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1: THE REAL NUMBERS

Once upon a time, numbers formed a line:

We call these the real numbers.



2: THE COMPLEX NUMBERS

In 1545, Cardano published a book that showed
how to solve cubic equations

with the help of an imaginary number i
with a shocking property:

i2 = −1

‘Complex numbers’ like a + bi gradually caught on,
but people kept wondering:

Does the number i ‘really exist’?
If so, what is it?



In 1806, Argand realized you can draw
complex numbers as points in the plane:

Multiplying by a + bi simply amounts to
rotating and expanding/shrinking the plane

to make the number 1 go to the number a + bi.

So: you can divide by any nonzero complex number
just by

undoing the rotation and dilation it causes!



In 1835, William Rowan Hamilton realized you could treat
complex numbers as pairs of real numbers:

a + bi = (a, b)

Since real numbers work so well in 1d geometry,
and complex numbers work so well in 2d geometry,
Hamilton tried to invent ‘triplets’ for 3d geometry!

a + bi + cj = (a, b, c)



His quest built to its climax in October 1843:

Every morning in the early part of the above-cited
month, on my coming down to breakfast, your (then)
little brother William Edwin, and yourself, used to ask
me: “Well, Papa, can you multiply triplets?” Whereto
I was always obliged to reply, with a sad shake of the
head: “No, I can only add and subtract them.”



Hamilton seems to have wanted a 3-dimensional
‘normed division algebra’:

A normed division algebra is a finite-dimensional real vector
space A with a product A × A → A, identity 1 ∈ A and
norm | | : A → [0, ∞) such that:

1a = a = a1

a(b + c) = ab + ac (b + c)a = ba + ca

(αa)b = α(ab) = a(αb) (α ∈ R)

|a + b| ≤ |a| + |b|
|a| = 0 ⇐⇒ a = 0

and

|ab| = |a||b|



Hamilton didn’t know it, but:

Theorem: A normed division algebra
must have dimension 1, 2, 4, or 8.



4: THE QUATERNIONS

On October 16th, 1843, walking with his wife along the
Royal Canal in Dublin, Hamilton suddenly found a

4-dimensional normed division algebra he later called
the quaternions:

That is to say, I then and there felt the galvanic circuit
of thought close; and the sparks which fell from it were
the fundamental equations between i, j, k; exactly such
as I have used them ever since:

i2 = j2 = k2 = ijk = −1



And in a famous act of mathematical vandalism, he carved
these equations into the stone of the Brougham Bridge:



Hamilton spent the rest of his life working on quaternions.
They neatly combine scalars and vectors:

a = a0︸︷︷︸
scalar part

+ a1i + a2j + a3k︸ ︷︷ ︸
vector part, ~a

|a| =
√

a2
0 + a2

1 + a2
2 + a2

3

Since

ij = k = −ji jk = i = −kj ki = j = −ik

i2 = j2 = k2 = −1

we can show

ab = (a0b0 − ~a ·~b) + (a0
~b + b0~a + ~a ×~b)

But the dot product and cross product of vectors were only
isolated later, by Gibbs. Before 1901, quaternions reigned
supreme!



8: THE OCTONIONS

The day after his fateful walk, Hamilton sent his college
friend John T. Graves an 8-page letter describing the

quaternions. On October 26th Graves replied,
complimenting Hamilton on his boldness, but adding:

There is still something in the system which gravels me.
I have not yet any clear views as to the extent to which
we are at liberty arbitrarily to create imaginaries, and
to endow them with supernatural properties.

If with your alchemy you can make three pounds of
gold, why should you stop there?



On the day after Christmas, Graves sent Hamilton a letter
about an 8-dimensional normed division algebra he called the
octaves — now known as the octonions.

In January 1844 he sent Hamilton 3 more letters. He tried
to construct a 16-dimensional normed division algebra, but
“met with an unexpected hitch” and came to doubt this was
possible.

The quaternions are noncommutative:

ab 6= ba

In June, Hamilton noted that the octonions are also
nonassociative:

(ab)c 6= a(bc)



Hamilton offered to publicize Graves’ work, but never got
around to it. He was too distracted by work on the

quaternions.

In 1845, the octonions were rediscovered by Arthur Cayley.
So, some people call them Cayley numbers.

But, what are the octonions?
And why do they make the number 8 so special?



