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Abstract

Starting from the four normed division algebras—the real numbers, complex numbers, quater-
nions and octonions—a systematic procedure gives a 3-cocycle on the Poincaré Lie superalgebra
in dimensions 3, 4, 6 and 10. A related procedure gives a 4-cocycle on the Poincaré Lie su-
peralgebra in dimensions 4, 5, 7 and 11. In general, an (n + 1)-cocycle on a Lie superalgebra
yields a ‘Lie n-superalgebra’: that is, roughly speaking, an n-term chain complex equipped with
a bracket satisfying the axioms of a Lie superalgebra up to chain homotopy. We thus obtain
Lie 2-superalgebras extending the Poincaré superalgebra in dimensions 3, 4, 6, and 10, and Lie
3-superalgebras extending the Poincaré superalgebra in dimensions 4, 5, 7 and 11. As shown in
Sati, Schreiber and Stasheff’s work on higher gauge theory, Lie 2-superalgebra connections de-
scribe the parallel transport of strings, while Lie 3-superalgebra connections describe the parallel
transport of 2-branes. Moreover, in the octonionic case, these connections concisely summarize
the fields appearing in 10- and 11-dimensional supergravity.

1 Introduction

There is a deep connection between supersymmetry and the four normed division algebras: the
real numbers, complex numbers, quaternions and octonions. This can be seen in super-Yang–Mills
theory, in superstring theory, and in theories of supermembranes and supergravity. Most simply,
the connection is visible from the fact that the normed division algebras have dimensions 1, 2, 4 and
8, while classical superstring theories and minimal super-Yang–Mills theories live in spacetimes of
dimension two higher: 3, 4, 6 and 10. The simplest classical super-2-brane theories make sense in
spacetimes of dimensions three higher: 4, 5, 7 and 11. Classical supergravity makes sense in all of
these dimensions, but the octonionic cases are the most important: in 10 dimensions supergravity
is a low-energy limit of superstring theory, while in 11 dimensions it is believed to be a low-energy
limit of ‘M-theory’, which incorporates the 2-brane.

These numerical relationships are far from coincidental. They arise because we can use the
normed division algebras to construct the spacetimes in question, as well as their associated spinors.
A certain spinor identity that holds in dimensions 3, 4, 6 and 10 is an easy consequence of this
construction, as is a related identity that holds in dimensions 4, 5, 7 and 11. These identities are
fundamental to the physical theories just listed.
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In a bit more detail, suppose K is a normed division algebra of dimension n. There are just four
examples:

• the real numbers R (n = 1),

• the complex numbers C (n = 2),

• the quaternions H (n = 4),

• the octonions O (n = 8).

Then we can identify vectors in (n + 2)-dimensional Minkowski spacetime with 2 × 2 hermitian
matrices having entries in K. Similarly, we can identify spinors with elements of K2. Matrix
multiplication then gives a way for vectors to act on spinors. There is also an operation that takes
two spinors ψ and φ and forms a vector ψ · φ. Using elementary properties of normed division
algebras, we can prove that

(ψ · ψ)ψ = 0.

Following Schray [34], we call this identity the ‘3-ψ’s rule’. This identity is an example of a ‘Fierz
identity’—roughly, an identity that allows one to reorder multilinear expressions made of spinors.
This can be made more visible in the 3-ψ’s rule if we polarize the above cubic form to extract a
genuinely trilinear expression:

(ψ · φ)χ+ (φ · χ)ψ + (χ · ψ)φ = 0.

In fact, the 3-ψ’s rule holds only when Minkowski spacetime has dimension 3, 4, 6 or 10. More-
over, it is crucial for super-Yang–Mills theory and superstring theory in these dimensions. In minimal
super-Yang–Mills theory, we need the 3-ψ’s rule to check that the Lagrangian is supersymmetric,
thanks to an argument reviewed in our previous paper [6]. In superstring theory, we need it to check
the supersymmetry of the Green–Schwarz Lagrangian [22, 23]. But the 3-ψ’s rule also has a deeper
significance, which we study here.

This deeper story involves not only the 3-ψ’s rule but also the ‘4-Ψ’s rule’, a closely related Fierz
identity required for super-2-brane theories in dimensions 4, 5, 7 and 11. To help the reader see the
forest for the trees, we present a rough summary of this story in the form of a recipe:

1. Spinor identities that come from division algebras are cocycle conditions.

2. The corresponding cocycles allow us to extend the Poincaré Lie superalgebra to a higher
structure, a Lie n-superalgebra.

3. Connections valued in these Lie n-superalgebras describe the field content of superstring and
super-2-brane theories.

To begin our story in dimensions 3, 4, 6 and 10, let us first introduce some suggestive terminology:
despite our notation, we shall call ψ · φ the bracket of spinors. This is because this function is
symmetric, and it defines a Lie superalgebra structure on the supervector space

T = V ⊕ S

where the even subspace V is the vector representation of Spin(n+ 1, 1), while the odd subspace S
is a certain spinor representation. This Lie superalgebra is called the supertranslation algebra.

There is a cohomology theory for Lie superalgebras, sometimes called Chevalley–Eilenberg co-
homology. The cohomology of T will play a central role in what follows. Why? First, because the
3-ψ’s is really a cocycle condition, for a 3-cocycle α on T which eats two spinors and a vector and
produces a number as follows:

α(ψ, φ,A) = 〈ψ,Aφ〉.
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Here, 〈−,−〉 is a pairing between spinors. Since this 3-cocycle is Lorentz-invariant, it extends to a
cocycle on the Poincaré superalgebra

siso(n+ 1, 1) ∼= so(n+ 1, 1)n T .

In fact, we obtain a nonzero element of the third cohomology of the Poincaré superalgebra this way.
Just as 2-cocycles on a Lie superalgebra give ways of extending it to larger Lie superalgebras,

3-cocycles give extensions to Lie 2-superalgebras. To understand this, we need to know a bit about
L∞-algebras [28, 33]. An L∞-algebra is a chain complex equipped with a structure like that of a
Lie algebra, but where the laws hold only ‘up to d of something’. A Lie n-algebra is an L∞-algebra
in which only the first n terms are nonzero. All these ideas also have ‘super’ versions. In particular,
we can use the 3-cocycle α to extend siso(n+ 1, 1) to a Lie 2-superalgebra of the following form:

siso(n+ 1, 1) Rdoo .

We call this the ‘superstring Lie 2-superalgebra’, and denote it as superstring(n+ 1, 1).
The superstring Lie 2-superalgebra is an extension of siso(n + 1, 1) by bR, the Lie 2-algebra

with R in degree 1 and everything else trivial. By ‘extension’, we mean that there is a short exact
sequence of Lie 2-superalgebras:

0→ bR→ superstring(n+ 1, 1)→ siso(n+ 1, 1)→ 0.

To see precisely what this means, let us expand it a bit. Lie 2-superalgebras are 2-term chain
complexes, and writing these vertically, our short exact sequence looks like this:

0 // R //

d

��

R //

d

��

0 //

d

��

0

0 // 0 // siso(n+1,1) // siso(n+1,1) // 0

In the middle, we see superstring(n+1, 1). This Lie 2-superalgebra is built from two pieces: siso(n+
1, 1) in degree 0 and R in degree 1. But since the cocycle α is nontrivial, these two pieces still
interact in a nontrivial way. Namely, the Jacobi identity for three 0-chains holds only up to d of a
1-chain. So, besides its Lie bracket, the Lie 2-superalgebra superstring(n+ 1, 1) also involves a map
that takes three 0-chains and gives a 1-chain. This map is just α.

What is the superstring Lie 2-algebra good for? The answer lies in a feature of string theory
called the ‘Kalb–Ramond field’, or ‘B field’. The B field couples to strings just as the A field in
electromagnetism couples to charged particles. The A field is described locally by a 1-form, so we can
integrate it over a particle’s worldline to get the interaction term in the Lagrangian for a charged
particle. Similarly, the B field is described locally by a 2-form, which we can integrate over the
worldsheet of a string.

