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Around 2012, I asked Brendan Fong to create and study a
category having “open electrical circuits” as morphisms:

inputs outputs

3Ω

1Ω

4Ω

He invented the theory of “decorated cospans” to do this. He
published it in 2015, and we finished our work on electrical
circuits in 2018.

Decorated cospans have now been used to study open
systems of many kinds. But they’re subtle, and I feel they were
only fully understood in 2021. (Or later?)



The simplest example: it would be nice to have a category with
“open graphs” as morphisms.

Here is an open graph with inputs A and outputs B:
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We compose two open graphs by gluing the outputs of one to
the inputs of the other.



So, an open graph is a cospan of finite sets:

A

N

B

i o

where the apex N is equipped with extra data: a finite set E and
two functions giving a graph:

E N
s

t

Brendan treated the apex N as “decorated” with an element of
the set

F (N) =
{
graphs E N

}s

t



Theorem (Fong)
Let A be a category with finite colimits and F : (A,+)→ (Set,×)
a symmetric lax monoidal functor. Then there is a symmetric
monoidal category FCsp where:
I an object is an object of A
I a morphism is an isomorphism class of decorated

cospans:

a m b d ∈ F (m)
i o

Here d is called the decoration, and two decorated
cospans are isomorphic if there’s an isomorphism
h : m ∼

−→ m′ such that this commutes:

a

m

b

m′

d ∈ F (m)

d ′ ∈ F (m′)

i o

i ′ o′
h

and F (h)(d) = d ′.

https://arxiv.org/abs/1502.00872


Given decorated cospans

M = (a→ m ← b,d ∈ F (m)) N = (b → n ← c,e ∈ F (n))

we compose their underlying cospans by pushout:

a

m

b

n

c

m + n

m +b n
ψ

and give it the decoration that’s the image of (d ,e) under this
composite:

(d ,e) ∈ F (m) × F (n)
φm,n
−−−→ F (m + n)

F (ψ)
−−−−→ F (m +b n)

where φm,n comes from F being lax monoidal.



There are problems with applying this theorem to open graphs!
In historical order — and order of increasing seriousness:

1) The “set”

F (N) =
{
graphs E N

}s

t

is a proper class, so we do not have a functor F : FinSet→ Set.

Solution: replace FinSet by an equivalent small category,
which we again call FinSet. Then we get F : FinSet→ Set.



2) Open graphs that “look isomorphic” may not be isomorphic
as decorated cospans!

These are not isomorphic as decorated cospans:
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Here’s why: given a graph

E N = d ∈ F (N)
s

t

and a function h : N → N ′, we have

E N ′ = F (h)(d) ∈ F (N ′)
h ◦ s

h ◦ t

So, the map F (h) : F (N)→ F (N ′) can relabel the nodes of a
graph, but not its edges!

Solution: get used to it. Learn to live with a vast number of
open graphs that look isomorphic but technically aren’t.

Or: let F (N) be a set of equivalence classes of graphs with N
as the set of nodes. Alas, you can’t point to a specific edge in
such an equivalence class.



3) If we take

F (N) =
{
graphs E N

}s

t

then F : (FinSet,+)→ (Set,×) is not lax symmetric monoidal!

This diagram fails to commute:

F (N) × F (N ′) F (N ′) × F (N)

F (N + N ′) F (N ′ + N)

φN ,N′ φN′ ,N

βF (N),F (N′)

F (βN ,N′ )

where the horizontal arrows are braidings.



Solution: Let F (N) be a set of equivalence classes of graphs
with N as the set of nodes.

Or better: go back to the drawing board and improve the whole
formalism.



There are two ways to solve problems 2) and 3):
I “structured cospans”
I the new improved “decorated cospans”.

They are equivalent when they both apply. Structured cospans
are easier, while decorated cospans are more general.

Everything is explained here, with lots of examples:

I John Baez and Kenny Courser, Structured cospans.
I John Baez, Kenny Courser and Christina Vasilakopoluou,

Structured versus decorated cospans.

https://arxiv.org/abs/1911.04630
https://arxiv.org/abs/2101.09363


Both structured and decorated cospans give symmetric
monoidal double categories. For example there is a
2-morphism from this open graph:
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to this one:

•
m1

•
m2

•
m3

•
m4

•
m5

f1

f2

f3

f4 f5

1′

3′

A′ B′

4′



We explain how you can water down a double category of
structured or decorated cospans to get a symmetric monoidal
bicategory, or just a symmetric monoidal category.

But let’s see how the double categories work!



There are two ways to equip an object of a category A with
extra data:

I “Structuring.” Given a right adjoint R : X→ A, we can
give a ∈ A extra structure by choosing x ∈ X with R(x) = a.

I “Decorating.” Given a pseudofunctor F : A→ Cat, we can
decorate a ∈ A with an object d ∈ F (a).

The first is more convenient. The second is more general. So,
we want to relate the two approaches!

The key is the Grothendieck construction: any pseudofunctor
F : A→ Cat gives a functor R :

∫
F → A which under certain

conditions is a right adjoint.



Given a right adjoint
R : X→ A

a structured cospan is a diagram in A of this form:

a

R(x)

b

Think of A as a category of objects with “less structure”, and X
as a category of objects with “more structure”.



