a morphism

$$\widehat{\ell} \colon f_1 \to f_2$$

is an element  $\widehat{\ell}\in\widehat{\Omega_kG}$  with

$$p(\widehat{\ell}) = f_2 / f_1 \in \Omega G$$

where  $\widehat{\Omega_k G}$  is the level-k central extension of the loop group  $\Omega G$ :

$$1 \longrightarrow \mathrm{U}(1) \longrightarrow \widehat{\Omega_k G} \stackrel{p}{\longrightarrow} \Omega G \longrightarrow 1$$

Since central extensions of loop groups play a basic role in string theory, and higher gauge theory is all about parallel transport of strings, this suggests  $\mathcal{P}_kG$  is an interesting Lie 2-group!

#### An Application to Topology

Any simply-connected compact simple Lie group G has

 $\pi_3(G) = \mathbb{Z}.$ 

There is a topological group  $\widehat{G}$  obtained by killing the third homotopy group of G. When G = Spin(n),  $\widehat{G}$  is called String(n).

**Theorem.** For any  $k \in \mathbb{Z}$ , the geometric realization of the nerve of  $\mathcal{P}_k G$  is a topological group  $|\mathcal{P}_k G|$ . When  $k = \pm 1$ ,

$$|\mathcal{P}_k G| \simeq \widehat{G}.$$

The group String(n) shows up in string theory, especially elliptic cohomology — so this again suggests we're on the right track!

#### Gauge Theory Revisited

Any manifold M gives a smooth groupoid  $\mathcal{P}_1(M)$ , its **path groupoid**, for which:

- objects are points  $x \in M$ : x
- morphisms are thin homotopy classes of smooth paths  $\gamma: [0, 1] \to M$  that are constant near t = 0, 1:



For any Lie group G, a principal G-bundle  $P \to M$  gives a smooth groupoid Trans(P), the **transport groupoid**, for which:

- objects are the fibers  $P_x$  (which are *G*-torsors),
- morphisms are G-torsor morphisms  $f: P_x \to P_y$ .

Via parallel transport, any connection on P gives a smooth functor called its **holonomy**:

hol: 
$$\mathcal{P}_1(M) \to \operatorname{Trans}(P)$$

A trivialization of the bundle P makes Trans(P) equivalent to G, so we get:

hol: 
$$\mathcal{P}_1(M) \to G$$
.

#### Higher Gauge Theory Revisited

We can categorify all the above and get a theory of 2connections on principal 2-bundles. See the papers by Toby Bartels and Urs Schreiber for details... or come with me to Canberra! With suitable definitions, it turns out that:

Any manifold M gives a smooth 2-groupoid  $\mathcal{P}_2(M)$ , its **path 2-groupoid**, for which:

- objects are points of M: x
- morphisms are smooth paths  $\gamma \colon [0,1] \to M$  that are constant near t = 0, 1:  $x \bullet \qquad \bullet y$
- 2-morphisms are thin homotopy classes of smooth maps  $f: [0,1]^2 \to M$  such that f(s,t) is independent of s in a neighborhood of s = 0 and s = 1, and constant in a neighborhood of t = 0 and t = 1:

$$x \bullet \underbrace{ \underbrace{ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

For any strict Lie 2-group  $\mathcal{G}$ , a principal  $\mathcal{G}$ -2-bundle  $P \rightarrow M$  gives a smooth 2-groupoid Trans(P), the **transport 2-groupoid**, for which:

- objects are the fibers  $P_x$  (which are  $\mathcal{G}$ -2-torsors),
- morphisms are 2-torsor morphisms  $f: P_x \to P_y$ ,
- 2-morphisms are 2-torsor 2-morphisms  $\theta \colon f \Rightarrow g$ .

**Theorem.** Via parallel transport, a 2-connection on P gives a smooth 2-functor called its **holonomy**:

hol:  $\mathcal{P}_2(M) \to \operatorname{Trans}(P)$ 

if and only if its 'fake curvature' vanishes.

So, in this case we can define the holonomy of our 2-connection along paths:



and paths-of-paths:



in a manner compatible with all 2-groupoid operations!

A trivialization of P makes Trans(P) equivalent to  $\mathcal{G}$ , so we get:

hol:  $\mathcal{P}_2(M) \to \mathcal{G}$ .

## What Next?

- 1. Classify the representations of Lie 2-algebras and Lie 2-groups, especially  $\mathfrak{g}_k$  and  $\mathcal{P}_k G$ .
- 2. Develop more categorified differential geometry: 2bundles over smooth categories, the tangent 2-bundle of a smooth category, classifying 2-spaces of Lie 2groups, and so on....
- Develop physical theories based on 2-connections on 2-bundles — higher gauge theories.
- 4. Relate higher gauge theories to string theory and elliptic cohomology.
- 5. Go even higher: M-theory wants 3-connections on 3-bundles, describing parallel transport of 2-branes. Read Urs Schreiber's thesis!