Gauge theory has taught us that the A field has a beautiful geometric meaning: it is a connection
on a U(1) bundle over spacetime. What is the corresponding meaning of the B field? It can be
seen as a connection on a ‘U(1) gerbe’: a gadget like a U(1) bundle, but suitable for describing
strings instead of point particles. Locally, connections on U(1) gerbes can be identified with 2-
forms. But globally, they cannot. The idea that the B field is a U(1) gerbe connection is implicit
in work going back at least to the 1986 paper by Gawedzki [20]. More recently, Freed and Witten
[19] showed that the subtle difference between 2-forms and connections on U(1) gerbes is actually
crucial for understanding anomaly cancellation. In fact, these authors used the language of ‘Deligne
cohomology’ rather than gerbes. Later work made the role of gerbes explicit: see for example Carey,
Johnson and Murray [9], and also Gawedzki and Reis [21].

More recently still, work on higher gauge theory has revealed that the B field can be viewed as
part of a larger package. Just as gauge theory uses Lie groups, Lie algebras, and connections on
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bundles to to describe the parallel transport of point particles, higher gauge theory generalizes all
these concepts to describe parallel transport of extended objects such strings and membranes [7, 8].
In particular, Schreiber, Sati and Stasheff [31] have developed a theory of ‘n-connections’ suitable
for describing parallel transport of objects with n-dimensonal worldvolumes. In their theory, the Lie
algebra of the gauge roup is replaced by an Lie n-algebra—or in the supersymmetric context, a Lie
n-superalgebra. Applying their ideas to superstring(n + 1, 1), we get a 2-connection which can be
described locally using the following fields:

superstring(n+ 1, 1) Connection component
R R-valued 2-form
↓

siso(n+ 1, 1) siso(n+ 1, 1)-valued 1-form

The siso(n+ 1, 1)-valued 1-form consists of three fields which help define the background geometry
on which a superstring propagates: the Levi-Civita connection A, the vielbein e, and the gravitino
ψ. But the R-valued 2-form is equally important in the description of this background geometry: it
is the B field!

Next let us extend these ideas to Minkowski spacetimes one dimension higher: dimensions 4, 5,
7 and 11. In this case a certain subspace of 4 × 4 matrices with entries in K will form the vector
representation of Spin(n + 2, 1), while K4 will form a spinor representation. As before, there is a
‘bracket’ operation that takes two spinors Ψ and Φ and gives a vector Ψ · Φ. As before, there is an
action of vectors on spinors. This time the 3- ψ’s rule no longer holds:

(Ψ ·Ψ)Ψ 6= 0.

However, we show that
Ψ · ((Ψ ·Ψ)Ψ) = 0.

We call this the ‘4-Ψ’s rule’. This identity plays a basic role for the super-2-brane, and related
theories of supergravity.

Once again, the bracket of spinors defines a Lie superalgebra structure on the supervector space

T = V ⊕ S

where now V is the vector representation of Spin(n+ 2, 1), while S is a certain spinor representation
of this group. Once again, the cohomology of T plays a key role. The 4-Ψ’s rule is a cocycle
condition—but this time for a 4-cocycle β which eats two spinors and two vectors and produces a
number as follows:

β(Ψ,Φ,A,B) = 〈Ψ, (A ∧ B)Φ〉.
Here, 〈−,−〉 denotes the inner product of two spinors, and the bivector A ∧ B acts on Φ via the
usual Clifford action. Since β is Lorentz-invariant, we shall see that it extends to a 4-cocycle on the
Poincaré superalgebra siso(n+ 2, 1).

We can use β to extend the Poincaré superalgebra to a Lie 3-superalgebra of the following form:

siso(n+ 2, 1) 0
doo Rdoo .

We call this the ‘2-brane Lie 3-superalgebra’, and denote it as 2-brane(n+ 1, 1). It is an extension
of siso(n + 2, 1) by b2R, the Lie 3-algebra with R in degree 2, and everything else trivial. In other
words, there is a short exact sequence:

0→ b2R→ 2-brane(n+ 2, 1)→ siso(n+ 2, 1)→ 0
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Again, to see what this means, let us expand it a bit. Lie 3-superalgebras are 3-term chain complexes.
Writing out each of these vertically, our short exact sequence looks like this:

0 // R //

d

��

R //

d

��

0 //

d

��

0

0 // 0 //

d

��

0 //

d

��

0 //

d

��

0

0 // 0 // siso(n+2,1) // siso(n+2,1) // 0

In the middle, we see 2-brane(n+ 2, 1).
The most interesting Lie 3-algebra of this type, 2-brane(10, 1), plays an important role in 11-

dimensional supergravity. This idea goes back to the work of Castellani, D’Auria and Fré [10, 12].
These authors derived the field content of 11- dimensional supergravity starting from a differential
graded commutative algebra. Later, Sati, Schreiber and Stasheff [31] explained that these fields can
be reinterpreted as a 3-connection valued in a Lie 3-algebra which they called ‘sugra(10, 1)’. This is
the Lie 3-algebra we are calling 2-brane(10, 1). Our message here is that the all-important cocycle
needed to construct this Lie 3-algebra arises naturally from the octonions, and has analogues for the
other normed division algebras.

If we follow these authors and consider a 3-connection valued in 2-brane(10, 1), we find it can be
described locally by these fields:

2-brane(n+ 2, 1) Connection component
R R-valued 3-form
↓
0
↓

siso(n+ 2, 1) siso(n+ 2, 1)-valued 1-form

Again, a siso(n+2, 1)-valued 1-form contains familiar fields: the Levi-Civita connection, the vielbein,
and the gravitino. But now we also see a 3-form, called the C field. This is again something we
might expect on physical grounds, at least in dimension 11. While the case is less clear than in string
theory, it seems that for the quantum theory of a 2-brane to be consistent, it must propagate in
a background obeying the equations of 11-dimensional supergravity, in which the C field naturally
shows up [38]. The work of Diaconescu, Freed, and Moore [14], as well as that of Aschieri and Jurco
[2], is also relevant here.

Finally, we mention another use for the cocycles α and β. These cocycles are also used to build
Wess–Zumino–Witten terms for superstrings and 2-branes. For example, in the case of the string,
one can extend the string’s worldsheet to be the boundary of a three-dimensional manifold, and then
integrate α over this manifold. This provides an additional term for the action of the superstring,
a term that is required to give the action Siegel symmetry, balancing the number of bosonic and
fermionic degrees of freedom. For the 2-brane, the Wess–Zumino–Witten term is constructed in
complete analogy—we just ‘add one’ to all the dimensions in sight [1, 17].

Indeed, the network of relationships between supergravity, string and 2-brane theories, and co-
cycles constructed using normed division algebras is extremely tight. The Siegel symmetry of the
string or 2-brane action constrains the background of the theory to be that of supergravity, at least
in dimensions 10 and 11 [38], and without the WZW terms, there would be no Siegel symmetry.
The WZW terms rely on the cocycles α and β. These cocycles also give rise to the Lie 2- and
3-superalgebras superstring(9, 1) and 2-brane(10, 1). And these, in turn, describe the field content of
supergravity in these dimensions!
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As further grist for this mill, WZW terms can also be viewed in the context of higher gauge
theory. In string theory, the WZW term is the holonomy of a connection on a U(1) gerbe [21].
Presumably the WZW term in a 2-brane theory is the holonomy of a connection on a U(1) 2-gerbe
[36]. This is a tantalizing clue that we are at the beginning of a larger but ultimately simpler story.

In what follows we focus on the mathematics of constructing Lie n-superalgebras from normed
division algebras, rather than the applications to physics that we have just described. We begin with
a quick review of normed division algebras in Section 2. In Section 3 we recall how an n-dimensional
normed division algebra can be used to describe vectors and spinors in (n+2)-dimensional spacetime,
and how this description yields the 3-ψ’s rule. All this material is treated in more detail in our
previous paper [6]. In Section 4 we build on this work and use normed division algebras to describe
vectors and spinors in (n+ 2)-dimensional spacetime. In Section 5 we use this description to prove
the the 4-Ψ’s rule. In Section 6 we describe the cohomology of Lie superalgebras, and show that the
3-ψ’s rule and 4-Ψ’s rule yield nontrivial 3-cocycles and 4-cocycles on supertranslation algebras. In
Section 7 we describe Lie n-superalgebras, and prove that an (n+ 1)-cocycle on a Lie superalgebra
gives a way to extend it to a Lie n-superalgebra. We thus obtain Lie 2-superalgebras and Lie 3-
superalgebras extending supertranslation algebras. In Section 8 we conclude by constructing the
superstring Lie 2-algebras and the 2-brane Lie 3-algebras.

