OPEN SYSTEMS: A DOUBLE CATEGORICAL PERSPECTIVE

A Dissertation submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

by

Kenny Courser

June 2019

Dissertation Committee:

Professor John Baez, Chairperson
Professor Jacob Greenstein
Professor David Weisbart
The Dissertation of Kenny Courser is approved:

Committee Chairperson

University of California, Riverside
Acknowledgments

First I would like to thank my advisor John Baez for letting me be his student. Without his patience and humor, this thesis would not exist. I would like to thank Mike Shulman, Christina Vasilakopoulou, Daniel Cicala, Blake Pollard and David Weisbart for their help and guidance over the past several years. I would like to thank other members of our category theory research group here at University of California, Riverside - Brandon Coya, Jason Erbele, Joe Moeller, Jade Master and Christian Williams for helpful discussions and feedback. I would like to thank my Grandparents Valerie and Lupé for their love and support and for allowing me to focus on school. I would like to thank my little brother, Christian, my little sister, Catherine, my older sister, Emily, my older brother, Andrew, and my dad, Frank, for all the memories while growing up, and of course, Buster. I would like to thank my cohort - Adam and Bryansito >:, Eddie, Josh, Kevin, Mikahl, Ryan, Tim and James, for their companionship while traversing the gauntlet of grad school. I would also like to thank my hometown friends - Jimmy, Richie, Tj, Dombot, Kurt, Daniel and Austin, for all the memories in middle school, high school and early college. I would like to thank the community over at the nLab. Whenever I needed to look up a particular concept or idea, the nLab was one of the first places that I would look. And lastly, I would like to thank my mom, Jodi, for her love and support and for bringing me into this world.
To my mother, Jodi.
ABSTRACT OF THE DISSERTATION

OPEN SYSTEMS: A DOUBLE CATEGORICAL PERSPECTIVE

by

Kenny Courser

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2019
Professor John Baez, Chairperson

Fong has developed a compositional framework by the name of decorated cospan categories well-suited for modeling ‘open’ networks and systems. In this framework, open networks are seen as the morphisms of a category and can be composed as such allowing larger open networks to be built up from smaller ones. Much work has already been done in this direction, and is where the story of this thesis starts. During the process of my first work to promote Fong’s theory of decorated cospan categories to decorated cospan bicategories, it was noticed that the morphisms which made up these decorated cospan categories had a certain unexpected and stringent characterization to them. From this observation, one of the main frameworks of the present thesis, namely ‘structured cospans’, was conceived. Structured cospans utilizes ‘double categories’ which are similar in flavor to bicategories in that they have a 2-dimensional structure to them. Shortly thereafter, we decided to revisit Fong’s decorated cospan machinery also from the perspective of double categories to improve the original framework. Much work in this thesis is built on the foundations of double categories, and while working both the structured cospans and decorated cospans
frameworks, a double category of open Markov processes was also built in which ‘coarse-grainings’ appear as 2-morphisms and are shown to be compatible with ‘black-boxing’.
Contents

1 Introduction 1

2 Decorated cospan categories 6
 2.1 Fong’s Theorem .. 7
 2.2 Applications ... 9
 2.2.1 Graphs .. 9
 2.2.2 Electrical circuits ... 11
 2.2.3 Markov processes ... 13
 2.2.4 Petri nets .. 15

3 Structured cospan double categories 17
 3.1 Foot-replaced double categories 20
 3.1.1 Structured cospan double categories 26
 3.1.2 Examples .. 31
 3.2 Maps of foot-replaced double categories 41
 3.3 Transformations of foot-replaced double categories 51

4 Decorated cospan double categories 56
 4.1 A double category of decorated cospans 61
 4.2 Maps of decorated cospan double categories 80
 4.3 Structured cospans versus decorated cospans 89
 4.4 Examples ... 116
 4.4.1 Graphs ... 117
 4.4.2 Passive linear networks 119
 4.4.3 Markov processes ... 122
 4.4.4 Petri nets .. 126

5 A brief digression on bicategories 129
 5.1 Foot-replaced bicategories 131
 5.1.1 Graphs ... 133
 5.1.2 Electrical circuits 135
 5.1.3 Markov processes ... 137
 5.1.4 Petri nets .. 139
Chapter 1

Introduction

This is a thesis largely about double categorical compositional frameworks. The two frameworks that we investigate go by the names of ‘decorated cospans’ and ‘structured cospans’. Both of these frameworks have a common origin, that being Brendan Fong’s original conception of decorated cospans which can be found in one of his recent works [25] but is also reviewed in the next chapter.

Fong’s theorem on decorated cospan categories says the following:

Theorem 1.0.1 (Fong). _Let \(C \) be a category with finite colimits and \(F: (C, +, 0) \to (\text{Set}, \times, 1) \) a symmetric lax monoidal functor. Then there exists a symmetric monoidal category \(F\text{Cospan} \) which has:

1. objects as those of \(C \) and

2. morphisms as isomorphism classes of \(F \)-decorated cospans in \(C \), which are pairs:

\[
\begin{array}{ccc}
 a_1 & \overset{\mathbf{i}}{\rightarrow} & b \\
 & \mathbf{F} \downarrow & \mathbf{o} \\
 a_2 & \rightarrow & \mathbf{d} \in F(b)
\end{array}
\]
Two F-decorated cospans are in the same isomorphism class if the following diagrams commute:

The composite of two composable F-decorated cospans is given by

where ψ is the natural map into a coproduct, j is the natural map from a coproduct into a pushout, and $\phi_{b,b'}: F(b) \times F(b') \to F(b + b')$ is the natural transformation coming from the structure of the symmetric lax monoidal functor $F: (\mathbf{C}, +, 0) \to (\mathbf{Set}, \times, 1)$.

The tensor product of two objects a_1 and a_2 is given by their binary coproduct $a_1 + a_2$ in \mathbf{C}.
The tensor product of two F-decorated cospans is given pointwise:

\[
\begin{align*}
 &\xymatrix{
 & b
 \ar[rd]^{o}
 \ar[ld]_{i} \\
 a_1 & & a_2 \\
 } \otimes \\
 &\xymatrix{
 & b'
 \ar[rd]^{d'}
 \ar[ld]_{i'} \\
 a_2 & & a_3 \\
 } = \xymatrix{
 & b + b'
 \ar[rd]^{o + o'}
 \ar[ld]_{i + i'} \\
 a_2 + a_3 & & a_1 + a_2 \\
 }
\end{align*}
\]

\[
\begin{align*}
 d \in F(b) \\
 d' \in F(b') \\
 d + d' \in F(b + b')
\end{align*}
\]

For more on the precise meaning of all the terms used in the hypothesis and statement of the Theorem, see Chapter 8. My first paper was aimed at promoting the above symmetric monoidal category $FCospan$ of Fong to a symmetric monoidal bicategory. It was over the course of working on this paper with the help of John Baez that Baez noticed a wrinkle in the framework; that the isomorphism classes of F-decorated cospans that constituted the morphisms of $FCospan$ were too small in the sense that two F-decorated cospans which should have been identified in the same isomorphism class were not. A simple example of this is given by the following two single-edged graphs with different edge labels constituting distinct isomorphism classes in a decorated cospan category $FCospan$:

This wrinkle was amplified from the bicategorical level and resulted in an absence of 2-morphisms that would otherwise be present. In the context of the above example, this
would mean that there was no map of graphs between the above two graphs, when clearly there ought to be an obvious one sending the edge e to the edge e'.

Baez, Fong, Pollard and others [7, 8, 10, 25, 12] have utilized Fong’s decorated cospans to study networks of various kinds from electrical circuits to Markov processes to chemical reaction networks. Many of these examples of open systems are studied via ‘black-boxing’ which is a way of studying the behavior of an open system by observing the behavior at the system’s inputs and outputs, typically while the system is in a ‘steady state’. For more details on these applications and black-boxing, see the works referenced above.

Our first and primary goal is to address the issue of isomorphism classes being too small, and the first solution is given by ‘structured cospans’. In all of the above applications, given a finite set N, each particular kind of open network on N has a ‘degenerate’ decoration. This suggests the existence of a left adjoint $L: \text{FinSet} \to X$ where X is the category in which the decorations reside, such as Graph, Mark or Petri. From this left adjoint L, we can then build a ‘double category’ which has ‘2-morphisms’, or, morphisms between morphisms. An example of a 2-morphism $a: M \Rightarrow N$ in a double category would look like this:

\[
\begin{array}{ccc}
A & \xrightarrow{M} & B \\
\downarrow{f} & & \downarrow{g} \\
C & \xrightarrow{N} & D
\end{array}
\]

These 2-morphisms then allow us to no longer need consider open systems up to isomorphism, and moreover, allow greater flexibility in what constitutes an isomorphism class.

The second solution is decorated cospans itself but also taken from a double categorical viewpoint. This also offers all of the advantages mentioned above, but also in a more direct manner of not needing a left adjoint L. There are strong similarities between the two
approaches which is being investigated in a current work with Baez and Vasilakopoulou [4] which I will briefly sketch out in Chapter 4 by exhibiting an equivalence between two double categories, each constructed using one of the above frameworks. Both of these frameworks can then be used to extend the black-boxing functors constructed by Baez, Fong and Pollard in their previous works. While the issue of the isomorphism classes doesn’t pose much of a problem from a syntactical perspective, the problem becomes worse from a semantical viewpoint due to having to choose a representative for each isomorphism class when the isomorphism classes are not as they should morally be.

The outline of the thesis is as follows: In Chapter 2, we present Fong’s decorated cospans and give some examples in which it as been applied. In Chapter 3, we introduce the framework of structured cospans, which is a specific case of a more general framework known as ‘foot-replaced double categories’. In Chapter 4, we revisit decorated cospans but from the level of double categories. In Chapter 5, we explore some of the similarities between double categories and bicategories, and in Chapter 6, we give an application of double categories to Markov processes and ‘coarse-grainings’ and show that coarse-graining is compatible with black-boxing. This last application is constructed using neither structured cospans nor decorated cospans due to the complexity of its 2-morphisms, but is nevertheless a great example of how the rich structure of double categories and their appropriate maps can be used to model complicated open dynamical systems.
Chapter 2

Decorated cospan categories

This second chapter is devoted to Fong’s decorated cospans and a few of its applications. Fong’s theory of decorated cospans is well-suited for describing ‘open’ networks, where here, open means that the networks have prescribed terminals in the form of inputs and outputs. The benefit of these terminals is that it allows larger networks to be constructed via smaller ones by matching up the inputs of one with the outputs of another. As inputs and outputs can be thought of analogously as a source and target, this naturally leads to the viewpoint of open networks at the morphisms of a category, and indeed this is the case. Not only can open networks be composed but considered in parallel which is suggestive of a monoidal structure. Fong’s Theorem on ‘decorated cospans’ provides a categorical framework which captures all of this structure. These categories can then serve as syntax for functors that describe the open networks behavior, such as the ‘black-box’ functors studied by Baez, Fong, Master and Pollard [7, 8, 9, 10, 2].

In Section 2.1, we present Fong’s Theorem which is Theorem 2.1.2. The definitions of the terminology used in the statement of the theorem may be found in Chapter 8. In Section
2.2, we present some previously studied applications of decorated cospans which will later be revisited in subsequent chapters from the perspective of other compositional frameworks. These examples include open graphs, open electrical circuits, open Markov processes and open Petri nets.

2.1 Fong’s Theorem

Definition 2.1.1. A cospan in any category \mathcal{C} is a diagram of the form

\[
\begin{array}{ccc}
\vdots & b & \vdots \\
i & \downarrow & o \\
a_1 & \downarrow & a_2
\end{array}
\]

In other words, a cospan is an unordered pair of morphisms i and o in \mathcal{C} whose target coincide.

A result of Fong [25] which has been fundamental in the inspiration of a large portion of this thesis is the following.

Theorem 2.1.2 (Fong). Let \mathcal{C} be a category with finite colimits and $F: (\mathcal{C}, +, 0) \to (\text{Set}, \times, 1)$ a symmetric lax monoidal functor. Then there exists a symmetric monoidal category FCospan which has:

(1) objects as those of \mathcal{C} and

(2) morphisms as isomorphism classes of F-decorated cospans in \mathcal{C}, which are pairs:

\[
\begin{array}{ccc}
\vdots & b & \vdots \\
i & \downarrow & o \\
a_1 & \downarrow & a_2
\end{array}
\]

\[d \in F(b)\]
Two \(F \)-decorated cospans are in the same isomorphism class if the following diagrams commute:

\[
\begin{array}{c}
\begin{tikzpicture}
\node (a1) at (0,0) {a_1};
\node (b) at (2,1) {b};
\node (a2) at (4,0) {a_2};
\node (f) at (2,0) {f};
\node (o) at (2,2) {o};
\node (i) at (0,2) {i};
\node (o') at (4,2) {o'};
\node (i') at (4,0) {i'};
\node (b') at (2,-1) {b'};
\node (F(b)) at (4,1) {$F(b)$};
\node (F(f)) at (4,0) {$F(f)$};
\node (F(b')) at (4,-1) {$F(b')$};
\draw[->] (a1) to (b);
\draw[->] (b) to (a2);
\draw[->] (a1) to (b');
\draw[->] (b') to (a2);
\draw[->] (b) to (f);
\draw[->] (f) to (a2);
\draw[->] (b) to (o);
\draw[->] (o) to (a2);
\draw[->] (b') to (i');
\draw[->] (i') to (a1);
\draw[->] (b') to (o');
\draw[->] (o') to (a2);
\end{tikzpicture}
\end{array}
\]

The composite of two composable \(F \)-decorated cospans

\[
\begin{array}{c}
\begin{tikzpicture}
\node (a1) at (0,0) {a_1};
\node (b) at (2,1) {b};
\node (a2) at (4,0) {a_2};
\node (f) at (2,0) {f};
\node (o) at (2,2) {o};
\node (b') at (2,-1) {b'};
\node (d) at (4,1) {d};
\node (d') at (4,-1) {d'};
\node (a3) at (6,0) {a_3};
\node (d') at (4,-1) {d'};
\node (F(b)) at (4,1) {$F(b)$};
\node (F(b')) at (4,-1) {$F(b')$};
\node (F(b) \times F(b')) at (5,0) {$F(b) \times F(b')$};
\node (F(b + b')) at (5,0) {$F(b + b')$};
\node (F(b + a_2 b')) at (5,0) {$F(b + a_2 b')$};
\draw[->] (a1) to (b);
\draw[->] (b) to (a2);
\draw[->] (a1) to (b');
\draw[->] (b') to (a3);
\draw[->] (b) to (f);
\draw[->] (f) to (a2);
\draw[->] (b) to (o);
\draw[->] (o) to (a2);
\draw[->] (b') to (i');
\draw[->] (i') to (a1);
\draw[->] (b') to (o');
\draw[->] (o') to (a3);
\end{tikzpicture}
\end{array}
\]

is given by

\[
\begin{array}{c}
\begin{tikzpicture}
\node (a1) at (0,0) {a_1};
\node (b) at (2,1) {b};
\node (a2) at (4,0) {a_2};
\node (f) at (2,0) {f};
\node (o) at (2,2) {o};
\node (i) at (0,2) {i};
\node (o') at (4,2) {o'};
\node (i') at (4,0) {i'};
\node (b') at (2,-1) {b'};
\node (j) at (6,1) {j};
\node (jpsi) at (6,-1) {$j \psi$};
\node (jpsi') at (6,-3) {$j \psi'$};
\node (psi) at (4,3) {ψ};
\node (psi') at (4,1) {ψ'};
\node (psi) at (2,3) {ψ};
\node (psi') at (2,1) {ψ'};
\node (b+b') at (4,2) {$b + b'$};
\node (b+a_2 b') at (4,0) {$b + a_2 b'$};
\node (F(b)) at (4,1) {$F(b)$};
\node (F(b')) at (4,-1) {$F(b')$};
\node (F(b) \times F(b')) at (5,0) {$F(b) \times F(b')$};
\node (F(b + b')) at (5,0) {$F(b + b')$};
\node (F(b + a_2 b')) at (5,0) {$F(b + a_2 b')$};
\draw[->] (a1) to (b);
\draw[->] (b) to (a2);
\draw[->] (a1) to (b');
\draw[->] (b') to (a3);
\draw[->] (b) to (f);
\draw[->] (f) to (a2);
\draw[->] (b) to (o);
\draw[->] (o) to (a2);
\draw[->] (b') to (i');
\draw[->] (i') to (a1);
\draw[->] (b') to (o');
\draw[->] (o') to (a3);
\draw[->] (j) to (b+b');
\draw[->] (j) to (b+a_2 b');
\draw[->] (jpsi') to (jpsi);
\draw[->] (jpsi) to (b+b');
\draw[->] (jpsi) to (b+a_2 b');
\draw[->] (psi) to (b+b');
\draw[->] (psi) to (b+a_2 b');
\draw[->] (psi') to (b+b');
\draw[->] (psi') to (b+a_2 b');
\end{tikzpicture}
\end{array}
\]

where \(\psi \) is the natural map into a coproduct, \(j \) is the natural map from a coproduct into a pushout, and \(\phi_{b,b'} : F(b) \times F(b') \to F(b + b') \) is the natural transformation coming from the structure of the symmetric lax monoidal functor \(F : (C,+,0) \to (\text{Set},\times,1) \).

The tensor product of two objects \(a_1 \) and \(a_2 \) is given by their binary coproduct \(a_1 + a_2 \) in \(C \).
The tensor product of two F-decorated cospans is given pointwise:

\[
\begin{array}{c}
\begin{array}{ccc}
 & b & \\
 i & \Rightarrow & o \\
a_1 & \otimes & a_2
\end{array}
\end{array}
\quad \begin{array}{ccc}
 & b' & \\
 i' & \Rightarrow & o' \\
a_1' & \otimes & a_2'
\end{array}
\quad = \begin{array}{ccc}
 & b + b' & \\
 i + i' & \Rightarrow & o + o' \\
a_1 + a_1' & \otimes & a_2 + a_2'
\end{array}
\]

\[
d \in F(b) \quad d' \in F(b') \quad d + d' \in F(b + b')
\]

\[
d + d' := 1 \xrightarrow{\lambda^{-1}} 1 \times 1 \xrightarrow{d \times d'} F(b) \times F(b') \xrightarrow{\phi_{b,b'}} F(b + b')
\]

2.2 Applications

In this section we present some examples of applications of decorated cospans which have been studied in previous works [7, 8, 10, 12, 25].

2.2.1 Graphs

Our first example creates a symmetric monoidal category of ‘open graphs’. Let $F : (\text{FinSet}, +, 0) \to (\text{Set}, \times, 1)$ be the symmetric lax monoidal functor that assigns to a finite set N the (large) set of all graph structures whose underlying set of vertices is N. Here, a graph structure on the finite set N is given by a commutative diagram

\[
\begin{array}{c}
E \xleftarrow{t} \xrightarrow{s} N
\end{array}
\]

where E is the set of edges of the graph and $s, t : E \to N$ are the source and target functions, respectively. To see that the functor F is lax monoidal, we note that given a graph structure Γ_1 on a finite set N_1 and a graph structure on another finite set N_2, we can consider the
graphs Γ_1 and Γ_2 simultaneously as a graph structure on the finite set $N_1 + N_2$. This exhibits the family of natural transformations

$$\mu_{N_1,N_2} : F(N_1) \times F(N_2) \to F(N_1 + N_2)$$

required for F to be lax monoidal, and we note the non-invertibility of these transformations due to not allowing edges to have their source in N_1 and target in N_2 or the other way around, which many graphs on the finite set $N_1 + N_2$ do have. For example, the red edge below is not allowed.

We also have a morphism $\mu : 1 \to F(\emptyset)$ which is, in fact, an isomorphism as the empty graph with no edges is the only possible graph structure on \emptyset. By Theorem 2.1.2, we have the following:

Corollary 2.2.1. Let $F : (\text{FinSet},+,0) \to (\text{Set},\times,1)$ be the symmetric lax monoidal functor described above which assigns to a finite set N the (large) set of all graph structures whose underlying set of vertices is N. Then there exists a symmetric monoidal category $F\text{Cospan}$ which has:
(1) objects as finite sets and

(2) morphisms as isomorphism classes of open graphs, where an open graph is given by a pair of diagrams:

\[\begin{array}{cc}
N & \xymatrix{N \ar[r]^s & N} \\
X \ar[ur]^{i} & \otimes & Y \ar[ul]_{o} \\
\end{array} \]

Two open graphs are in the same isomorphism class if the following diagrams commute:

\[\begin{array}{cc}
N & \xymatrix{N \ar[r]^s & N} \\
X \ar[ur]^{i} & \otimes & Y \ar[ul]_{o} \\
\end{array} \]

Composition and tensoring of objects and morphisms are given as in Theorem 2.1.2.

2.2.2 Electrical circuits

The remaining three applications, while taking on more of an applied flavor, are structurally very similar.

Definition 2.2.2. Given a field \(k \), a field with positive elements is a pair \((k, k^+)\) where \(k^+ \subset k \) is a subset such that \(r^2 \in k^+ \) for every nonzero \(r \in k \) and such that \(k^+ \) is closed under addition, multiplication and division.
Definition 2.2.3. Let k be a field with positive elements. A k-**graph** is given by the diagram:

$$
k^+ \xleftarrow{r} E \xrightarrow{s} N \xrightarrow{t}
$$

where $r(e) \in k^+$ is the resistance along the edge e.

Again by Theorem 2.1.2, we have the following.

Theorem 2.2.4. Let $F : (\text{FinSet},+,0) \to (\text{Set},\times,1)$ be the symmetric lax monoidal functor which assigns to a finite set N the (large) set of all k-graph structures on the finite set N. Then there exists a symmetric monoidal category $F\text{Cospan}$ which has:

1. **objects** as finite sets and
2. **morphisms** as isomorphism classes of open k-**graphs**, where an open k-graph is given by a pair of diagrams:

Two open graphs are in the same isomorphism class if the following diagrams commute:

Composition and tensoring of objects and morphisms are given as in Theorem 2.1.2.
An electrical circuit can then be seen as a k-graph in which we take the field k to be \mathbb{R}. Baez and Fong define a symmetric monoidal category $F\text{Cospan}$ whose morphisms are (isomorphism classes of) open electrical circuits and then go further by studying their ‘black boxing’ [7] which is a way of externally observing the behavior of an electrical circuit by observing the behavior at the circuits inputs and outputs which are given by the finite sets X and Y.

2.2.3 Markov processes

As a special case of the previous example, we can build a symmetric monoidal category whose morphisms are given by open Markov processes. First, we define what a Markov process is in the context of this framework.

Definition 2.2.5. Given a finite set N, a **Markov process** on N is given by the following diagram:

$$
\begin{array}{ccc}
(0, \infty) & \leftarrow & E \\
& \downarrow^s & \searrow^t \\
& & N
\end{array}
$$

Given an edge $n_1 \xrightarrow{e} n_2$, we call $r(e)$ the probabilistic rate of transitioning from the state n_1 to the state n_2.

It is worth noting that the actual labels of the edges in the set E are immaterial, and later on we will take a more convenient approach to Markov processes [2].

As before, we define a symmetric lax monoidal functor $F: (\text{FinSet}, +, 0) \to (\text{Set}, \times, 1)$ which maps a finite set N to the (large) set of all Markov processes on N. This functor F is lax monoidal in a similar way the one from the previous example for graphs is: given two
sets N_1 and N_2 and a Markov process on each

$$
(0, \infty) \overset{r_1}{\leftarrow} E_1 \overset{s_1}{\to} N_1 \overset{t_1}{\leftarrow} (0, \infty) \overset{r_2}{\leftarrow} E_2 \overset{s_2}{\to} N_2
$$

we can obtain a Markov process on the finite set $N_1 + N_2$ by considering the following diagram.

$$
(0, \infty) \overset{(r_1, r_2)}{\leftarrow} E_1 + E_2 \overset{s_1 + s_2}{\to} N_1 + N_2 \overset{t_1 + t_2}{\leftarrow}
$$

This gives rise to a family of natural transformations

$$
\mu_{N_1,N_2} : F(N_1) \times F(N_2) \to F(N_1 + N_2)
$$

which is key in the structure of the lax monoidal functor F. By Fong’s Theorem 2.1.2, we have the following.

Theorem 2.2.6. Let $F : (\text{FinSet}, +, 0) \to (\text{Set}, \times, 1)$ be the symmetric lax monoidal functor that assigns to a finite set N the (large) set of all Markov processes on the set N. Then there exists a symmetric monoidal category $F\text{Cospan}$ which has:

1. objects as finite sets and

2. morphisms as isomorphism classes of open Markov processes, where an open Markov process is given by a pair of diagrams:

$$
N \overset{s}{\mid} \overset{r}{\leftarrow} E \overset{t}{\mid} \overset{o}{\to} X \overset{\sigma}{\mid} Y
$$

$$
(0, \infty) \overset{r}{\leftarrow} E \overset{s}{\to} N
$$

14
Two open Markov processes are in the same isomorphism class if the following diagrams commute:

\[
\begin{array}{c}
X \xrightarrow{i} N \\
\downarrow{f} \quad \ quad.
is obtained in the same way as the previous three families of natural transformations in the last three examples. By Fong’s Theorem 2.1.2, we have the following.

Theorem 2.2.8. Let \(F: (\text{FinSet}, +, 0) \to (\text{Set}, \times, 1) \) be the symmetric lax monoidal functor that assigns to a set \(S \) the (large) set \(F(S) \) of all Petri nets whose set of species is given by the set \(S \). Then there exists a symmetric monoidal category \(\mathcal{F} \text{Cospan} \) which has:

1. objects as finite sets and
2. morphisms as open Petri nets which are given by pairs of diagrams:

 \[
 \begin{array}{ccc}
 S & \xrightarrow{i} & X \\
 \downarrow{o} & & \downarrow{t} \\
 Y & \xleftarrow{o'} & T
 \end{array}
 \]

 Two open Petri nets are in the same isomorphism class if the following diagrams commute:

 \[
 \begin{array}{ccc}
 S & \xrightarrow{i} & X \\
 \downarrow{o} & & \downarrow{t} \\
 Y & \xleftarrow{o'} & S'
 \end{array}
 \]

 \[
 \begin{array}{ccc}
 \downarrow{f} & & \downarrow{f'} \\
 \downarrow{1} & & \downarrow{s'} \\
 S' & \xrightarrow{s'} & N(S)
 \end{array}
 \]

 \[
 \begin{array}{ccc}
 \downarrow{S} & & \downarrow{S'} \\
 \downarrow{N[f]} & & \downarrow{N[s']}
 \end{array}
 \]

 Composition and tensoring of objects and morphisms is given as in Theorem 2.1.2.

Following a similar flavor of the last two examples, Baez and Master study the reachability relation of states of open Petri nets via black-boxing [9]. They in fact go further and construct a ‘double category’ of open Petri nets and a corresponding black box double functor which shows a certain compatibility relation between ‘maps of open Petri nets’ and their black-boxings. Double categories are at the heart of this thesis and we will begin using them in the next chapter. The relevant definitions may be found in Chapter 8.
Chapter 3

Structured cospan double categories

At this point it would be fruitful for readers unfamiliar with double categories to read Chapter 8. The present chapter is about a particular kind of double categories, namely ‘foot-replaced double categories’. The first main result of this chapter is the construction of ‘foot-replaced double categories’ in Theorem 3.1.1 and the corresponding symmetric monoidal versions of these in Theorem 3.1.2. A special case of these foot-replaced double categories are given by ‘structured cospan double categories’ which are the content of Theorem 3.1.5. In Section 3.1.2 we revisit the applications of Section 2.2 but from the perspective of structured cospans and in Section 3.2 we define maps of foot-replaced double categories, of which maps between structured cospan double categories are a special case. But first, we motivate the development of some of these.
We begin with an application utilizing Fong’s theory of decorated cospans introduced in the previous chapter. Let $F: \text{FinSet} \to \text{Set}$ be the symmetric lax monoidal functor that assigns to a finite set b the (large) set of all possible graph structures on the finite set b, where a graph structure on b is given by a diagram in Set of the form:

\[E \xrightarrow{s} b. \]

Let $b = \{v_1, v_2\}$ be a two element set. Then one element of the (large) set $F(b)$, which is the collection of all graph structures on the finite set b, is given by a single edge e whose source and target are v_1 and v_2, respectively.

\[\begin{array}{cccc}
v_1 & \xrightarrow{e} & v_2 \\
1 & \to & F(b)
\end{array} \]

Denote this element of $F(b)$ as $d: 1 \to F(b)$. Let $a_1 = \{1\}$ and $a_2 = \{2\}$ and define functions $i: a_1 \to b$ and $o: a_2 \to b$ by $i(1) = v_1$ and $o(2) = v_2$. Then we have an F-decorated cospan:

\[a_1 \xrightarrow{i} b \leftarrow o a_2 \]

\[1 \xrightarrow{d} F(b) \]

which is given by the open graph:

\[\begin{array}{cccc}
& i & \\
1 & \xrightarrow{e} & v_2 & \leftarrow o 2
\end{array} \]

There are some subtleties to this framework; consider two decorated cospans with the same inputs and outputs.

\[\begin{array}{cccc}
a_1 & \xrightarrow{i} & b & \leftarrow o a_2 \\
1 & \xrightarrow{d} & F(b) & \end{array} \]

\[\begin{array}{cccc}
a_1 & \xrightarrow{i'} & b' & \leftarrow o' a_2 \\
1 & \xrightarrow{d'} & F(b') & \end{array} \]
For these two F-decorated cospans to be in the same isomorphism class, the following triangle is to commute:

$$
\begin{align*}
1 & \xrightarrow{d} F(b) \\
\downarrow & \\
\downarrow & \\
d' & \xrightarrow{d'} F(b') \\
\end{align*}
$$

This commutative triangle in Set in the context of the symmetric lax monoidal functor $F: \text{FinSet} \to \text{Set}$ says the following: given a decoration $d \in F(b)$, which is a graph structure with underlying set of vertices b, the function $F(f)$ pushes forward the graph structure d to the graph structure $d' \in F(b')$ with underlying set of vertices b', and precisely this graph structure. The graph structure is given by the set of edges of d. For example, if we take $b = \{v_1, v_2\}$ as before and let $d \in F(b)$ be given by:

$$
\begin{array}{c}
& i \\
1 & \xrightarrow{e} & 2 \\
& o
\end{array}
$$

Let $b' = \{w_1, w_2\}$ and a define bijection $f: b \to b'$ by $f(v_i) = w_i$ for $i = 1, 2$. Then the requirement $F(f)(d) = d'$ says that $d' \in F(b')$ must be given by:

$$
\begin{array}{c}
& i' \\
1 & \xrightarrow{e} & 2 \\
& o'
\end{array}
$$

The point to be made here is that the single edge of d' must also be e. If we were to label it say, e', there is no bijection $f: b \to b'$ such that the triangle on the right commutes, and
hence no isomorphism between these two \(F \)-decorated cospans.