To multiply quaternions, you just need to remember:

• 1 is the multiplicative identity,

• i, j, and k are square roots of -1,

and this picture:

When we multiply two guys following the arrows we get the
next one: for example, jk = i. But when we multiply going

against the arrows we get minus the next one: kj = −i.



To multiply octonions, you just need to remember:

• 1 is the multiplicative identity

• e1, . . . , e7 are square roots of -1

and this picture of the Fano plane:



Points in the Fano plane correspond to
lines through the origin in this cube:

Lines in the Fano plane correspond to
planes through the origin in this cube.



VECTORS VERSUS SPINORS

A deeper way to construct the octonions uses spinors.
The n-dimensional rotation group acts on vectors,

but its double cover also acts on spinors.

There’s a way to ‘multiply’ a spinor and a vector
and get a spinor:

When the space of spinors and the space of vectors have the
same dimension, this gives a normed division algebra!



n vectors spinors normed division algebra?
1 R R YES: REAL NUMBERS

2 R2 R2 YES: COMPLEX NUMBERS

3 R3 R4 NO

4 R4 R4 YES: QUATERNIONS

5 R5 R4 NO

6 R6 R4 NO

7 R7 R8 NO

8 R8 R8 YES: OCTONIONS

Bott periodicity: spinors in dimension 8 more
have dimension 16 times as big.

So, we only get 4 normed division algebras.



SUPERSTRINGS

In string theory, different ways a string can vibrate
correspond to different particles.

Strings trace out 2-dimensional surfaces in spacetime.
So, a string in (n + 2)-dimensional spacetime

can vibrate in n directions perpendicular to this surface.

‘Supersymmetric’ strings are possible when the space of
n-dimensional vectors has the same dimension as the space

of spinors. There are only four options:

n = 1 =⇒ n + 2 = 3 (real numbers)
n = 2 =⇒ n + 2 = 4 (complex numbers)
n = 4 =⇒ n + 2 = 6 (quaternions)
n = 8 =⇒ n + 2 = 10 (octonions)



For reasons I don’t fully understand,
only n = 8 gives a well-behaved superstring theory

when we take quantum mechanics into account.

So: if superstring theory is right,
spacetime is 10-dimensional,

and the vibrations of the strings
that make up all forces and particles

are described by octonions!



SPHERE PACKING

The two most symmetrical ways to pack pennies are
a square lattice, called Z2:



...and a hexagonal lattice, called A2:

The A2 packing is denser —
the densest possible in 2d.



The centers of pennies in the Z2 lattice are also special
complex numbers called Gaussian integers:

They’re closed under addition and multiplication!



The centers of pennies in the A2 lattice are special
complex numbers called Eisenstein integers:

They’re also closed under addition and multiplication,
since ω3 = 1.



In 3 dimensions, we can pack spheres in a cubical lattice
called Z3, or a denser A3 lattice made by stacking

hexagonal lattices:

The A3 lattice is the densest possible in 3d.



Zn and An lattices exist in any dimension,
but the densities drop:

n Zn density An density
1 100% 100%
2 79% 91%
3 52% 74%
4 31% 55%

However, in 4d there’s a surprise!



The spaces between spheres in the Z4 lattice are big enough
to slip another copy of this lattice in the gaps, thus

doubling the density!

We have already have spheres centered
at points with integer coordinates:

(n1, n2, n3, n4)

Each center has distance 1 from its nearest neighbors.
New spheres centered at points

(n1 + 1/2, n2 + 1/2, n3 + 1/2, n4 + 1/2)

will be just as far away, since√
(1/2)2 + (1/2)2 + (1/2)2 + (1/2)2 = 1



We call this new lattice the D4 lattice:
it’s the densest possible in 4d.

Points in the D4 lattice are also special quaternions
called Hurwitz integers:

a + bi + cj + dk

where a, b, c, d are either all integers or
all integers plus 1/2.

They’re closed under addition and multiplication!

Each Hurwitz integer has 24 nearest neighbors,
so each sphere in the D4 lattice touches 24 others.

The 24 nearest neighbors of 0 are...



8 like this...

±1, ±i, ±j, ±k



and 16 like this...