2 Division Algebras

We begin with a lightning review of normed division algebras. A normed division algebra K is a
(finite-dimensional, possibly nonassociative) real algebra equipped with a multiplicative unit 1 and
a norm | · | satisfying:

|ab| = |a||b|
for all a, b ∈ K. Note this implies that K has no zero divisors. We will freely identify R1 ⊆ K
with R. By a classic theorem of Hurwitz [24], there are only four normed division algebras: the real
numbers, R, the complex numbers, C, the quaternions, H, and the octonions, O. These algebras
have dimension 1, 2, 4, and 8.

In all four cases, the norm can be defined using conjugation. Every normed division algebra has
a conjugation operator—a linear operator ∗ : K→ K satisfying

a∗∗ = a, (ab)∗ = b∗a∗

for all a, b ∈ K. Conjugation lets us decompose each element of K into real and imaginary parts, as
follows:

Re(a) =
a+ a∗

2
, Im(a) =

a− a∗
2

.

Conjugating changes the sign of the imaginary part and leaves the real part fixed. We can write the
norm as

|a| =
√
aa∗ =

√
a∗a.

This norm can be polarized to give an inner product on K:

(a, b) = Re(ab∗) = Re(a∗b).

The algebras R, C and H are associative. The octonions O are not. Instead, they are alterna-
tive: the subalgebra generated by any two octonions is associative. Note that R, C and H, being
associative, are also trivially alternative. By a theorem of Artin [32], this is equivalent to the fact
that the associator

[a, b, c] = (ab)c− a(bc)

is completely antisymmetric in its three arguments.
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For any square matrix A with entries in K, we define its trace tr(A) to be the sum of its
diagonal entries. This trace lacks the usual cyclic property, because K is noncommutative, so in
general tr(AB) 6= tr(BA). Luckily, taking the real part restores this property:

Proposition 1. Let A, B, and C be k × `, `×m and m× k matrices with entries in K. Then

Re tr((AB)C) = Re tr(A(BC))

and this quantity is invariant under cyclic permutations of A, B, and C. We call this quantity the
real trace Re tr(ABC).

Proof. This relies heavily on the alternativity of normed division algebras. See Proposition 4 of our
previous paper [6].

3 Spacetime Geometry in n+ 2 Dimensions

In this section we recall the relation between a normed division algebra K of dimension n and
Lorentzian geometry in n+2 dimensions. Most of the material here is well-known [4, 11, 25, 27, 37],
and we follow the treatment in Section 3 of our previous paper [6], much of which we learned from
the papers of Manogue and Schray [34, 35]. The key facts are that one can describe vectors in
(n+ 2)-dimensional Minkowski spacetime as 2× 2 hermitian matrices with entries in K, and spinors
as elements of K2. In fact there are two representations of Spin(n + 1, 1) on K2, which we call S+

and S−. The nature of these representations depends on K:

• When K = R, S+
∼= S− is the Majorana spinor representation of Spin(2, 1).

• When K = C, S+
∼= S− is the Majorana spinor representation of Spin(3, 1).

• When K = H, S+ and S− are the Weyl spinor representations of Spin(5, 1).

• When K = O, S+ and S− are the Majorana–Weyl spinor representations of Spin(9, 1).

As usual, these spinor representations are also representations of the even part of the relevant Clifford
algebras:

Even parts of Clifford algebras

Cliffev(2, 1) ∼= R[2]

Cliffev(3, 1) ∼= C[2]

Cliffev(5, 1) ∼= H[2]⊕H[2]

Cliffev(9, 1) ∼= R[16]⊕ R[16]

Here we see R2, C2, H2 and O2 showing up as irreducible representations of these algebras, albeit
with O2 masquerading as R16. The first two algebras have a unique irreducible representation. The
last two both have two irreducible representations, which correspond to left-handed and right-handed
spinors.

Our discussion so far has emphasized the differences between the 4 cases. But the wonderful
thing about normed division algebras is that they allow a unified approach that treats all four
cases simultaneously! They also give simple formulas for the basic intertwining operators involving
vectors, spinors and scalars.

To begin, let K[m] denote the space of m×m matrices with entries in K. Given A ∈ K[m], define
its hermitian adjoint A† to be its conjugate transpose:

A† = (A∗)T .
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We say such a matrix is hermitian if A = A†. Now take the 2× 2 hermitian matrices:

h2(K) =

{(
t+ x y
y∗ t− x

)
: t, x ∈ R, y ∈ K

}
.

This is an (n + 2)-dimensional real vector space. Moreover, the usual formula for the determinant
of a matrix gives the Minkowski norm on this vector space:

− det

(
t+ x y
y∗ t− x

)
= −t2 + x2 + |y|2.

We insert a minus sign to obtain the signature (n+ 1, 1). Note this formula is unambiguous even if
K is noncommutative or nonassociative.

It follows that the double cover of the Lorentz group, Spin(n+1, 1), acts on h2(K) via determinant-
preserving linear transformations. Since this is the ‘vector’ representation, we will often call h2(K)
simply V . The Minkowski metric

g : V ⊗ V → R

is given by
g(A,A) = − det(A).

There is also a nice formula for the inner product of two different vectors. This involves the trace
reversal of A ∈ h2(K), defined by

Ã = A− (trA)1.

Note we indeed have tr(Ã) = −tr(A).

Proposition 2. For any vectors A,B ∈ V = h2(K), we have

AÃ = ÃA = − det(A)1

and
1

2
Re tr(AB̃) =

1

2
Re tr(ÃB) = g(A,B)

Next we consider spinors. As real vector spaces, the spinor representations S+ and S− are both
just K2. However, they differ as representations of Spin(n+1, 1). To construct these representations,
we begin by defining ways for vectors to act on spinors:

γ : V ⊗ S+ → S−
A⊗ ψ 7→ Aψ.

and
γ̃ : V ⊗ S− → S+

A⊗ ψ 7→ Ãψ.

We can also think of these as maps that send elements of V to linear operators:

γ : V → Hom(S+, S−),
γ̃ : V → Hom(S−, S+).

Since vectors act on elements of S+ to give elements of S− and vice versa, they map the space
S+ ⊕ S− to itself. This gives rise to an action of the Clifford algebra Cliff(V ) on S+ ⊕ S−:

Proposition 3. The vectors V = h2(K) act on the spinors S+ ⊕ S− = K2 ⊕K2 via the map

Γ: V → End(S+ ⊕ S−)
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given by
Γ(A)(ψ, φ) = (Ãφ, Aψ).

Furthermore, Γ(A) satisfies the Clifford algebra relation:

Γ(A)2 = g(A,A)1

and so extends to a homomorphism Γ: Cliff(V )→ End(S+⊕S−), i.e. a representation of the Clifford
algebra Cliff(V ) on S+ ⊕ S−.

As explained in our previous paper [6], the spaces S+, S− and V are representations of the spin
group Spin(n+ 1, 1). Moreover:

Proposition 4. The maps
γ : V ⊗ S+ → S−

A⊗ ψ 7→ Aψ

and
γ̃ : V ⊗ S− → S+

A⊗ ψ 7→ Ãψ

are equivariant with respect to the action of Spin(n+ 1, 1).

Proposition 5. The pairing

〈−,−〉 : S+ ⊗ S− → R
ψ ⊗ φ 7→ Re(ψ†φ)

is invariant under the action of Spin(n+ 1, 1).

With this pairing in hand, there is a manifestly equivariant way to turn a pair of spinors into a
vector. Given ψ, φ ∈ S+, there is a unique vector ψ · φ whose inner product with any vector A is
given by

g(ψ · φ,A) = 〈ψ, γ(A)φ〉.
Similarly, given ψ, φ ∈ S−, we define ψ · φ ∈ V by demanding

g(ψ · φ,A) = 〈γ̃(A)ψ, φ〉

for all A ∈ V . This gives us maps
S± ⊗ S± → V

which are manifestly equivariant. In fact:

Proposition 6. The maps · : S± ⊗ S± → V are given by:

· : S+ ⊗ S+ → V

ψ ⊗ φ 7→ ˜ψφ† + φψ†

· : S− ⊗ S− → V
ψ ⊗ φ 7→ ψφ† + φψ†.

These maps are equivariant with respect to the action of Spin(n+ 1, 1).