Thus these two \(F \)-decorated cospans constitute distinct isomorphism classes. This nuisance is amplified when viewed from a higher categorical perspective as seen in the first attempt at building a bicategory of decorated cospans [20]. In the first proposed bicategory \(F \text{Cospan}(C) \), there is no 2-morphism from the former single-edged graph to the latter, when clearly there ought to be. The theory of ‘foot-replaced double categories’, or more specifically as a special case of the aforementioned, ‘structured cospans’, serves to remedy this situation. Again, for an introduction to double categories, see Chapter 8.

3.1 Foot-replaced double categories

The main content of this chapter are foot-replaced double categories as introduced in a work with Baez [3]. A special case of foot-replaced double categories are given by structured cospan double categories. A \textbf{cospan} in any category is diagram of the form:

\[
\begin{array}{ccc}
 \ & \ & \text{b} \\
 \text{a}_1 & \text{i} & \text{a}_2 \\
\end{array}
\]

We call \(b \) the \textbf{apex} of the cospan, \(i \) and \(o \) the \textbf{legs} of the cospan, and \(a_1 \) and \(a_2 \) the \textbf{feet} of the cospan. In the framework of structured cospan double categories, given a functor
$L : A \to X$ a **structured cospan** is a cospan in X of the form:

$$
\begin{array}{ccc}
L(a_1) & \xrightarrow{x} & L(a_2) \\
\downarrow{\scriptstyle \alpha} & & \downarrow{\scriptstyle \beta} \\
L(a_1) & \xrightarrow{x} & L(a_2)
\end{array}
$$

Formally, this is a cospan in X whose feet are objects of X, but from the perspective of structured cospans, the feet of this cospan are the objects a_1 and a_2 in A. Here we are replacing the ‘feet’ of the cospan in X with objects from another category A, which is where the name ‘foot-replaced double categories’ comes from.

Theorem 3.1.1. Given a double category X, a category A and a functor $L : A \to X_0$, there is a unique double category LX for which:

- an object is an object of A,
- a vertical 1-morphism is a morphism of A,
- a horizontal 1-cell from a to a' is a horizontal 1-cell $L(a) \xrightarrow{M} L(a')$ of X,
- a 2-morphism is a 2-morphism in X of the form:

$$
\begin{array}{ccc}
L(a) & \xrightarrow{M} & L(b) \\
L(f) & \Downarrow{\alpha} & L(g) \\
L(a') & \xrightarrow{N} & L(b')
\end{array}
$$

- composition of vertical 1-morphisms is composition in A,
- composition of horizontal 1-morphisms are defined as in X,
- vertical and horizontal composition of 2-morphisms is defined as in X,
• the associator and unitors are defined as in \(\mathcal{X} \).

The proof is a straightforward verification using the definition of a double category. The double category \(L\mathcal{X} \) is strict or pseudo depending on whether \(\mathcal{X} \) is strict or pseudo.

If the category \(\mathcal{A} \) is symmetric monoidal, the double category \(\mathcal{X} \) is symmetric monoidal, and the functor \(L: \mathcal{A} \to \mathcal{X}_0 \) is strong symmetric monoidal, then the foot-replaced double category \(L\mathcal{X} \) will be symmetric monoidal.

Lemma 3.1.2. If \(\mathcal{X} \) is a symmetric monoidal double category, \(\mathcal{A} \) is a symmetric monoidal category and \(L: \mathcal{A} \to \mathcal{X}_0 \) is a (strong) symmetric monoidal functor, then the double category \(L\mathcal{X} \) becomes symmetric monoidal in a canonical way.

Proof. As noted in Defn. 8.2.5, every double category \(\mathcal{D} \) has not only a category of objects \(\mathcal{D}_0 \), but also a **category of arrows** \(\mathcal{D}_1 \) with horizontal 1-cells of \(\mathcal{D} \) as objects and 2-morphisms of \(\mathcal{D} \) as morphisms. The definition of a symmetric monoidal category can be expressed in terms of structure involving these categories.

For the double category \(\mathcal{X} \), the category of objects \(L\mathcal{X}_0 \) is just \(\mathcal{A} \). The category of arrows \(L\mathcal{X}_1 \) has horizontal 1-cells in \(\mathcal{X} \) of this form:

\[
L(a) \xrightarrow{M} L(b)
\]

as objects and diagrams in \(\mathcal{X} \) of this form:

\[
\begin{array}{ccc}
L(a) & M & \to & L(b) \\
\downarrow L(f) & \downarrow \alpha & & \downarrow L(g) \\
L(a') & N & \to & L(b')
\end{array}
\]

as morphisms, which are composed vertically.
As explained in Defn. 8.2.12, to make \(L \mathbf{X} \) into a monoidal double category we need to do the following:

1. We must choose a monoidal structure for \(L \mathbf{X}_0 = \mathbf{A} \) and for \(L \mathbf{X}_1 \). The category \(\mathbf{A} \) is monoidal by hypothesis; we give \(L \mathbf{X}_1 \) a monoidal structure using the fact that \(\mathbf{X}_1 \) and the functor \(L \) are monoidal, as follows. Given two objects of \(L \mathbf{X}_1 \):

\[
L(a_1) \xrightarrow{M} L(a_2) \quad L(b_1) \xrightarrow{N} L(b_2)
\]

their tensor product is

\[
L(a_1 \otimes b_1) \xrightarrow{\phi_{a_1,b_1}^{-1}} L(a_1) \otimes L(b_1) \xrightarrow{M \otimes N} L(a_2) \otimes L(b_2) \xrightarrow{\phi_{a_2,b_2}} L(a_2 \otimes b_2),
\]

defined using the laxator \(\phi_{a,b} : L(a) \otimes L(b) \to L(a \otimes b) \) for \(L \). Note that \(\phi \) is invertible because \(L \) is strong monoidal. Given two morphisms of \(L \mathbf{X}_1 \):

\[
\begin{array}{c}
L(f_1) \xrightarrow{\alpha} L(f_2) \\
L(g_1) \xrightarrow{\beta} L(g_2)
\end{array}
\]

their tensor product is defined to be

\[
\begin{array}{c}
L(a_1 \otimes b_1) \xrightarrow{\phi_{a_2,b_2}(M \otimes N)\phi_{a_1,b_1}^{-1}} L(a_2 \otimes b_2) \\
L(f_1 \otimes g_1) \xrightarrow{\phi_{a_2,b_2}(M' \otimes N')\phi_{a_1,b_1}^{-1}} L(f_2 \otimes g_2)
\end{array}
\]

The monoidal unit for \(L \mathbf{X}_1 \) is

\[
L(I) \xrightarrow{\hat{U}(L(I))} L(I)
\]

where \(I \) is the monoidal unit for \(\mathbf{A} \) and \(\hat{U} : \mathbf{X}_0 \to \mathbf{X}_1 \) is the identity-assigning functor for \(\mathbf{X} \).

The associator and unitors for \(L \mathbf{X}_1 \) are built from those in \(\mathbf{X}_1 \).
(2) Any double category \mathbb{D} has an identity-assigning functor $U: \mathbb{D}_0 \to \mathbb{D}_1$, and for \mathbb{D} to be monoidal we need U to preserve the monoidal unit. This is true for $L\mathbb{X}$ because $U: A \to L\mathbb{X}_1$ maps any object $a \in A$ to

$$L(a) \overset{\hat{U}(L(a))}{\longrightarrow} L(a),$$

so U maps the monoidal unit $I \in A$ to the monoidal unit for $L\mathbb{X}_1$, given in Eq. (3.1).

(3) In a monoidal double category \mathbb{D} the source and target functors $S, T: \mathbb{D}_1 \to \mathbb{D}_0$ must be strict monoidal. For $L\mathbb{X}$ this is easy to check, given the monoidal structures defined in item (1), because the source and target of an object

$$L(a) \overset{M}{\longrightarrow} L(b)$$

of $L\mathbb{X}_1$ are $a \in L\mathbb{X}_0$ and $b \in L\mathbb{X}_0$, respectively, and the source and target of a morphism

$$\begin{array}{ccc}
L(a) & \overset{M}{\longrightarrow} & L(b) \\
L(f) & \downarrow \alpha & \downarrow L(g) \\
L(a') & \overset{N}{\longrightarrow} & L(b')
\end{array}$$

in $L\mathbb{X}_1$ are the morphisms $f: a \to a'$ and $g: b \to b'$ in $L\mathbb{X}_0$, respectively. The unit for the tensor product in $L\mathbb{X}_1$ is given in Eq. (3.1), and applying S or T we obtain $I \in L\mathbb{X}_0$.

(4) A globular 2-morphism in a double category \mathbb{D} is a morphism α in \mathbb{D}_1 such that $S\alpha$ and $T\alpha$ are identity morphisms in \mathbb{D}_0. In a monoidal double category \mathbb{D} we must have invertible globular 2-morphisms

$$r: (M_1 \otimes N_1) \otimes (M_2 \otimes N_2) \overset{\sim}{\longrightarrow} (M_1 \otimes M_2) \otimes (N_1 \otimes N_2)$$

and

$$u: U_{A \otimes B} \overset{\sim}{\longrightarrow} (U_A \otimes U_B)$$
expressing the compatibility of the composition functor \(\circ : D_1 \times D_0 \to D_1 \) and identity-assigning functor \(U : D_0 \to D_1 \) with the tensor product. These must make three diagrams commute, as detailed in Defn. 8.3.1. In the case of \(L \mathcal{X} \) this follows from the commutativity of the corresponding diagrams in \(\mathcal{X} \).

(5) In a monoidal double category, the associator and left and right unitors must be transformations of double categories. This means that six diagrams must commute, as detailed in Defn. 8.3.1. In the case of \(L \mathcal{X} \) this follows from the commuting of the corresponding diagrams in \(\mathcal{X} \).

Similarly, a braided monoidal double category is a monoidal double category with the following additional structure.

(6) \(D_0 \) and \(D_1 \) are braided monoidal categories.

(7) The functors \(S \) and \(T \) are strict braided monoidal (i.e. they preserve the braidings).

(8) The following diagrams commute, expressing that the braiding is a transformation of double categories.

\[
\left(M_1 \otimes M_2 \right) \otimes \left(N_1 \otimes N_2 \right) \xrightarrow{\sigma} \left(N_1 \otimes N_2 \right) \otimes \left(M_1 \otimes M_2 \right) \\
\left(M_1 \otimes N_1 \right) \otimes \left(M_2 \otimes N_2 \right) \xrightarrow{\sigma \otimes \sigma} \left(N_1 \otimes M_1 \right) \otimes \left(N_2 \otimes M_2 \right)
\]

\[
\begin{array}{c}
U_A \otimes U_B \xrightarrow{u} U_{A \otimes B} \\
\downarrow s \quad \downarrow s
\end{array}
\]

\[
\begin{array}{c}
U_B \otimes U_A \xrightarrow{u} U_{B \otimes A} \\
\downarrow s \quad \downarrow s
\end{array}
\]

These follow from the fact that \(\mathcal{X}_0 \) and \(\mathcal{X}_1 \) are braided monoidal categories and that the corresponding functors \(S \) and \(T \) of \(\mathcal{X} \) are strict braided monoidal. The above diagrams commute in \(L \mathcal{X} \) as the corresponding diagrams commute in \(\mathcal{X} \).

(9) \(D_0 \) and \(D_1 \) are symmetric monoidal categories.
This follows from the fact that X_0 and X_1 are symmetric monoidal categories.

3.1.1 Structured cospan double categories

The most important example of a double category in this thesis is given by $Csp(X)$ for some category X with pushouts. This double category has:

1. objects as those of X,
2. vertical 1-morphisms as morphisms of X,
3. horizontal 1-cells as cospans in X, and
4. 2-morphisms as maps of cospans in X given by commutative diagrams of the form:

![Diagram](https://via.placeholder.com/150)

Theorem 3.1.3. Let $L: A \rightarrow X$ be a functor where X is a category with pushouts. Then there exists a double category $L Csp(X)$ for which:

- an object is an object of A,
- a vertical 1-morphism is a morphism of A,
- a horizontal 1-cell from a to b is a cospan in X of the form:

$$ L(a) \xrightarrow{i} x \xleftarrow{o} L(b) $$
• A 2-morphism is a commutative diagram in X of this form:

$$
\begin{array}{ccc}
L(a) & \xrightarrow{i} & x \\
\downarrow \downarrow & \downarrow f & \downarrow \downarrow \\
L(a') & \xrightarrow{i'} & x' \\
\end{array}
\begin{array}{ccc}
& o & \xleftarrow{o'} L(b) \\
& \downarrow & \downarrow \\
& L(\beta) & \xleftarrow{o'} L(b') \\
\end{array}
$$

• Composition of horizontal 1-cells is done using chosen pushouts in X:

$$
\begin{array}{ccc}
x + \Delta_{L(b)} y & \mapsto & j_y \\
\downarrow j_x & \downarrow & \downarrow \\
x & \xleftarrow{o_1} & y \\
L(a) & \xleftarrow{\alpha_1} & L(b) \\
\end{array}
\begin{array}{ccc}
\end{array}
\begin{array}{ccc}
i_2 & \downarrow & \downarrow \\
L(b) & \xleftarrow{\alpha_2} & L(c) \\
\end{array}
$$

where j_x and j_y are the canonical morphisms from x and y into the pushout,

• The horizontal composite of two 2-morphisms:

$$
\begin{array}{ccc}
L(a) & \xrightarrow{i_1} & x \\
\downarrow \downarrow & \downarrow f & \downarrow \downarrow \\
L(a') & \xrightarrow{i'_1} & x' \\
\end{array}
\begin{array}{ccc}
& o_1 & \xleftarrow{o'_1} L(b) \\
& \downarrow & \downarrow \\
& L(\beta) & \xleftarrow{o'_1} L(b') \\
\end{array}
\begin{array}{ccc}
L(b) & \xrightarrow{i_2} & y \\
\downarrow \downarrow & \downarrow g & \downarrow \downarrow \\
L(b') & \xrightarrow{i'_2} & y' \\
\end{array}
\begin{array}{ccc}
& o_2 & \xleftarrow{o'_2} L(c) \\
& \downarrow & \downarrow \\
& L(\gamma) & \xleftarrow{o'_2} L(c') \\
\end{array}
$$

is given by

$$
\begin{array}{ccc}
L(a) & \xrightarrow{j_x i_1} & x + \Delta_{L(b)} y \\
\downarrow \downarrow & \downarrow f + \Delta_{L(\beta)} g & \downarrow \downarrow \\
L(a') & \xrightarrow{j'_x i'_1} & x' + \Delta_{L(b')} y' \\
\end{array}
\begin{array}{ccc}
& j_y o_2 & \xleftarrow{j'_y o'_2} L(c) \\
& \downarrow & \downarrow \\
& L(\gamma) & \xleftarrow{j'_y o'_2} L(c') \\
\end{array}
$$

• The vertical composite of two 2-morphisms:

$$
\begin{array}{ccc}
L(a) & \xrightarrow{i} & y \\
\downarrow \downarrow & \downarrow f & \downarrow \downarrow \\
L(a') & \xrightarrow{i'} & y' \\
\end{array}
\begin{array}{ccc}
& o & \xleftarrow{o'} L(b) \\
& \downarrow & \downarrow \\
& L(\beta) & \xleftarrow{o'} L(b') \\
\end{array}
$$

27
is given by

\[
\begin{array}{ccc}
L(a') & \xrightarrow{i'} y' & \xleftarrow{o'} L(b') \\
\downarrow L(\alpha') & \downarrow f' & \downarrow L(\beta') \\
L(a'') & \xrightarrow{i''} y'' & \xleftarrow{o''} L(b'')
\end{array}
\]

• The associator and unitors are defined using the universal property of pushouts.

Proof. We apply Theorem 3.1.1 to the double category \(\mathcal{C}sp(X) \).

If the category \(X \) has not only pushouts but also finite colimits, meaning pushouts and an initial object which will serve as the unit object for tensoring, then the aforementioned double category \(\mathcal{C}sp(X) \) is in fact symmetric monoidal.

Lemma 3.1.4. Given a category \(X \) with finite colimits, the double category \(\mathcal{C}sp(X) \) is symmetric monoidal with the monoidal structure given by chosen coproducts in \(X \). Thus:

• the tensor product of two objects \(x_1 \) and \(x_2 \) is \(x_1 + x_2 \),

• the tensor product of two vertical 1-morphisms is given by

\[
\begin{array}{ccc}
x & \otimes & x' \\
f \downarrow & & \downarrow f' \\
y & \otimes & y'
\end{array}
\]

\[= f + f' \]

\[
\begin{array}{ccc}
x + x' & \otimes & y + y' \\
\end{array}
\]

• the tensor product of two horizontal 1-cells is given by

\[
\begin{array}{ccc}
\begin{array}{ccc}
x & \xleftarrow{i} y & \xrightarrow{o} x' \\
z & \otimes & z'
\end{array}
\end{array}
\]

\[= i + i' \]

\[
\begin{array}{ccc}
\begin{array}{ccc}
y' & \xrightarrow{o'} y'' & \xrightarrow{o''} z + z' \\
x + x' & \otimes & z + z'
\end{array}
\end{array}
\]

\[= o + o' \]
• the tensor product of two 2-morphisms is given by

\[
\begin{array}{c}
 x_1 \xrightarrow{i_1} y_1 \leftarrow z_1 \\
 \downarrow f \\
 x_2 \xrightarrow{i_2} y_2 \leftarrow z_2
\end{array} \otimes \begin{array}{c}
 x_1' \xrightarrow{i_1'} y_1' \leftarrow z_1' \\
 \downarrow f' \\
 x_2' \xrightarrow{i_2'} y_2' \leftarrow z_2'
\end{array} = \begin{array}{c}
 x_1 + x_1' \xrightarrow{i_1 + i_1'} y_1 + y_1' \leftarrow z_1 + z_1' \\
 \downarrow f + f' \\
 x_2 + x_2' \xrightarrow{i_2 + i_2'} y_2 + y_2' \leftarrow z_2 + z_2'
\end{array}
\]

• The unit for the tensor product is a chosen initial object of X,

• The symmetry for any two objects x and y is defined using the canonical isomorphism $x + y \cong y + x$.

We then have the following symmetric monoidal double category of structured cospans, the primary result of the aforementioned work [3].

Theorem 3.1.5. Let $L : A \to X$ be a functor preserving finite coproducts, where A has finite coproducts and X has finite colimits. Then the double category $L \text{Csp}(X)$ is symmetric monoidal with the monoidal structure given by chosen coproducts in A and X. Thus:

1. the tensor product of two objects a_1 and a_2 is $a_1 + a_2$,

2. the tensor product of two vertical 1-morphisms is given by

\[
\begin{array}{c}
 a_1 \xrightarrow{f_1} a_2 \xleftarrow{a_1 \otimes a_2} \\
 b_1 \xrightarrow{b_2}
\end{array} \otimes \begin{array}{c}
 a_1 \xrightarrow{f_2} a_2 \xleftarrow{a_1 \otimes a_2} \\
 b_1 \xrightarrow{b_2}
\end{array} = \begin{array}{c}
 a_1 \otimes a_2 \\
 b_1 \otimes b_2
\end{array}
\]
(3) the tensor product of two horizontal 1-cells is given by

\[
\begin{array}{ccc}
 x & \otimes & x' \\
\downarrow & & \downarrow \\
L(a) & \otimes & L(a') \\
\end{array}
\]

where the feet use the tensor product of \(A\) and the legs and apices use the tensor product of \(X\), and likewise

(4) the tensor product of two 2-morphisms is given by:

\[
\begin{array}{ccc}
 L(a_1) & \xrightarrow{i_1} & x_1 \\
 L(f) & \downarrow & \downarrow \\
 L(a_2) & \xrightarrow{i_2} & x_2 \\
\end{array} \quad \quad \begin{array}{ccc}
 \quad & \quad & \quad \\
 \otimes & \quad & \quad \\
 \quad & \quad & \quad \\
\end{array} \quad \quad \begin{array}{ccc}
 L(b_1) & \xleftarrow{o_1} & \quad \\
 L(g) & \downarrow & \downarrow \\
 L(b_2) & \xleftarrow{o_2} & \quad \\
\end{array}
\]

\[
\begin{array}{ccc}
 L(a_1') & \xrightarrow{i_1'} & x_1' \\
 L(f') & \downarrow & \downarrow \\
 L(a_2') & \xrightarrow{i_2'} & x_2' \\
\end{array}
\]

The unit for the tensor product is the initial object of \(X\) which is isomorphic to the image of the unit object of \(A\) under the functor \(L\), and the symmetry for any two objects \(a\) and \(b\) is defined using the canonical isomorphism \(a + b \cong b + a\).

An especially nice version of this result is when \(L : A \to X\) is a ‘left adjoint’ between two categories with finite colimits.

Definition 3.1.6. Given a two categories \(A\) and \(X\) and a functor going each way between the two:

\[
\begin{array}{ccc}
 A & \xrightarrow{L} & X \\
\downarrow & & \downarrow \\
 \quad & \quad & \quad \\
 R & \xleftarrow{L} & \quad \\
\end{array}
\]
we say that L and R are adjoint, with L the left adjoint and R the right adjoint, if for every $a \in A$ and $x \in X$ there is a natural isomorphism

$$\text{hom}_X(L(a), x) \cong \text{hom}_A(a, R(x)).$$

A well-known result regarding adjoints is the following:

Proposition 3.1.7. Every left adjoint $L: A \to X$ preserves all colimits and every right adjoint $R: X \to A$ preserves all limits.

A particularly nice result of structured cospan double categories is then given by the following.

Corollary 3.1.8. Let $L: A \to X$ be a left adjoint between a category A with finite coproducts and a category X with finite colimits. Then the double category $\mathcal{Csp}(X)$ is symmetric monoidal with the monoidal structure given as in Theorem 3.1.5.

The examples we present of structured cospan double categories, which are to be seen as improvements as the corresponding examples of decorated cospans of the previous chapter, will be applications of the above corollary.

3.1.2 Examples

Graphs

Define a functor $L: \text{Set} \to \text{Graph}$ where given a set N, $L(N)$ is the discrete graph on N with no edges and given a function $f: N \to N'$, $L(f): L(N) \to L(N')$ is the graph morphism that takes vertices of $L(N)$ to $L(N')$ as prescribed by the function f. This functor L preserves finite coproducts as it is left adjoint to the forgetful functor $U: \text{Graph} \to \text{Set}$ that
takes a graph \((E, N, s, t)\) to its underlying set of vertices \(N\). The categories \textbf{Set} and \textbf{Graph} are both ‘topoi’ and thus have finite colimits. By Corollary 3.1.8, we have the following.

Corollary 3.1.9. Let \(L : \text{Set} \to \text{Graph}\) be the left adjoint defined above. Then there exists a symmetric monoidal double category \(L\text{Csp}(\text{Graph})\) consisting of:

1. finite sets as objects,
2. functions as vertical 1-morphisms,
3. cospans of graphs of the form
 \[
 L(a) \longrightarrow x \longleftarrow L(b)
 \]
 as horizontal 1-cells, and
4. maps of cospans of graphs as 2-morphisms, as in the following commutative diagram:
 \[
 \begin{array}{ccc}
 L(a) & \longrightarrow & x & \longleftarrow & L(b) \\
 \downarrow L(f) \quad h & & \downarrow L(g) \quad \downarrow L(g) \\
 L(a') & \longrightarrow & y & \longleftarrow & L(b')
 \end{array}
 \]

Electrical circuits

Definition 3.1.10. Given a field \(k\), a **field with positive elements** is a pair \((k, k^+)\) where \(k^+ \subset k\) is a subset such that \(r^2 \in k^+\) for every nonzero \(r \in k\) and such that \(k^+\) is closed under addition, multiplication and division.

A recent work of Baez and Fong [7] studies ‘passive linear networks’ where a passive linear network \(\Gamma\) is given by a diagram in \(\text{FinSet}\) of the form:

\[
\begin{array}{ccc}
k^+ & \xleftarrow{l} & E \\
& \searrow{s} \quad \swarrow{t} & \downarrow & \searrow{N} \\
& \downarrow & \downarrow & \\
& \end{array}
\]
Here k is a field with positive elements and the finite sets E and N denote the sets of edges and nodes, respectively, of the passive linear network Γ. An open passive linear network is then given by a cospan of finite sets:

$$a \xrightarrow{i} N \xleftarrow{o} b$$

where the apex N is decorated with a passive linear network as above. Fong and Baez use the decorated cospan machinery of Fong to construct a symmetric monoidal category $FCospan$ from a symmetric lax monoidal functor $F: \text{FinSet} \to \text{Set}$. This functor F is defined on objects by:

$$N \mapsto \{k^+ \leftrightarrow E \xrightarrow{s} N\}$$

and on morphisms by

$$\begin{array}{c}
N \\
f \\
N'
\end{array} \mapsto \begin{array}{c}
k^+ \xleftarrow{r} E \xrightarrow{s} N \\
\text{id}_E \downarrow \quad \downarrow f \\
k^+ \xleftarrow{r'} E \xrightarrow{s'} N'
\end{array}$$

To fit the above construction into the framework of structured cospans, first we define a symmetric monoidal category FinGraph_k whose objects are given by finite k-graphs:

$$k^+ \xleftarrow{r} E \xrightarrow{s} N$$

and a morphism from this k-graph to another:

$$k^+ \xleftarrow{r'} E' \xrightarrow{s'} N'$$
consists of a pair of functions \(f: N \to N' \) and \(g: E \to E' \) such that the following diagram commutes:

\[
\begin{array}{ccc}
N & \xrightarrow{g} & E \\
\downarrow & & \downarrow f \\
N' & \xleftarrow{r' \circ s'} & E'
\end{array}
\]

Next we define a left adjoint \(L: \text{FinSet} \to \text{FinGraph}_k \) which is defined on sets by:

\[
N \mapsto k^+ \quad \emptyset \xrightarrow{s \circ t} N
\]

and on morphisms by:

\[
\begin{array}{ccc}
N & \xrightarrow{f} & N' \\
\downarrow & & \downarrow \\
k^+ & \xleftarrow{r'} \quad \emptyset \xrightarrow{s' \circ t'} & N'
\end{array}
\]

Theorem 3.1.11. The above functor \(L: \text{FinSet} \to \text{FinGraph}_k \) is a left adjoint.

Proof. The functor \(L: \text{FinSet} \to \text{Graph}_k \) has a right adjoint given by the forgetful functor \(R: \text{Graph}_k \to \text{FinSet} \) which maps an \(\text{FinGraph}_k \)

\[
k^+ \xleftarrow{r} E \xrightarrow{s \circ t} N
\]

to its underlying vertex set \(N \). We then have a natural isomorphism \(\text{hom}_{\text{FinGraph}_k}(L(c), d) \cong \text{hom}_{\text{FinSet}}(c, R(d)) \).

Lemma 3.1.12. The category \(\text{FinGraph}_k \) has finite colimits.
Proof. The category \(\text{FinGraph}_k \) has an initial object given by the empty \(k \)-Graph as well as pushouts given by taking the pushout of the underlying span of finite graphs.

\[\text{Theorem 3.1.13.} \] Let \(L: \text{FinSet} \to \text{FinGraph}_k \) be the left adjoint as described above. Then there exists a symmetric monoidal double category \(L\text{Csp}(\text{FinGraph}_k) \) which has:

1. finite sets as objects,
2. functions as vertical 1-morphisms,
3. cospans of finite sets where the apex is decorated with the stuff of a \(k \)-graph
 \[\begin{array}{c}
 L(a) \xrightarrow{i} N \xleftarrow{o} L(b)
 \end{array} \]
 \[k^+ \xleftarrow{r} E \xrightarrow{\begin{array}{c} s \\ t \end{array}} N \]
 as horizontal 1-cells, and
4. maps of cospans of finite sets where the apices of the cospans are decorated with the stuff of a \(k \)-graph
 \[\begin{array}{c}
 L(a) \xrightarrow{i} N \xleftarrow{o} L(b)
 \end{array} \]
 \[\begin{array}{c}
 L(h_1) \downarrow \quad i' \quad f \quad L(h_2) \downarrow \quad i'' \quad L(b')
 \end{array} \]
 \[\begin{array}{c}
 \begin{array}{c}
 k^+ \xleftarrow{r} E \xrightarrow{\begin{array}{c} s \\ t \end{array}} N \end{array}
 \end{array} \]
 \[\begin{array}{c}
 \begin{array}{c}
 L(a') \xrightarrow{i'} N' \xleftarrow{o'} L(b')
 \end{array}
 \end{array} \]
 as 2-morphisms.

