
Algorithmic Thermodynamics

John Baez, U. C. Riverside

WOST IV, 2023 May 25

In statistical mechanics and information theory we define
entropy for a probability distribution.

“Kolmogorov complexity” gives a concept of entropy for a single
finite-length bit string.

However, up to some bounded error, Kolmogorov complexity
can be seen as not just analogous to entropy in statistical
mechanics, but a special case!

In statistical mechanics and information theory we define
entropy for a probability distribution.

“Kolmogorov complexity” gives a concept of entropy for a single
finite-length bit string.

However, up to some bounded error, Kolmogorov complexity
can be seen as not just analogous to entropy in statistical
mechanics, but a special case!

Any Turing machine M computes some partially defined
function from N to N. We write this function as M.

A partially defined function from N to N is partial recursive if it
is computed by some Turing machine.

If f : N → N is everywhere defined and computed by some
Turing machine we call it a recursive function.

Church–Turing Thesis. Any function f : N → N that is
computable by any kind of systematic procedure is recursive.

Many non-recursive functions f : N → N are known.

Any Turing machine M computes some partially defined
function from N to N. We write this function as M.

A partially defined function from N to N is partial recursive if it
is computed by some Turing machine.

If f : N → N is everywhere defined and computed by some
Turing machine we call it a recursive function.

Church–Turing Thesis. Any function f : N → N that is
computable by any kind of systematic procedure is recursive.

Many non-recursive functions f : N → N are known.

Any Turing machine M computes some partially defined
function from N to N. We write this function as M.

A partially defined function from N to N is partial recursive if it
is computed by some Turing machine.

If f : N → N is everywhere defined and computed by some
Turing machine we call it a recursive function.

Church–Turing Thesis. Any function f : N → N that is
computable by any kind of systematic procedure is recursive.

Many non-recursive functions f : N → N are known.

Any Turing machine M computes some partially defined
function from N to N. We write this function as M.

A partially defined function from N to N is partial recursive if it
is computed by some Turing machine.

If f : N → N is everywhere defined and computed by some
Turing machine we call it a recursive function.

Church–Turing Thesis. Any function f : N → N that is
computable by any kind of systematic procedure is recursive.

Many non-recursive functions f : N → N are known.

Universal prefix-free Turing machines

Instead of using lots of Turing machines, we can use one
‘universal prefix-free’ Turing machine. To define these, think of
Turing machines as accepting bit strings rather than natural
numbers as inputs.

Let a string be a bit string: a finite, possibly empty, list of 0’s
and 1’s.

If x and y are strings, let xy be the concatenation of x and y . A
prefix of a string z is a string x such that z = xy for some y . A
prefix-free set of strings is one in which no element is a prefix
of any other.

If S is a prefix-free set of strings,∑
x∈S

2−|x | < ∞

where |x | is the length of the string x .

Universal prefix-free Turing machines

Instead of using lots of Turing machines, we can use one
‘universal prefix-free’ Turing machine. To define these, think of
Turing machines as accepting bit strings rather than natural
numbers as inputs.

Let a string be a bit string: a finite, possibly empty, list of 0’s
and 1’s.

If x and y are strings, let xy be the concatenation of x and y . A
prefix of a string z is a string x such that z = xy for some y . A
prefix-free set of strings is one in which no element is a prefix
of any other.

If S is a prefix-free set of strings,∑
x∈S

2−|x | < ∞

where |x | is the length of the string x .

Universal prefix-free Turing machines

Instead of using lots of Turing machines, we can use one
‘universal prefix-free’ Turing machine. To define these, think of
Turing machines as accepting bit strings rather than natural
numbers as inputs.

Let a string be a bit string: a finite, possibly empty, list of 0’s
and 1’s.

If x and y are strings, let xy be the concatenation of x and y . A
prefix of a string z is a string x such that z = xy for some y . A
prefix-free set of strings is one in which no element is a prefix
of any other.

If S is a prefix-free set of strings,∑
x∈S

2−|x | < ∞

where |x | is the length of the string x .

Universal prefix-free Turing machines

Instead of using lots of Turing machines, we can use one
‘universal prefix-free’ Turing machine. To define these, think of
Turing machines as accepting bit strings rather than natural
numbers as inputs.

Let a string be a bit string: a finite, possibly empty, list of 0’s
and 1’s.

If x and y are strings, let xy be the concatenation of x and y . A
prefix of a string z is a string x such that z = xy for some y . A
prefix-free set of strings is one in which no element is a prefix
of any other.

If S is a prefix-free set of strings,∑
x∈S

2−|x | < ∞

where |x | is the length of the string x .

The domain of a Turing machine M is the set of strings x for
which M(x) is defined. That is, the machine eventually halts
when given input x ... and it prints out M(x).

A prefix-free Turing machine is one whose domain is a
prefix-free set.

A prefix-free machine U is universal if for any prefix-free
machine M there exists a constant c such that for each string x ,
there exists a string y with

U(y) = M(x) and |y | < |x |+ c.

Theorem. There exists a universal prefix-free Turing machine
U.

Indeed, there are many, but fix one!