Theorem 10 of our previous paper stated the fundamental identity which allows supersymmetry
in dimensions 3, 4, 6 and 10: the ‘3-ψ’s rule’. Our proof was based on an argument in the appendix
of a paper by Dray, Janesky and Manogue [16]:

Theorem 7. Suppose ψ ∈ S+. Then (ψ · ψ)ψ = 0. Similarly, if φ ∈ S−, then (φ̃ · φ)φ = 0.
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4 Spacetime Geometry in n+ 3 Dimensions

In the last section we recalled how to describe spinors and vectors in (n+ 2)-dimensional Minkowski
spacetime using a division algebra K of dimension n. Here we show how to boost this up one
dimension, and give a division algebra description of vectors and spinors in (n + 3)-dimensional
Minkowski spacetime.

We shall see that vectors in (n+3)-dimensional Minkowski spacetime can be identified with 4×4
K-valued matrices of this particular form:

(
a Ã
A −a

)

where a is a real multiple of the 2× 2 identity matrix and A is a 2× 2 hermitian matrix with entries
in K. Moreover, Spin(n + 2, 1) has a representation on K4, which we call S. Depending on K, this
gives the following types of spinors:

• When K = R, S is the Majorana spinor representation of Spin(3, 1).

• When K = C, S is the Dirac spinor representation of Spin(4, 1).

• When K = H, S is the Dirac spinor representation of Spin(6, 1).

• When K = O, S is the Majorana spinor representation of Spin(10, 1).

Again, these spinor representations are also representations of the even part of the relevant Clifford
algebra:

Even parts of Clifford algebras

Cliffev(3, 1) ∼= C[2]

Cliffev(4, 1) ∼= H[2]

Cliffev(6, 1) ∼= H[4]

Cliffev(10, 1) ∼= R[32]

These algebras have irreducible representations on R4 ∼= C2, C4 ∼= H2, H4 and O4 ∼= R32, respec-
tively.

The details can be described in a uniform way for all four cases. We take as our space of ‘vectors’
the following (n+ 3)-dimensional subspace of K[4]:

V =

{(
a Ã
A −a

)
: a ∈ R, A ∈ h2(K)

}

In the last section, we defined vectors in n + 2 dimensions to be V = h2(K). That space has an
obvious embedding into V , given by

V ↪→ V
A 7→

(
0 Ã
A 0

)

The Minkowski metric
h : V ⊗ V → R

is given by extending the Minkowski metric g on V :

h
((

a Ã
A −a

)
,
(
a Ã
A −a

))
= g(A,A) + a2

From our formulas for g, we can derive formulas for h:
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Proposition 8. For any vectors A,B ∈ V ⊆ K[4], we have

A2 = h(A,A)1

and
1

4
Re tr(AB) = h(A,B).

Proof. For A =
(
a Ã
A −a

)
, it is easy to check:

A2 =

(
a2 + ÃA 0

0 AÃ+ a2

)

By Proposition 2, we have AÃ = ÃA = g(A,A)1, and substituting this in establishes the first
formula. The second formula follows from polarizing and taking the real trace of both sides.

Define a space of ‘spinors’ by S = S+⊕S− = K4. To distinguish elements of V from elements of
h2(K), we will denote them with calligraphic letters like A, B, . . . . Similarly, to distinguish elements
of S from S±, we will denote them with capital Greek letters like Ψ, Φ, . . . .

Elements of V act on S by left multiplication:

V ⊗ S → S
A⊗Ψ 7→ AΨ

We can dualize this to get a map:

Γ: V → End(S)
A 7→ LA

This induces the Clifford action of Cliff(V) on S. Note that this Γ is the same as the map in
Proposition 3 when we restrict to V ⊆ V .

Proposition 9. The vectors V ⊆ K[4] act on the spinors S = K4 via the map

Γ: V → End(S)

given by
Γ(A)Ψ = AΨ

Furthermore, Γ(A) satisfies the Clifford algebra relation:

Γ(A)2 = h(A,A)1

and so extends to a homomorphism Γ: Cliff(V) → End(S), i.e. a representation of the Clifford
algebra Cliff(V) on S.

Proof. Here, we must be mindful of nonassociativity. For Ψ = (ψ, φ) ∈ S and A =
(
a Ã
A −a

)
∈ V , we

have:
Γ(A)2Ψ = A(AΨ)

which works out to be:

Γ(A)2Ψ =

(
a2ψ + Ã(Aψ)

A(Ãφ) + a2φ

)
.

A quick calculation shows that the expressions Ã(Aψ) and A(Ãφ) involve at most two nonreal
elements of K, so everything associates and we can write:

Γ(A)2Ψ = A2Ψ

By Proposition 8, we are done.
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This tells us how S is a module of Cliff(V), and thus a representation of Spin(V), the subgroup
of Cliff(V) generated by products of pairs of unit vectors.

In the last section, we saw how to construct a Spin(V )-invariant pairing

〈−,−〉 : S+ ⊗ S− → R.

We can use this to build up to a Spin(V)-invariant pairing on S:

〈(ψ, φ), (χ, θ)〉 = 〈χ, φ〉 − 〈ψ, θ〉

To see this, let

Γ0 =

(
0 −1
1 0

)

Then, because 〈ψ, φ〉 = Re(ψ†φ), it is easy to check that:

〈χ, φ〉 − 〈ψ, θ〉 = Re

((
ψ
φ

)†
Γ0

(
χ
θ

))
.

We can show this last expression is invariant by explicit calculation.

Proposition 10. Define the nondegenerate skew-symmetric bilinear form

〈−,−〉 : S ⊗ S → R

by
〈Ψ,Φ〉 = Re(Ψ†Γ0Φ).

This form is invariant under Spin(V).

Proof. It is easy to see that, for any spinors Ψ,Φ ∈ S and vectors A ∈ V , we have

〈AΨ,AΦ〉 = Re
(
(Ψ†A†)Γ0(AΦ)

)
= Re

(
Ψ†(A†Γ0(AΦ))

)

where in the last step we have used Proposition 1. Now, given that

A =

(
a Ã
A −a

)

a quick calculation shows:
A†Γ0 = −Γ0A.

So, this last expression becomes:

−Re
(
Ψ†(Γ0A(AΦ))

)
= −Re

(
Ψ†(Γ0Γ(A)2Φ))

)
= −|A|2Re

(
Ψ†Γ0Φ

)

where in the last step we have used the Clifford relation. Summing up, we have shown:

〈AΨ,AΦ〉 = −|A|2〈Ψ,Φ〉

In particular, when A is a unit vector, acting by A changes the sign at most. Thus, 〈−,−〉 is
invariant under the group generated by products of pairs of unit vectors, which is Spin(V). It is easy
to see that it is nondegenerate, and it is skew-symmetric because Γ0 is.

With the form 〈−,−〉 in hand, there is a manifestly equivariant way to turn a pair of spinors
into a vector. Given Ψ,Φ ∈ S, there is a unique vector Ψ · Φ whose inner product with any vector
A is given by

h(Ψ · Φ,A) = 〈Ψ,Γ(A)Φ〉.
It will be useful to have an explicit formula for this operation:
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Proposition 11. Given Ψ = (ψ1, ψ2) and Φ = (φ1, φ2) in S = S+ ⊕ S−, we have:

Ψ · Φ =

(
〈ψ1, φ2〉+ 〈φ1, ψ2〉 −ψ̃1 · φ1 + ψ̃2 · φ2

−ψ1 · φ1 + ψ2 · φ2 −〈ψ1, φ2〉 − 〈φ1, ψ2〉

)

Proof. Decompose V into orthogonal subspaces:

V =

{(
0 Ã
A 0

)
: A ∈ V

}
⊕
{(

a 0
0 −a

)
: a ∈ R

}

The first of these is just a copy of V , an (n + 2)-dimensional Minkowski spacetime. The second is
the single extra spatial dimension in our (n+ 3)-dimensional Minkowski spacetime, V .

Now, use the definition of Ψ ·Φ, but restricted to V . It is easy to see that, for any vector A ∈ V ,
we have:

h(Ψ · Φ, A) = −〈ψ1, γ(A)φ1〉+ 〈γ̃(A)ψ2, φ2〉
Letting B be the component of Ψ · Φ which lies in V , this becomes:

g(B,A) = −〈ψ1, γ(A)φ1〉+ 〈γ̃(A)ψ2, φ2〉.

Note that we have switched to the metric g on V , to which h restricts. By definition, this is the
same as:

g(B,A) = g(−ψ1 · φ1 + ψ2 · φ2, A).