Proof. As \(\text{FinGraph}_k \) has finite colimits, we get a symmetric monoidal double category \(\text{Csp}(\text{FinGraph}_k) \) and hence a symmetric monoidal structured cospan double category \(L\text{Csp}(\text{FinGraph}_k) \).
Markov processes

The following example of Markov processes can be seen as a special case of the previous case of passive linear networks. In a previous work of Baez, Fong and Pollard [8], a symmetric monoidal category Mark is created from a symmetric lax monoidal functor $F: \text{FinSet} \to \text{Set}$. This functor is defined similarly as the functor F from the previous example: for a finite set N, $F(N)$ is the large set of all Markov processes whose underlying set of state spaces is the finite set N, where a Markov process on N is given by a diagram in Set of the form:

\[
(0, \infty) \leftarrow E \xrightarrow{s} N \xrightarrow{t} (0, \infty)
\]

As in the previous example, the labels of the edges coming from the edge set E play no significant role, and a Markov process can instead be viewed as a finite set equipped with the extra structure of an ‘infinitesimal stochastic operator’ [2, 10]; see Chapter 6. The symmetric monoidal category $F\text{Cospan}$ has finite sets for objects and isomorphism classes of cospans whose apices are the underlying set of states of a Markov process for morphisms.

\[
X \xrightarrow{i} N \xleftarrow{o} Y
\]

As before, two Markov processes in $F\text{Cospan}$ in the decorated cospan framework can only be in the same isomorphism class if both Markov processes have E as their set of edges. By defining a left adjoint $L: \text{FinSet} \to \text{Mark}$ that maps a finite set N to the Markov process with state space N and no edges, also known as the discrete Markov process on N, and a function $f: N \to N'$ to the induced map of discrete Markov processes, we get the following.
Theorem 3.1.14. The functor $L: \text{FinSet} \to \text{Mark}$ defined on objects by:

$$N \mapsto (0, \infty) \leftarrow \emptyset \rightarrow N$$

and on morphisms by:

$$f: N \to N' \mapsto (0, \infty) \leftarrow \emptyset \rightarrow N \leftarrow \emptyset \rightarrow N'$$

is left adjoint to the forgetful functor $R: \text{Mark} \to \text{FinSet}$ that sends a Markov process to its underlying set of states.

Proof. This is similar to the proof that $L: \text{FinSet} \to \text{FinGraph}_k$ is a left adjoint of the previous example.

Theorem 3.1.15. The symmetric monoidal category Mark has finite colimits.

Proof. This is also similar to why the symmetric monoidal category FinGraph_k has finite colimits of the previous example, and can be seen as a special case by taking $k = \mathbb{R}$.

Theorem 3.1.16. Let $L: \text{FinSet} \to \text{Mark}$ be the left adjoint as described above. Then there exists a symmetric monoidal double category $L\text{Csp}(\text{Mark})$ which has:

1. finite sets as objects,
2. functions as vertical 1-morphisms,
3. cospans of finite sets where the apex is decorated with the stuff of a Markov process:

$$L(X) \xrightarrow{i} N \leftarrow \emptyset \xrightarrow{o} L(Y)$$
(4) maps of cospans of finite sets where the apices of the cospans are decorated with the stuff of a Markov process:

\[\begin{array}{ccc}
L(X) & \xrightarrow{s} & N \\
L(h_1) & \xrightarrow{f} & L(Y) & \xrightarrow{g} & L(h_2) \\
L(X') & \xrightarrow{s'} & N' & \xrightarrow{t'} & L(Y')
\end{array} \]

and

\[(0, \infty) \xleftarrow{r} E \xrightarrow{t} N \]

Proof. As Mark has finite colimits, we get a symmetric monoidal double category \(\mathbb{C}sp(Mark) \) and hence a symmetric monoidal structured cospan double category \(L_\mathbb{C}sp(Mark) \). \(\square \)

Petri nets

For the last example, Baez and Pollard have constructed a black-boxing functor \(\blacksquare : \text{Dynam} \to \text{SemiAlgRel} \) [10]. Here, \(\text{Dynam} \) is the symmetric monoidal category of ‘open dynamical systems’ and \(\text{SemiAlgRel} \) is the symmetric monoidal category of ‘semialgebraic relations’. A particular kind of dynamical system is given by a Petri net as mentioned in the introduction. Petri nets have also been studied extensively by Baez and Master [9] in the context of double categories and double functors.

Definition 3.1.17. A **Petri net** consists of a set \(S \) of *species*, a set \(T \) of *transitions* and functions \(s, t : S \times T \to \mathbb{N} \). For a species \(\sigma \in S \) and a transition \(\tau \in T \), \(s(\sigma, \tau) \) is the number of times the species \(\sigma \) appears as an input for the transition \(\tau \) and \(t(\sigma, \tau) \) is the number of times the species \(\sigma \) appears as an output for the transition \(\tau \). A **Petri net with rates**
is a finite Petri net together with a function \(r: T \to [0, \infty) \) where \(r(\tau) \) is the rate of the transition \(\tau \).

We can also say that a Petri net with rates is a diagram of the form:

\[
[0, \infty) \xleftarrow{r} \xrightarrow{s} T \xleftarrow{t} N[S]
\]

where \(N[S] \) is the free commutative monoid on the set \(S \). As a special case of the symmetric monoidal category \(\text{Dynam} \) created by Baez and Pollard, there is a sub-symmetric monoidal category \(\text{Petri}_{\text{rates}} \) whose objects are given by finite sets and whose morphisms are given by isomorphism classes of cospans whose apices are decorated with the stuff of a Petri net with rates.

\[
X \xrightarrow{i} S \xleftarrow{o} Y \quad [0, \infty) \xleftarrow{r} \xrightarrow{s} T \xleftarrow{t} N[S]
\]

Two Petri nets with rates are in the same isomorphism class if the following diagrams commute:

We can obtain a similar category using structured cospan double categories: define a functor \(L: \text{FinSet} \to \text{Petri}_{\text{rates}} \) where for a set \(S \), \(L(S) \) is the discrete Petri net with \(S \) as its set of species and no transitions. In other words,

\[
S \quad \mapsto \quad [0, \infty) \xleftarrow{r} \xrightarrow{s} N[S]
\]
Theorem 3.1.18. The functor $L: \text{FinSet} \to \text{Petri}_{\text{rates}}$ defined above is left adjoint to the forgetful functor $R: \text{Petri}_{\text{rates}} \to \text{FinSet}$.

Proof. This is similar as to why the functors used in the previous two applications are also left adjoints. □

Theorem 3.1.19. The symmetric monoidal category $\text{Petri}_{\text{rates}}$ has finite colimits.

Proof. This is shown in similar to the previous two applications in that $\text{Petri}_{\text{rates}}$ has an initial object and pushouts. □

As the functor $L: \text{FinSet} \to \text{Petri}_{\text{rates}}$ is a left adjoint and the category $\text{Petri}_{\text{rates}}$ has finite colimits [9], we have the following:

Theorem 3.1.20. There exists a symmetric monoidal double category $L\text{Csp}(\text{Petri}_{\text{rates}})$ which has:

1. finite sets as objects,
2. functions as vertical 1-morphisms,
3. cospans of finite sets whose apices are equipped with the stuff of a Petri net with rates as horizontal 1-cells, and
4. maps of cospans as above as 2-morphisms, as in the following commutative diagrams.

\[
\begin{array}{cccccc}
L(a) & \xrightarrow{i} & S & \xleftarrow{o} & L(b) & \quad [0, \infty) & \xleftarrow{r} & T & \xrightarrow{s} & N[S] \\
L(h_1) & \downarrow f & & \downarrow L(h_2) & \quad [0, \infty) & \xleftarrow{r'} & T' & \xrightarrow{s'} & N[S'] \\
L(a') & \xrightarrow{i'} & S' & \xleftarrow{o'} & L(b')
\end{array}
\]
3.2 Maps of foot-replaced double categories

In this section we define maps between foot-replaced double categories. As these are double categories, a map between two foot-replaced double categories should somehow involve a double functor. A foot-replaced double category $L\mathcal{X}$ consists of a pair:

$$L\mathcal{X} = (\mathcal{X}, L: A \to \mathcal{X}_0)$$

where \mathcal{X} is a double category and $L: A \to \mathcal{X}_0$ is a functor that maps the category A, which contains the objects and morphisms of the foot-replaced double category $L\mathcal{X}$, into the category of objects of the double category \mathcal{X}. Suppose that we have two foot-replaced double categories:

$$L\mathcal{X} = (\mathcal{X}, L: A \to \mathcal{X}_0)$$

and

$$L\mathcal{X}' = (\mathcal{X}', L': A' \to \mathcal{X}'_0).$$

A map between these two will consist of a functor between the object categories A and A' together with a double functor $F: \mathcal{X} \to \mathcal{X}'$ such that the following diagram commutes up to isomorphism:

$$A \xrightarrow{L} \mathcal{X}_0$$

$F \downarrow \theta \quad \iff \quad F_0, F_1$ (\text{F}_0, \text{F}_1)

$$A' \xrightarrow{L'} \mathcal{X}'_0$$

In the case where $L\mathcal{X}$ and $L\mathcal{X}'$ are symmetric monoidal and we are interested in a symmetric monoidal map, we will then require that both the functor F and double functor F are symmetric monoidal. We will denote the triple (F, F, θ) as just (F, \mathcal{F}).

Theorem 3.2.1. Let \(L \mathcal{X} \) and \(L' \mathcal{X}' \) be two structured cospan double categories. Then a functor from the first to the second consists of a functor \(F: A \to A' \) and a double functor \(\Phi =: \mathcal{X} \to \mathcal{X}' \) such that the following diagram commutes up to isomorphism.

\[
\begin{array}{ccc}
A & \xrightarrow{L} & \mathcal{X}_0 \\
F & \downarrow \theta & \Phi_0 \\
A' & \xrightarrow{L'} & \mathcal{X}'_0
\end{array}
\]

This functor maps objects, vertical 1-morphisms, horizontal 1-cells and 2-morphisms as such:

1. **Objects:**
 \[a \mapsto F(a) \]

2. **Vertical 1-morphisms:**
 \[
 \begin{array}{ccc}
 a & \xrightarrow{f} & F(a) \\
 a' & \xrightarrow{f'} & F(a')
 \end{array}
 \]

3. **Horizontal 1-cells:**
 \[
 \begin{array}{ccc}
 L(a) & \xrightarrow{M} & L(b) \\
 & \Rightarrow & \\
 L'(F(a)) & \cong & \Phi_0(L(a)) \xrightarrow{\theta_\Phi F_1(M) \theta^{-1}_a} \Phi_0(L(b)) \cong L'(F(b))
 \end{array}
 \]

4. **2-morphisms:**
 \[
 \begin{array}{ccc}
 L(a) & \xrightarrow{M} & L(b) \\
 L(f) & \xrightarrow{\downarrow \alpha} & L(g) \\
 & \Rightarrow & \\
 L'(F(a)) & \xrightarrow{\theta_\Phi F_1(M) \theta^{-1}_a} & L'(F(b)) \\
 L(f) & \xrightarrow{\downarrow \theta \Phi F_1(\alpha) \theta^{-1}_f} & L'(F(f)) \\
 & \Rightarrow & \\
 L'(F(a')) & \xrightarrow{\theta_\Phi F_1(N) \theta^{-1}_a'} & L'(F(b'))
 \end{array}
 \]
where θ_g is given by:

\[
\begin{array}{c}
\xymatrix{
F_0(L(b)) \ar[r]^-{\theta_b} & L'(F(b)) \\
F_0(L(b')) \ar[r]^-{\theta_{b'}} & L'(F(b')) \\
F_0(L(g)) \ar[u] & L'(F(g)) \ar[u] &
}
\end{array}
\]

and θ_f^{-1} is given by:

\[
\begin{array}{c}
\xymatrix{
L'(F(a)) \ar[r]^-{\theta_{a}^{-1}} & F_0(L(a)) \\
L'(F(f)) \ar[r]^-{\theta_{a'}^{-1}} & F_0(L(f)) \\
L'(F(a')) \ar[u] & F_0(L(a')) \ar[u] &
}
\end{array}
\]

Proof. We will show that the triple (F, F, θ), which we will denote by (F, F), constitutes a double functor $(F, F): \mathcal{L}X \to \mathcal{L}'X'$. This means that we must have

\[
(F, F)_0 = F: \mathcal{L}X_0 \to \mathcal{L}'X'_0
\]

and

\[
(F, F)_1: \mathcal{L}X_1 \to \mathcal{L}'X'_1
\]

such that the following diagrams commute:

\[
\begin{array}{c}
\xymatrix{
\mathcal{L}X_1 \ar[r]^{(F, F)_1} & \mathcal{L}'X'_1 \\
\mathcal{L}X_0 \ar[r]^{F} \ar[u]^{S} & \mathcal{L}'X'_0 \ar[u]^{S'} \\
\mathcal{L}X_1 \ar[r]^{(F, F)_1} & \mathcal{L}'X'_1 \ar[u]^{T} \ar[r]^{T'} & \mathcal{L}'X'_0 \ar[u]^{T'}
}
\end{array}
\]

where S, T and S', T' are the source and target structure functors of the double categories $\mathcal{L}X$ and $\mathcal{L}'X'$, respectively, together with natural transformations

\[
(F, F) : (F, F)(M) \circ (F, F)(N) \to (F, F)(M \circ N)
\]
for every pair of composable horizontal 1-cells \(M \) and a natural transformation \(N \) of \(L X \) and

\[(F; F)_U : U'_F(a) \to (F; F)(U_a)\]

for every object \(a \in L X \) that satisfy the standard coherence axioms of a monoidal category given by the laxator hexagon and unitality squares.

The functors \((F, F)_0 = F\) and \((F, F)_1\) are defined as in the statement of the theorem.

To see that the above squares commute, if we focus on the left one, starting up the upper left corner, for an object of \(L X_1 \) which is given by a horizontal 1-cell, we have going right that:

\[
\begin{array}{ccc}
L(a) & \xrightarrow{M} & L(b) \\
\downarrow_{\theta} & & \downarrow_{\theta}
\end{array}
\]

\[
L'(F(a)) \cong F_0(L(a)) \xrightarrow{\theta_0F_1(M)\theta_a^{-1}} F_0(L(b)) \cong L'(F(b))
\]

which has source \(F(a) \). If we go down and then right, we get that the source of the top horizontal 1-cell is the object \(a \) which then maps to \(F(a) \) under the double functor \((F, F)\).

A morphism in \(L X_1 \) is given by a 2-morphism of the form

\[
\begin{array}{ccc}
L(a) & \xrightarrow{M} & L(b) \\
\downarrow_{L(f)} & & \downarrow_{L(g)}
\end{array}
\]

\[
L'(F(a)) \xrightarrow{\theta_0F_1(N)\theta_a^{-1}} L'(F(g))
\]

so, again focusing on the left square, going right gives

\[
\begin{array}{ccc}
L'(F(a)) & \xrightarrow{\theta_0F_1(M)\theta_a^{-1}} & L'(F(b)) \\
L'(F(f)) & \xrightarrow{\theta_0F_1(\alpha)\theta_1^{-1}} & L'(F(g)) \\
L'(F(a')) & \xrightarrow{\theta_0F_1(N)\theta_a^{-1}} & L'(F(b'))
\end{array}
\]
which has source \(F(f) \). On the other hand, going down we get that the source of the original 2-morphism is \(f \) which then maps to \(F(f) \) under the double functor \((F, \mathbb{F}) \), and so the left square commutes. The right square is analogous.

That \((F, \mathbb{F}) \) is functorial on vertical 1-morphisms is clear, as the pair \((F, \mathbb{F}) \) acts as the functor \(F: \mathcal{A} \to \mathcal{A}' \) on objects and vertical 1-morphisms. Given two vertically composable 2-morphisms in \(L \mathcal{X} \):

\[
\begin{array}{c}
L(a) \xrightarrow{M} L(b) \\
L(f) \downarrow \Downarrow \alpha \downarrow L(g) \\
L(a') \xrightarrow{M'} L(b') \\
L(f') \downarrow \Downarrow \beta \downarrow L(g') \\
L(a'') \xrightarrow{M''} L(b'') \\
\end{array}
\]

we wish to show that \((F, \mathbb{F})_1 \) is functorial. If we first compose the above two 2-morphisms in \(L \mathcal{X} \), we get:

\[
\begin{array}{c}
L(a) \xrightarrow{M} L(b) \\
L(f') \downarrow \Downarrow \alpha \downarrow L(g'g) \\
L(a'') \xrightarrow{M''} L(b'') \\
\end{array}
\]

and then the image of this 2-morphism under \((F, \mathbb{F})_1 \) is given by:

\[
\begin{array}{c}
L'(F(a)) \xrightarrow{\theta_bF_1(M)\theta_a^{-1}} L'(F(b)) \\
L'(F(f')) \xrightarrow{\theta_{g'g}F_1(\beta\alpha)\theta^{-1}_{\beta f}} L'(F(g'g)) \\
L'(F(a'')) \xrightarrow{\theta_{b''b}F_1(M'')\theta^{-1}_{a''}} L'(F(b'')) \\
\end{array}
\]
On the other hand, if we first map over the two 2-morphisms, we get

\[
\begin{align*}
L'(F(a)) & \xrightarrow{\theta_bF_1(M)\theta_a^{-1}} L'(F(b)) \\
L'(F(f)) & \xrightarrow{\theta_bF_1(a)\theta_f^{-1}} L'(F(g)) \\
L'(F(a')) & \xrightarrow{\theta_bF_1(M')\theta_{a'}^{-1}} L'(F(b')) \\
L'(F(f')) & \xrightarrow{\theta_bF_1(\beta)\theta_{f'}^{-1}} L'(F(g')) \\
L'(F(a'')) & \xrightarrow{\theta_bF_1(M'')\theta_{a''}^{-1}} L'(F(b''))
\end{align*}
\]

and then composing these in \(L\mathcal{X}' \) yields

\[
\begin{align*}
L'(F(a)) & \xrightarrow{\theta_bF_1(M)\theta_a^{-1}} L'(F(b)) \\
L'(F(f')) & \xrightarrow{\theta_bF_1(\beta)\theta_{f'}^{-1}} L'(F(g')) \\
L'(F(a'')) & \xrightarrow{\theta_bF_1(M'')\theta_{a''}^{-1}} L'(F(b''))
\end{align*}
\]

by the functoriality of \(F_0 = F, F_1 \) and \(L' \).

Now let \(M \) and \(N \) be two composable horizontal 1-cells in \(L\mathcal{X} \) given by:

\[
\begin{align*}
L(a) & \xrightarrow{M} L(b) \\
L(b) & \xrightarrow{N} L(c)
\end{align*}
\]

Then for composable horizontal 1-cells \(M \) and \(N \), we get a natural transformation

\[
(F,F)_M,N : (F,F)(M) \circ (F,F)(N) \to (F,F)(M \circ N)
\]

given by:

\[
\begin{align*}
L'(F(a)) & \xrightarrow{\theta_bF_1(M)\theta_a^{-1}} L'(F(b)) \\
L'(F(f')) & \xrightarrow{\theta_bF_1(\beta)\theta_{f'}^{-1}} L'(F(g')) \\
L'(F(a'')) & \xrightarrow{\theta_bF_1(M'')\theta_{a''}^{-1}} L'(F(b''))
\end{align*}
\]
and for any object \(a \), a natural transformation
\[
L'(F(a)) \xrightarrow{U'_{F(a)}} L'(F(a))
\]
both of which utilize the comparison constraints \(F_{M,N} \) and \(F_a \) of the double functor \(F \). The double functor \((F, F) \) is pseudo, lax or oplax depending on whether the double functor \(F \) is pseudo, lax or oplax, respectively.

If both \(F: A \to A' \) and \(F: \mathbb{X} \to \mathbb{X}' \) are symmetric monoidal, then \((F, F): L\mathbb{X} \to L'\mathbb{X}' \) is a symmetric monoidal double functor.

Theorem 3.2.2. Let \(L\mathbb{X} = (\mathbb{X}, L: A \to \mathbb{X}_0) \) and \(L'\mathbb{X}' = (\mathbb{X}', L': A' \to \mathbb{X}'_0) \) be symmetric monoidal foot-replaced double categories. If \((F, F): L\mathbb{X} \to L'\mathbb{X}' \) is a foot-replaced double functor with \(F \) and \(F \) symmetric monoidal, then \((F, F) \) is a symmetric monoidal double functor of foot-replaced double categories.

Proof. Since the functor \(F: A \to A' \) is symmetric monoidal, for every pair of objects \(a \) and \(b \) of \(A \), we have a natural transformation
\[
\mu_{a,b}: F(a) \otimes F(b) \to F(a \otimes b)
\]
and a morphism
\[
\epsilon: 1_{L'\mathbb{X}'} \to F(1_{L\mathbb{X}})
\]
where the unit object of \(L'\mathbb{X}' \) is given by \(1_{L'\mathbb{X}'} = 1_{A'} \cong F(1_A) \) and the unit object of \(L\mathbb{X} \) is given by \(1_{L\mathbb{X}} = 1_A \). These together make the following diagrams commute for every triple.
of objects a, b, c of LX, which are just objects of A. Note that the object component of the double functor (F, F) is just $(F, F)_0 = F$.

Moreover, the following diagram commutes where by an abuse of notation, we denote the braidings in both categories A and A' as β.

The double functor $F: X \to X'$ is also symmetric monoidal, which means that for every pair of horizontal 1-cells M and N, we have a natural transformation

$$F_{M,N}: F(M) \otimes F(N) \to F(M \otimes N)$$

and a morphism

$$\delta: U_{1_A} \to \mathbb{F}(U_{1_A})$$

which satisfy the usual axioms. From these, we can construct the corresponding transformations for (F, \mathbb{F}). Given horizontal 1-cells M and M' in LX:

$$L(a) \xrightarrow{M} L(b) \quad L(a') \xrightarrow{M'} L(b')$$
their images $(F, \mathbb{F})(M)$ and $(F, \mathbb{F})(M')$ are given by:

\[
L'(F(a)) \xrightarrow{\theta_b \mathbb{F}_1(M) \delta_a^{-1}} L'(F(b)) \quad \quad \quad L'(F(a')) \xrightarrow{\theta_b \mathbb{F}_1(M') \delta_a^{-1}} L'(F(b'))
\]

and their tensor product $(F, \mathbb{F})(M) \otimes (F, \mathbb{F})(M')$ is given by:

\[
L'(F(a) \otimes F(a')) \xrightarrow{\sigma_{F(b), F(a')} (\theta_b \mathbb{F}_1(M) \delta_a^{-1} \otimes \theta_b \mathbb{F}_1(M') \delta_a^{-1}) \sigma_{F(a), F(a')}} L'(F(b) \otimes F(b'))
\]

where $\sigma_{F(a), F(a')} : L(F(a)) \otimes L'(F(a')) \rightarrow L'(F(a) \otimes F(a'))$ is the natural isomorphism coming from the symmetric (strong) monoidal functor $L: \mathcal{A} \rightarrow \mathcal{A}_0'$. On the other hand, $M \otimes M'$ is given by:

\[
L(a \otimes a') \xrightarrow{\mu_{b \otimes M'}(M \otimes M') \mu_{a \otimes a'}} L(b \otimes b')
\]

and the image $(F, \mathbb{F})(M \otimes M')$ is given by:

\[
L'(F(a \otimes a')) \xrightarrow{\theta_b \mathbb{F}_1(M \otimes M') \delta_a^{-1}} L'(F(b \otimes b'))
\]

We then have a natural transformation

\[
\nu'_{M, M'} : (F, \mathbb{F})(M) \otimes (F, \mathbb{F})(M') \rightarrow (F, \mathbb{F})(M \otimes M')
\]

given by the 2-isomorphism:

\[
\begin{array}{c}
L'(F(a) \otimes F(a')) \xrightarrow{\sigma_{F(b), F(a')} (\theta_b \mathbb{F}_1(M) \delta_a^{-1} \otimes \theta_b \mathbb{F}_1(M') \delta_a^{-1}) \sigma_{F(a), F(a')}} L'(F(b) \otimes F(b')) \\
L'(\tau_{a, a'}) \downarrow \\
L'(F(a \otimes a')) \xrightarrow{\theta_b \mathbb{F}_1(M \otimes M') \delta_a^{-1}} L'(F(b \otimes b'))
\end{array}
\]

which we can rewrite as:

\[
\begin{array}{c}
L'(F(a) \otimes F(a')) \xrightarrow{(\theta_b \mathbb{F}_1(M) \delta_a^{-1} \otimes \theta_b \mathbb{F}_1(M') \delta_a^{-1}) (\sigma_{F(b), F(a')} (\theta_b \mathbb{F}_1(M) \delta_a^{-1} \otimes \theta_b \mathbb{F}_1(M') \delta_a^{-1}) \sigma_{F(a), F(a')})^{-1} \sigma_{F(b), F(a')} (\theta_b \mathbb{F}_1(M) \delta_a^{-1} \otimes \theta_b \mathbb{F}_1(M') \delta_a^{-1}) \sigma_{F(a), F(a')}} L'(F(b) \otimes F(b')) \\
L'(\tau_{a, a'}) \downarrow \\
L'(F(a \otimes a')) \xrightarrow{(\theta_b \mathbb{F}_1(M \otimes M') \delta_a^{-1} \otimes \theta_b \mathbb{F}_1(M \otimes M') \delta_a^{-1}) (\theta_b \mathbb{F}_1(M \otimes M') \delta_a^{-1} \otimes \theta_b \mathbb{F}_1(M \otimes M') \delta_a^{-1}) \sigma_{F(b), F(a')} (\theta_b \mathbb{F}_1(M \otimes M') \delta_a^{-1} \otimes \theta_b \mathbb{F}_1(M \otimes M') \delta_a^{-1}) \sigma_{F(a), F(a')})^{-1} \sigma_{F(b), F(a')} (\theta_b \mathbb{F}_1(M \otimes M') \delta_a^{-1} \otimes \theta_b \mathbb{F}_1(M \otimes M') \delta_a^{-1}) \sigma_{F(a), F(a')}} L'(F(b \otimes b'))
\end{array}
\]
For the unit constraint, the horizontal 1-cell unit of LX is given by $U_{L(1_A)}$:

$$L(1_A) \xrightarrow{U_{L(1_A)}} L(1_A)$$

and the image $(F, F)(U_{L(1_A)})$ is given by:

$$L'(F(1_A)) \xrightarrow{\theta_{1_A}F_1(U_{L(1_A)})\theta_{1_A}^{-1}} L'(F(1_A))$$

On the other hand, the horizontal 1-cell unit of $L'X'$ is given by $U_{L'(1_{A'})}$:

$$L'(1_{A'}) \xrightarrow{U_{L'(1_{A'})}} L'(1_{A'})$$

and we then get a natural transformation $\delta': U_{L'(1_{A'})} \to (F, F)(U_{L(1_A)})$ given by:

$$L'(1_{A'}) \xrightarrow{U_{L'(1_{A'})}} L'(1_{A'})$$

$$L'(F(1_A)) \xrightarrow{\delta'_{L'(1_{A'})}} (F, F)(U_{L(1_A)})$$

where $\tau: 1_{A'} \to F(1_A)$ comes from the symmetric monoidal functor $F: A \to A'$.

These transformations ν' and δ' together make the following diagrams commute for every triple of horizontal 1-cells M, N, P of LX.

\[\begin{array}{ccc}
((F,F)(M) \otimes (F,F)(N)) \otimes (F,F)(P) & \xrightarrow{\alpha'} & (F,F)(M) \otimes (F,F)(N) \otimes (F,F)(P) \\
(F,F)(M \otimes N) \otimes (F,F)(P) & \xrightarrow{1 \otimes \nu'_{N,P}} & (F,F)(M) \otimes (F,F)(N \otimes P) \\
(F,F)((M \otimes N) \otimes P) & \xrightarrow{(F,F)(\alpha)} & (F,F)(M \otimes (N \otimes P))
\end{array}\]

\[\begin{array}{ccc}
(F,F)(M) \otimes U_{1_{L_{L'}X'}} & \xrightarrow{r_{(F,F)(M)}} & (F,F)(M) \\
(F,F)(M) \otimes (F,F)(U_{1_{L'}X'}) & \xrightarrow{U_{1_{L_{L'}X'}} \otimes (F,F)(M)} & (F,F)(M) \\
(F,F)(M \otimes U_{1_{L'}X'}) & \xrightarrow{\delta' \otimes 1} & (F,F)(M \otimes U_{1_{L'}X'}) \\
(F,F)(U_{1_{L'}X'}) \otimes (F,F)(M) & \xrightarrow{\nu'_{U_{1_{L'}X'}}} & (F,F)(U_{1_{L'}X'} \otimes M)
\end{array}\]
Lastly, by another abuse of notation, the following diagram commutes where we denote the braiding in both \(L_X \) and \(L'_{X'} \) by \(\beta \).

\[
\begin{array}{c}
(F, F)(M) \otimes (F, F)(N) \\
\nu'_{M,N} \\
(F, F)(M \otimes N)
\end{array} \xrightarrow{\beta_{(F,F)(M),(F,F)(N)}} \begin{array}{c}
(F, F)(N) \otimes (F, F)(M) \\
(F, F)(\beta_{M,N}) \\
(F, F)(N \otimes M)
\end{array}
\]

That the comparison constraints of the double functor \((F, F): L_X \to L'_{X'}\) are monoidal natural transformations follows from the fact that the comparison constraints of the symmetric monoidal double functor \(F: X \to X'\) are monoidal natural transformations.