±
1

2
±

i

2
±

j

2
±

k

2



...for a total of 24:



Dn lattices exist in any dimension ≥ 4,
but the densities drop:

n Zn density An density Dn density
1 100% 100%
2 79% 91%
3 52% 74%
4 31% 55% 62%
5 16% 38% 47%
6 8% 24% 32%
7 4% 15% 21%
8 2% 8% 13%

However, in 8 dimensions there’s another surprise!



There’s enough space between spheres in the D8 lattice
to slip another copy in the gaps!

We get a lattice called the E8 lattice.
It’s the densest possible in 8 dimensions.

Points in the E8 lattice are also special octonions
called Cayley integers.

They’re closed under addition and multiplication!

Each Cayley integer has 240 nearest neighbors,
so each sphere in the E8 lattice touches 240 others.





All the lattices I’ve mentioned give rise to
continuous symmetry groups called

semisimple Lie groups.
The E8 lattice gives

the most mysterious one of all:
a group known only as E8.

But this is the beginning of another,
longer,

stranger,
more beautiful

story...



APPENDIX: LATTICES

The densest lattices in ≤ 8 dimensions are among these:

n Zn density An density Dn density En density
1 100% 100%
2 79% 91%
3 52% 74%
4 31% 55% 62%
5 16% 38% 47%
6 8% 24% 32% 37%
7 4% 15% 21% 30%
8 2% 8% 13% 25%

The lattices E6 and E7 are constructed as
lower-dimensional ‘slices’ of E8.



APPENDIX: QUATERNIONS,
THE DODECAHEDRON, AND E8

We call a quaternion q with |q| = 1 a unit quaternion. These
form a group under multiplication.

Any unit quaternion q gives a rotation. As we’ve seen, a
quaternion whose scalar part is zero is the same as a vector:

a1i + a2j + a3k = ~a

To rotate this vector, we just ‘conjugate’ it by q:

q~aq−1

We get all rotations this way. Both q and −q give the same
rotation, so the unit quaternions form the ‘double cover’ of
the 3d rotation group. This double cover is usually called
SU(2).



There are 5 ways to inscribe a cube in the dodecahedron:

Rotational symmetries of the dodecahedron give all even
permutations of these 5 cubes, so these symmetries form
what is called the ‘alternating group’ A5, with

5!/2 = 60

elements.



Since the group SU(2) is the double cover of the 3d rotation
group, there are

2 × 60 = 120

unit quaternions that give rotational symmetries of the do-
decahedron. These form a group usually called the binary
icosahedral group, since the regular icosahedron has the same
symmetries as the regular dodecahedron.

A wonderful fact: elements of the binary icosahedral group
are precisely the unit quaternions

q = q01 + q1i + q2j + q3k

where q0, q1, q2, q3 lie in the ‘golden field’. The golden field
consists of real numbers

x +
√

5y

where x and y are rational.



This gives another way to construct the E8 lattice. A
finite linear combination of the 120 unit quaternions described
above is called an icosian. It takes 8 rational numbers to
describe an icosian. But, not every 8-tuple of rational num-
bers gives an icosian. Those which do form a copy of the E8
lattice!

To get this to work, we need to put the right norm on the
icosians. First there is usual quaternionic norm, with

|a0 + a1i + a2j + a3k|2 = a2
0 + a2

1 + a2
2 + a2

3

But for an icosian, this is always of the form x +
√

5y for
some rational x and y. We can define another norm on the
icosians by setting

|a0 + a1i + a2j + a3k|2 = x + y

With this norm, the icosians form a copy of E8 lattice.



So, there’s a nice relation between the numbers 5 and 8: from
the dodecahedron we have gotten the E8 lattice.

There’s also another relation between the dodecahedron and
E8, called the McKay correspondence. This requires some
more advanced math to understand, so I’ll quickly sketch it
and then quit.

The binary icosahedral group has 9 irreducible representa-
tions, one of them being the obvious representation on C2

coming from the 2d rep of SU(2). Draw a dot for each rep
Ri; tensor each Ri with the rep on C2 and write the result
as a direct sum of reps Rj; then draw a line connecting the
dot for Ri to the dot for each Rj that shows up in this sum.



You get this picture:

Voilà! This is the extended E8 Dynkin diagram! From this,
we can recover E8.



APPENDIX: A PUZZLE

One final note: the number 24 is the theme of my next talk.
But, it has already made two appearances in this one! Can
you find both? One is very sneaky.

I’m not talking about how 24 can be seen inside the number
240, since I don’t know any deep reason for this.
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