Since this holds for all A, we must have B = −ψ1 · φ1 + ψ2 · φ2.
It remains to find the component of Ψ · Φ orthogonal to B. Since

{(
a 0
0 −a

)
: a ∈ R

}
is 1-

dimensional, this is merely a number. Specifically, it is the constant of proportionality in the
expression:

h
(
Ψ · Φ,

(
a 0
0 −a

))
= a(〈ψ1, φ2〉+ 〈φ1, ψ2〉)

Thus, this component is 〈ψ1, φ2〉+ 〈φ1, ψ2〉. Putting everything together, we get

Ψ · Φ =

(
〈ψ1, φ2〉+ 〈φ1, ψ2〉 −ψ̃1 · φ1 + ψ̃2 · φ2

−ψ1 · φ1 + ψ2 · φ2 −〈ψ1, φ2〉 − 〈φ1, ψ2〉

)

5 The 4-Ψ’s Rule

Spinors in dimension 4, 5, 7 and 11 satisfy an identity, written in conventional notation as follows:

ΨΓabΨΨΓbΨ = 0

This identity shows up in two prominent places in the physics literature. First, it is required for the
existence of 2-brane theories in these dimensions [1, 17]. This is because it allows the construction
of a Wess–Zumino–Witten term for these theories, which give these theories Siegel symmetry.

Yet it is known that 2-branes in 11 dimensions are intimately connected to supergravity. Indeed,
the Siegel symmetry imposed by the WZW term constrains the 2-brane background to be that of
11-dimensional supergravity [38]. So it should come as no surprise that this spinor identity also
plays a crucial role in supergravity, most visibly in the work of D’Auria and Fré [12] and subsequent
work by Sati, Schreiber and Stasheff [31]. For previous work on its relation to division algebras, see
Foot and Joshi [18].
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This identity is equivalent to the ‘4-Ψ’s rule’:

Ψ · ((Ψ ·Ψ)Ψ) = 0.

To see this, note that we can turn a pair of spinors Ψ and Φ into a 2-form, Ψ ∗Φ. This comes from
the fact that we can embed bivectors inside the Clifford algebra Cliff(V) via the map

A∧ B 7→ AB − BA ∈ Cliff(V).

These can then act on spinors using the Clifford action. Thus, define:

(Ψ ∗ Φ)(A,B) = 〈Ψ, (A ∧ B)Φ〉. (1)

But when Ψ = Φ, we can simplify this using the Clifford relation:

(Ψ ∗Ψ)(A,B) = 〈Ψ, (AB − BA)Ψ〉
= 〈Ψ, 2ABΨ〉 − 2〈Ψ,Ψ〉h(A,B)

= 2〈Ψ,ABΨ〉

where we have used the skew-symmetry of the form. The index-ridden identity above merely says
that inserting the vector Ψ · Ψ into one slot of the 2-form Ψ ∗ Ψ is zero, no matter what goes into
the other slot:

(Ψ ∗Ψ)(A,Ψ ·Ψ) = 2〈Ψ,A(Ψ ·Ψ)Ψ〉 = 0

for all A. By the definition of the · operation, this is the same as

2h(Ψ · ((Ψ ·Ψ)Ψ),A) = 0

for all A. Thus, the index-ridden identity is equivalent to:

Ψ · ((Ψ ·Ψ)Ψ) = 0

as required.
Now, let us prove this:

Theorem 12. Suppose Ψ ∈ S. Then Ψ · ((Ψ ·Ψ)Ψ) = 0.

Proof. Let Ψ = (ψ, φ). By Proposition 11,

Ψ ·Ψ =

(
2〈ψ, φ〉 −ψ̃ · ψ + φ̃ · φ

−ψ · ψ + φ · φ −2〈ψ, φ〉

)

and thus

(Ψ ·Ψ)Ψ =

(
2〈ψ, φ〉ψ − (ψ̃ · ψ)φ+ (φ̃ · φ)φ
−(ψ · ψ)ψ + (φ · φ)ψ − 2〈ψ, φ〉φ

)
.

Both (ψ · ψ)ψ = 0 and (φ̃ · φ)φ = 0 by the 3-ψ’s rule, Theorem 7. So:

(Ψ ·Ψ)Ψ =

(
2〈ψ, φ〉ψ − (ψ̃ · ψ)φ
(φ · φ)ψ − 2〈ψ, φ〉φ

)
.

The resulting matrix for Ψ · ((Ψ · Ψ)Ψ) is large and unwieldy, so we shall avoid writing it out.
Fortunately, all we really need is the (1, 1) entry. Recall, this is the component of the vector
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Ψ · ((Ψ · Ψ)Ψ) that is orthogonal to the subspace V ⊂ V . Call this component a. A calculation
shows:

a = 〈ψ, (φ · φ)ψ〉 − 〈(ψ̃ · ψ)φ, φ〉
= Re tr(ψ†(2φφ†)ψ)−Re tr(φ†(2ψψ†)φ)

= 0

where the two terms cancel by the cyclic property of the real trace, Proposition 1. Thus, this
component of the vector Ψ · ((Ψ ·Ψ)Ψ) vanishes. But since the map Ψ 7→ Ψ · ((Ψ ·Ψ)Ψ) is equivariant
with respect to the action of Spin(V), and V is an irreducible representation of this group, it follows
that all components of this vector must vanish.

6 Cohomology of Lie Superalgebras

In this section we explain more of the meaning of the 3-ψ’s rule and 4-Ψ’s rules: they are cocycle
conditions. In any dimension, a symmetric bilinear intertwining operator that eats two spinors
and spits out a vector gives rise to a ‘super-Minkowski spacetime’. The infinitesimal translation
symmetries of this object form a Lie superalgebra called the ‘supertranslation algebra’ [15]. The
cohomology of this Lie superalgebra is interesting and apparently rather subtle. We shall see that
its 3rd cohomology is nontrivial in dimensions 3, 4, 6 and 10, thanks to the 3-ψ’s rule. Similarly, its
4th cohomology is nontrivial in dimensions 4, 5, 7 and 11, thanks to the 4-Ψ’s rule.

We begin by recalling the supertranslation algebra. Take V to be the space of vectors in
Minkowski spacetime in any dimension, and take S to be any spinor representation in this dimension.
Suppose that there is a symmetric equivariant bilinear map:

· : S ⊗ S → V.

Form a super vector space T with
T0 = V, T1 = S.

We make T into a Lie superalgebra, the supertranslation algebra, by giving it a suitable bracket
operation. This bracket will be zero except when we bracket a spinor with a spinor, in which case
it is simply the operation

· : S ⊗ S → V.

Since this is symmetric and spinors are odd, the bracket operation is super-skew-symmetric overall.
Furthermore, the Jacobi identity holds trivially, thanks to the near triviality of the bracket. Thus
T is indeed, a Lie superalgebra.

Despite the fact that T is nearly trivial, its cohomology is not. To see this, we must first recall
how to generalize Chevalley–Eilenberg cohomology [3, 13] from Lie algebras to Lie superalgebras.
Suppose g is a Lie superalgebra and R is a representation of g. That is, R is a supervector space
equipped with a Lie superalgebra homomorphism ρ : g → gl(X). We now define the cohomology
groups of g with values in R.

First, of course, we need a cochain complex. We define the n-cochains Cn(g, R) to be the vector
space of super-skew-symmetric n-linear maps:

Λng→ R.

In fact, the n-cochains Cn(g, R) are a super vector space, in which parity-preserving elements are
even, while parity-reversing elements are odd.

15



Next, we define the coboundary operator d : Cn(g, R) → Cn+1(g, R). Let ω be a homogeneous
n-cochain and let X1, . . . , Xn+1 be homogeneous elements of g. Now define:

dω(X1, . . . , Xn+1) =
n+1∑

i=1

(−1)i+1(−1)|Xi||ω|εi−1
1 (i)ρ(Xi)ω(X1, . . . , X̂i, . . . , Xn+1)

+
∑

i<j

(−1)i+j(−1)|Xi||Xj |εi−1
1 (i)εj−1

1 (j)ω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . .Xn+1)

Here, εji (k) is shorthand for the sign one obtains by moving Xk through Xi, Xi+1, . . . , Xj . In other
words,

εji (k) = (−1)|Xk|(|Xi|+|Xi+1|+···+|Xj |).

Following the usual argument for Lie algebras, one can check that:

Proposition 13. The Lie superalgebra coboundary operator d satisfies d2 = 0.