3.3 Transformations of foot-replaced double categories

We can also consider double transformations between these foot-replaced double functors and symmetric monoidal versions of such. By the previous section, a map between two foot-replaced double categories \(L_X = (X, L: A \to X_0) \) and \(L'_{X'} = (X', L': A' \to X'_0) \) is a triple \((F, G, \theta)\) such that the following diagram commutes up to isomorphism.

\[
\begin{array}{c}
A \xrightarrow{L} X_0 \\
F \downarrow \theta \downarrow \Phi \\
A' \xrightarrow{L'} X'_0
\end{array}
\]

Given another triple \((G, \Gamma, \psi): L_X \to L'_{X'}\), a foot-replaced double transformation from \((F, F, \theta)\) to \((G, \Gamma, \theta)\) consists of a pair \((\phi, \Phi)\) where \(\phi: F \Rightarrow G\) is a natural transformation
and $\Phi: F \Rightarrow G$ is a double transformation such that the following diagram commutes.

![Diagram](image)

meaning that the following composites are equal.

![Equal composites](image)

As with functors of foot-replaced double categories, if both the transformation $\phi: F \Rightarrow G$ and the double transformation $\Phi: F \Rightarrow G$ are symmetric monoidal, then $(\phi, \Phi): (F, F) \Rightarrow (G, G)$ is a symmetric monoidal double transformation of symmetric monoidal foot-replaced double functors.

Theorem 3.3.1. Let $(F, \Phi, \theta): L\mathcal{X} \to L'\mathcal{X}'$ and $(G, \psi, \Phi_0): L\mathcal{X} \to L'\mathcal{X}'$ be double functors between two foot-replaced double categories $L\mathcal{X}$ and $L'\mathcal{X}'$. Given a double transformation $\Phi: F \Rightarrow G$ and a transformation $\phi: F \to G$ such that the diagrams above commute, then
$(\phi, \Phi): (F,F,\theta) \Rightarrow (G,G,\psi)$ is a double transformation between foot-replaced double functors.

Proof. Because $\Phi: F \Rightarrow G$ is a double transformation and the diagram on the previous page commutes, we have that the following equations hold.

\[
\begin{align*}
(F,F)(a) & \xrightarrow{U_{(F,F)(a)}} (F,F)(a) \\
1 & \xrightarrow{\downarrow (F,F)V} 1 \\
(F,F)(a) & \xrightarrow{\downarrow \Phi_{1U_a}} (F,F)(a) \\
\Xi_a & \xrightarrow{\downarrow \Phi_{1U_a}} (G,G)(a)
\end{align*}
\]

\[
\begin{align*}
(F,F)(M) & \xrightarrow{\downarrow (F,F)(M)} (F,F)(M) \\
1 & \xrightarrow{1} 1 \\
(F,F)(M) & \xrightarrow{\downarrow \Phi_{1M\otimes N}} (F,F)(M) \\
\Xi_a & \xrightarrow{\downarrow \Phi_{1M\otimes N}} (G,G)(M\otimes N)
\end{align*}
\]

Here we use the isomorphisms $\theta_a: F(L(a)) \sim L'(F(a))$ and $\psi_a: G(L(a)) \rightarrow L'(G(a))$ together with the natural transformation $\phi: F \rightarrow G$ to cook up the object component of the double natural transformation $(\phi, \Phi): (F,F) \Rightarrow (G,G)$. In detail, every object of $\mathcal{L}\mathcal{X}$ is of the form $L(a)$ for some $a \in A$. We thus have for every object $L(a)$ in $\mathcal{L}\mathcal{X}$ a map $\theta_a: F(L(a)) \sim L'(F(a))$. The natural transformation $\phi: F \rightarrow G$ evaluated at a then gives a map $\phi_a: F(a) \rightarrow G(a)$ and applying the functor L' then gives a map $L'(\phi_a): L'(F(a)) \rightarrow L'(G(a))$. Then, we use the other natural isomorphism $\psi_a: G(L(a)) \rightarrow L'(G(a))$ to obtain a map $\psi_a^{-1}: L'(G(a)) \sim G(L(a))$, and thus

$$
\Xi_a = \psi_a^{-1}L'(\phi_a)\theta_a: (F,F)(a) \rightarrow (G,G)(a).
$$
Moreover, the map Ξ_a for each object a will make the above equations hold for $(\phi, \Phi): (F, F, \theta) \to (G, G, \psi)$ as the corresponding equations utilizing the component $\Phi_{0L(a)}$ hold as $\Phi: X \to X'$ is a double transformation.

Finally, because $\Phi: F \Rightarrow G$ is a double transformation and by the commutativity of the diagram on the previous page, for a horizontal 1-cell M in LX we have that $S(\Phi_{1M}) = \Xi_{S(M)}$ and $T(\Phi_{1M}) = \Xi_{T(M)}$. □

The double transformation (ϕ, Φ) is a double natural isomorphism if and only if ϕ is a natural isomorphism and Φ is a double natural isomorphism.

Theorem 3.3.2. Let $(\phi, \Phi): (F, F) \Rightarrow (G, G)$ be a foot-replaced double transformation between two symmetric monoidal foot-replaced double functors $(F, F): LX \to L'X'$ and $(G, G): LX \to L'X'$, where $LX = (X, L: A \to X_0)$ and $L'X' = (X', L': A' \to X'_0)$. If $\phi: F \Rightarrow G$ is a monoidal transformation and $\Phi: F \Rightarrow G$ is a monoidal double transformation, then $(\phi, \Phi): (F, F) \Rightarrow (G, G)$ is a monoidal double transformation of foot-replaced double functors.

Proof. The double transformation (ϕ, Φ) acts as Ξ (defined above) on objects and vertical 1-morphisms. This means that the following diagrams commute.

\[
\begin{array}{ccc}
(F, F)(a) \otimes (F, F)(b) & \xrightarrow{\Xi_a \otimes \Xi_b} & (G, G)(a) \otimes (G, G)(b) \\
\downarrow{\mu_{a,b}} & & \downarrow{\mu'_{a,b}} \\
(F, F)(a \otimes b) & \xrightarrow{\Xi_{a \otimes b}} & (G, G)(a \otimes b) \\
\end{array}
\]

\[
\begin{array}{ccc}
(F, F)(1_{L,X'}) & \xrightarrow{c'} & (G, G)(1_{L,X}) \\
\downarrow{c} & & \downarrow{\phi_{1_{L,X}}} \\
(F, F)(1_{L,X}) & \xrightarrow{1_{L,X}} & (G, G)(1_{L,X}) \\
\end{array}
\]
Similarly, the double transformation \((\phi, \Phi)\) acts as \(\Phi\) on horizontal 1-cells and 2-morphisms, which means that the following diagrams commute.

\[
\begin{array}{ccc}
(F,F)(M \otimes (F,F))(N) & \xrightarrow{\Phi_{1M} \otimes \Phi_{1N}} & (G,G)(M \otimes (G,G))(N) \\
\downarrow \mu_{M,N} & & \downarrow \mu'_{M,N} \\
(F,F)(M \otimes N) & \xrightarrow{\Phi_{1M \otimes N}} & (G,G)(M \otimes N)
\end{array}
\]

\[
\begin{array}{ccc}
U_{1L,X} & \xrightarrow{\delta'} & (G,G)(U_{1L,X}) \\
\downarrow \delta & & \downarrow \Phi_{1U_{1L,X}} \\
(F,F)(U_{1L,X}) & &
\end{array}
\]

Thus \((\phi, \Phi)\): \((F,F) \Rightarrow (G,G)\) is a symmetric monoidal double transformation. \qed
Chapter 4

Decorated cospan double categories

In this chapter we present an improved version of Fong’s theory of decorated cospan categories [25] from the perspective of double categories. The main difference here is that, given a category C with finite colimits, we instead start with a pseudofunctor $F: C \to \text{Cat}$ rather than functor $F: C \to \text{Set}$. The additional structure of Cat viewed as a 2-category then allows us more flexibility in defining what isomorphism classes consist of. This ultimate results in a second solution to the nuisance of the original incarnation of decorated cospans, structured cospans of the previous chapter being the first.

Given a finitely cocomplete category A and a lax monoidal pseudofunctor $F: A \to \text{Cat}$, the first result is the existence of a double category $FC\text{sp}$ in which F-decorated cospans appear as horizontal 1-cells, except now we can exploit the 2-categorical structure of Cat to define 2-morphisms. This is Theorem 4.1.1. Subsequently we show that when this lax
monoidal pseudofunctor \(F \) is symmetric monoidal, then the resulting double category \(F\text{Sp} \) is in fact symmetric monoidal as in Theorem 4.1.2. We then define maps between decorated cospan double categories in Section 4.2. Finally, as both structured cospan double categories and decorated cospan double categories as presented in this chapter are both solutions to issue of the original decorated cospans, in Section 4.3 we show that both approaches lead to equivalent symmetric monoidal double categories, the main result being Theorem 4.3.15.

Definition 4.0.1. A 2-category is a category 'enriched' over \(\text{Cat} \), the (large) category of categories and functors. Thus, a 2-category \(\text{C} \) consists of:

(1) a collection of objects \(\text{Ob}(\text{C}) \),

(2) for every two objects \(a, b \in \text{Ob}(\text{C}) \), a category \(\text{hom}_{\text{C}}(a, b) \) called a hom category, and

(3) for every object \(a \in \text{Ob}(\text{C}) \), a functor \(1_a : 1 \to \text{hom}_{\text{C}}(a, a) \) which picks out the identity morphism for the object \(a \) and for every triple of objects \(a, b, c \in \text{Ob}(\text{C}) \) a functor \(\circ : \text{hom}_{\text{C}}(a, b) \times \text{hom}_{\text{C}}(b, c) \to \text{hom}_{\text{C}}(a, c) \) for composition. The functors 1 and \(\circ \) satisfy the associativity and identity axioms.

(4) Horizontal and vertical composition of 2-morphisms satisfy an interchange law, meaning that given four 2-morphisms as such:
We can first compose vertically and then horizontally:

\[
\begin{array}{ccc}
 a & \overset{\alpha \circ \beta}{\longrightarrow} & b \\
 f_3 & \circ & g_3 \\
 & \overset{g_1}{\longrightarrow} & c
\end{array}
\]

\[
\begin{array}{ccc}
 a & \overset{\alpha \prime}{\longrightarrow} & b \\
 f_3 & \circ & g_3 \\
 & \overset{g_1}{\longrightarrow} & c
\end{array}
\]

\[
\begin{array}{ccc}
 a & \overset{\alpha \prime \circ \beta}{\longrightarrow} & c \\
 f_3 & \circ & g_3 \\
 \end{array}
\]

or we can first compose horizontally and then vertically:

\[
\begin{array}{ccc}
 a & \overset{g_1 f_1}{\longrightarrow} & c \\
 & \overset{g_2 f_2}{\longrightarrow} & c
\end{array}
\]

\[
\begin{array}{ccc}
 a & \overset{g_1 f_1}{\longrightarrow} & c \\
 & \overset{g_2 f_2}{\longrightarrow} & c
\end{array}
\]

and the resulting composites are the same.

\[
\begin{array}{ccc}
 a & \overset{g_1 f_1}{\longrightarrow} & c \\
 & \overset{g_3 f_3}{\longrightarrow} & c
\end{array}
\]

The primordial example of a 2-category is **Cat**, the 2-category of categories, functors and natural transformations - natural transformations make up the morphisms in each hom category \(\text{hom}_C(a,b)\). A 2-category is sometimes referred to as a *strict* 2-category as opposed to a *weak* 2-category, also known as a bicategory. Strict 2-categories along with double categories were first discovered by Ehresmann [23], and bicategories are due to Bénabou [13].

There is a ‘weaker’ notion of a 2-category known as a ‘bicategory’.

Definition 4.0.2. A **bicategory** is a category weakly enriched over the strict 2-category **Cat** of categories, functors and natural transformations.
A bicategory has objects and hom categories much like an ordinary 2-category, but weakness of the enrichment over\textbf{ Cat}, now viewed as a 2-category as opposed to an ordinary category, allows the associativity and identity axioms to hold only up to natural isomorphism, similar to how the associators and left and right unitors are isomorphisms as opposed to identities in a weak monoidal category.

Definition 4.0.3. Given bicategories \mathbf{C} and \mathbf{D}, a pseudofunctor $F: \mathbf{C} \to \mathbf{D}$ consists of:

1. for each object $c \in \mathbf{C}$, an object $F(c) \in \mathbf{D}$,
2. for each category $\mathbf{C}(c,c')$, a functor $F: \mathbf{C}(c,c') \to \mathbf{D}(F(c), F(c'))$,
3. for each object $c \in \mathbf{C}$, a 2-isomorphism $F_c: \text{id}_{F(c)} \Rightarrow F(\text{id}_c)$
4. for every triple of objects $a, b, c \in \mathbf{C}$ and pair of composable morphisms $f: a \to b$ and $g: b \to c$ in \mathbf{C}, a 2-isomorphism $F_{f,g}: F(f)F(g) \Rightarrow F(fg)$ natural in f and g

such that the following diagrams commute:
Here, all of the arrows in the diagrams are given by 2-morphisms in D, a, ℓ, r denote the associator, left and right unitors for morphism composition in C, similarly a', ℓ', r' denote the associator, left and right unitors for morphism composition in D, juxtaposition is used to denote morphism composition in both C and D and \odot denotes whiskering in D.

Definition 4.0.4. Given two pseudofunctors $F, G: A \to B$, a **pseudonatural transformation** σ consists of:

1. For each object $a \in A$, a morphism $\sigma_a: F(a) \to G(a)$ in B and
2. For each morphism $f: a \to b$ in A, an invertible natural 2-morphism $\sigma_f: G(f)\sigma_a \sim \sigma_b F(f)$ in B which is compatible with composition and identities.

Let $[A, \text{Cat}]_{ps}$ denote the 2-category of pseudofunctors, pseudonatural transformations and modifications from an ordinary category A viewed as a 2-category with trivial 2-morphisms. We call $[A, \text{Cat}]_{ps}$ the 2-category of opindexed categories, as an indexed category is a contravariant pseudofunctor into Cat. A **lax monoidal pseudofunctor** $F: A \to B$ between monoidal bicategories [46] is then a pseudofunctor equipped with pseudonatural transformations with components

$$\mu_{a,b}: F(a) \otimes F(b) \sim F(a \otimes b)$$

and

$$\mu_0: 1_B \to F(1_A)$$

together with coherent invertible modifications for associativity and unitality. This is also known as a **weak** monoidal pseudofunctor. A **symmetric lax monoidal pseudofunctor**
is then a monoidal pseudofunctor between symmetric monoidal bicategories together with invertible modifications $F(\beta)\mu_{a,b} \sim \mu_{b,a}\beta'$.

4.1 A double category of decorated cospans

Theorem 4.1.1. Let A be a category with finite colimits and $F: A \to \text{Cat}$ a lax monoidal pseudofunctor. Then there exists a (pseudo) double category $F\text{Csp}$ which has:

1. objects as those of A,
2. vertical 1-morphisms as morphisms of A,
3. horizontal 1-cells as F-decorated cospans in A which are pairs:
 $$
 a \xrightarrow{i} m \leftrightarrow^o b \quad x \in F(m)
 $$
 and

4. 2-morphisms as maps of F-decorated cospans in A

$$
\begin{array}{c}
\begin{array}{c}
 a \xrightarrow{i} m \leftrightarrow^o b \\
 f \downarrow \quad \downarrow h \quad \downarrow g
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
 a' \xrightarrow{i'} m' \leftrightarrow^{o'} b' \\
 \quad \downarrow \quad \downarrow \quad \downarrow
\end{array}
\end{array} \quad x \in F(m) \quad x' \in F(m')

$$

(4.1)

together with a morphism $\iota: F(h)(m) \to m'$ in $F(m')$.

Proof. The unit structure functor $U: F\text{Csp}_0 \to F\text{Csp}_1$ is defined on objects as:

$$
\begin{array}{c}
\begin{array}{c}
 a \rightarrow a \xrightarrow{1} a \xleftarrow{1} a \quad !_a \in F(a)
\end{array}
\end{array}
$$

where $!_a \in F(a)$ is the trivial decoration on a given by the composite of the unique map $F(\!): F(0) \to F(a)$ and the morphism $\phi: 1 \to F(0)$ which comes from the structure of
the lax monoidal pseudofunctor \(F : A \to \text{Cat} \). For morphisms, the structure functor \(U \) is defined as:

\[
\begin{array}{c}
\begin{array}{c}
\xymatrix{ a \ar[d]_f \ar[r]^1 & a \ar[d]^f \ar[l]_a \\
\text{!}_a \ar[r]^1 & \text{!}_a \ar[l]_a}
\end{array}
\end{array}
\xymatrix{ a \ar[d]_f \ar[r]^1 & a \ar[d]^f \ar[l]_a \\
\text{!}_a \ar[r]^1 & \text{!}_a \ar[l]_a}
\]

\[a \mapsto 1 \]

\[\text{!}_a \in F(a) \]

\[\text{!}_a' \in F(a') \]

together with the morphism \(\eta_f = F(f)(!)_\phi : 1 \to F(a') \). We also have source and target structure functors \(S, T : F\text{Cosp}_1 \to F\text{Cosp}_0 \) where the source of the horizontal 1-cell

\[
\begin{array}{c}
\xymatrix{ a \ar[r]^i & m \ar[l]^o \ar[r] & b \ar[l]^x \in F(m) }
\end{array}
\]

is the object \(a \) in \(A \) and the source of the 2-morphism

\[
\begin{array}{c}
\xymatrix{ a \ar[r]^i & m \ar[l]^o \ar[r] & b \ar[l]^x \in F(m) }
\end{array}
\]

\[f \]

\[g \]

\[h \]

\[a' \]

\[a' \]

\[b' \]

\[b' \]

\[x' \]
the composite $N \circ M$ is given by:

\[
\begin{array}{c}
\psi_{ji} \downarrow \quad \psi_{j'i'} \downarrow \quad m + n \\
\quad \psi \downarrow \\
\quad m + b \ n \\
\end{array}
\]

with the corresponding decoration of the apex $x \circ y \in F(m + b \ n)$ given by:

\[
1 \xrightarrow{\psi^{-1}} 1 \times 1 \xrightarrow{x \circ y} F(m) \times F(n) \xrightarrow{\phi_{m,n}} F(m + n) \xrightarrow{F(\psi)} F(m + b \ n)
\]

where $\psi: m + n \to m + b \ n$ is the natural map from the coproduct to the pushout and $\phi_{m,n}: F(m) \times F(n) \to F(m + n)$ is the natural transformation coming from the structure of the lax monoidal pseudofunctor $F: \mathcal{A} \to \mathbf{Cat}$. Denoting the first and second of these horizontal 1-cells as M and N, respectively, the source and target structure functors satisfy the equations $S(N \circ M) = S(M)$ and $T(N \circ M) = T(N)$.

Given three composable horizontal 1-cells M_1, M_2 and M_3:

\[
\begin{align*}
a & \xrightarrow{i} m_1 \leftarrow o \ b \\
& \quad x_1 \in F(m_1) \\
b & \xrightarrow{i'} m_2 \leftarrow o' \ c \\
& \quad x_2 \in F(m_2) \\
c & \xrightarrow{i''} m_3 \leftarrow o'' \ d \\
& \quad x_3 \in F(m_3)
\end{align*}
\]

we get a natural isomorphism $a_{M_1,M_2,M_3}: (M_1 \circ M_2) \circ M_3 \to M_1 \circ (M_2 \circ M_3)$ which is a globular 2-morphism given by a map of cospans $(\text{id}_{a_1}, \sigma, \text{id}_{a_4})$:

\[
\begin{array}{c}
\begin{array}{c}
a \xrightarrow{id_a} m_1 + b \ m_2 + c \ m_3 \leftarrow d \\
\quad x \circ y \circ z \in F((m_1 + b \ m_2) + c \ m_3)
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\quad \sigma \downarrow \\
\quad \text{id}_{d}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
a \xrightarrow{id_a} m_1 + b \ (m_2 + c \ m_3) \leftarrow d \\
\quad x \circ (y \circ z) \in F(m_1 + b \ (m_2 + c \ m_3))
\end{array}
\end{array}
\]

63
with the decorations on the cospan’s apices given by:

\[(x \odot y) \odot z := 1 \xrightarrow{\zeta_1} F(m_1 +_b m_2) \times F(m_3) \xrightarrow{\phi_{m_1+b,m_2,m_3}} F((m_1 +_b m_2) +_c m_3) \xrightarrow{F(j_{m_1,m_2} +_c m_3)} F((m_1 +_b m_2) +_c m_3)\]

\[\zeta_1 = (1 \times z) \rho^{-1} F(j_{m_1,m_2}) \phi_{m_1,m_2}(x \times y) \lambda^{-1}\]

and

\[x \odot (y \odot z) := 1 \xrightarrow{\zeta_2} F(m_1) \times F(m_2 +_c m_3) \xrightarrow{\phi_{m_1,m_2,c,m_3}} F(m_1 + (m_2 +_c m_3)) \xrightarrow{F(j_{m_1,m_2} +_c m_3)} F(m_1 +_b (m_2 +_c m_3))\]

\[\zeta_2 = (x \times 1) \lambda^{-1} F(j_{m_2,m_3}) \phi_{m_2,m_3}(y \odot z) \lambda^{-1}\]

together with the isomorphism \(\iota_\sigma : F(\sigma)((x \odot y) \odot z) \rightarrow x \odot (y \odot z)\). Note that the map \(\sigma : (m_1 +_b m_2) +_c m_3 \rightarrow m_1 +_b (m_2 +_c m_3)\) is the universal map between two colimits of the same diagram. We also have left and right unitors where given a horizontal 1-cell \(M:\)

\[
\begin{array}{ccc}
 a & \xrightarrow{i} & m \\
 \downarrow & & \downarrow o \\
 b & \xleftarrow{1} \\
 x \in F(m)
\end{array}
\]

if we, say, compose with the identity horizontal 1-cell of \(b\) on the right:

\[
\begin{array}{ccc}
 a & \xrightarrow{i} & m \\
 \downarrow & & \downarrow o \\
 b & \xleftarrow{1} \\
 x \in F(m) & \Downarrow !_b \in F(b)
\end{array}
\]

where \(!_b = F(!)\phi : 1 \rightarrow F(b)\) is the trivial decoration on \(b\), composing these then gives:

\[
\begin{array}{ccc}
 a & \xrightarrow{j \psi_m} & m +_b b \\
 \downarrow & & \downarrow j \psi_b \\
 b & \xleftarrow{1} \\
 x \odot !_b \in F(m +_b b)
\end{array}
\]

where \(\psi_m : m \rightarrow m + b\) is the natural map into the coproduct and likewise for \(\psi_b\) and \(j : m + b \rightarrow m +_b b\) is the natural map from the coproduct to the pushout. The decoration \(x \odot !_b : 1 \rightarrow F(m +_b b)\) is given by:

\[
1 \xrightarrow{\lambda^{-1}} 1 \times 1 \xrightarrow{x \odot !_b} F(m) \times F(b) \xrightarrow{\phi_{m,b}} F(m + b) \xrightarrow{F(j_{m,b})} F(m +_b b).
\]
We then have that the right unitor $R: M \otimes 1_b \xrightarrow{\sim} M$ is given by the globular 2-morphism $(\text{id}_a, r, \text{id}_b)$ from the above composite to M:

\[
\begin{array}{ccc}
 a & \xrightarrow{j \psi_m^i} & m + b \\ & \downarrow \text{id}_a & \downarrow i & \downarrow \text{id}_b \\
 a & \xleftarrow{r} & m & \xleftarrow{o} & b \\
\end{array}
\quad x \otimes !_b \in F(m + b)
\]

where $r: m + b \xrightarrow{\sim} m$ is a universal map together with the isomorphism $\iota_r: F(r)(x \otimes !_b) \rightarrow x$.

The left unitor is similar. The source and target functor applied to the left and right unitors and associators yield identities, and the left and right unitors together with the associator satisfy the standard pentagon and triangle identities of a monoidal category or bicategory.

Finally, for the interchange law, given four 2-morphisms α, β, α' and β':

\[
\begin{array}{ccc}
 a & \xrightarrow{i_1} & m & \xleftarrow{o_1} & b & x \in F(m) \\
 f & \downarrow h_1 & \quad & g & \downarrow h_2 & \quad \\
 a' & \xrightarrow{i_1'} & m' & \xleftarrow{o_1'} & b' & x' \in F(m') \\
 \quad & \downarrow g & \quad & \quad & \downarrow k & \quad \\
 \quad & \quad & x' \in F(m') & \quad & \quad & \quad \\
 \quad & \quad & \quad & \quad & \quad & \quad \\
 \quad & \quad & \quad & \quad & \quad & \quad \\
 \quad & \quad & \quad & \quad & \quad & \quad \\
 \quad & \quad & \quad & \quad & \quad & \quad \\
 \quad & \quad & \quad & \quad & \quad & \quad \\
 \quad & \quad & \quad & \quad & \quad & \quad \\
\end{array}
\]

\[
\begin{array}{ccc}
 b & \xrightarrow{i_2} & n & \xleftarrow{o_2} & c & y \in F(n) \\
 g & \downarrow h_2 & \quad & k & \downarrow h_2 & \quad \\
 b' & \xrightarrow{i_2'} & n' & \xleftarrow{o_2'} & c' & y' \in F(n') \\
 \quad & \downarrow g & \quad & \quad & \downarrow k & \quad \\
 \quad & \quad & n' \in F(n') & \quad & \quad & \quad \\
\end{array}
\]

Finally, for the interchange law, given four 2-morphisms α, β, α' and β':
if we first compose horizontally we obtain:

\[
\begin{array}{ccc}
a & \xrightarrow{j_{\psi,n_1}} & m + n \\
\downarrow f & & \downarrow k \\
a' & \xrightarrow{j_{\psi',n_1'}} & m' + n'
\end{array}
\]

\[
x \odot y \in F(m + n)
\]

\[
\begin{array}{ccc}
a & \xrightarrow{j_{\psi,n_2}} & c \\
\downarrow j_{\psi,n_2'} & & \downarrow j_{\psi,n_2'} \\
a' & \xrightarrow{j_{\psi',n_2'}} & c'
\end{array}
\]

\[
x' \odot y' \in F(m' + n')
\]

\[
\iota_{\alpha \odot \beta} : F(h_1 + g h_2)(x \odot y) \rightarrow x' \odot y'
\]

\[
\begin{array}{ccc}
a & \xrightarrow{j_{\psi,n_1}} & m + n \\
\downarrow j_{\psi,n_1'} & & \downarrow j_{\psi,n_1'} \\
a' & \xrightarrow{j_{\psi',n_1'}} & m' \\
\downarrow f' & & \downarrow f' \\
a'' & \xrightarrow{j_{\psi,n_1''}} & m''
\end{array}
\]

\[
x \odot y \in F(m + n)
\]

\[
\iota_{\alpha' \odot \beta'} : F(h'_1 + g' h'_2)(x' \odot y') \rightarrow x'' \odot y''
\]

To obtain the morphism of decorations for a horizontal composite, we have as initial data:

\[
\begin{array}{ccc}
x & \xrightarrow{1} & F(m) \\
\downarrow \iota_{\alpha} & & \downarrow \iota_{\beta} \\
x' & \xrightarrow{1} & F(m')
\end{array}
\]

\[
\begin{array}{ccc}
y & \xrightarrow{1} & F(n) \\
\downarrow \iota_{\beta} & & \downarrow \iota_{\beta} \\
y' & \xrightarrow{1} & F(n')
\end{array}
\]

These two 2-morphisms \(\iota_{\alpha} \) and \(\iota_{\beta} \) are two 2-morphisms in the monoidal 2-category \((\text{Cat}, \times, 1)\) and so we can tensor them which results in:

\[
\begin{array}{ccc}
x \times y & \xrightarrow{m,n} & F(m) \times F(n) \\
\downarrow \phi_{m,n} & & \downarrow F(j_{m,n}) \\
x' \times y' & \xrightarrow{m',n'} & F(m') \times F(n')
\end{array}
\]

\[
\begin{array}{ccc}
F(m) \times F(n) & \xrightarrow{\phi_{m,n}} & F(m + n) \\
\downarrow F(h_1 + g h_2) & & \downarrow F(h_1 + h_2) \\
F(m') \times F(n') & \xrightarrow{\phi_{m',n'}} & F(m' + n')
\end{array}
\]

where the middle square commutes since \(F \) is a lax monoidal pseudofunctor and the right square commutes as the underlying diagram commutes. The decorations \(x \odot y \) and \(x' \odot y' \) are given respectively by top and bottom composite of arrows and the morphism of decorations \(\iota_{\alpha \odot \beta} \) is given by composing \(\iota_{\alpha} \times \iota_{\beta} \) with the two commuting squares, which can equivalently be viewed as a morphism in \(F(m' + y' n') \).
Returning to the interchange law, composing the two horizontal compositions above vertically then results in:

\[
\begin{array}{c}
\alpha \vdash (h'_1 + g'_2)(h_1 + g h_2) \\
\beta \vdash (h'_2 h_2) \\
\gamma \vdash (h'_2 h_2) \\
\delta \vdash (h'_2 h_2) \\
\end{array}
\]

The vertical composite of two morphisms of decorations is straightforward. On the other hand, if we first compose vertically we obtain:

\[
\begin{array}{c}
\alpha \vdash (h'_1 h_1)(x) \rightarrow x'' \\
\beta \vdash (h'_2 h_2)(y) \rightarrow y'' \\
\end{array}
\]

and then composing horizontally results in:

\[
\begin{array}{c}
\alpha \vdash (h'_1 h_1 + g'_2 h'_2)(h_1 + g h_2) \\
\beta \vdash (h'_2 h_2) \\
\end{array}
\]

As is usual concerning the interchange law of double categories of this nature, only the ‘interior’ of the two composites appears different, but the two morphisms \((h'_1 + g'_2 h'_2)(h_1 + g h_2)\): \(m + b n \rightarrow m'' + \nu n''\) and \((h'_1 h_1 + g'_2 h'_2)\): \(m + b n \rightarrow m'' + \nu n''\) are the same universal map realized in two different ways. The two morphisms of decorations \(\ell_{(\alpha' \circ \beta')(\alpha \circ \beta)}\) and \(\ell_{(\alpha' \circ \beta')(\beta' \circ \beta)}\) are obtained as two different compositions of four 2-morphisms in \(\textbf{Cat}\), namely horizontally then vertically and vertically then horizontally. As \(\textbf{Cat}\) is a 2-category, the
interchange law for these 2-morphisms already holds, and as a result, the morphisms

\[\iota_{((\alpha' \circ \beta')(\alpha \circ \beta))} : \mathcal{F}(((\delta' + \delta')(\delta + \delta)))(x \odot y) \to x'' \odot y'' \]

and

\[\iota_{((\alpha' \alpha')(\beta' \beta))} : \mathcal{F}(((\delta' \delta')(\delta' \delta')))(x \odot y) \to x'' \odot y'' \]

are also the same. Thus the interchange law for 2-morphisms holds and \(\mathcal{F}\mathcal{C}\mathcal{S}p \) is a double category.