The domain of a Turing machine M is the set of strings x for
which M(x) is defined. That is, the machine eventually halts
when given input x ... and it prints out M(x).

A prefix-free Turing machine is one whose domain is a
prefix-free set.

A prefix-free machine U is universal if for any prefix-free
machine M there exists a constant c such that for each string x ,
there exists a string y with

U(y) = M(x) and |y | < |x |+ c.

Theorem. There exists a universal prefix-free Turing machine
U.

Indeed, there are many, but fix one!

Kolmogorov complexity

The Kolmogorov complexity of n ∈ N is the length of the
shortest string x with U(x) = n.

Intuitively, it’s the length of the shortest program that prints out
n.

We can also talk about the Kolmogorov complexity of a string,
since we can encode strings as natural numbers. Indeed we
can define the Kolmogorov complexity of any sort of data.

Kolmogorov complexity

The Kolmogorov complexity of n ∈ N is the length of the
shortest string x with U(x) = n.

Intuitively, it’s the length of the shortest program that prints out
n.

We can also talk about the Kolmogorov complexity of a string,
since we can encode strings as natural numbers. Indeed we
can define the Kolmogorov complexity of any sort of data.

Kolmogorov complexity

The Kolmogorov complexity of n ∈ N is the length of the
shortest string x with U(x) = n.

Intuitively, it’s the length of the shortest program that prints out
n.

We can also talk about the Kolmogorov complexity of a string,
since we can encode strings as natural numbers. Indeed we
can define the Kolmogorov complexity of any sort of data.

Kolmogorov complexity versus Shannon entropy

Shannon entropy works for probability distributions on strings,
while Kolmogorov complexity works for individual strings.

However, the Kolmogorov complexity of a long randomly
produced string is typically close to the Shannon entropy of the
probability distribution that gave rise to it!

Let’s make that precise.

Theorem. Suppose we have a probability distribution on k -bit
strings:

p : {0,1}k → [0,1].

Let
S(p) = −

∑
x∈{0,1}k

p(x) log(p(x))

be its Shannon entropy.

Suppose we choose n random strings x1, . . . , xn from this
probability distribution. The concatenation x1 · · · xn is a string
with Kolmogorov complexity K (x1 · · · xn).

Then with probability 1,

lim
n→∞

K (x1 · · · xn)

nS(p)
= 1.

Theorem. Suppose we have a probability distribution on k -bit
strings:

p : {0,1}k → [0,1].

Let
S(p) = −

∑
x∈{0,1}k

p(x) log(p(x))

be its Shannon entropy.

Suppose we choose n random strings x1, . . . , xn from this
probability distribution. The concatenation x1 · · · xn is a string
with Kolmogorov complexity K (x1 · · · xn).

Then with probability 1,

lim
n→∞

K (x1 · · · xn)

nS(p)
= 1.

Theorem. Suppose we have a probability distribution on k -bit
strings:

p : {0,1}k → [0,1].

Let
S(p) = −

∑
x∈{0,1}k

p(x) log(p(x))

be its Shannon entropy.

Suppose we choose n random strings x1, . . . , xn from this
probability distribution. The concatenation x1 · · · xn is a string
with Kolmogorov complexity K (x1 · · · xn).

Then with probability 1,

lim
n→∞

K (x1 · · · xn)

nS(p)
= 1.

The Complexity Barrier

But there’s a problem:

Theorem. The Kolmogorov complexity

K : N → N

is not a recursive function.

More surprisingly, there’s an upper limit on how complex we
can prove anything is!

Theorem. Choose your favorite set of axioms for math. If it’s
finite and consistent, there exists C ≥ 0, the complexity
barrier, such that for no n ∈ N can you prove K (n) > C.

The Complexity Barrier

But there’s a problem:

Theorem. The Kolmogorov complexity

K : N → N

is not a recursive function.

More surprisingly, there’s an upper limit on how complex we
can prove anything is!

Theorem. Choose your favorite set of axioms for math. If it’s
finite and consistent, there exists C ≥ 0, the complexity
barrier, such that for no n ∈ N can you prove K (n) > C.

The Complexity Barrier

But there’s a problem:

Theorem. The Kolmogorov complexity

K : N → N

is not a recursive function.

More surprisingly, there’s an upper limit on how complex we
can prove anything is!

Theorem. Choose your favorite set of axioms for math. If it’s
finite and consistent, there exists C ≥ 0, the complexity
barrier, such that for no n ∈ N can you prove K (n) > C.

Levin’s time-bounded complexity

What to do? Instead of minimizing the length of a program that
prints out n, let’s minimize the length of the program plus the
logarithm of its runtime!

More precisely: if our universal machine U halts when given the
input x , let t(x) be its runtime. Define the Levin complexity
L(n) to be

L(n) = min
x such that U(x)=n

(
|x |+ ln t(x)

)

Theorem. L : N → N is recursive.

Levin’s time-bounded complexity

What to do? Instead of minimizing the length of a program that
prints out n, let’s minimize the length of the program plus the
logarithm of its runtime!

More precisely: if our universal machine U halts when given the
input x , let t(x) be its runtime. Define the Levin complexity
L(n) to be

L(n) = min
x such that U(x)=n

(
|x |+ ln t(x)

)

Theorem. L : N → N is recursive.