We thus say a R-valued n-cochain ω on g is an n-cocycle or closed when dω = 0, and an n-
coboundary or exact if there exists an (n − 1)-cochain θ such that ω = dθ. Every n-coboundary
is an n-cocycle, and we say an n-cocycle is trivial if it is a coboundary. We denote the super
vector spaces of n-cocycles and n-coboundaries by Zn(g, V ) and Bn(g, V ) respectively. The nth Lie
superalgebra cohomology of g with coefficients in R, denoted Hn(g, R) is defined by

Hn(g, R) = Zn(g, R)/Bn(g, R).

This super vector space is nonzero if and only if there is a nontrivial n-cocycle. In what follows, we
shall be especially concerned with the even part of this super vector space, which is nonzero if and
only if there is a nontrivial even n-cocycle. Our motivation for looking for even cocycles is simple:
these parity-preserving maps can regarded as morphisms in the category of super vector spaces,
which is crucial for the construction in Theorem 17 and everything following it.

Now consider Minkowski spacetimes of dimensions 3, 4, 6, and 10. Here Minkowski spacetime
can be written as V = h2(K), and we can take our spinors to be S+ = K2. Since from Section 3
we know there is a symmetric bilinear intertwiner · : S+ ⊗ S+ → V , we obtain the supertranslation
algebra T = V ⊕ S+. We can decompose the space of n-cochains with coefficients in the trivial 1-
dimensional representation of T into summands by counting how many of the arguments are vectors
and how many are spinors:

Cn(T ,R) ∼=
⊕

p+q=n

(Λp(V )⊗ Symq(S+))∗.

We call an element of (Λp(V ) ⊗ Symq(S+))∗ a (p, q)-form. Since the bracket of two spinors is a
vector, and all other brackets are zero, d of a (p, q)-form is a (p− 1, q + 2)-form.

Using the 3-ψ’s rule we can show:

Theorem 14. In dimensions 3, 4, 6 and 10, the supertranslation algebra T has a nontrivial even
3-cocycle taking values in the trivial representation R, namely the unique (1, 2)-form with

α(ψ, φ,A) = g(ψ · φ,A)

for spinors ψ, φ ∈ S+ and vectors A ∈ V .

Proof. First, note that α has the right symmetry to be a linear map on Λ3(V ⊕ S+). Second, note
that α is a (1, 2)-form, eating one vector and two spinors. Thus dα is a (0, 4)-form.

16



Because spinors are odd, dα is a symmetric function of four spinors. By the definition of d,
dα(ψ, φ, χ, θ) is the totally symmetric part of α(ψ · φ, χ, θ) = α(χ, θ, ψ · φ) = g(χ · θ, ψ · φ). But
any symmetric 4-linear form can be obtained from polarizing a quartic form. In this, we polarize
g(ψ · ψ, ψ · ψ) to get dα. Thus:

dα(ψ, ψ, ψ, ψ) = g(ψ · ψ, ψ · ψ) = 〈ψ, (ψ · ψ)ψ〉

where we have used the definition of the dot operation to obtain the last expression, which vanishes
due to the 3-ψ rule. Thus α is closed.

It remains to show α is not exact. So suppose it is exact, and that

α = dω.

By our remarks above we may assume ω is a (2, 0)-form: that is, an antisymmetric bilinear function
of two vectors. By the definition of d, this last equation says:

g(ψ · φ,A) = −ω(ψ · φ,A).

But since S+ ⊗ S+ → V is onto, this implies

g = −ω,

a contradiction, since g is symmetric while ω is antisymmetric.

Next consider Minkowski spacetimes of dimensions 4, 5, 7 and 11. In this case Minkowski
spacetime can be written as a subspace V of the 4 × 4 matrices valued in K, and we can take our
spinors to be S = K4. Since from Section 4 we know there is a symmetric bilinear intertwiner
· : S ⊗ S → V , we obtain a supertranslation algebra T = V ⊕ S. As before, we can uniquely
decompose any n-cochain in Cn(T ,R) into a sum of (p, q)-forms, where now a (p, q)-form is an an
element of (Λp(V)⊗ Symq(S))∗. As before, d of a (p, q)-form is a (p− 1, q+ 2)-form. And using the
4-Ψ’s rule, we can show:

Theorem 15. In dimensions 4, 5, 7 and 11, the supertranslation algebra T has a nontrivial even
4-cocycle, namely the unique (2, 2)-form with

β(Ψ,Φ,A,B) = 〈Ψ, (AB − BA)Φ〉

for spinors Ψ,Φ ∈ S and vectors A,B ∈ V. Here the commutator AB − BA is taken in the Clifford
algebra of V.

Proof. First, to see that β has the right symmetry to be a map on Λ4(V ⊕ S), we note that it is
antisymmetric on vectors, and that because

Γ0A = −A†Γ0,

we have:
Γ0AB = A†B†Γ0.

Thus:
〈Ψ,ABΦ〉 = 〈BAΨ,Φ〉 = −〈Φ,BAΨ〉,

so we have:
〈Ψ, (AB − BA)Φ〉 = 〈Φ, (AB − BA)Ψ〉.

Thus, β is symmetric on spinors.
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Next note that dβ is a (1, 4)-form, symmetric on its four spinor inputs. It is thus proportional
to the polarization of

β(Ψ,Ψ, (Ψ ·Ψ),A) = Ψ ∗Ψ(Ψ ·Ψ,A)

We encountered this object in Section 5, where we showed that it is proportional to

h(Ψ · [(Ψ ·Ψ)Ψ],A).

Moreover, this last expression vanishes by the 4-Ψ’s rule. So, β is closed.
Furthermore, β is not exact. To see this, consider the unit vector

(
1 0
0 −1

)
orthogonal to V ⊆ V .

Taking the interior product of β with this vector, a quick calculation shows:

β(Ψ,Φ,
(

1 0
0 −1

)
,A) = 2〈ψ1, γ(A)φ1〉+ 2〈γ̃(A)ψ2, φ2〉,

where we have decomposed Ψ = (ψ1, ψ2) and Φ = (φ1, φ2) into their components in S = S+ ⊕ S−,
and A is the component of A in V . Restricting to the subalgebra V ⊕ S+ ⊆ V ⊕ S, we see this is
just α, up to a factor.

So, it suffices to check that interior product with X =
(

1 0
0 −1

)
preserves exactness. For then, if β

were exact, it would contradict that fact that α is not. Indeed, let ω be an n-cochain on T , and let
X1, . . . , Xn ∈ T . Then, by our formula for the coboundary operator, we have:

dω(X,X1, . . . , Xn) =∑

i<j

−(−1)i+j(−1)|Xi||Xj |εi−1
1 (i)εj−1

1 (j)ω(X, [Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . .Xn)

+
n∑

i=1

(−1)1+iεi−1
1 (i)ω([X,Xi], X1, . . . , X̂i, . . . , Xn),

where, taking care with signs, we have collected terms involving bracketing with X into the second
summation. But X is a vector, so all brackets with it vanish, and the second summation is zero.

If we write iXω for the operation of taking the interior product of ω with X , we have just shown:

iXdω = −diXω

for any ω. In particular, if ω = dθ then iXω = d(−iXθ), and so interior product with X preserves
exactness, as claimed.

7 L∞-superalgebras

In the last section, we saw that the 3-ψ’s and 4-Ψ’s rules are cocycle conditions for the cocycles α
and β. This sheds some light on the meaning of these rules, but it prompts an obvious followup
question: what are these cocycles good for?

There is a very general answer to this question: a cocycle on a Lie superalgebra lets us extend it to
an ‘L∞-superalgebra’. As we touched on in the Introduction, this is a chain complex equipped with
structure like that of a Lie superalgebra, but where all the laws hold only ‘up to chain homotopy’.
We give the precise definition below.

It is well known that that the 2nd cohomology of a Lie algebra g with coefficients in some
representation R classifies ‘central extensions’ of g by R [3, 13]. These are short exact sequences of
Lie algebras:

0→ R→ g̃→ g→ 0

where g̃ is arbitrary and R is treated as an abelian Lie algebra whose image lies in the center of g̃.
The same sort of result is true for Lie superalgebras. But this is just a special case of an even more
general fact.
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Suppose g is a Lie superalgebra with a representation on a supervector space R. Then we shall
prove that an even R-valued (n+ 2)-cocycle ω on g lets us construct an L∞-superalgebra, say g̃, of
the following form:

g
d←− 0

d←− · · · d←− 0
d←− R.

where only the 0th and and nth grades are nonzero. Moreover, g̃ is an extension of g: there is a
short exact sequence of L∞-superalgebras

0→ bnR→ g̃→ g→ 0.