If the pseudofunctor \(\mathcal{F} : (\mathcal{C}, +, 0) \to (\mathcal{C}, \times, 1) \) is symmetric lax monoidal, then the above double category \(\mathcal{F}\mathcal{C}\mathcal{S}p \) is also symmetric monoidal.

Theorem 4.1.2. Let \(\mathcal{A} \) be a category with finite colimits and \(\mathcal{F} : \mathcal{A} \to \mathcal{C} \) a symmetric lax monoidal pseudofunctor. Then the double category \(\mathcal{F}\mathcal{C}\mathcal{S}p \) is symmetric monoidal.

Proof. First we note that the category of objects \(\mathcal{F}\mathcal{C}\mathcal{S}p_0 = \mathcal{A} \) is symmetric monoidal under binary coproducts and the left and right unitors, associators and braidings are given as natural maps. The category of arrows \(\mathcal{F}\mathcal{C}\mathcal{S}p_1 \) has:

1. objects as \(\mathcal{F} \)-decorated cospans which are pairs:

\[
\begin{align*}
a & \xrightarrow{i} m & \xleftarrow{o} b & x \in \mathcal{F}(b)
\end{align*}
\]

and

2. morphisms as maps of cospans in \(\mathcal{A} \)

\[
\begin{align*}
a & \xrightarrow{i} m & \xleftarrow{o} b & x \in \mathcal{F}(m) \\
f & \xrightarrow{h} & & \xleftarrow{g} b' & x' \in \mathcal{F}(m')
\end{align*}
\]

together with a morphism \(\iota : \mathcal{F}(h)(x) \to x' \).
Given two objects M_1 and M_2 of $\mathcal{F}Csp_1$:

\[
\begin{align*}
 a_1 & \xrightarrow{i_1} m_1 &\leftarrow a_1 & b_1 \quad x_1 \in \mathcal{F}(m_1) \\
 a_2 & \xrightarrow{i_2} m_2 &\leftarrow a_2 & b_2 \quad x_2 \in \mathcal{F}(m_2)
\end{align*}
\]

their tensor product $M_1 \otimes M_2$ is given by taking the coproducts of the cospans of A

\[
\begin{align*}
 a_1 + a_2 & \xrightarrow{i_1 + i_2} m_1 + m_2 &\leftarrow a_1 + a_2 & b_1 + b_2 \quad x_1 + x_2 \in \mathcal{F}(m_1 + m_2)
\end{align*}
\]

and where the decoration on the apex is obtained using the natural transformation of the symmetric lax monoidal pseudofunctor F:

\[
x_1 + x_2 := 1 \xrightarrow{\lambda^{-1}} 1 \times 1 \xrightarrow{x_1 \times x_2} \mathcal{F}(m_1) \times \mathcal{F}(m_2) \xrightarrow{\phi_{m_1,m_2}} \mathcal{F}(m_1 + m_2).
\]

The monoidal unit 0 is given by:

\[
\begin{align*}
 0 & \xrightarrow{l} 0 &\leftarrow 0 & l_0 \in \mathcal{F}(0)
\end{align*}
\]

where 0 is the monoidal unit of A and $l_0 : 1 \rightarrow \mathcal{F}(0)$ is the morphism which is part of the structure of the symmetric lax monoidal pseudofunctor $F : A \rightarrow \textbf{Cat}$. Tensoring an object with the monoidal unit, say, on the left:

\[
\begin{align*}
 0 & \xrightarrow{l} 0 &\leftarrow 0 & l_0 \in \mathcal{F}(0) \\
 a & \xrightarrow{i} m &\leftarrow a & b
\end{align*}
\]

results in:

\[
\begin{align*}
 0 + a & \xrightarrow{l + i} 0 + m &\leftarrow 0 + b & l_0 + x \in \mathcal{F}(0 + m)
\end{align*}
\]

where $l_0 + x \in \mathcal{F}(0 + m)$ is given by

\[
\begin{align*}
 1 & \xrightarrow{\lambda^{-1}} 1 \times 1 \xrightarrow{l_0 \times x} \mathcal{F}(0) \times \mathcal{F}(m) \xrightarrow{\phi_{0,m}} \mathcal{F}(0 + m).
\end{align*}
\]
The left unitor is then an isomorphism in \(F\mathrm{Csp}_1 \) given by:

\[
\begin{align*}
0 + a + i &\quad \longrightarrow \quad 0 + m \quad \leftarrow \quad 0 + b + o \quad \text{!}_0 + x \in F(0 + m) \\
\ell &\quad \downarrow \quad \ell \quad \downarrow \quad \ell \\
a &\quad \longrightarrow \quad m &\quad \leftarrow \quad b \\
x &\quad \in \quad F(m)
\end{align*}
\]

where \(\ell \) is the left unitor of \((A, +, 0)\), together with the isomorphism \(\iota_\lambda: F(\ell)(!_0 + x) \to x \).

The right unitor is similar.

Given three objects \(M_1, M_2 \) and \(M_3 \) in \(F\mathrm{Csp}_1 \):

\[
\begin{align*}
a_1 &\quad \xrightarrow{i_1} \quad m_1 &\quad \xleftarrow{o_1} \quad b_1 \\
x_1 &\quad \in \quad F(m_1) \\
a_2 &\quad \xrightarrow{i_2} \quad m_2 &\quad \xleftarrow{o_2} \quad b_2 \\
x_2 &\quad \in \quad F(m_2) \\
a_3 &\quad \xrightarrow{i_3} \quad m_3 &\quad \xleftarrow{o_3} \quad b_3 \\
x_3 &\quad \in \quad F(m_3)
\end{align*}
\]

tensoring the first two and then the third results in \((M_1 \otimes M_2) \otimes M_3\):

\[
\begin{align*}
(a_1 + a_2) + a_3 &\quad \longrightarrow \quad (m_1 + m_2) + m_3 \quad \leftarrow \quad (b_1 + b_2) + b_3 \\
(x_1 + x_2) + x_3 &\quad \in \quad F((m_1 + m_2) + m_3)
\end{align*}
\]

where \((x_1 + x_2) + x_3: 1 \to F((m_1 + m_2) + m_3)\) is given by:

\[
1 \xrightarrow{(x_1 \times x_2) \times x_3} (F(m_1) \times F(m_2)) \times F(m_3) \xrightarrow{\phi_{m_1,m_2 \times 1}} F(m_1 \times m_2) \times F(m_3) \xrightarrow{\phi_{m_1,m_2,m_3}} F((m_1 + m_2) + m_3)
\]

whereas tensoring the last two and then the first results in \(M_1 \otimes (M_2 \otimes M_3) \):

\[
\begin{align*}
a_1 + (a_2 + a_3) &\quad \longrightarrow \quad m_1 + (m_2 + m_3) \quad \leftarrow \quad b_1 + (b_2 + b_3) \\
x_1 + (x_2 + x_3) &\quad \in \quad F(m_1 + (m_2 + m_3))
\end{align*}
\]

where \(x_1 + (x_2 + x_3): 1 \to F(m_1 + (m_2 + m_3))\) is given by:

\[
1 \xrightarrow{x_1 \times (x_2 \times x_3)} F(m_1) \times (F(m_2) \times F(m_3)) \xrightarrow{1 \times \phi_{m_2,m_3}} F(m_1) \times F(m_2 \times m_3) \xrightarrow{\phi_{m_1,m_2+m_3}} F(m_1 + (m_2 + m_3)).
\]
If we let \(a \) denote the associator of \((A, +, 0)\), the associator of \(FCsp_1 \) is then a map of cospans in \(A \) from \((M_1 \otimes M_2) \otimes M_3\) to \(M_1 \otimes (M_2 \otimes M_3)\) given by:

\[
\begin{align*}
(a_1 + a_2) + a_3 & \quad \xrightarrow{(i_1 + i_2) + i_3} (m_1 + m_2) + m_3 \xleftarrow{(o_1 + o_2) + o_3} (b_1 + b_2) + b_3 \quad (x_1 + x_2) + x_3 \in F((m_1 + m_2) + m_3) \\
(a_1 + (a_2 + a_3)) & \quad \xrightarrow{i_1 + (i_2 + i_3)} m_1 + (m_2 + m_3) \xleftarrow{o_1 + (o_2 + o_3)} b_1 + (b_2 + b_3) \quad x_1 + (x_2 + x_3) \in F(m_1 + (m_2 + m_3))
\end{align*}
\]

together with the isomorphism \(\iota_a : F(a)((x_1 + x_2) + x_3) \rightarrow x_1 + (x_2 + x_3) \). These associators and left and right unitors together satisfy the pentagon and triangle identities of a monoidal category. If we denote the above associator simply as \(a \) and the left and right unitors as \(\lambda \) and \(\rho \), respectively, then given four objects in \(FCsp_1 \), say \(M_1, M_2, M_3 \) and \(M_4 \):

\[
\begin{align*}
& a_1 \xrightarrow{i_1} m_1 \xleftarrow{o_1} b_1 & x_1 \in F(m_1) \\
& a_2 \xrightarrow{i_2} m_2 \xleftarrow{o_2} b_2 & x_2 \in F(m_2) \\
& a_3 \xrightarrow{i_3} m_3 \xleftarrow{o_3} b_3 & x_3 \in F(m_3) \\
& a_4 \xrightarrow{i_4} m_4 \xleftarrow{o_4} b_4 & x_4 \in F(m_4)
\end{align*}
\]

then as \(Csp(A) \) is a symmetric monoidal double category, the following pentagon of underlying cospans and maps of cospans commutes:

\[
\begin{tikzcd}
(M_1 \otimes M_2) \otimes (M_3 \otimes M_4) \arrow{r}{a} \arrow{d}{1 \otimes a} & M_1 \otimes ((M_2 \otimes M_3) \otimes M_4) \arrow{d}{a} \\
((M_1 \otimes M_2) \otimes M_3) \otimes M_4 \arrow{r}{a} & M_1 \otimes (M_2 \otimes (M_3 \otimes M_4)) \arrow{d}{a} \end{tikzcd}
\]
as well as the following pentagon of corresponding decorations in the category \(F(m_1 + (m_2 + (m_3 + m_4))) \):

\[
\begin{array}{c}
F(a)((x_1 + x_2) + (x_3 + x_4)) \\
\quad \downarrow \quad t_a \\
F((1 \otimes a)a)(t_a) \\
\quad \downarrow \quad \rho \otimes 1 \\
F((1 \otimes a)a)((x_1 + (x_2 + x_3)) + x_4) \\
\quad \downarrow \quad F(1 \otimes a)(t_a) \\
F((1 \otimes a)a)((x_1 + x_2 + x_3) + x_4) \\
\quad \downarrow \quad F(1 \otimes a)(x_1 + (x_2 + x_3 + x_4)) \\
\end{array}
\]

since

\[
F(aa)(((x_1 + x_2) + x_3) + x_4) = F((1 \otimes a)a(a \otimes 1))(((x_1 + x_2) + x_3) + x_4)
\]

as the corresponding pentagon in the symmetric monoidal category \((A, +, 0)\) commutes, and then applying the pseudofunctor \(F \) to said pentagon yields a commutative pentagon in \(\text{Cat} \).

Similarly, if we denote the left and right unitors as \(\lambda \) and \(\rho \), respectively, then the following triangle of cospans and underlying maps of cospans commutes:

\[
\begin{array}{ccc}
\rho \otimes 1 & & M_1 \otimes M_2 \\
\downarrow & & \downarrow 1 \otimes \lambda \\
(M_1 \otimes 0) \otimes M_2 & \xrightarrow{a} & M_1 \otimes (0 \otimes M_2)
\end{array}
\]

as well as the following triangle of corresponding decorations in the category \(F(m_1 + m_2) \):

\[
\begin{array}{c}
F(\rho \otimes 1)((x_1 + 0) + x_2) \\
\quad \downarrow \quad \iota_a \otimes 1 \\
F((1 \otimes \lambda)a)(t_a) \\
\quad \downarrow \quad \iota_1 \otimes \lambda \\
F((1 \otimes \lambda)(x_1 + (0 + x_2)) \\
\end{array}
\]

since

\[
F(\rho \otimes 1)((x_1 + 0) + x_2) = F((1 \otimes \lambda)a)((x_1 + 0) + x_2)
\]
as the corresponding triangle in the symmetric monoidal category \((A, +, 0)\) commutes and applying the pseudofunctor \(F\) to this commutative triangle results in a commutative triangle in \(\text{Cat}\).

For a tensor product of objects \(M_1 \otimes M_2\) in \(FCsp_1\), the source and target structure functors \(S, T: FCsp_1 \to FCsp_0\) satisfy the following equations:

\[
S(M_1 \otimes M_2) = S(M_1) \otimes S(M_2)
\]

\[
T(M_1 \otimes M_2) = T(M_1) \otimes T(M_2).
\]

For two objects \(M_1\) and \(M_2\) in \(FCsp_1\), we have a braiding \(\beta_{M_1, M_2}: M_1 \otimes M_2 \to M_2 \otimes M_1\) given by:

\[
\begin{array}{c}
a_1 + a_2 \xrightarrow{i_1 + i_2} m_1 + m_2 \xleftarrow{o_1 + o_2} b_1 + b_2 \text{ } x_1 + x_2 \in F(m_1 + m_2) \\
\beta_{a_1, a_2} \\
a_2 + a_1 \xrightarrow{i_2 + i_1} m_2 + m_1 \xleftarrow{o_2 + o_1} b_2 + b_1 \text{ } x_2 + x_1 \in F(m_2 + m_1)
\end{array}
\]

\[
\iota_{\beta_{M_1, M_2}}: F(\beta_{m_1, m_2})(x_1 + x_2) \sim x_2 + x_1
\]

where the vertical 1-morphisms are given by braidings in \((A, +, 0)\). This braiding makes the following triangle of underlying cospans commute:

\[
\begin{array}{c}
1 \\
\beta_{M_2, M_1} \\
\beta_{M_1, M_2}
\end{array}
\]

\[
\begin{array}{c}
M_1 \otimes M_2 \\
M_1 \otimes M_2 \\
M_2 \otimes M_1
\end{array}
\]

as well as the following diagram of corresponding decorations in the category \(F(m_1 + m_2)\):

\[
\begin{array}{c}
1 \\
F(\beta_{m_2, m_1})(x_1 + x_2) \\
F(\beta_{m_1, m_2})(x_2 + x_1)
\end{array}
\]

\[
\begin{array}{c}
x_1 + x_2 \\
F(\beta_{m_2, m_1})(x_1 + x_2) \\
F(\beta_{m_1, m_2})(x_2 + x_1)
\end{array}
\]
since $F(\beta_{m_2,m_1}\beta_{m_1,m_2})(x_1 + x_2) = x_1 + x_2$. Thus $F\circ sp_1$ is also symmetric monoidal.

Next we derive the globular isomorphisms required in the definition of a symmetric monoidal double category relating horizontal composition and the tensor product. Given four horizontal 1-cells M_1, M_2, N_1 and N_2 respectively by:

\[
\begin{align*}
\alpha & \overset{i_1}{\rightarrow} \beta \overset{o_1}{\leftarrow} M_1 \\
\gamma & \overset{i_2}{\rightarrow} \beta \overset{o_2}{\leftarrow} M_2 \\
\alpha' & \overset{i_1'}{\rightarrow} \beta' \overset{o_1'}{\leftarrow} N_1 \\
\gamma' & \overset{i_2'}{\rightarrow} \beta' \overset{o_2'}{\leftarrow} N_2
\end{align*}
\]

we have that $(M_1 \otimes N_1) \circ (M_2 \otimes N_2)$ is given by:

\[
\begin{align*}
\alpha + \alpha' & \overset{j \psi(i_1 + i_1')}{\rightarrow} (\beta + \beta') \otimes (\beta + \beta') \\
\gamma + \gamma' & \overset{j \psi(o_2 + o_2')}{\leftarrow} (\beta + \beta') \otimes (\beta + \beta') \\
(x_1 + y_1) \circ (x_2 + y_2) & \in F((m_1 + n_1) \otimes (m_2 + n_2))
\end{align*}
\]

where the decoration $(x_1 + y_1) \circ (x_2 + y_2) \in F((m_1 + n_1) \otimes (m_2 + n_2))$ is given by:

\[
\begin{align*}
1 & \xrightarrow{\lambda^{-1}} 1 \\
\lambda^{-1} & \xrightarrow{\lambda^{-1} \times \lambda^{-1}} 1 \times 1 \\
& \xrightarrow{\phi_{m_1,n_1} \times \phi_{m_2,n_2}} F(m_1 + n_1) \times F(m_2 + n_2) \\
& \xrightarrow{\phi_{m_1+n_1,m_2+n_2}} F((m_1 + n_1) + (m_2 + n_2)) \\
& \xrightarrow{F(jm_1+n_1,m_2+n_2)} F((m_1 + n_1) \otimes (m_2 + n_2))
\end{align*}
\]
and \((M_1 \otimes M_2) \otimes (N_1 \otimes N_2)\) is given by:

\[
\begin{align*}
&\begin{array}{c}
a + a' \xrightarrow{(j\psi_i + (j\psi'_i)} (m_1 + b \ m_2) + (n_1 + \nu \ n_2) \xleftarrow{(j\psi_o + (j\psi'_o)} c + c'
\end{array} \\
&\begin{array}{c}
(x_1 \odot x_2) + (y_1 \odot y_2) \in F((m_1 + b \ m_2) + (n_1 + \nu \ n_2))
\end{array}
\end{align*}
\]

where the decoration \((x_1 \odot x_2) + (y_1 \odot y_2) \in F((m_1 + b \ m_2) + (n_1 + \nu \ n_2))\) is given by:

\[
\begin{array}{c}
\lambda^{-1}
\end{array} \begin{array}{c}
\begin{array}{c}
1
\end{array}
\end{array} \begin{array}{c}
\lambda^{-1} \times 1
\end{array} \begin{array}{c}
\begin{array}{c}
1
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
(x_1 \times x_2) \times (y_1 \times y_2)
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
(F(m_1) \times F(m_2)) \times (F(n_1) \times F(n_2))
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\phi_{m_1, m_2} \times \phi_{n_1, n_2}
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
F(m_1 + m_2) \times F(n_1 + n_2)
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
F(j_{m_1, m_2}) \times F(j_{n_1, n_2})
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
F(m_1 + b \ m_2) \times F(n_1 + \nu \ n_2)
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\phi_{m_1 + m_2, n_1 + \nu n_2}
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
F((m_1 + b \ m_2) + (n_1 + \nu \ n_2))
\end{array}
\end{array}
\end{array}
\]

and where \(\psi\) and \(j\) are the natural maps into a coproduct and from a coproduct into a pushout, respectively. We then get a globular 2-morphism

\[\chi: (M_1 \otimes N_1) \odot (M_2 \otimes N_2) \rightarrow (M_1 \otimes M_2) \otimes (N_1 \otimes N_2)\]

given by:

\[
\begin{array}{c}
\begin{array}{c}
(x_1 + y_1) \odot (x_2 + y_2) \in F((m_1 + n_1) + b + \nu \ (m_2 + n_2))
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
a + a' \xrightarrow{j\psi(i + i'_1)} (m_1 + n_1) + b + \nu \ (m_2 + n_2) \xleftarrow{j\psi(o + o'_2)} c + c'
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
(x_1 \odot x_2) + (y_1 \odot y_2) \in F((m_1 + b \ m_2) + (n_1 + \nu \ n_2))
\end{array}
\end{array}
\]

75
\[\iota_\hat{\chi} : F(\hat{\chi})((x_1 + y_1) \odot (x_2 + y_2)) \to (x_1 \odot x_2) + (y_1 \odot y_2) \]

where \(\hat{\chi} \) is the universal map between two colimits of the same diagram. For two objects \(a, b \in A \), \(U_{a+b} \) is given by:

\[
a + b \overset{1_{a+b}}{\longrightarrow} a + b \overset{1_{a+b}}{\longleftarrow} a + b
\]

where

\[
!_{a+b} : 1 \xrightarrow{\phi} F(0) \xrightarrow{F(!_{a+b})} F(a + b).
\]

Similarly, we have \(U_a \) and \(U_b \) given respectively by:

\[
a \overset{1_a}{\longrightarrow} a \overset{1_a}{\longleftarrow} a
\]

\[
b \overset{1_b}{\longrightarrow} b \overset{1_b}{\longleftarrow} b
\]

and then \(U_a + U_b \) is given by:

\[
a + b \overset{1_{a+b}}{\longrightarrow} a + b \overset{1_{a+b}}{\longleftarrow} a + b
\]

where

\[
!_{a+b} : 1 \xrightarrow{\lambda} 1 \times 1 \xrightarrow{\phi \times \phi} F(0) \times F(0) \xrightarrow{F(!_a) \times F(!_b)} F(a) \times F(b) \xrightarrow{\phi_{a,b}} F(a + b).
\]

We then have another globular isomorphism

\[\mu_{a,b} : U_{a+b} \to U_a + U_b \]

given by the identity 2-morphism:

\[
\begin{array}{cccccc}
& a + b & \overset{1_{a+b}}{\longrightarrow} & a + b & \overset{1_{a+b}}{\longleftarrow} & a + b \\
\downarrow & 1 & \downarrow & 1 & \downarrow & 1 \\
& a + b & \overset{1_{a+b}}{\longrightarrow} & a + b & \overset{1_{a+b}}{\longleftarrow} & a + b \\
& & & & & \\
& & & & & \\
\end{array}
\]

\[
!_{a+b} \in F(a + b)
\]
\[\iota_{a,b}: !_{a+b} \sim \iota_a + !_b\]

where \(!_{a+b} \) and \(!_a + !_b \) are both initial objects in \(F(a + b) \), hence isomorphic.

There are a fair amount of coherence diagrams to verify, many of which are similar in flavor and make use of the two above globular isomorphisms. We check a few to give a sense of what these are like. For example, given horizontal 1-cells \(M_i, N_i, P_i \) for \(i = 1, 2 \), the following commutative diagram expresses the associativity isomorphism as a transformation of double categories.

Here, \(a \) is the associator of \(F \circ \text{Csp}_1 \) and \(\chi \) is the first globular isomorphism above. To see that this diagram does indeed commute, we first consider this diagram with respect to only the underlying cospans of each horizontal 1-cell. For notation:

\[
\begin{align*}
M_1 &= a \rightarrow m_1 \leftarrow b & a &= a' \rightarrow n_1 \leftarrow b' & P_1 &= a'' \rightarrow p_1 \leftarrow b'' \\
& \quad x_1 \in F(m_1) & y_1 \in F(n_1) & \quad z_1 \in F(p_1) \\
M_2 &= b \rightarrow m_2 \leftarrow c & b' &= b' \rightarrow n_2 \leftarrow c' & P_2 &= b'' \rightarrow p_2 \leftarrow c'' \\
& \quad x_2 \in F(m_2) & y_2 \in F(n_2) & \quad z_2 \in F(p_2)
\end{align*}
\]
The above diagram then becomes:

\[
\begin{align*}
a + (a' + a'') & \rightarrow (m_1 + b m_2) + ((n_1 + b'n) + (p_1 + b'' p_2)) \\ & \uparrow \quad 1 \otimes \chi \uparrow \iota_3 \\
a + (a' + a'') & \rightarrow (m_1 + b m_2) + ((n_1 + p_1) + (b + b' + b'') (n_2 + p_2)) \\ & \uparrow \quad \lambda \uparrow \iota_2 \\
a + (a' + a'') & \rightarrow (m_1 + (n_1 + p_1)) + ((n_2 + p_2)) \\ & \uparrow \quad a \circ a \uparrow \iota_1 \\
(a + a') + a'' & \rightarrow (((m_1 + n_1) + p_1) + (b + b' + b'') (m_2 + n_2)) + (p_1 + b'' p_2) \\ & \downarrow \quad \chi \downarrow \iota_4 \\
(a + a') + a'' & \rightarrow (((m_1 + b m_2) + (n_1 + b' n_2)) + (p_1 + b'' p_2) \\ & \downarrow \quad a \downarrow \iota_5 \\
a + (a' + a'') & \rightarrow (m_1 + b m_2) + ((n_1 + b' n_2) + (p_1 + b'' p_2)) \\ & \downarrow \quad c + (c' + c'') \\
\end{align*}
\]

Here all of the vertical 1-morphisms on the left and right are associators or identities, the middle vertical 1-morphisms labeled on the left are the 2-morphisms from the previous commutative diagram, and the horizontal vertical 1-morphisms pointing towards the middle are natural maps into each colimit, all of which are naturally isomorphic to each other as all the middle objects are colimits of the same diagram, namely the previous collection of cospans, taken in various ways. The above diagram of maps of cospans can then be visualized as a hexagonal prism in which all the faces commute by identifying the top and the bottom as the same. As for the morphisms of decorations, which are labeled on the right of the interior vertical 1-morphisms, each isomorphism \(\iota_n \) goes from the domain under the image of the functor \(F \) applied to natural isomorphism adjacent to it to the codomain as written, meaning that, for example:

\[
\iota_1 : F(a \circ a)(((x_1 + y_1) + z_1) \circ ((x_2 + y_2) + z_2)) \rightarrow (x_1 + (y_1 + z_1)) \circ (x_2 + (y_2 + z_2)).
\]
The following diagram commutes in the category $F((m_1 + b_1 m_2) + ((n_1 + b_2 n_2) + (p_1 + b_2 p_2)))$:

$$
\begin{align*}
F(a(\chi \otimes 1)\chi)((x_1 + y_1) \odot (x_2 + y_2) + z_1) & \rightarrow F((1 \otimes \chi)\chi)((x_1 + (y_1 + z_1)) \odot (x_2 + (y_2 + z_2))) \\
F(a(\chi \otimes 1))(x_1 + y_1) \odot (x_2 + y_2) + (z_1 \odot z_2) & \rightarrow F((1 \otimes \chi)\chi)(x_1 \odot x_2) + ((y_1 + z_1) \odot (y_2 + z_2)) \\
F(a)((x_1 \odot x_2) + (y_1 \odot y_2)) + (z_1 \odot z_2) & \rightarrow (x_1 \odot x_2) + ((y_1 \odot y_2) + (z_1 \odot z_2))
\end{align*}
$$

since

$$
F(a(\chi \otimes 1)\chi)((x_1 + y_1) + z_1) \odot ((x_2 + y_2) + z_2)) = F((1 \otimes \chi)\chi(a \odot a))((x_1 + y_1) + z_1) \odot ((x_2 + y_2) + z_2))
$$

as the above underlying diagram of maps of cospans commutes and then applying the pseudofunctor F yields a commutative diagram in \textbf{Cat}.