Levin’s time-bounded complexity

What to do? Instead of minimizing the length of a program that
prints out n, let’s minimize the length of the program plus the
logarithm of its runtime!

More precisely: if our universal machine U halts when given the
input x , let t(x) be its runtime. Define the Levin complexity
L(n) to be

L(n) = min
x such that U(x)=n

(
|x |+ ln t(x)

)

Theorem. L : N → N is recursive.

Algorithmic thermodynamics

Now let’s unify these notions of complexity — and unify them
with statistical mechanics!

Let X be the domain of our universal prefix-free Turing
machine: the set of strings x for which U(x) is defined.

Define the partition function

Z (β, γ) =
∑
x∈X

e−β ln(t(x))−γ|x |

Theorem. The sum for Z converges when β ≥ 0 and γ ≥ ln2.
If also β > 0, Z is computable to arbitrary accuracy. For β = 0 it
is not computable.

Algorithmic thermodynamics

Now let’s unify these notions of complexity — and unify them
with statistical mechanics!

Let X be the domain of our universal prefix-free Turing
machine: the set of strings x for which U(x) is defined.

Define the partition function

Z (β, γ) =
∑
x∈X

e−β ln(t(x))−γ|x |

Theorem. The sum for Z converges when β ≥ 0 and γ ≥ ln2.
If also β > 0, Z is computable to arbitrary accuracy. For β = 0 it
is not computable.

Algorithmic thermodynamics

Now let’s unify these notions of complexity — and unify them
with statistical mechanics!

Let X be the domain of our universal prefix-free Turing
machine: the set of strings x for which U(x) is defined.

Define the partition function

Z (β, γ) =
∑
x∈X

e−β ln(t(x))−γ|x |

Theorem. The sum for Z converges when β ≥ 0 and γ ≥ ln2.
If also β > 0, Z is computable to arbitrary accuracy. For β = 0 it
is not computable.

As usual in statistical mechanics, the probability distribution

pβ,γ(x) =
e−β ln(t(x))−γ|x |

Z

maximizes Shannon entropy subject to a constraint on the
expected values of the log runtime ln(t(x)) and input length |x |.

∑
x such that U(x)=n

pβ,γ(x)

is the probability that a randomly chosen input will cause our
universal machine U to print out n.

As usual in statistical mechanics, the probability distribution

pβ,γ(x) =
e−β ln(t(x))−γ|x |

Z

maximizes Shannon entropy subject to a constraint on the
expected values of the log runtime ln(t(x)) and input length |x |.

∑
x such that U(x)=n

pβ,γ(x)

is the probability that a randomly chosen input will cause our
universal machine U to print out n.

Intuitively,

Surprisalβ,γ(n) = − ln

 ∑
x such that U(x)=n

pβ,γ(x)

is the “surprise” we should experience when an input chosen
randomly according to the probability distribution pβ,γ causes U
to print out n.

Theorem. There is a constant C > 0 such that for any n ∈ N,
the Kolmogorov complexity K (n) obeys

|K (n)− Surprisalβ,γ(n)| < C

when β = 0, γ = ln2, and the Levin complexity L(n) obeys

|L(n)− Surprisalβ,γ(n)| < C

when β = 1, γ = ln2.

Intuitively,

Surprisalβ,γ(n) = − ln

 ∑
x such that U(x)=n

pβ,γ(x)

is the “surprise” we should experience when an input chosen
randomly according to the probability distribution pβ,γ causes U
to print out n.

Theorem. There is a constant C > 0 such that for any n ∈ N,
the Kolmogorov complexity K (n) obeys

|K (n)− Surprisalβ,γ(n)| < C

when β = 0, γ = ln2

, and the Levin complexity L(n) obeys

|L(n)− Surprisalβ,γ(n)| < C

when β = 1, γ = ln2.

Intuitively,

Surprisalβ,γ(n) = − ln

 ∑
x such that U(x)=n

pβ,γ(x)

is the “surprise” we should experience when an input chosen
randomly according to the probability distribution pβ,γ causes U
to print out n.

Theorem. There is a constant C > 0 such that for any n ∈ N,
the Kolmogorov complexity K (n) obeys

|K (n)− Surprisalβ,γ(n)| < C

when β = 0, γ = ln2, and the Levin complexity L(n) obeys

|L(n)− Surprisalβ,γ(n)| < C

when β = 1, γ = ln2.

We can go ahead and do “algorithmic thermodynamics”. If we
write the expected log runtime and input length as

E =
〈
ln t(x)

〉
, V =

〈
|x |

〉
then

E = − ∂

∂β
lnZ , V = − ∂

∂γ
lnZ

as usual.

If we define the algorithmic temperature T and algorithmic
pressure P by

1
T

= β,
P
T

= γ

then we get
dE = TdS − PdV

where S is the entropy of the whole probability distribution

pβ,γ(x) =
e−β ln(t(x))−γ|x |

Z

For details, see:
▶ John Baez and Mike Stay, Algorithmic thermodynamics.

https://arxiv.org/abs/1010.2067