Given a left adjoint
L : A→ X

a structured cospan is a diagram in X of this form:

L(a)

x

L(b)

Now we can compose structured cospans by doing pushouts in
X.



Theorem (Baez–Courser)
Suppose A and X have finite colimits and L : A→ X preserves
finite colimits. Then there is a symmetric monoidal double
category LCsp(X) where:
I an object is an object of A
I a vertical 1-morphism is a morphism of A
I a horizontal 1-cell is a structured cospan

L(a) x L(b)
i o

I a 2-morphism is a commutative diagram

L(a) x L(b)

L(a′) x ′ L(b′)

i o

i ′ o′

L(f ) h L(g)

https://arxiv.org/abs/1911.04630


Horizontal composition is defined using pushouts in X.
Composing these:

L(a) x L(b)

L(a′) x ′ L(b′)

L(b) y L(c)

L(b′) y ′ L(c′)

gives this:
L(a) x +L(b) y L(c)

L(a′) x ′ +L(b′) y ′ L(c′)

Vertical composition is straightforward.



The symmetric monoidal structure uses binary coproducts in
both A and X, and the fact that L : A→ X preserves these:

L(a1) L(b1)x1

L(a2) L(b2)x2

L(a′1) L(b′1)x ′1

L(a′2) L(b′2)x ′2

⊗

L(a1 + a′1) L(b1 + b′1)x1 + x ′1

L(a2 + a′2) L(b2 + b′2)x2 + x ′2

=



Example. There is a category Graph where objects are
graphs:

E N
s

t

There is a functor R : Graph→ FinSet sending any graph to its
set of nodes, N.

This has a left adjoint L : FinSet→ Graph sending any finite set
N to the graph with that set of nodes and no edges.

We obtain a symmetric monoidal double category

LCsp(Graph)

where the horizontal 1-cells are exactly open graphs.



In the new improved decorated cospans, we use a category of
decorations instead of a mere set.

Given a lax monoidal pseudofunctor F : (A,+)→ (Cat,×), a
decorated cospan is a diagram in A of this form:

a

m

b

together with a decoration d ∈ F (m).



Theorem (Baez–Courser–Vasilakopoulou)
Let A be a category with finite colimits and F : (A,+)→ (Cat,×)
a symmetric lax monoidal pseudofunctor. Then there is a
symmetric monoidal double category FCsp where:
I an object is an object of A
I a vertical 1-morphism is a morphism of A
I a horizontal 1-cell is a decorated cospan:

a m b d ∈ F (m)
i o

I a 2-morphism is a commuting diagram

a

a′

m b

b′m′

d ∈ F (m)

d ′ ∈ F (m′)

i o

f g

i ′ o′
h

together with a decoration morphism τ : F (h)(d)→ d ′.

https://arxiv.org/abs/2101.09363


When are decorated cospans also structured cospans?

Theorem (Baez–Courser–Vasilakopoulou)
Suppose A has finite colimits and F : (A,+)→ (Cat,×) is a
symmetric lax monoidal pseudofunctor. Suppose the
corresponding pseudofunctor F : A→ SymMonCat factors
through Rex, the 2-category of categories with finite colimits.
Then the symmetric monoidal double categories:
I FCsp of decorated cospans

and
I LCsp(

∫
F ) of structured cospans

are isomorphic, where L : A→
∫

F is a left adjoint of the functor
R :

∫
F → A given by the Grothendieck construction.

What’s “the corresponding pseudofunctor
F : A→ SymMonCat”?

https://arxiv.org/abs/2101.09363


Theorem (Shulman and Moeller–Vasilakopoulou)
If (A,+) has finite coproducts, these three things correspond to
each other:
I symmetric lax monoidal pseudofunctors

F : (A,+)→ (Cat,×)

I pseudofunctors F : A→ SymMonCat
I symmetric monoidal opfibrations R : (X,⊗)→ (A,+).

We build X from F using the Grothendieck construction:

X =
∫

F

I objects of
∫

F are pairs (a ∈ A,d ∈ F (a))

I morphisms are pairs (f : a→ a′, τ : F (f )(d)→ d ′).

https://arxiv.org/abs/0706.1286
https://arxiv.org/abs/1809.00727


Example. There is a pseudofunctor F : FinSet→ Cat sending
each finite set N to the category where objects are graphs

E N
s

t

and the morphisms are diagrams

E

E ′

Nf

s

t

s′

t ′

where s′ ◦ f = s, t ′ ◦ f = t .



F : (FinSet,+)→ (Cat,×) is lax symmetric monoidal, using the
obvious map

φM ,N : F (M) × F (N)→ F (M + N)

The Grothendieck construction gives∫
F � Graph

and it gives a functor

R : Graph→ FinSet

which sends each graph to its set of nodes. The left adjoint

L : FinSet→ Graph

sends each finite set to the graph with that set of nodes and no
edges.



The general theory assures us that

I the symmetric monoidal double category of open graphs
built using decorated cospans

is isomorphic to
I the symmetric monoidal double category of open graphs

built using structured cospans.
But there are also decorated cospans that cannot be described
as structured cospans. So, both approaches are useful!