Another requirement for a double category to be symmetric monoidal is that the braiding

$$
\beta_{(_)} : F\text{Csp}_1 \times F\text{Csp}_1 \rightarrow F\text{Csp}_1 \times F\text{Csp}_1
$$

be a transformation of double categories, and one of the diagrams that is required to commute is the following:

$$
\begin{align*}
(M_1 \odot M_2) \odot (N_1 \odot N_2) & \rightarrow (N_1 \odot N_2) \odot (M_1 \odot M_2) \\
(M_1 \odot N_1) \odot (M_2 \odot N_2) & \rightarrow (N_1 \odot M_1) \odot (N_2 \odot M_2)
\end{align*}
$$
Using the same notation as the previous coherence diagram, the diagram for the underlying maps of cospans becomes:

\[
\begin{align*}
&\begin{array}{c}
\xymatrix{a' + a & (n_1 + m_1) + (n_2 + m_2) \ar[r] & c' + c \\
& x_\alpha \ar[u] & \\
& a' + a \ar[u] & (n_1 + n_2) + (m_1 + m_2) \ar[r] & c' + c \\
& \beta_\beta \ar[u] & \\
& a + a' \ar[d] & (m_1 + n_2) + (n_1 + n_2) \ar[r] & c + c' \\
& \chi \ar[d] & \\
& a + a' \ar[d] & (m_1 + n_1) + (n_1 + n_2) \ar[r] & c + c' \\
& \beta \circ \beta \ar[d] & \\
& a' + a \ar[u] & (n_1 + m_1) + (n_2 + m_2) \ar[r] & c' + c \\
& \zeta_\zeta \ar[u] &
\end{array}
\end{align*}
\]

All the comments about the previous underlying coherence diagram of maps of cospans apply to this one. As for the decorations, the following diagram commutes in the category \(\mathcal{F}(\mathcal{A})\):

\[
\begin{align*}
&\begin{array}{c}
\xymatrix{F(\chi \beta)((x_1 \otimes x_2) + (y_1 \otimes y_2)) \ar[r]^{F(\chi)(\iota_1)} & F(\chi)((y_1 \otimes y_2) + (x_1 \otimes x_2)) \\
& F(\beta \circ \beta)(\iota_3) \ar[d] & \\
& F(\beta \circ \beta)((x_1 + y_1) \otimes (x_2 + y_2)) \ar[r]^{\iota_4} & (y_1 + x_1) \otimes (y_2 + x_2) \\
& \beta \circ \beta \ar[u] &
\end{array}
\end{align*}
\]

since

\[
F(\chi \beta)((x_1 \otimes x_2) + (y_1 \otimes y_2)) = F((\beta \circ \beta) \chi)((x_1 \otimes x_2) + (y_1 \otimes y_2))
\]

as the above underlying diagram of maps of cospans commutes and then applying the pseudofunctor \(F\) to this diagram yields a commutative diagram in \(\mathbf{Cat}\). The other diagrams are shown to commute similarly.

\[\square\]

4.2 Maps of decorated cospan double categories

Given another symmetric lax monoidal pseudofunctor \(F' : \mathcal{A}' \to \mathbf{Cat}\), we can obtain another symmetric monoidal double category \(F' \mathcal{C}sp\). A map from \(F \mathcal{C}sp\) to \(F' \mathcal{C}sp\) will then
be a double functor $\mathbb{H}: F\mathbb{C}sp \to F'\mathbb{C}sp$ whose object component is given by a finite colimit preserving functor $\mathbb{H}_0 = H: A \to A'$ and whose arrow component is given by a functor \mathbb{H}_1 defined on horizontal 1-cells by:

$\begin{array}{ccc}
 a & \overset{i}{\to} & c & \overset{o}{\leftarrow} & b \\
 d \in F(c) & \mapsto & H(a) & \overset{H(i)}{\to} & H(c) & \overset{H(o)}{\leftarrow} & H(b) & \theta_e E(d)\phi \in F'(H(c))
\end{array}$

and on 2-morphisms by:

$\begin{array}{ccc}
 a & \overset{f}{\to} & c & \overset{h}{\leftarrow} & b \\
 d \in F(c) & \overset{H(a)}{\mapsto} & H(c) & \overset{H(h)}{\leftarrow} & H(b) & \theta_e E(d)\phi \in F'(H(c)) \\
 a' & \overset{g}{\to} & c' & \overset{h'}{\leftarrow} & b' \\
 d' \in F'(c') & \overset{H(a')}{\mapsto} & H(c') & \overset{H(h')}{\leftarrow} & H(b') & \theta_e E(d')\phi \in F''(H(c')) \\
 1: F(h)(d) \to d' & \overset{E(\iota)}{\mapsto} & E'(H(h))((\theta_e E(d)\phi) \to (\theta_e E(d')\phi))
\end{array}$

where $E: \mathbf{Cat} \to \mathbf{Cat}$ is a symmetric lax monoidal pseudofunctor such that the following diagram commutes up to isomorphism $\theta: EF \Rightarrow F'H$:

$\begin{array}{ccc}
 A & \overset{F}{\to} & \mathbf{Cat} \\
 H & \downarrow{\not\theta} & E \\
 A' & \overset{F'}{\to} & \mathbf{Cat}
\end{array}$

Recall that we can think of the object $d \in F(c)$ as a morphism $d: 1 \to F(c)$ and the functor $\iota: F(h)(d) \to d'$ of $F(c')$ as a natural transformation in \mathbf{Cat}:

$\begin{array}{ccc}
 d & \overset{\iota}{\leftarrow} & F(h) \\
 1 & \overset{d}{\leftarrow} & F(c) \\
 d' & \overset{\iota}{\leftarrow} & F(c')
\end{array}$

Applying the symmetric lax monoidal pseudofunctor $E: \mathbf{Cat} \to \mathbf{Cat}$ to this diagram yields:

$\begin{array}{ccc}
 1 & \overset{E(\iota)}{\Rightarrow} & E(F(h)) \\
 1 & \overset{E(1)}{\Rightarrow} & E(F(c)) \\
 1 & \overset{E(d)}{\Rightarrow} & E(F(c'))
\end{array}$
Then because the above square commutes up to the isomorphism \(\theta: EF \Rightarrow F'H \), we get:

\[
\begin{array}{c}
E(d) \xrightarrow{E(1)} E(F(c)) \xrightarrow{\theta_c} F'(H(c)) \\
1 \xrightarrow{\theta} E(1) \xrightarrow{E(F(h))} F'(H(h)) \\
E(d') \xrightarrow{E(F(h))} E(F(c')) \xrightarrow{\theta_{c'}} F'(H(c'))
\end{array}
\]

which results in a 2-morphism \(E(\iota): F'(H(h))(\theta_cE(d)\phi) \rightarrow (\theta_{c'}E(d')\phi) \) in \(F'(H(c')) \). To check that the above recipe is functorial, given two vertically composable 2-morphisms in \(F\mathbf{C}\mathbf{sp} \):

\[
\begin{array}{c}
a \xrightarrow{f} c \leftarrow b \\
\downarrow f' \quad \downarrow h \quad \downarrow g \\
a' \xrightarrow{\iota} c' \leftarrow b' \\
\downarrow f'' \quad \downarrow h' \quad \downarrow g' \\
a'' \xrightarrow{\iota'} c'' \leftarrow b'' \\
\end{array}
\]

\(\iota: F(h)(d) \Rightarrow d' \)

\(\iota': F(h')(d') \Rightarrow d'' \)

if we first compose these, the result is:

\[
\begin{array}{c}
a \xrightarrow{f'f} c \leftarrow b \\
\downarrow h'h \quad \downarrow g'g \\
a'' \xrightarrow{\iota''} c'' \leftarrow b'' \\
\end{array}
\]

\(\iota'': F(h'h)(d) \Rightarrow d'' \)

and then the image of this 2-morphism under the double functor \(\mathbb{H} \) is given by:

\[
\begin{array}{c}
H(a) \xrightarrow{H(f'f)} H(c) \leftarrow H(b) \\
H(h'h) \quad \downarrow H(g'g) \\
H(a'') \xrightarrow{H(\iota'')} H(c'') \leftarrow H(b'') \quad \theta_{c''}E(d'')\phi \in F'(H(c''))
\end{array}
\]

\(E(\iota''): F'(H(h'')(\theta_{c''}E(d'')\phi) \rightarrow (\theta_{c'}E(d'')\phi)) \).
On the other hand, applying the double functor \(H \) first gives:

\[
\begin{align*}
H(a) & \xrightarrow{f} H(c) & \theta_E(d) & \in F'(H(c)) \\
H(f) & \downarrow & H(h) & \downarrow H(g) \\
H(a') & \xrightarrow{f'} H(c') & \theta_{E'}(d') & \in F'(H(c')) \\
E(\varepsilon); F'(H(h))(\theta_{E'}(d')\phi) & \rightarrow (\theta_{E'}(d')\phi) \\
H(a') & \xrightarrow{f'} H(c') & \theta_{E'}(d') & \in F'(H(c')) \\
H(f') & \downarrow & H(h') & \downarrow H(g') \\
H(a'') & \xrightarrow{f''} H(c'') & \theta_{E''}(d'') & \in F'(H(c'')) \\
E(\varepsilon'); F'(H(h'))(\theta_{E'}(d')\phi) & \rightarrow (\theta_{E''}(d'')\phi).
\end{align*}
\]

and then composing these gives:

\[
\begin{align*}
H(a) & \xrightarrow{f} H(c) & \theta_E(d) & \in F'(H(c)) \\
H(f') & \downarrow & H(h') & \downarrow H(g') \\
H(a'') & \xrightarrow{f''} H(c'') & \theta_{E''}(d'') & \in F'(H(c'')) \\
E(\varepsilon'); F'(H(h'))(\theta_{E}(d)\phi) & \rightarrow (\theta_{E''}(d'')\phi).
\end{align*}
\]

This double functor \(H \) satisfies the equations \(S H_1 = H S \) and \(T H_1 = H T \).

Given two composable horizontal 1-cells \(M \) and \(N \) in \(FCsp \):

\[
\begin{align*}
a_1 & \xrightarrow{i_1} c_1 & a_1 & \in F(c_1) \\
& \downarrow & & \\
b & \xrightarrow{i_2} c_2 & a_2 & \in F(c_2) \\
d_M & \in F(c_1) & d_N & \in F(c_2)
\end{align*}
\]

composing first gives \(M \odot N \):

\[
\begin{align*}
a_1 & \xrightarrow{\psi_{i_1}i_1} c_1 + b & c_2 & \xrightarrow{\psi_{i_2}a_2} a_2 \\
& \downarrow & & \\
d_{M \odot N} & \in F(c_1 + b, c_2)
\end{align*}
\]

where

\[
d: 1 \xrightarrow{\lambda^{-1}} 1 \times 1 \xrightarrow{d_1 \times d_2} F(c_1) \times F(c_2) \xrightarrow{\phi_{c_1, c_2}} F(c_1 + c_2) \xrightarrow{F(j)} F(c_1 + b, c_2).
\]

83
The image of this horizontal 1-cell is then given by $\mathbb{H}(M \odot N)$:

$$H(a_1) \xrightarrow{H(\psi_{c_1} i_1)} H(c_1 + b a_2) \xleftarrow{H(\psi_{c_2} a_2)} H(a_2)$$

$$\mathbb{H}(M \odot N) = \theta_{c_1+b c_2} E(d_{M \odot N}) \phi \in F'(H(c_1 + b c_2))$$

where

$$\mathbb{H}(M \odot N) = \theta_{c_1+b c_2} E(d_{M \odot N}) \phi: 1 \xrightarrow{\phi} E(1) \xrightarrow{E(d)} E(F(c_1 + b c_2)) \xrightarrow{\theta_{c_1+b c_2}} F'(H(c_1 + b c_2)).$$

On the other hand, the image of each horizontal 1-cell under the double functor \mathbb{H} is given respectively by $\mathbb{H}(M)$ and $\mathbb{H}(N)$:

$$H(a_1) \xrightarrow{H(i_1)} H(c_1) \xleftarrow{H(\phi)} H(b) \xrightarrow{H(i_2)} H(c_2) \xleftarrow{H(\phi)} H(a_2)$$

$$\theta_{c_1} E(d_{M}) \phi \in F'(H(c_1)) \quad \theta_{c_2} E(d_{N}) \phi \in F'(H(c_2))$$

Composing these then gives $\mathbb{H}(M) \odot \mathbb{H}(N)$:

$$H(a_1) \xrightarrow{\Psi_{f H(c_1)} H(i_1)} H(c_1) \xrightarrow{H(b)} H(c_2) \xleftarrow{H(\phi)} H(a_2)$$

$$d_{\mathbb{H}(M) \odot \mathbb{H}(N)} \in F'(H(c_1) + H(b) H(c_2))$$

where

$$d_{\mathbb{H}(M) \odot \mathbb{H}(N)}: 1 \xrightarrow{(\theta_{c_1} \times \theta_{c_2}) (E(d_{M}) \times E(d_{N})) \phi} F'(H(c_1)) \times F'(H(c_2)) \xrightarrow{\Phi_{H(c_1)} H(c_2)} F'(H(c_1) + H(b) H(c_2)) \xrightarrow{F'(\phi)} F'(H(c_1) + H(b) H(c_2)).$$

We then have a comparison constraint:

$$\mathbb{H}_{M,N}: \mathbb{H}(M) \odot \mathbb{H}(N) \xrightarrow{\sim} \mathbb{H}(M \odot N)$$

given by the globular 2-isomorphism:

$$H(a_1) \xrightarrow{\Psi_{f H(c_1)} H(i_1)} H(c_1) + H(b) H(c_2) \xleftarrow{\Psi_{f H(c_2)} H(a_2)} H(a_2)$$

$$d_{\mathbb{H}(M) \odot \mathbb{H}(N)} \in F'(H(c_1) + H(b) H(c_2))$$

$$1 \xrightarrow{\kappa^{-1}} H(a_1) \xrightarrow{H(\psi_{c_1} i_1)} H(c_1 + b c_2) \xleftarrow{H(\psi_{c_2} a_2)} H(a_2)$$

$$d_{\mathbb{H}(M) \odot \mathbb{H}(N)} \in F'(H(c_1 + b c_2))$$

$$i_{\kappa^{-1}}: F'(\kappa^{-1})(d_{\mathbb{H}(M) \odot \mathbb{H}(N)}) \rightarrow d_{\mathbb{H}(M) \odot \mathbb{N}}.$$
where κ is the isomorphism

$$\kappa: H(c_1 + b c_2) \sim H(c_1) + H(b) H(c_2)$$

which comes from the finite colimit preserving functor $H: A \to A'$. The above diagram commutes by a similar argument to the one used in Theorem 4.3.15. Similarly, for every object $c \in A$, we have a unit comparison constraint

$$H_U: U \to H_U$$

given by the globular 2-isomorphism:

$$H(c) \xrightarrow{1} H(c) \xleftarrow{1} H(c) \quad !_{H(c)} \in F'(H(c))$$

where the morphism of decorations is the morphism $\iota: !_{H(c)} \to (\theta_c E !_c) \phi$ in $F'(H(c))$.

These comparison constrains satisfy the coherence axioms of a monoidal category, namely:

$$\begin{align*}
(H(M) \otimes H(N)) \otimes H(P) &\xrightarrow{a} H(M) \otimes (H(N) \otimes H(P)) \\
H_M \otimes 1 &\xrightarrow{1} H_{N,P} \\
H(M \otimes N) \otimes H(P) &\xrightarrow{H_M \otimes 1} H_{N,P} \\
H((M \otimes N) \otimes P) &\xrightarrow{H(a')} H(M \otimes (N \otimes P)) \\
U_{H(a)} \otimes H(M) &\xrightarrow{H_U \otimes 1} H(U_a) \otimes H(M) \\
\lambda &\xrightarrow{\rho} H(U_a \otimes M) \\
H(M) &\xrightarrow{\lambda'} H(U_a \otimes M) \\
H(M) &\xrightarrow{\rho} H(U_a \otimes M) \\
H(M) &\xrightarrow{\iota'} H(U_a \otimes M)
\end{align*}$$

The diagrams involving the morphisms of decorations are similar to those in Theorem 4.1.2.

This shows that $\mathbb{H} = (H, E, \theta)$ is a double functor. Next we show that this double functor
is symmetric monoidal. First, that the object component $H_0 = H$ is symmetric monoidal is clear as $H : A \to A'$ preserves finite colimits. As for the arrow component H_1, given two horizontal 1-cells M_1 and M_2 in $FCsp$:

$$
\begin{array}{ccc}
M_1 & \xrightarrow{i_1} & c_1 & \xleftarrow{o_1} & b_1 \\
M_2 & \xrightarrow{i_2} & c_2 & \xleftarrow{o_2} & b_2 \\
& \downarrow{d_{M_1}} & \downarrow{d_{M_2}} & & \\
F(c_1) & & & & F(c_2)
\end{array}
$$

their tensor product $M_1 \otimes M_2$ in $FCsp$ is given by:

$$
\begin{array}{ccc}
M_1 \otimes M_2 & \xrightarrow{i_1 + i_2} & c_1 + c_2 & \xleftarrow{o_1 + o_2} & b_1 + b_2 \\
& \downarrow{d_{M_1 \otimes M_2}} & & & \\
F(c_1 + c_2)
\end{array}
$$

and the image of this horizontal 1-cell under the double functor \mathbb{H} is $\mathbb{H}(M_1 \otimes M_2)$ given by:

$$
\begin{array}{ccc}
H(a_1 + a_2) & \xrightarrow{H(i_1 + i_2)} & H(c_1 + c_2) & \xleftarrow{H(o_1 + o_2)} & H(b_1 + b_2) \\
& \downarrow{d_{\mathbb{H}(M_1 \otimes M_2)}} & & & \\
F'(H(c_1 + c_2))
\end{array}
$$

On the other hand, the image of M_1 and M_2 is given by $\mathbb{H}(M_1)$ and $\mathbb{H}(M_2)$:

$$
\begin{array}{ccc}
H(a_1) & \xrightarrow{H(i_1)} & H(c_1) & \xleftarrow{H(o_1)} & H(b_1) \\
& \downarrow{d_{\mathbb{H}(M_1)}} & & & \\
F'(H(c_1))
\end{array} \quad \begin{array}{ccc}
H(a_2) & \xrightarrow{H(i_2)} & H(c_2) & \xleftarrow{H(o_2)} & H(b_2) \\
& \downarrow{d_{\mathbb{H}(M_2)}} & & & \\
F'(H(c_2))
\end{array}
$$

and their tensor product $\mathbb{H}(M_1) \otimes \mathbb{H}(M_2)$ is given by:

$$
\begin{array}{ccc}
H(a_1) + H(a_2) & \xrightarrow{H(i_1) + H(i_2)} & H(c_1) + H(c_2) & \xleftarrow{H(o_1) + H(o_2)} & H(b_1) + H(b_2) \\
& \downarrow{d_{\mathbb{H}(M_1) \otimes \mathbb{H}(M_2)}} & & & \\
F'(H(c_1) + H(c_2))
\end{array}
$$

$$
\begin{array}{ccc}
d_{\mathbb{H}(M_1) \otimes \mathbb{H}(M_2)} : 1 & \xrightarrow{(\phi \times \phi)(\lambda^{-1} \times \lambda^{-1})} & E(1) \times E(1) & \xrightarrow{(\theta_{c_1} \times \theta_{c_2})(E(d_{M_1}) \times E(d_{M_2}))} & F'(H(c_1)) \times F'(H(c_2)) & \xrightarrow{\Phi_{H(c_1),H(c_2)}} & F'(H(c_1) + H(c_2)).
\end{array}
$$
We then have a natural 2-isomorphism \(\mu_{M_1, M_2} : \mathbb{H}(M_1) \otimes \mathbb{H}(M_2) \to \mathbb{H}(M_1 \otimes M_2) \) in \(F'\text{Csp} \) given by:

\[
d_{\mathbb{H}(M_1) \otimes \mathbb{H}(M_2)} \in F'(H(c_1) + H(c_2))
\]

\[
\begin{array}{ccc}
H(a_1) + H(a_2) & \xrightarrow{H(\alpha) + H(\beta)} & H(c_1) + H(c_2) \\
\kappa & \downarrow & \kappa \\
H(a_1 + a_2) & \xrightarrow{H(\beta + \alpha)} & H(c_1 + c_2)
\end{array}
\]

\[
d_{\mathbb{H}(M_1 \otimes M_2)} \in F'(H(c_1 + c_2))
\]

\[
\iota \kappa : F'(\kappa)(d_{\mathbb{H}(M_1) \otimes \mathbb{H}(M_2)}) \to d_{\mathbb{H}(M_1 \otimes M_2)}
\]

where \(\kappa \) denotes the isomorphism arising from \(H \) preserving finite colimits. This natural 2-isomorphism together with the associators of \(F\text{Csp} \) and \(F'\text{Csp} \), respectively \(\alpha \) and \(\alpha' \), make the following diagram commute:

\[
\begin{array}{ccc}
(\mathbb{H}(M_1) \otimes \mathbb{H}(M_2)) \otimes \mathbb{H}(M_3) & \xrightarrow{\alpha'} & \mathbb{H}(M_1) \otimes (\mathbb{H}(M_2) \otimes \mathbb{H}(M_3)) \\
\mu_{M_1, M_2} \otimes 1 & \downarrow & 1 \otimes \mu_{M_2, M_3} \\
\mathbb{H}(M_1 \otimes M_2) \otimes \mathbb{H}(M_3) & \xrightarrow{\mu_{M_1, M_2} \otimes \mathbb{H}(M_3)} & \mathbb{H}(M_1) \otimes \mathbb{H}(M_2 \otimes M_3) \\
\mu_{M_1, M_2, M_3} & \downarrow & \mu_{M_1, M_2 \otimes M_3} \\
\mathbb{H}((M_1 \otimes M_2) \otimes M_3) & \xrightarrow{\mathbb{H}(\alpha)} & \mathbb{H}(M_1 \otimes (M_2 \otimes M_3))
\end{array}
\]

with the corresponding diagram of decorations in \(F'(H(c_1 + (c_2 + c_3))) \):

\[
\begin{array}{ccc}
F'(\alpha \kappa \kappa)(d_{\mathbb{H}(M_1) \otimes \mathbb{H}(M_2) \otimes \mathbb{H}(M_3)}) & \xrightarrow{F'(\kappa \kappa)(\iota_{\alpha'})} & F'(\kappa \kappa)(d_{\mathbb{H}(M_1) \otimes \mathbb{H}(M_2) \otimes \mathbb{H}(M_3)}) \\
F'(\alpha \kappa)(\iota_{\kappa} + 1) & \downarrow & \iota_{\kappa} \\
F'(\alpha \kappa)(d_{\mathbb{H}(M_1 \otimes M_2) \otimes \mathbb{H}(M_3)}) & \xrightarrow{F'(\kappa)(d_{\mathbb{H}(M_1 \otimes M_2) \otimes \mathbb{H}(M_3)})} & F'(\kappa)(d_{\mathbb{H}(M_1 \otimes M_2 \otimes M_3)}) \\
F'(\alpha \kappa)(\iota_{\alpha}) & \downarrow & \iota_{\kappa} \\
F'(\alpha \kappa)(d_{\mathbb{H}(M_1 \otimes M_2 \otimes M_3)}) & \xrightarrow{\iota_{\alpha \kappa}} & d_{\mathbb{H}(M_1 \otimes (M_2 \otimes M_3))}
\end{array}
\]

where

\[
F'(\alpha \kappa \kappa)(d_{\mathbb{H}(M_1) \otimes \mathbb{H}(M_2) \otimes \mathbb{H}(M_3)}) = F'(\kappa \alpha')(d_{\mathbb{H}(M_1) \otimes \mathbb{H}(M_2) \otimes \mathbb{H}(M_3)})
\]
as the corresponding hexagon for the finite colimit preserving functor $H : A \to A'$ commutes.

The map μ_{M_1, M_2} is also compatible with the braidings β and β' of FC_{sp} and $F'C_{sp}$, respectively, and make the necessary square commute as a consequence of the corresponding commutative square involving braidings from the finite colimit preserving functor $H : A \to A'$.

We also have that the monoidal unit of FC_{sp} is given by:

$$1_A \xrightarrow{1} 1_A \xleftarrow{1} 1_A$$

$$!_{1_A} \in F(1_A)$$

where 1_A is the monoidal unit of the finitely cocartesian category A. The image of this horizontal 1-cell under H is given by:

$$H(1_A) \xrightarrow{1} H(1_A) \xleftarrow{1} H(1_A)$$

$$\theta_{1_A}E(!_{1_A})\phi \in F'(H(1_A))$$

as H preserves finite colimits. We then have a 2-isomorphism in $F'C_{sp}$ given by:

$$\mu : 1_{F'C_{sp}} \to \mathbb{H}(1_{FC_{sp}})$$

$$\begin{array}{ccc}
1_A & \xrightarrow{1} & 1_A & \xleftarrow{1} & 1_A \\
\kappa & \downarrow & \kappa & \downarrow & \kappa \\
H(1_A) & \xrightarrow{1} & H(1_A) & \xleftarrow{1} & H(1_A) \\
\end{array}$$

$$\begin{array}{ccc}
!_{1_A'} & \xrightarrow{1} & !_{1_A'} & \xleftarrow{1} & !_{1_A'} \\
\kappa & \downarrow & \kappa & \downarrow & \kappa \\
H'(1_A) & \xrightarrow{1} & H'(1_A) & \xleftarrow{1} & H'(1_A) \\
\end{array}$$

$$\theta_{1_A}E(!_{1_A})\phi \in F'(H(1_A))$$

together with the morphism $\iota_\mu : F'(\kappa)(!_{1_A'}) \to (\theta_{1_A}E(!_{1_A})\phi)$ in $F'(H(1_A))$. The following square then commutes for any horizontal 1-cell M of FC_{sp}:

$$\begin{array}{ccc}
1_A' \otimes \mathbb{H}(M) & \xrightarrow{\mu \otimes 1} & \mathbb{H}(1_A) \otimes \mathbb{H}(M) \\
\iota & \downarrow & \iota \\
\mathbb{H}(M) & \xrightarrow{\mathbb{H}(\kappa')} & \mathbb{H}(1_A \otimes M) \\
\mu_{1_A, M} & \downarrow & \\
\mathbb{H}(M) & \xrightarrow{\mathbb{H}(\kappa')} & \mathbb{H}(1_A \otimes M) \\
\end{array}$$
where we have abbreviated the monoidal units of $F\mathcal{C}_{sp}$ and $F'\mathcal{C}_{sp}$ as 1_A and $1_{A'}$, respectively. The diagram of corresponding decorations is given by:

$$
\begin{array}{ccc}
F'(\ell)(d_{1_{A'}} \otimes d_{\mathcal{H}(M)}) & \xrightarrow{F'(H(\ell')\kappa)(\mu \otimes 1)} & F'(H(\ell')\kappa)(d_{1_{A'}} \otimes d_{\mathcal{H}(M)}) \\
\downarrow \iota_{\ell} & & \downarrow \iota_{H(\ell')} \\
d_{\mathcal{H}(M)} & \xleftarrow{\iota_{\mathcal{H}(\ell')}} & F'(H(\ell'))(d_{1_{A'} \otimes M})
\end{array}
$$

where

$$F'(\ell)(d_{1_{A'}} \otimes d_{\mathcal{H}(M)}) = F'(H(\ell')\kappa(\mu \otimes 1))(d_{1_{A'}} \otimes d_{\mathcal{H}(M)})$$

since the corresponding square involving left unitors for the finite colimit preserving functor $H: A \to A'$ commutes. The other square involving the right unitors r and r' is similar. Note that because the comparison constraints μ and $\mu_{(-,-)}$ are both isomorphisms, the symmetric monoidal double functor \mathbb{H} is strong.

Theorem 4.2.1. Given two finitely cocomplete categories A and A', two symmetric lax monoidal pseudofunctors $F: A \to \text{Cat}$ and $F': A' \to \text{Cat}$, a finite colimit preserving functor $H: A \to A'$, a symmetric lax monoidal pseudofunctor $E: \text{Cat} \to \text{Cat}$ and a 2-isomorphism $\theta: EF \Rightarrow F'H$ as in the following diagram, the triple (H, E, θ) induces a double functor $\mathbb{H}: F\mathcal{C}_{sp} \to F'\mathcal{C}_{sp}$ as defined above.

$$
\begin{array}{ccc}
A & \xrightarrow{F} & \text{Cat} \\
\downarrow H & \not\xleftarrow{\theta} & \downarrow E \\
A' & \xleftarrow{F'} & \text{Cat}
\end{array}
$$

4.3 Structured cospans versus decorated cospans

In this section we compare the double categories obtained via structured cospans and decorated cospans. Under conditions discovered by Christina Vasilakopoulou, the two frame-
works will be shown to be equivalent as double categories. This is Theorem 4.3.15 and the
main content of this section. But first, we make precise what it meant by an ‘equivalence
of double categories’.

We define an equivalence of double categories following Shulman [45]. Given a double
category \mathcal{A}, we write $f_{\mathcal{A}}(M, N)$ for the set of 2-morphisms in \mathcal{A} of the form:

$$
\begin{array}{ccc}
A & \xrightarrow{M} & B \\
\downarrow f & & \downarrow g \\
C & \xleftarrow{N} & D
\end{array}
$$

We call M and N the **horizontal source and target** of the 2-morphism a, respectively, and
likewise we call f and g the **vertical source and target** of the 2-morphism a, respectively.
Thus $f_{\mathcal{A}}(M, N)$ denotes the set of 2-morphisms in \mathcal{A} with horizontal source and target M
and N and vertical source and target f and g.