Here bnR is the abelian L∞-superalgebra with R as its nth grade and all the rest zero:

0
d←− 0

d←− · · · d←− 0
d←− R

Note that when n = 0 and our vector spaces are all purely even, we are back to the familiar
construction of Lie algebra extensions from 2-cocycles.

Technically, we should be more general than this in defining extensions. Maps between L∞-
algebras admit homotopies among themselves, and this allows us to introduce a weakened notion
of “short exact sequence”: a fibration sequence in the (∞, 1)-category of L∞-algebras. In general,
these fibration sequences give the right concept of extension for L∞-algebras. However, for the very
special extensions we consider here, ordinary short exact sequences are all we need.

It is useful to have a special name for L∞-superalgebras whose nonzero terms are all of degree
< n: we call them Lie n-superalgebras. In this language, the 3-cocycle α defined in Theorem 14
gives rise to a Lie 2-superalgebra

T d←− R
extending the supertranslation algebra T in dimensions 3, 4, 6, and 10. Similarly, the 4-cocycle β
defined in Theorem 15 gives a Lie 3-superalgebra

T d←− 0
d←− R

extending the supertranslation algebra in dimensions 4, 5, 7 and 11.
Of course, this raises yet another question: what are these Lie n-superalgebras good for? The

answer lies in physics: following a suggestion of Urs Schreiber, we can apply his work with Sati and
Stasheff [31] and consider connections on ‘n-bundles’. These are, roughly speaking, bundles where
the fibers are smooth n-categories instead of smooth manifolds. If we do this for n-bundles—or more
precisely, ‘super-n-bundles’—arising from the Lie n-superalgebras constructed here, we find that the
connections are fields that show up naturally in supermembrane and supergravity theories.

But now let us turn to the business at hand. In what follows, we shall use super chain com-
plexes, which are chain complexes in the category SuperVect of Z2-graded vector spaces:

V0
d←− V1

d←− V2
d←− · · ·

Thus each Vp is Z2-graded and d preserves this grading.
There are thus two gradings in play: the Z-grading by degree, and the Z2-grading on each

vector space, which we call the parity. We shall require a sign convention to establish how these
gradings interact. If we consider an object of odd parity and odd degree, is it in fact even overall?
By convention, we assume that it is. That is, whenever we interchange something of parity p and
degree q with something of parity p′ and degree q′, we introduce the sign (−1)(p+q)(p′+q′). We shall
call the sum p + q of parity and degree the overall grade, or when it will not cause confusion,
simply the grade. We denote the overall grade of X by |X |.

We require a compressed notation for signs. If x1, . . . , xn are graded, σ ∈ Sn a permutation, we
define the Koszul sign ε(σ) = ε(σ;x1, . . . , xn) by

x1 · · ·xn = ε(σ;x1, . . . , xn) · xσ(1) · · ·xσ(n),
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the sign we would introduce in the free graded-commutative algebra generated by x1, . . . , xn. Thus,
ε(σ) encodes all the sign changes that arise from permuting graded elements. Now define:

χ(σ) = χ(σ;x1, . . . , xn) := sgn(σ) · ε(σ;x1, . . . , xn).

Thus, χ(σ) is the sign we would introduce in the free graded-anticommutative algebra generated by
x1, . . . , xn.

Yet we shall only be concerned with particular permutations. If n is a natural number and
1 ≤ j ≤ n− 1 we say that σ ∈ Sn is an (j, n− j)-unshuffle if

σ(1) ≤ σ(2) ≤ · · · ≤ σ(j) and σ(j + 1) ≤ σ(j + 2) ≤ · · · ≤ σ(n).

Readers familiar with shuffles will recognize unshuffles as their inverses. A shuffle of two ordered
sets (such as a deck of cards) is a permutation of the ordered union preserving the order of each
of the given subsets. An unshuffle reverses this process. We denote the collection of all (j, n − j)
unshuffles by S(j,n−j).

The following definition of an L∞-algebra was formulated by Schlessinger and Stasheff in 1985
[33]:

Definition 16. An L∞-algebra is a graded vector space V equipped with a system {lk|1 ≤ k <∞}
of linear maps lk : V ⊗k → V with deg(lk) = k− 2 which are totally antisymmetric in the sense that

lk(xσ(1), . . . , xσ(k)) = χ(σ)lk(x1, . . . , xn) (2)

for all σ ∈ Sn and x1, . . . , xn ∈ V, and, moreover, the following generalized form of the Jacobi
identity holds for 0 ≤ n <∞ :

∑

i+j=n+1

∑

σ∈S(i,n−i)

χ(σ)(−1)i(j−1)lj(li(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0, (3)

where the summation is taken over all (i, n− i)-unshuffles with i ≥ 1.

The following result shows how to construct L∞-superalgebras from Lie superalgebra cocycles.
This is the ‘super’ version of a result due to Crans [5]. In this result, we require our cocycle to be
even so we can consider it as a morphism in the category of super vector spaces.

Theorem 17. There is a one-to-one correspondence between L∞-superalgebras consisting of only
two nonzero terms V0 and Vn, with d = 0, and quadruples (g, V, ρ, ln+2) where g is a Lie superalgebra,
V is a super vector space, ρ is a representation of g on V , and ln+2 is an even (n+ 2)-cocycle on g
with values in V .

Proof. Given such an L∞-superalgebra we set g = V0. V0 comes equipped with a bracket as part
of the L∞-structure, and since d is trivial, this bracket satisfies the Jacobi identity on the nose,
making g into a Lie superalgebra. We define V = Vn, and note that the bracket also gives a map
ρ : g⊗ V → V , defined by ρ(x)f = [x, f ] for x ∈ g, f ∈ V . We have

ρ([x, y])f = [[x, y], f ]

= (−1)|y||f |[[x, f ], y] + [x, [y, f ]] by (3) of Definition 16

= (−1)|f ||y|[ρ(x)f, y] + [x, ρ(y)f ]

= −(−1)|x||y|ρ(y)ρ(x)f + ρ(x)ρ(y)f

= [ρ(x), ρ(y)]f

for all x, y ∈ g and f ∈ V , so that ρ is indeed a representation. Finally, the L∞ structure gives a
map ln+2 : Λn+2g→ V which is in fact an (n+ 2)-cocycle. To see this, note that

0 =
∑

i+j=n+4

∑

σ

χ(σ)(−1)i(j−1)lj(li(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n+3))
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where we sum over (i, (n+ 3)− i)-unshuffles σ ∈ Sn+3. However, the only choices for i and j that
lead to nonzero li and lj are i = n+ 2, j = 2 and i = 2, j = n+ 2. Thus, the above becomes, with σ
a (n+ 2, 1)-unshuffle and τ a (2, n+ 1)-unshuffle:

0 =
∑

σ

χ(σ)(−1)n+2[ln+2(xσ(1), . . . , xσ(n+2)), xσ(n+3)]

+
∑

τ

χ(τ)ln+2([xτ(1), xτ(2)], xτ(3), . . . , xτ(n+3))

=

n+3∑

i=1

(−1)n+3−i(−1)n+2εn+2
i+1 (i)[ln+2(x1, . . . , x̂i, . . . , xn+3), xi]

+
∑

1≤i<j≤n+3

(−1)i+j+1(−1)|xi||xj |εi−1
1 (i)εj−1

1 (j)ln+2([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xn+3)

On the second line, we have explicitly specified the unshuffles and unwrapped the signs encoded by χ.
Since ln+2 is a morphism in SuperVect, it preserves parity, and thus the element ln+2(x1, . . . , x̂i, . . . , xn+2)
has parity |x1|+ · · ·+ |xi−1|+ |xi+1|+ · · ·+ |xn+2|. So, we can reorder the bracket in the first term,
at the cost of a sign:

0 =

n+3∑

i=1

−(−1)i+1εi−1
1 (i)[xi, ln+2(x1, . . . , x̂i, . . . , xn+3)]

+
∑

1≤i<j≤n+3

−(−1)i+j(−1)|xi||xj |εi−1
1 (i)εj−1

1 (j)ln+2([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xn+3)

= −dln+2

Here, we have used the fact that εn+2
i+1 (i)(−1)|xi|(|x1|+···+|xi−1|+|xi+1|+···+|xn+2|) = εi−1

1 (i). Thus, ln+2

is indeed a cocycle.
Conversely, given a Lie superalgebra g, a representation ρ of g on a vector space V , and an even

(n + 2)-cocycle ln+2 on g with values in V , we define our L∞-superalgebra V by setting V0 = g,
Vn = V , Vi = {0} for i 6= 0, n, and d = 0. It remains to define the system of linear maps lk, which
we do as follows: Since g is a Lie superalgebra, we have a bracket defined on V0. We extend this
bracket to define the map l2, denoted by [·, ·] : Vi ⊗ Vj → Vi+j where i, j = 0, n, as follows:

[x, f ] = ρ(x)f, [f, y] = (−1)|y||f |ρ(y)f, [f, g] = 0

for x, y ∈ V0 and f, g ∈ Vn. With this definition, the map [·, ·] satisfies condition (1) of Definition
16. We define lk = 0 for 3 ≤ k ≤ n+ 1 and k > n+ 2, and take ln+2 to be the given (n+ 2) cocycle,
which satisfies conditions (1) and (2) of Definition 16 by the cocycle condition.