Definition 4.3.1. A (possibly lax or oplax) double functor $\mathbb{F}: \mathcal{A} \to \mathcal{X}$ is **full** (respectively,
faithful) if $\mathbb{F}_0: \mathcal{A}_0 \to \mathcal{X}_0$ is full (respectively, faithful) and each map

$$
\mathbb{F}_1: f_{\mathcal{A}}(M, N) \to \mathbb{F}(f), \mathbb{X}_{\mathbb{F}(g)}(\mathbb{F}(M), \mathbb{F}(N))
$$

is surjective (respectively, injective).

Definition 4.3.2. A (possibly lax or oplax) double functor $\mathbb{F}: \mathcal{A} \to \mathcal{X}$ is **essentially surjective**
if we can simultaneously make the following choices:

1. For each object $x \in \mathcal{X}$, we can find an object $a \in \mathcal{A}$ together with a vertical 1-
isomorphism $\alpha_x: \mathbb{F}(a) \to x$, and
(2) For each horizontal 1-cell $N: x_1 \to x_2$ of \mathbb{X}, we can find a horizontal 1-cell $M: a_1 \to a_2$ of \mathbb{A} and a 2-isomorphism a_N of \mathbb{X} as in the following diagram:

\[
\begin{array}{ccc}
F(a_1) & \xrightarrow{F(M)} & F(a_2) \\
\downarrow_{\alpha_{x_1}} & & \downarrow_{\alpha_{x_2}} \\
x_1 & \xrightarrow{a_N} & x_2
\end{array}
\]

Definition 4.3.3. A double functor $F: \mathbb{A} \to \mathbb{X}$ is **strong** if the comparison and unit constraints are globular isomorphisms, meaning that for each composable pair of horizontal 1-cells M and N we have a natural isomorphism

$$F_{M,N}: F(M) \circ F(N) \xrightarrow{\sim} F(M \circ N)$$

and for each object $a \in \mathbb{A}$ a natural isomorphism

$$F_a: \hat{U}F(a) \xrightarrow{\sim} F(U_a).$$

Following Theorem 7.8 of Shulman [45], we say that a strong double functor if part of a double equivalence if and only if it is full, faithful and essentially surjective.

Definition 4.3.4 (Shulman, Theorem 7.8). Given a strong double functor $F: \mathbb{A} \to \mathbb{X}$, F is part of a double equivalence if and only if F is full, faithful and essentially surjective. We say that $F: \mathbb{A} \to \mathbb{X}$ is a double equivalence and that \mathbb{A} and \mathbb{X} are equivalent as double categories.

Definition 4.3.5. Given a double equivalence $F: \mathbb{A} \to \mathbb{X}$, if F, \mathbb{A} and \mathbb{X} are all symmetric monoidal, then F is a symmetric monoidal double equivalence, and \mathbb{A} and \mathbb{X} are equivalent as symmetric monoidal double categories.

Given a symmetric lax monoidal pseudofunctor $F: (\mathbb{A}, +, 0) \to (\text{Cat}, \times, 1)$, one can obtain a functor $R: \int F \to \mathbb{A}$ by the Grothendieck construction. Moreover, if each $F(a)$ is
finitely complete, the category $\int F$ will have finite colimits and this functor R will preserve finite colimits and be right adjoint to a fully faithful left adjoint $L: A \to \int F$ between two categories with finite colimits which then allows for the construction of a structured cospan double category [4]. In this case, the resulting decorated cospan double category $F\text{Csp}$ and structured cospan double category $L\text{Csp}(\int F)$ are equivalent as symmetric monoidal double categories.

First we lay the groundwork for when an opfibration has a left adjoint. This bridge between the two notions of opfibration and left adjoint is due to Christina Vasilakopoulou who is a coauthor on a joint work [4] with Baez which investigates this situation and its consequences in more detail.

The definition of 2-category can be found in Chapter 5 and pseudofunctor in Chapter 4.

Definition 4.3.6. Let fcocCat denote the 2-category of categories with finite colimits and finite colimit preserving functors.

Definition 4.3.7. A functor $U: X \to A$ is a **Grothendieck opfibration** if for any object $a \in A$ and every object $x \in X$ such that $U(x) = a$, for any morphism $f: a \to b$ there exists a **cocartesian lifting** of x along f. This means that there exists a morphism β in X whose domain is x which satisfies the following universal property: for any morphism $g: b \to b'$ in A and morphism $\gamma: x \to y'$ in X such that $U(\gamma) = g \circ f$, there exists a unique morphism
δ: y → y′ such that γ = δ ◦ β and U(δ) = g.

We call X the total category and A the base category of the opfibration U: X → A.

For any object a ∈ A, the fiber category X_a consists of all objects x ∈ X such that U(x) = a and all morphisms γ: x → x′ such that U(f) = id_a. For any a ∈ A, The Axiom of Choice allows us to select a cocartesian lifting x of a along f: a → b which we denote by

Cocart(f, x): x → f_!(x).

This makes U: X → A into a cloven opfibration. This choice also induces reindexing functors

f_!: X_a → X_b

between any two fiber categories X_a and X_b. Note that by the universal property of a cocartesian lifting, we have natural isomorphisms (1_a)_! ∼= 1_{X_a} and for any composable morphisms f and g in A, (f ◦ g)_! ∼= f_! ◦ g_!. If these natural isomorphisms are equalities, we say that U is a split opfibration.

Definition 4.3.8. Let OpFib(A) be the 2-subcategory of the slice 2-category of Cat/A of opfibrations over A, cocartesian lifting preserving functors and natural transformations with vertical components.

There is a 2-equivalence between opfibrations and pseudofunctors which is given by the well known Grothendieck construction.
Definition 4.3.9. Given a pseudofunctor \(F: A \to \text{Cat} \) where \(A \) is a category with trivial 2-morphisms, the **Grothendieck category** \(\int F \) has:

1. objects as pairs \((a, x \in F(a))\) and
2. a morphism from a pair \((a, x \in F(a))\) to another pair \((b, y \in F(b))\) is given by a pair \((f: a \to b, \iota: F(f)(x) \to y)\) in \(A \times F(b) \). Note that a morphism can be viewed as a morphism together with a 2-morphism:

\[
\begin{array}{ccc}
a & \xrightarrow{f} & F(a) \\
\downarrow & & \downarrow F(f) \\
b & \xleftarrow{\iota \circ \iota} & F(b)
\end{array}
\]

Given a pseudofunctor \(F: A \to \text{Cat} \), the Grothendieck category \(\int F \) is opfibered over \(A \) via the forgetful functor \(U: \int F \to A \) where the fiber categories are given by \((\int F)_a = F(a) \) and the associated reindexing functors are given by \(f! = F(f) \). This provides one direction of a well-known equivalence.

Theorem 4.3.10. (1) Every opfibration \(U: X \to A \) gives rise to a pseudofunctor \(F_U: A \to \text{Cat} \).

(2) Every pseudofunctor \(F: A \to \text{Cat} \) gives rise to an opfibration \(U_F: \int F \to A \).

(3) The above two correspondences give rise to an equivalence of 2-categories

\[[A, \text{Cat}]_{ps} \sim \text{OpFib}(A) \]

such that \(F_{U_F} \cong F \) and \(U_{F_U} \cong U \).

Moeller and Vasilakopoulou [40] have generalized the Grothendieck construction to the monoidal situation, meaning that **lax monoidal** pseudofunctors \(F: A \to \text{Cat} \) correspond
bijectively to monoidal structures on the total category $\int F$ such that the corresponding opfibration $U_F : \int F \to A$ is a strict monoidal functor and the tensor product $\otimes \int F$ preserves cocartesian liftings. If A is cocartesian monoidal, there is a further correspondence given by:

\[
\begin{align*}
lax \text{ monoidal pseudofunctors } F : (A, +, 0) &\to (\text{Cat}, \times, 1) \\
\updownarrow & \\
\text{monoidal opfibrations } U : (X, \otimes, I) &\to (A, +, 0) \quad (4.3) \\
\updownarrow & \\
pseudofunctors F : A &\to \text{MonCat}
\end{align*}
\]

The second equivalence is due to Shulman [45]. In detail, given a lax monoidal structure (ϕ, ϕ_0) on a pseudofunctor F, each fiber category inherits a monoidal structure via:

\[
\otimes_a : F(a) \times F(a) \xrightarrow{\phi_{a,a}} F(a + a) \xrightarrow{F(\nabla)} F(a) \quad (4.4)
\]

\[
I_x : 1 \xrightarrow{\phi_0} F(0) \xrightarrow{F(1)} F(a).
\]

These correspondences further restrict when the Grothendieck category $\int F$ is cocartesian monoidal itself. In this case, the monoidal opfibration clauses for $U : (X, +, 0) \to (A, +, 0)$ results in a functor (strictly) preserving coproducts and the initial object, and these bijectively correspond to pseudofunctors $F : A \to \text{cocartCat}$ where cocartCat is the 2-category of cocartesian categories, coproduct preserving functors and natural transformations. The following result then brings pushouts into the picture by addressing when
opfibrations preserve all finite colimits. The following statement is more general as it relates the existence of any class of colimits in the total category of an opfibration to their existence in the fibers. For more details, see the work of Hermida [32].

Lemma 4.3.11. Let J be a small category and $U : X \to A$ an opfibration. If the base category A has J-colimits, then the following are equivalent:

1. All the fiber categories have J-colimits and all reindexing functors preserve them.
2. The total category X has J-colimits and U preserves them.

The first part regards the existence of colimits locally in each fiber which can equivalently be expressed as the image of the associated pseudofunctor $F : A \to \textbf{Cat}$ landing in the sub-2-category fcocCat of finitely cocomplete categories and finite colimit preserving functors. The second part regards the existence of colimits globally in the total category $\int F$. These two combine to result in:

Corollary 4.3.12. Let A be a category with finite colimits and $F : (A, +, 0) \to (\textbf{Cat}, \times, 1)$ a lax monoidal pseudofunctor. If the pseudofunctor $A \to \text{MonCat}$ via the correspondence in 4.3 factors through fcocCat, meaning that each $F(a)$ is finitely cocomplete, then the Grothendieck category $\int F$ has all finite colimits and the corresponding opfibration $U_F : \int F \to A$ preserves them.

What we are primarily interested in is a left adjoint L_F to the induced monoidal opfibration $U_F : \int F \to A$ of the Grothendieck construction of the pseudofunctor F in order to bring structured cospans into the picture. The following provides sufficient conditions for the existence of such a left adjoint.
Proposition 4.3.13. [31, Prop. 4.4] Let \(U : X \to A \) be an opfibration. Then \(U \) is a right adjoint ‘left inverse’, meaning that the unit \(\eta : 1_A \to UL \) is an identity, if and only if its fibers have initial objects which are preserved by the reindexing functors.

Proof. Sketch The left adjoint \(L : A \to X \) maps an object \(a \) to the initial object in its fiber which we denote by \(\bot_a \). By construction, we have that \(U(L(a)) = U(\bot_a) = a \). For a morphism \(f : a \to a' \), \(L(f) \) is given by:

\[
\begin{array}{c}
\bot_a \xrightarrow{\text{Cocart}(f, \bot_a)} f_!(\bot_a) \to \bot_{a'}
\end{array}
\]

where the second arrow is the unique isomorphism between initial objects in the fiber above \(a' \) as \(f_! \) preserves them.

Notice that under Lemma 4.3.11, if \(A \) has an initial object \(0_A \), then the above conditions are equivalent to \(X \) having an initial object \(0_X \) above \(0_A \). Then \(\bot_a \) is the cocartesian lifting of \(0_X \) along the unique map \(!_a : 0_A \to a \) in the base category \(A \):

\[
\begin{array}{c}
0_X \xrightarrow{\text{Cocart}(0_X, !_a)} (!_a)_!(0_X) =: \bot_a \quad \text{ in } X
\end{array}
\]

\[
\begin{array}{c}
0_A \xrightarrow{!_a} a \quad \text{ in } A
\end{array}
\]

Furthermore, if \(U = U_F \) for a pseudofunctor \(F : A \to \text{Cat} \) in Theorem 4.3.10, the reindexing functors \((!_a)_!\) of the opfibration are given by \(F(!_a) \) and therefore \(\bot_a = (a, F(!_a)(0_X)) \) in the Grothendieck category where \(!_a : 0_A \to a \). Lastly, if the pseudofunctor \((F, \phi, \phi_0) : (A, +, 0) \to (\text{Cat}, \times, 1) \) is lax monoidal to begin with, the Grothendieck construction in the cocartesian case expresses \(\bot_a \) as the image of the composite

\[
1 \xrightarrow{\phi_0} F(0_A) \xrightarrow{F(!_a)} F(a).
\]
Regarding the opposite direction, which is not needed in the proof of the main result of this chapter below, we have the following result. For a discussion on the ‘strict cocontinuity’ condition, we refer to the work of Cicala and Vasilakopoulou [19].

Proposition 4.3.14. Suppose that $U : X \to A$ is a right adjoint and left inverse. If X and A both have chosen pushouts and initial objects and U strictly preserves them, then U is an opfibration.

Before presenting the main proof, we outline a sketch. Given a lax monoidal pseudofunctor $F : (A, +, 0_A) \to (\text{Cat}, \times, 1)$, the double category of decorated cospans $F\text{Csp}$ has A as its category of objects, horizontal 1-cells as F-decorated cospans given by pairs $(a \to m \leftarrow b, x \in F(m))$ and 2-morphisms as maps of cospans $k : m \to m'$ together with a morphism $F(k)(x) \to x'$ as in Theorem 4.1.2.

When the pseudofunctor F factors through fcocCat, by Corollary 4.3.12, the Grothendieck construction yields a finitely cocomplete Grothendieck category $\int F$ such that the corresponding opfibration $U_F : (\int F, +, 0) \to (A, +, 0)$ preserves all finite colimits. In particular, the initial object is preserved and so Lemma 4.3.11 and Corollary 4.3.13 apply to obtain a left adjoint $L_F : A \to \int F$ which is right inverse to U_F. This left adjoint is explicitly defined on objects by $L(a) = (a, \perp_a)$ where \perp_a is initial in the finitely cocomplete category $F(a)$. We can also express \perp_a as $\perp_a = F(!_a)_0$. Diagrammatically, this process can be expressed as:

$F : A \to \text{Cat} \quad \xrightarrow{\int F} \quad \int F \quad \xleftarrow{U_F} \quad A \quad \xrightarrow{L_F} \quad \int F$
From this left adjoint $L_F: \mathcal{A} \to \int F$ which goes between finitely cocomplete categories and preserves finite colimits, we can obtain a double category of structured cospans $L_F \mathcal{Csp}(\int F)$. This double category will also have \mathcal{A} as its category of objects, but now horizontal 1-cells are given by cospans of the form $L_F(a) \to x \leftarrow L_F(b)$ in the Grothendieck category $\int F$. Explicitly, horizontal 1-cells are given by:

\[
\begin{align*}
(a, \bot_a) & \quad \leftarrow (m, x) \\
\quad & \quad \leftarrow (b, \bot_b)
\end{align*}
\]

where $x \in F(m)$, as in Definition 4.3.9. A 2-morphism is given explicitly by:

\[
\begin{align*}
\begin{array}{c}
(a, \bot_a) \\
\rightarrow (m, x) \\
\leftarrow (b, \bot_b)
\end{array} & \quad \leftarrow \quad \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
(b', \bot_{b'}) \\
\rightarrow (m', x') \\
\leftarrow (a', \bot_{a'})
\end{array}
\end{array}
\end{array}
\end{array}
\end{align*}
\]

where the three vertical 1-morphisms in the middle come from L_F applied to vertical 1-morphisms in $F \mathcal{Csp}$, which are just morphisms of \mathcal{A}. Each of the above squares commutes.
which says that $k i = i' f$ and $k o = o' g$ in A. Then in the Grothendieck category, we have:

$$F(k \circ i)(\bot_a) \cong F k (F i (\bot_a)) \xrightarrow{F k (\iota)} F k (x) \xrightarrow{\iota} x' = \ (4.6)$$

$$F(i' \circ f)(\bot_a) \cong F i' (F f (\bot_a)) \xrightarrow{F i' (\chi_a)} F i' (\bot_{a'}) \xrightarrow{1} x'$$

in $F(m')$. Note that all the maps in the above equality are unique and originate from initial objects, which are preserved by reindexing functors. Thus no extra conditions are imposed on these morphisms, and likewise for the square involving o and o'.

We define a double functor $E: L_F \text{Csp}(\int F) \to FC\text{sp}$ whose object component is the identity on the category A. Given a horizontal 1-cell:

$$\begin{array}{c}
\xymatrix{ (a, \bot_a) \ar[r] & (m, x) \\
\{ i: a \to m \text{ in } A \} \ar[r] & \{ o: b \to m \text{ in } A \} \\
\{ \iota: F(i)(\bot_a) \to x \text{ in } F(m) \} \ar[r] & \{ \iota: F(o)(\bot_b) \to x \text{ in } F(m) \} \\
(a, \bot_a) \ar[r] & (b, \bot_b) (4.7)
\end{array}$$

the image is given by

$$a \xrightarrow{\iota} m \xleftarrow{o} b \text{ together with a decoration } x \in F(m).$$

Note that this is actually a bijective correspondence as the unique maps from the initial objects in the fibers provides no extra information. Given a 2-morphism of L_F-structured cospans as in (4.3), the image is given by the following map of cospans in A:

$$\begin{array}{c}
\xymatrix{ a \ar[r]^i & m \ar[d]^k \ar[l]^o & b \\
\ar[r]_{a'} & m' \ar[l]_{o'} & b'
\end{array}$$

$$f \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$

together with the morphism $\iota: F(k)(x) \to x'$ as in (4.3). This is again a bijective correspondence and commutativity of (4.6) holds by initiality of the domain.
The double functor $E = (E_0, E_1)$ is in fact strong. We have natural isomorphisms:

$$E(M) \odot E(N) \cong E(M \odot N)$$

$$\hat{U}_{E(m)} \cong E(U_m)$$

for any composable horizontal 1-cells:

$$M = (a, \bot_a) \xrightarrow{i} (m, x) \xleftarrow{o} (b, \bot_b)$$

and

$$N = (b, \bot_b) \xrightarrow{i'} (n, y) \xleftarrow{o'} (c, \bot_c)$$

and any object $m \in L_{\text{cosp}}(\int F)$. The horizontal composite $E(M) \odot E(N)$ is given as in Theorem 4.1.1 via a pushout and decoration:

$$j_m \circ i \quad m +_b n \quad j_n \circ o'$$

$$\quad a \quad 1 \times y \quad F(m) \times F(n) \quad \phi_{m,n}$$

$$\quad c, \quad x \times y \quad \phi \quad F(j) \quad F(m + b n)$$

where $j_m : m \to m +_b n$ and $j_n : n \to m +_b n$ are the canonical maps into a pushout. If we first compose M and N in the structured cospan double category $L_{\text{cosp}}(\int F)$ by using fiberwise pushouts constructed using Lemma 4.3.11, we obtain:

$$(m + b n, F(j_m)x + \bot m + b n F(j_n)y)$$

and the image of this composite is given by the cospan $a \to m + b n \leftarrow c$ together with the same decoration as the following diagram commutes:

$$F(m) \times F(n) \quad \phi \quad F(m + n)$$

$$\quad F(j_m) \times F(j_n)$$

$$\quad F((m + b n) + (m + b n)) \quad F(\nabla)$$

$$\quad F(j)$$

$$\quad F(m + b n)$$
as the pushout is over an initial object and hence really a coproduct. The fiberwise coproduct in $F(m+b,n)$ is given as in (4.4).

Lastly, for the identity morphisms, we have that U_m is given by:

$$(m, \perp_m) \rightarrow (m, \perp_m) \leftarrow (m, \perp_m)$$

with id_m as the A-component of the cospan legs together with isomorphisms between initial objects in the fibers. Hence $E(U_m)$ is the identity cospan on m in A together with the ‘initial decoration’ or ‘trivial decoration’ $\perp_m \in F(m)$. On the other hand, $U_{E(m)}$ is the same cospan and decoration. This concludes the outline that E is a strong double functor.

Here is the proof of the main content on the work of decorated cospans versus structured cospans [4]. We will sometimes denote a decoration $x \in F(m)$ as $d_{E(M)} \in F(R(x))$ where M is a horizontal 1-cell of

$$L \text{Csp}(X) = L_F \text{Csp}(\int F),$$

and given an object $a \in L \text{Csp}(X)$, the initial decoration or trivial decoration will be denoted as $\perp_a \in F(a)$ or $!_a \in F(a)$. Note, that as mentioned above, \perp_a is determined by the unique map $!_a: 0_A \rightarrow a$. The object $d_{E(M)}$ is not to be mistaken for an object of A which we will denote by a, b and c or m and n with various primes and subscripts.

Theorem 4.3.15. Let A be a category with finite colimits and $F: A \rightarrow \text{Cat}$ a symmetric lax monoidal pseudofunctor such that each $F(a)$ is finitely cocomplete. Then the symmetric monoidal double category $L \text{Csp}(\int F)$ utilizing structured cospans and the symmetric monoidal double category $F \text{Csp}$ utilizing decorated cospans are equivalent as symmetric monoidal double categories.
Proof. As each $F(a)$ is finitely cocomplete, there exists a fully faithful left adjoint $L: A \to \int F$ of the Grothendieck construction $R: \int F \to A$ of F, $\int F$ is finitely cocomplete and R preserves finite colimits.

First we will define a double functor which will be shown to be a double equivalence and then we will show that the double functor is symmetric monoidal. For notation, let $\int F = X$.

First, we define a double functor $E: L\text{Csp}(X) \to FC\text{sp}$ as follows: the object component of the double functor E is given by $E_0 = \text{id}_A$ as both double categories $L\text{Csp}(X)$ and $FC\text{sp}$ have objects and morphisms of A as objects and vertical 1-morphisms, respectively. The functor E_0 is trivially an equivalence of categories.

Given a horizontal 1-cell M of $L\text{Csp}(X)$, which is a cospan in X of the form:

\[
 L(c) \xrightarrow{i} x \xleftarrow{o} L(c')
\]

the image $E_1(M)$ is given by the pair:

\[
 c \xrightarrow{R(i)\eta_c} R(x) \xleftarrow{R(o)\eta_{c'}} c' \quad x \in F(R(x))
\]

where $R: X \to A$ is the right adjoint to the functor $L: A \to X$ and $\eta: 1_A \to RL$ is the unit of the adjunction $L \dashv R$ which is an isomorphism since L is fully faithful. Similarly, the image of a 2-morphism $\alpha: M \to N$ in $L\text{Csp}(X)$:

\[
 \begin{array}{ccc}
 L(c_1) & \xrightarrow{i} & x & \xleftarrow{o} & L(c_2) \\
 L(f) & \downarrow & \alpha & \downarrow & L(g) \\
 L(c'_1) & \xrightarrow{i'} & x' & \xleftarrow{o'} & L(c'_2)
 \end{array}
\]
is given by the 2-morphism \(E_1(\alpha) : E_1(M) \to E_1(N) \) in \(FC\text{sp} \) given by:

\[
\begin{array}{ccc}
R(i)\eta c_1 & R(x) & R(o)\eta c_2 \\
\downarrow{f} & \downarrow{g} & \\
R(i')\eta c'_1 & R(x') & R(o')\eta c'_2
\end{array}
\]
\(x \in F(R(x)) \)
\(x' \in F(R(x')) \)

\[
\begin{array}{ccc}
c_1 & R(x) & c_2 \\
f \downarrow{R(\alpha)} & \downarrow{R'(\alpha')} & g \\
c'_1 & R(x') & c'_2
\end{array}
\]

Together with a morphism \(\iota : F(R(\alpha))(x) \to x' \) in \(F(R(x')) \) which comes from the Grothendieck construction of the pseudofunctor \(F : A \to \text{Cat} \). That \(E_0 \) is a functor is clear. For \(E_1 \), given two vertically composable 2-morphisms \(M \) and \(M' \) in \(L\text{Csp}(X) \),

\[
\begin{array}{ccc}
L(c_1) & \overset{i}{\rightarrow} & x & \overset{o}{\leftarrow} & L(c_2) \\
\downarrow{L(f)} & & \downarrow{L(g)} & & \\
L(c'_1) & \overset{i'}{\rightarrow} & x' & \overset{o'}{\leftarrow} & L(c'_2)
\end{array}
\]

\[
\begin{array}{ccc}
L(c'_1) & \overset{i'}{\rightarrow} & x' & \overset{o'}{\leftarrow} & L(c'_2) \\
\downarrow{L(f')} & & \downarrow{L(g')} & & \\
L(c''_1) & \overset{i''}{\rightarrow} & x'' & \overset{o''}{\leftarrow} & L(c''_2)
\end{array}
\]

Their vertical composite \(M'M \) is given by:

\[
\begin{array}{ccc}
L(c_1) & \overset{i}{\rightarrow} & x & \overset{o}{\leftarrow} & L(c_2) \\
\downarrow{L(f')f} & & \downarrow{L(g'g)} & & \\
L(c'_1) & \overset{i''}{\rightarrow} & x'' & \overset{o''}{\leftarrow} & L(c'_2)
\end{array}
\]

And the image of this 2-morphism \(E_1(M'M) \) is given by:

\[
\begin{array}{ccc}
c_1 & R(i)\eta c_1 & R(x) & R(o)\eta c_2 & c_2 \\
f'f \downarrow{R(\alpha')\alpha} & \downarrow{R'(\alpha')} & \downarrow{g'g} & \\
c'_1 & R(x') & R(o')\eta c'_2 & c'_2
\end{array}
\]
\(x \in F(R(x)) \)
\(x' \in F(R(x')) \)

104
together with a morphism \(\iota_{M'M} : F(R(\alpha'))(x) \rightarrow x'' \) in \(F(R(x'')) \). On the other hand, the individual images \(E_1(M) \) and \(E_1(M') \) are given by:

\[
\begin{array}{ccc}
& f \downarrow & R(\alpha) \downarrow g \\
\varepsilon_1 & R(\alpha) \eta_{c_1} \downarrow R(\alpha) \eta_{c_2} \downarrow c_2 & x \in F(R(x)) & \leftarrow \end{array}
\]

\[
\begin{array}{ccc}
& f' \downarrow & R(\alpha') \downarrow g' \\
\varepsilon_1' & R(\alpha') \eta_{c_1'} \downarrow R(\alpha') \eta_{c_2'} \downarrow c_2' & x' \in F(R(x')) & \leftarrow \end{array}
\]

\[
\begin{array}{ccc}
& f'' \downarrow & R(\alpha'') \downarrow g'' \\
\varepsilon_1'' & R(\alpha'') \eta_{c_1''} \downarrow R(\alpha'') \eta_{c_2''} \downarrow c_2'' & x'' \in F(R(x'')) & \leftarrow \end{array}
\]

Together with morphisms \(\iota_M : F(R(\alpha))(x) \rightarrow x' \) in \(F(R(x')) \) and \(\iota_{M'} : F(R(\alpha')(x') \rightarrow x'' \) in \(F(R(x'')) \), respectively. The vertical composite \(E_1(M'M)E_1(M) \) of the above two 2-morphisms is given by \(E_1(M'M) \) as \(R \) is a functor and \(\iota_{M'M} = \iota_M \iota_M \). The functors \(E_0 \) and \(E_1 \) satisfy the equations \(E_0S = SE_1 \) and \(E_0T = TE_1 \).

First, to see that this functor is essentially surjective, given a horizontal 1-cell in \(F\mathcal{C} \mathcal{S}p \):

\[
\begin{array}{ccc}
\varepsilon_1 & i \downarrow c \leftarrow o & c_2 & x \in F(c) \end{array}
\]

we can find a 2-isomorphism in \(F\mathcal{C} \mathcal{S}p \) whose codomain is the above horizontal 1-cell and whose domain is the image of the following horizontal 1-cell in \(L\mathcal{C} \mathcal{S}p(X) \):

\[
\begin{array}{ccc}
L(c_1) & \rightarrow & x \leftarrow L(c_2) \\
\end{array}
\]

with the 2-isomorphism in \(F\mathcal{C} \mathcal{S}p \) given by:

\[
\begin{array}{ccc}
& 1 \downarrow & 1 \\
\varepsilon_1 & (R(o')\eta_e)^{-1} \downarrow o & \leftarrow c_2 & x \in F(x) \\
\varepsilon_1 & R(o')\eta_e \downarrow x \leftarrow c_2 & x \in F(c) \end{array}
\]
\[\iota: F((R(e)\eta_c)^{-1})(x) \to x \]

where \(e: L(c) \to x \) is given by the map from the trivial decoration on \(c \) to \(x \in F(c) \). The object and arrow components \(E_0 \) and \(E_1 \) satisfy the equations \(SE_1 = E_0S \) and \(TE_1 = E_0T \).