As already mentioned, we call an L∞-superalgebra whose nonzero terms are all of degree < n
a Lie n-superalgebra. Using the above theorem, we say a Lie n-superalgebra is exact if only V0

and Vn−1 are nonzero and the (n+ 1)-cocycle ln+1 is trivial. The point of this definition is that we
may easily obtain an exact Lie n-superalgebra simply from a Lie superalgebra and a representation,
simply by taking the (n+1)-cocycle to be zero. Non-exact Lie n-superalgebras are more interesting.

Corollary 18. In dimensions 3, 4, 6 and 10, there exists a non-exact Lie 2-superalgebra corre-
sponding to the cocycle α given in Theorem 14.

Corollary 19. In dimensions 4, 5, 7 and 11, there exists a non-exact Lie 3-superalgebra corre-
sponding to the cocycle β given in Theorem 15.
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We have now met all the stars of our story. First we met the 3-cocycle α:

α : Λ3(T ) → R
A ∧ ψ ∧ φ 7→ 〈ψ,Aφ〉

and saw its cocycle condtion is the 3-ψ’s rule in Theorem 14. Next, we encountered the 4-cocycle β:

β : Λ4(T ) → R
A ∧ B ∧Ψ ∧ Φ 7→ 〈Ψ, (A ∧ B)Φ〉

and saw that its cocycle condition is the 4-Ψ’s rule in Theorem 15. We explored the meaning of
these cocycles in Section 7: they allow us to create nontrivial extensions of the supertranslations
T to Lie 2- and Lie 3-superalgebras, which we exhibited in Corollaries 18 and 19. But that is not
the end of our story. We can go one step further with α and β, because both of them are invariant
under the action of the corresponding Lorentz algebra: so(n+ 1, 1) in the case of α, and so(n+ 2, 1)
for β. This is manifestly true, because α and β are built from equivariant maps.

As we shall see, this invariance implies that α and β are cocycles, not merely on the supertrans-
lations, but on the full Poincaré superalgebra—siso(n+ 1, 1) in the case of α:

siso(n+ 1, 1) = so(n+ 1, 1)n T
and siso(n+ 2, 1) in the case of β:

siso(n+ 2, 1) = so(n+ 2, 1)n T
We can extend α and β to these larger algebras in a trivial way: define the unique extension which
vanishes unless all of its arguments come from T . Doing this, α and β remain cocycles, even though
the Lie bracket (and thus d) has changed. Moreover, they remain nontrivial. All of this is contained
in the following proposition:

Proposition 20. Let g and h be Lie superalgebras such that g acts on h, and let R be a representation
of g n h. Given any R-valued n-cochain ω on h, we can uniquely extend it to an n-cochain ω̃ on
gn h that takes the value of ω on h and vanishes on g. When ω is even, we have:

1. ω̃ is closed if and only if ω is closed and g-equivariant.

2. ω̃ is exact if and only if ω = dθ, for θ a g-equivariant (n− 1)-cochain on h.

Proof. As a vector space, gn h = g⊕ h, so that

Λn(gn h) ∼=
⊕

p+q=n

Λpg⊗ Λqh,

as a vector space. Thanks to this decomposition, we can uniquely decompose n-cochains on gnh by
restricting to the summands. In keeping with our prior terminology, we call an n-cochain supported
on Λpg⊗ Λqh a (p, q)-form. Note that ω̃ is just the n-cochain ω regarded as a (0, n)-form on gn h.
We shall denote the space of (p, q)-forms by Cp,q .

We have two actions to distinguish: the action of g n h on R, which we denote by ρ, and the
action of g on h, which we shall denote simply by the bracket, [−,−]. Inspecting the formula for the
differential:

dω̃(X1, . . . , Xn+1) =
n+1∑

i=1

(−1)i+1(−1)|Xi||ω̃|εi−1
1 (i)ρ(Xi)ω̃(X1, . . . , X̂i, . . . , Xn+1)

+
∑

i<j

(−1)i+j(−1)|Xi||Xj |εi−1
1 (i)εj−1

1 (j)ω̃([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . .Xn+1)
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it is easy to see that
d : Cp,q → Cp,q+1 ⊕ Cp+1,q .

In particular:
d : C0,n → C0,n+1 ⊕ C1,n.

Given an n-cochain ω on h, it is easy to see that the part of dω̃ which lies in C0,n+1 is just d̃ω, the
extension of the (n+ 1)-cochain dω to gn h.

Let eω denote the (1, n)-form part of dω̃. To express this explicitly, choose Y1 ∈ g andX2, . . . , Xn+1 ∈
h. By definition eω(Y1, X2, . . . , Xn+1) = dω̃(Y1, X2, . . . , Xn+1), and inspecting the formula for the
differential once more, we see this consists of only two nonzero terms:

eω(Y1, X2, . . . , Xn+1) = (−1)|ω̃||Y1|ρ(Y1)ω̃(X2, . . . , Xn+1)

+

n+1∑

i=2

(−1)i+1εi−1
2 (i)ω̃([Y1, Xi], X2, . . . , X̂i, . . . , Xn+1)

= (−1)|ω||Y1|ρ(Y1)ω(X2 ∧ · · · ∧Xn+1)− ω([Y1, X2 ∧ · · · ∧Xn+1])

In particular, note that for even ω, eω = 0 if and only if ω is g-equivariant.
To summarize, for any n-cochain ω, we have that

dω̃ = d̃ω + eω,

where the first d is defined on g n h, while the second is only defined on h. The proof of 1 is now

immediate: for even ω, dω̃ = 0 if and only if d̃ω = 0 and eω = 0, which happens if and only dω = 0
and ω is g-equivariant.

To prove 2, suppose ω is even. Assume ω̃ = dχ, for some (n− 1)-cochain χ on gn h. Because dχ
is an even (0, n)-form, we may assume χ is an even (0, n− 1)-form, as any other part of χ is closed
and does not contribute to dχ. Thus χ is the extension of an even (n− 1)-cochain θ on h. By our
prior formula, we have:

ω̃ = dθ̃ = d̃θ + eθ

The left-hand side is a (0, n)-form, and thus the (1, n − 1)-form part of the right-hand side, eθ,

vanishes. Thus θ is g-equivariant, and ω̃ = d̃θ, which implies ω = dθ. On the other hand, if ω = dθ
and θ is g-equivariant, then eθ = 0 and thus ω̃ = dθ̃.

Thus we can extend α and β to nonexact cocycles on the Poincaré Lie superalgebra. Thanks to
Theorem 17, we know that α lets us extend siso(n+ 1, 1) to a nonexact Lie 2-superalgebra:

Theorem 21. In dimensions 3, 4, 6 and 10, there exists a nonexact Lie 2-superalgebra formed by ex-
tending the Poincaré superalgebra siso(n+1, 1) by the 3-cocycle α, which we call we the superstring
Lie 2-superalgebra, superstring(n+ 1, 1).

Likewise, in dimensions one higher, β lets us extend siso(n+2, 1) to a nonexact Lie 3-superalgebra. In
the 11-dimensional case, this coincides with the Lie 3-superalgebra which Sati, Schreiber and Stasheff
call sugra(10, 1) [31], which is the Koszul dual of an algebra defined by D’Auria and Fré [12].

Theorem 22. In dimensions 4, 5, 7 and 11, there exists a nonexact Lie 3-superalgebra formed by
extending the Poincaré superalgebra siso(n+ 2, 1) by the 4-cocycle β, which we call the 2-brane Lie
3-superalgebra, 2-brane(n+ 2, 1).
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