To show that the double functor \(E \) is fully faithful, we need to show that the map

\[E_1: fL\mathcal{Csp}(X)_g(M, N) \to E(f)F\mathcal{Csp}(E(g))(E(M), E(N)) \]

is bijective for arbitrary vertical 1-morphisms \(f \) and \(g \) and horizontal 1-cells \(M \) and \(N \) of \(L\mathcal{Csp}(X) \). Consider a 2-morphism in \(L\mathcal{Csp}(X) \) with horizontal source and target \(M \) and \(N \), respectively and vertical source and target \(f \) and \(g \), respectively:

\[
\begin{array}{ccc}
M & & N \\
\downarrow & & \downarrow \\
L(c_1) & \xrightarrow{i} & x & \xleftarrow{\alpha} & L(c_2) \\
\downarrow & & \downarrow & & \downarrow \\
L(c'_1) & \xrightarrow{i'} & x' & \xleftarrow{\alpha'} & L(c'_2)
\end{array}
\]

Thus the set

\[fL\mathcal{Csp}(X)_g(M, N) \]

consists of triples

\[(f, \alpha, g) \]

rendering the above diagram commutative where \(f \) and \(g \) are morphisms of \(A \) and \(\alpha \) is a morphism of \(X \). The image of the above 2-morphism under the double functor \(E \) has horizontal source and target given by \(E(M) \) and \(E(N) \), respectively, and vertical source and
target given by \(\mathbb{E}(f) \) and \(\mathbb{E}(g) \), respectively:

\[
\begin{array}{c}
\mathbb{E}(f) \\
\begin{array}{c}
| \quad | \\
\text{f} & \text{g}
\end{array} \\
\begin{array}{c}
\text{R(}t\text{)}\eta_1 \\
\downarrow \\
\text{R(}t'\text{)}\eta_1'
\end{array} \\
\begin{array}{c}
\text{R(}o'\text{)}\eta_2' \\
\downarrow \\
\text{R(}o\text{)}\eta_2
\end{array} \\
\begin{array}{c}
\text{c} \quad \text{c}
\end{array}
\end{array}
\]

\begin{align*}
& x \in F(R(x)) \\
& c_1 \xrightarrow{R(}t\text{)}\eta_1 \quad R(}o\text{)}\eta_2 \xleftarrow{c_2} \\
& \begin{array}{c}
\text{R(}t'\text{)}\eta_1' \\
\downarrow \\
\text{R(}o'\text{)}\eta_2'
\end{array} \\
& x' \in F(R(x')) \\
& \begin{array}{c}
\text{E}(f) \\
\downarrow \\
\text{E}(g)
\end{array}
\end{align*}

\[x' \in F(R(x'))\]

\[\text{E}(N)\]

together with a morphism \(\iota: F(R(}t\text{))(x) \to x' \) of \(F(R(x')) \). Thus the set

\[
\begin{array}{c}
\text{E}(f)F\text{Csp}_{\text{E}(g)}(\text{E}(M), \text{E}(N))
\end{array}
\]

consists of 4-tuples

\[(f, R(}t\text{), g, \iota)\]

rendering the above diagram commutative and where \(f, g \) and \(R(}t\text{) \) are morphisms of \(A \) and \(\iota \) is a morphism in \(F(R(x')) \). The morphisms \(R(}t\text{): R(x) \to R(x') \) and \(\iota: F(R(}t\text{))(x) \to x' \)
together determine the morphism \(\alpha: x \to x' \) in \(X \) and conversely: given two objects \(x = (c, x \in F(c)) \) and \(x' = (c', x' \in F(c')) \) of \(X = \int F \), a morphism from \(\alpha: x \to x' \) is a pair

\[(h: c \to c', \iota: F(h)(x) \to x')\]

where \(h: c \to c' \) is given by \(R(}t\text{): R(x) \to R(x') \). This shows that \(\mathbb{E} \) is fully faithful.

Next we show that the double functor \(\mathbb{E} \) is strong by exhibiting a natural isomorphism

\[
\mathbb{E}_{M,N}: \mathbb{E}(M) \circ \mathbb{E}(N) \xrightarrow{\sim} \mathbb{E}(M \circ N)
\]

107
for every pair of composable horizontal 1-cells M and N of $\mathcal{L}\mathcal{C}\mathcal{S}\mathcal{p}(X)$ and for every object $c \in \mathcal{L}\mathcal{C}\mathcal{S}\mathcal{p}(X)$ a natural isomorphism

$$\mathbb{E}_c : \hat{U}_{E(c)} \cong \mathbb{E}(U_c)$$

where U and \hat{U} are the unit structure functors of $\mathcal{L}\mathcal{C}\mathcal{S}\mathcal{p}(X)$ and $F\mathcal{C}\mathcal{S}\mathcal{p}$, respectively. For any object c, the horizontal 1-cell $\hat{U}_{E(c)}$ is given by \hat{U}_c which is given by the pair:

$$c \xrightarrow{1} c \xleftarrow{1} c \quad !_c \in F(c)$$

The horizontal 1-cell U_c is given by

$$L(c) \xrightarrow{1} L(c) \xleftarrow{1} L(c)$$

and so $\mathbb{E}(U_c)$ is given by the pair:

$$c \xrightarrow{\eta_c} R(L(c)) \xleftarrow{\eta_c} c \quad !_c \in F(R(L(c)))$$

We can then obtain the natural isomorphism $\mathbb{E}_c : \hat{U}_{E(c)} \cong \mathbb{E}(U_c)$ as the 2-morphism

$$\iota : F(\eta_c)(!_c) \xrightarrow{1} !_{R(L(c))}$$

in $F\mathcal{C}\mathcal{S}\mathcal{p}$.

Next, given composable horizontal 1-cells M and N in $\mathcal{L}\mathcal{C}\mathcal{S}\mathcal{p}(X)$:

$$L(c_1) \xrightarrow{i} x \xleftarrow{o} L(c_2) \quad L(c_2) \xrightarrow{i'} x' \xleftarrow{o'} L(c_3)$$
their images $E(M)$ and $E(N)$ are given by:

$$
c_1 R(i)\eta_1 \rightarrow R(x) \leftarrow c_2 \\
R(i')\eta_2 \rightarrow R(x') \leftarrow c_3
$$

$x \in F(R(x))$ and $x' \in F(R(x'))$

and so $E(M) \circ E(N)$ is given by:

$$
c_1 j\psi R(i)\eta_1 \rightarrow R(x) + c_2 R(x') \leftarrow c_3 \\
d_{E(M)\circ E(N)} \in F(R(x) + c_2 R(x'))
$$

where ψ denotes each natural map into the coproduct and j denotes the natural map from the coproduct to the pushout. On the other hand, $M \circ N$ is given by

$$
L(c_1) \overset{J\zeta}{\longrightarrow} x + L(c_2) x' \leftarrow L(c_3)
$$

where ζ is a natural map into a coproduct and J is the natural map from the coproduct to the pushout. Then $E(M \circ N)$ is given by

$$
c_1 R(J\zeta)i \eta_1 \rightarrow R(x + L(c_2) x') \leftarrow c_3 \\
d_{E(M \circ N)} = x + L(c_2) x' \in F(R(x + L(c_2) x'))
$$

and so $E_{M,N} : E(M) \circ E(N) \xrightarrow{\sim} E(M \circ N)$ is given by the 2-morphism:

$$
c_1 j\psi R(i)\eta_1 \rightarrow R(x) + c_2 R(x') \leftarrow c_3 \\
R(J\zeta)i \eta_1 \rightarrow R(x + L(c_2) x') \leftarrow c_3
$$

First, the right adjoint R also preserves finite colimits and so we have an isomorphism

$$
\kappa : R(x + R(L(c_2))) R(x') \rightarrow R(x + L(c_2) x').
$$
Also, since the left adjoint $L : A \to X$ is fully faithful, the unit of the adjunction $L \dashv R$ at the object c_2 gives an isomorphism $\eta_{c_2} : c_2 \to R(L(c_2))$ which results in an isomorphism

$$j_{\eta_{c_2}} : R(x) +_{c_2} R(x') \to R(x) +_{R(L(c_2))} R(x').$$

Composing these two results in an isomorphism

$$\sigma : = \kappa j_{\eta_{c_2}} : R(x) +_{c_2} R(x') \to R(x + L(c_2) x').$$

Next, to see that the above diagram commutes, it suffices to show that for the object $c_1 \in A$,

$$R(J) R(\zeta) R(i) \eta_{c_1}(c_1) = R(J\zeta i) \eta_{c_1}(c_1) \overset{j\psi R(i) \eta_{c_1}(c_1)}\rightarrow \sigma j\psi R(i) \eta_{c_1}(c_1) = \kappa j_{\eta_{c_2}} \psi R(i) \eta_{c_1}(c_1).$$

This follows as $R(i) \eta_{c_1} : c_1 \to R(x)$ and the following diagram commutes:

Lastly, this map of cospans comes with an isomorphism $\iota : F(\sigma)(d_{E(M) \odot E(N)}) \to d_{E(M \odot N)}$ in $F(R(x + L(c_2) x'))$. This shows that E is strong, and so $E : L\text{Csp}(X) \rightarrow F\text{Csp}$ is part of a double equivalence by Theorem 4.3.4.

Next we will show that if both double categories $L\text{Csp}(X)$ and $F\text{Csp}$ are symmetric monoidal, as is true if both A and X have finite colimits and F is symmetric monoidal, then this equivalence of double categories $E : L\text{Csp}(X) \rightarrow F\text{Csp}$ will be symmetric monoidal.

First, note that we have an isomorphism $\epsilon : 1_{F\text{Csp}} \to E(1_{L\text{Csp}(X)})$ and natural isomorphisms $\mu_{c_1,c_2} : E(c_1) \odot E(c_2) \to E(c_1 \odot c_2)$ for every pair of objects $c_1, c_2 \in L\text{Csp}(X)$ both of which
are given by identities since both double categories $L\mathbb{C}sp(X)$ and $F\mathbb{C}sp$ have A as their category of objects and $E_0 = id_A$. The diagrams utilizing these maps that are required to commute do so trivially.

For the arrow component E_1, we have an isomorphism $\delta: U_1 F\mathbb{C}sp \to E(U_1 L\mathbb{C}sp(X))$ where the horizontal 1-cell $U_1 F\mathbb{C}sp$ is given by:

$$1_A \xrightarrow{1} 1_A \xleftarrow{1} 1_A$$

where $!_A = \phi: 1 \to F(1_A)$ is the trivial decoration which comes from the structure of the symmetric lax monoidal pseudofunctor $F: A \to \text{Cat}$. The horizontal 1-cell $U_1 L\mathbb{C}sp(X)$ is given by:

$$L(1_A) \xrightarrow{1} L(1_A) \xleftarrow{1} L(1_A)$$

where here we make use of the fact that the left adjoint $L: (A, +, 1_A) \to (X, +, 1_X)$ preserves all colimits and thus $L(1_A) \cong 1_X$. The horizontal 1-cell $E(U_1 L\mathbb{C}sp(X))$ is then given by the pair:

$$1_A \xrightarrow{\eta_{1A}} R(L(1_A)) \xleftarrow{1} 1_A$$

$$!_{R(L(1_A))} \in E(R(L(1_A)))$$

The isomorphism δ is then given by the 2-morphism:

$$\eta_{1A} : F(\eta_{1A})(1_A) \to !_{R(L(1_A))}$$

of $F\mathbb{C}sp$. This is just the natural isomorphism E_{1A} from earlier.

Given two horizontal 1-cells M and N of $L\mathbb{C}sp(X)$:

$$L(c_1) \xrightarrow{1} x \xleftarrow{o} L(c_2) \quad L(c_1') \xrightarrow{o'} x' \xleftarrow{o'} L(c_2')$$
their images $E(M)$ and $E(N)$ are given by:

\[
\begin{array}{ccc}
R(i)\eta_{c_1} & \xrightarrow{R(x)} & R(x) \\
c_1 & \xleftarrow{} & c_2
\end{array}
\quad
\begin{array}{ccc}
R(o)\eta_{c_2} & \xrightarrow{R(x')} & R(x') \\
c_1' & \xleftarrow{} & c_2'
\end{array}
\quad
\begin{array}{ccc}
R(i')\eta_{c_1'} & \xrightarrow{R(x')} & R(x') \\
c_1' & \xleftarrow{} & c_2'
\end{array}
\quad
\begin{array}{ccc}
R(o')\eta_{c_2'} & \xrightarrow{R(x')} & R(x') \\
c_1 & \xleftarrow{} & c_2
\end{array}
\]

where $x \in F(R(x))$ and $x' \in F(R(x'))$

and so $E(M) \otimes E(N)$ is given by:

\[
c_1 + c_1' \xrightarrow{R(i)\eta_{c_1} + R(i')\eta_{c_1'}} R(x) + R(x') \xleftarrow{} R(x') + R(x') \\
c_{2} + c_2' \xrightarrow{R(o)\eta_{c_2} + R(o')\eta_{c_2'}} R(x') + R(x') \xleftarrow{} R(x) + R(x')
\]

where

\[
d_{E(M) \otimes E(N)}: 1 \xrightarrow{\lambda^{-1}} 1 \times 1 \xrightarrow{\times x'} F(R(x)) \times F(R(x')) \xrightarrow{\phi_{R(x),R(x')}} F(R(x) + R(x')).
\]

On the other hand, $M \otimes N$ is given by

\[
L(c_1 + c_1') \xrightarrow{(i + i')\phi^{-1}_{c_1,c_1'}} x + x' \xleftarrow{} L(c_2 + c_2')
\]

and $E(M \otimes N)$ is given by:

\[
c_1 + c_1' \xrightarrow{R((i + i')\phi^{-1}_{c_1,c_1'})\eta_{c_1+c_1'}} R(x + x') \xleftarrow{} R(x + x') \\
c_2 + c_2' \xrightarrow{R((o + o')\phi^{-1}_{c_2,c_2'})\eta_{c_2+c_2'}} R(x + x') \xleftarrow{} R(x + x')
\]

where

\[
d_{E(M \otimes N)}: 1 \xrightarrow{\lambda^{-1}} 1 \times 1 \xrightarrow{\times x'} F(R(x) + R(x'))
\]

We then have a 2-isomorphism $\mu_{M,N}: E(M) \otimes E(N) \xrightarrow{\sim} E(M \otimes N)$ in $FCsp$ given by:

\[
\begin{array}{ccc}
R(i)\eta_{c_1} + R(i')\eta_{c_1'} & \xrightarrow{R(o)\eta_{c_2} + R(o')\eta_{c_2'}} & c_2 + c_2' \\
1 & \xrightarrow{R((i + i')\phi^{-1}_{c_1,c_1'})\eta_{c_1+c_1'}} & R(x + x') \\
c_1 + c_1' & \xrightarrow{R((o + o')\phi^{-1}_{c_2,c_2'})\eta_{c_2+c_2'}} & c_2 + c_2'
\end{array}
\]

\[
t_{\mu}: F(\kappa)(d_{E(M) \otimes E(N)}) \rightarrow d_{E(M \otimes N)}
\]

where κ is the isomorphism which comes from $R: X \rightarrow A$ preserving finite colimits.
The isomorphisms δ and μ satisfy the left and right unitality squares, associativity hexagon and braiding square. To see this, let M_1, M_2 and M_3 be horizontal 1-cells in $\mathcal{C}_{\mathsf{Csp}}(X)$ given by:

$$
L(c_1) \xrightarrow{i_1} x_1 \xleftarrow{o_1} L(c'_1) \quad L(c_2) \xrightarrow{i_2} x_2 \xleftarrow{o_2} L(c'_2) \quad L(c_3) \xrightarrow{i_3} x_3 \xleftarrow{o_3} L(c'_3)
$$

The left unitality square:

$$
1_{\mathcal{C}_{\mathsf{Csp}}(X)} \otimes \mathbb{E}(M_1) \xrightarrow{\delta \otimes 1} \mathbb{E}(1_{\mathcal{C}_{\mathsf{Csp}}(X)}) \otimes \mathbb{E}(M_1) \xrightarrow{\mu_{1,M_1}} \mathbb{E}(M_1)
$$

has an underlying diagram of maps of cospans given by:

with the corresponding maps of decorations amounting to the following commutative diagram in $F(R(x_1))$:

$$
F(\lambda_A)(1_A + x_1) \xrightarrow{F(R(\lambda_A)(\mu_{L(1_A),x_1}))(i_2)} F(R(\lambda_A)(\mu_{L(1_A),x_1}))(1_{R(L(1_A)) + x_1}) \xleftarrow{F(\lambda_A)(i_4)} F(R(\lambda_A))(x_{1+1})
$$

where x_{1+1} is the decoration x_1 on the object $R(L(1_A) + x_1) \in A$. The above square commutes because

$$
F(\lambda_A)(1_A + x_1) = F(R(\lambda_A)(\mu_{L(1_A),x_1})(\eta_{1_A} + 1))(1_A + x_1)
$$
as the corresponding left unitality square for the finite colimit preserving functor $R: (X, 1_X, +) \rightarrow (A, 1_A, +)$ commutes. The right unitality square is similar. The associator hexagon:

$$\begin{array}{ccc}
E(M_1) \otimes (M_2 \otimes M_3) & \xrightarrow{\mu_{M_1, M_2} \otimes 1} & E(M_1 \otimes M_2) \otimes E(M_3) \\
E((M_1 \otimes M_2) \otimes M_3) & \xrightarrow{\mu_{M_1, M_2} \otimes 1} & E((M_1 \otimes M_2) \otimes M_3)
\end{array}$$

has underlying maps of cospans given by:

$$\begin{align*}
E(M_1) \otimes (M_2 \otimes M_3) & \xrightarrow{E(a)} E(M_1) \otimes (M_2 \otimes M_3) \\
E((M_1 \otimes M_2) \otimes M_3) & \xrightarrow{\mu_{M_1, M_2} \otimes 1} E((M_1 \otimes M_2) \otimes M_3)
\end{align*}$$

Here we have omitted the natural isomorphisms $\phi_{c_i, c_j} : L(c_i) + L(c_j) \rightarrow L(c_i + c_j)$ on the inward pointing morphisms which make up the legs of each cospan due to limited space.
The corresponding maps of decorations amount to the following commutative diagram in $F(R(x_1 + (x_2 + x_3)))$:

$$F((\kappa)(1 + \kappa)(a_A))((x_1 + x_2) + x_3) \xrightarrow{F((R(\alpha_X))(\kappa))((x_1 + x_2) + x_3)} F(R(\alpha_X))((x_1 + x_2) + x_3)$$

The above square commutes because

$$F((\kappa)(1 + \kappa)(a_A))((x_1 + x_2) + x_3) = F((R(\alpha_X))(\kappa)(1 + 1))((x_1 + x_2) + x_3)$$

as the corresponding associator hexagon for the finite colimit preserving functor $R : (X, 1_X, +) \to (A, 1_A, +)$ commutes. Lastly, the braiding square:

$$\begin{array}{ccc}
\mathbb{E}(M_1) \otimes \mathbb{E}(M_2) & \xrightarrow{\beta^f} & \mathbb{E}(M_2) \otimes \mathbb{E}(M_1) \\
\mu_{M_1, M_2} & & \mu_{M_2, M_1} \\
\mathbb{E}(M_1 \otimes M_2) & \xrightarrow{\mathbb{E}(\beta)} & \mathbb{E}(M_2 \otimes M_1) \\
\end{array}$$

has underlying map of cospans given by:

Again, we have omitted the natural isomorphisms ϕ_{c_1, c_2} on the inward pointing morphisms on each cospan leg due to space restrictions. The corresponding maps of decorations
amounting to the following commutative diagram in $F(R(x_2 + x_1))$:

\[
\begin{array}{ccc}
F(\kappa)(\beta A)(x_1 + x_2) & \xrightarrow{F(\kappa)(\iota_1)} & F(\kappa)(x_2 + x_1) \\
\downarrow_{F(R(\beta X))(\iota_3)} & & \downarrow_{\iota_2} \\
F(R(\beta X))(x_1 + x_2) & \xrightarrow{\iota_4} & x_2 + x_1
\end{array}
\]

The above square commutes because

\[
F((\kappa)(\beta A))(x_1 + x_2) = F((R(\beta X))(\kappa))(x_1 + x_2)
\]

as the corresponding braiding square for the finite colimit preserving functor $R: (X, 1_X, +) \to (A, 1_A, +)$ commutes. Thus the double functor $E: \text{LCSp}(X) \to FCsp$ is symmetric monoidal.

\[\square\]

4.4 Examples

In this section we present several examples each of which may be realized in the context of decorated cospans or in the context of structured cospans. The first example regarding graphs was mentioned in the introduction and is the easiest example to keep in mind. The next three examples which take on more of an applied flavor, consists of electrical circuits, Markov processes and Petri nets. Each of these has been studied extensively by Baez, Fong, Master and Pollard by way of ‘black-boxing’ [5, 7, 8, 9, 10]. Black-boxing is a way of interpreting the behavior of an open system, that is, a system with prescribed inputs and outputs such as the terminals of an electrical circuit, by observing the activity at the inputs and the outputs, typically while the system is in a ‘steady state’. The semantics of the activity at an open system’s inputs and outputs is typically described in a category such as LinRel of finite dimensional vector spaces and linear relations. Thus, in each case,
black-boxing results in functors such as:

\[\begin{align*}
\mathbf{1} & : \text{Circ} \to \text{LinRel} \\
\mathbf{2} & : \text{Mark} \to \text{LinRel} \\
\mathbf{3} & : \text{Petri} \to \text{LinRel}.
\end{align*} \]

Each of these black-boxing functors are also symmetric monoidal. The first two of these were first done using Fong’s theory of decorated cospans and then extended in a joint work with Baez [3] using the framework of structured cospans. The last two of these were also extended by being realized as double functors between double categories [2, 9] and the particular instance of Markov processes is discussed in Chapter 6.

We will take \(\text{Set} \) as the domain of a left adjoint \(L \) or pseudofunctor \(F \) for the examples of open graphs and open Petri nets [9], but we will restrict to \(\text{FinSet} \) for the examples of open electrical circuits and open Markov processes to avoid potential convergence issues which could arise when allowing for infinite sets [7, 8].

4.4.1 Graphs

As a first example that was also mentioned in the introduction, let \(L : \text{Set} \to \text{Graph} \) be the functor that assigns to a set \(N \) the discrete graph on \(N \) which is the edgeless graph \(L(N) \) with no edges and \(N \) as its set of vertices. Both \(\text{Set} \) and \(\text{Graph} \) are cocartesian monoidal and the functor \(L : \text{Set} \to \text{Graph} \) is left adjoint to the forgetful functor \(R : \text{Graph} \to \text{Set} \) which assigns to a graph \(G \) its underlying set of vertices \(U(G) \). Using structured cospans and appealing to Theorem 3.1.5, we get a symmetric monoidal double category \(L\text{Csp}(\text{Graph}) \) which has:
(1) sets as objects,

(2) functions as vertical 1-morphisms,

(3) cospans of graphs, or, open graphs of the form

\[
L(N) \xrightarrow{I} G \xleftarrow{O} L(M)
\]

as horizontal 1-cells, where \(L(N)\) and \(L(M)\) are discrete graphs on the sets \(N\) and \(M\), respectively, \(G\) is a graph and \(I\) and \(O\) are graph morphisms, and

(4) maps of cospans of graphs of the form

\[
\begin{array}{ccc}
L(N_1) & \xrightarrow{I_1} & G_1 & \xleftarrow{O_1} & L(M_1) \\
\downarrow{L(f)} & & \alpha & & \downarrow{L(g)} \\
L(N_2) & \xrightarrow{I_2} & G_2 & \xleftarrow{O_2} & L(M_2)
\end{array}
\]

as 2-morphisms, where \(L(f)\) and \(L(g)\) are maps of discrete graphs induced by the underlying functions \(f\) and \(g\), respectively, and \(\alpha: G_1 \to G_2\) is a graph morphism.

We can obtain a similar symmetric monoidal double category using decorated cospans. Let \(F: \text{Set} \to \text{Cat}\) be the symmetric lax monoidal pseudofunctor that assigns to a set \(N\) the category of all graph structures whose underlying set of vertices is \(N\). Using Theorem 4.1.2, we then obtain a symmetric monoidal double category \(F \mathcal{C} \text{sp}\) which has:

(1) sets as objects,

(2) functions as vertical 1-morphisms,

(3) horizontal 1-cells as pairs:

\[
\begin{array}{ccc}
N & \xrightarrow{i} & P & \xleftarrow{o} & M, \\
& & G \in F(P)
\end{array}
\]
(4) 2-morphisms as maps of cospans of sets

\[
\begin{array}{c}
N_1 \xrightarrow{i_1} P_1 \xleftarrow{o_1} M_1 \\
\downarrow f \\
N_2 \xrightarrow{i_2} P_2 \xleftarrow{o_2} M_2
\end{array}
\quad G_1 \in F(P_1)
\quad G_2 \in F(P_2)
\quad \downarrow g
\]

which can also be thought of as open graphs, and together with a graph morphism \(\iota: F(h)(G_1) \to G_2 \) in \(F(P_2) \).

We thus have two symmetric monoidal double categories: \(\mathcal{L}_{\text{Csp}(\text{Graph})} \) obtained from structured cospans and \(\mathcal{F}_{\text{Csp}} \) obtained from decorated cospans. Both of these double categories have \(\text{Set} \) as their categories of objects, open graphs as horizontal 1-cells and maps of open graphs as 2-morphisms, and by Theorem 4.3.15, we have an equivalence of symmetric monoidal double categories

\[
\mathcal{L}_{\text{Csp}(\text{Graph})} \simeq \mathcal{F}_{\text{Csp}}.
\]

4.4.2 Passive linear networks

In a previous work [10], Baez and Fong used decorated cospans to construct a symmetric monoidal category of ‘open passive linear circuits’. Roughly speaking, given a field \(k \) with positive elements, a passive linear circuit is given by a ‘\(k \)-graph’ which is a diagram in \(\text{FinSet} \) of the form:

\[
k^+ \xleftarrow{r} E \xleftarrow{s} \xrightarrow{t} V
\]

Here the finite sets \(E \) and \(V \) are the sets of edges and vertices, respectively, and if we take the field \(k = \mathbb{R} \), the function \(r: E \to \mathbb{R}^+ \) assigns to each edge \(e \in E \) a positive real number \(r(e) \in \mathbb{R}^+ \) which can be interpreted as the resistance at the edge \(e \). We restrict to finite
sets to avoid convergence issues with certain summations. An open passive linear circuit is then given by a cospan of finite sets

\[
X \xrightarrow{i} V \xleftarrow{o} Y
\]

where the apex \(V \) is equipped with the structure of a passive linear circuit. See the original paper for more details [10].

Let \(\text{Graph}_k \) be the category whose objects are given by \(k \)-graphs and morphisms by morphisms of \(k \)-graphs, where a morphism of \(k \)-graphs is given by a pair of functions \(f: E \rightarrow E' \) and \(g: V \rightarrow V' \) between the edge sets and vertex sets, respectively, of two \(k \)-graphs that respect the source and target functions of each. In the original work introducing structured cospans, it is shown that the category \(\text{Graph}_k \) has finite colimits [3]. We can then obtain a double category of open passive linear circuits by defining a left adjoint \(L: \text{FinSet} \rightarrow \text{Graph}_k \) that assigns to a finite set \(V \) the discrete passive linear circuit \(L(V) \) given by the passive linear circuit with \(V \) as its set of vertices and no edges. The resulting symmetric monoidal double category \(L\text{Csp} (\text{Graph}_k) \) has:

1. finite sets as objects,
2. functions as vertical 1-morphisms,
3. open passive linear circuits as horizontal 1-cells

\[
X \xrightarrow{i} V \xleftarrow{o} Y \quad k^+ \xleftarrow{r} E \xrightarrow{\beta} V
\]

and
(4) maps of cospans as 2-morphisms together with a map of passive linear circuits between the apices.

We can also obtain a similar double category using decorated cospans: define a pseudofunctor $F: \text{FinSet} \to \text{Cat}$ that assigns to a finite set V the category of all k-graph structures on the set V and to a function $f: V \to V'$ the corresponding functor $F(f): F(V) \to F(V')$ between decoration categories. Both categories FinSet and Cat are symmetric monoidal and the pseudofunctor $F: \text{FinSet} \to \text{Cat}$ is symmetric lax monoidal, as given a k-graph structure on a finite set V_1 denoted by an element $K_1 \in F(V_1)$ and a k-graph structure on a finite set V_2 denoted by an element $K_2 \in F(V_2)$, we can consider the k-graph structures simultaneously as a single graph structure $\phi_{V_1,V_2}(K_1,K_2)$ on the finite set $V_1 + V_2$. Thus we get a family of natural transformations

$$\phi_{V_1,V_2}: F(V_1) \times F(V_2) \to F(V_1 + V_2)$$

as well as a morphism $\phi: 1_{\text{Graph}_k} \to F(\emptyset)$ which together satisfy the coherence conditions of a monoidal functor. The braiding is also clear as the following diagram commutes:

$$\begin{array}{ccc}
F(V_1) \times F(V_2) & \xrightarrow{\phi_{V_1,V_2}} & F(V_1 + V_2) \\
\downarrow^{\beta_{V_1,V_2}} & & \downarrow^{\phi_{V_2,V_1}} \\
F(V_1) \times F(V_2) & \xrightarrow{F(\beta_{V_1,V_2})} & F(V_2 + V_1)
\end{array}$$

Thus the pseudofunctor F is symmetric lax monoidal and so by Theorem 4.1.2 we get a symmetric monoidal double category $F\mathcal{C}sp$ which has:

121
(1) objects as finite sets,

(2) vertical 1-morphisms as functions,

(3) horizontal 1-cells as cospans of sets together with the structure of a k-graph given by an element of the image of the apex under the pseudofunctor F:

$$
U \xrightarrow{i} V \leftarrow o \quad W \quad K \in F(V)
$$

and

(4) 2-morphisms as maps of cospans of finite sets

$$
\begin{array}{c}
U_1 \xrightarrow{i_1} V_1 \leftarrow o_1 \quad W_1 \quad K_1 \in F(V_1) \\
\downarrow f \quad \downarrow h \quad \downarrow g \\
U_2 \xrightarrow{i_2} V_2 \leftarrow o_2 \quad W_2 \quad K_2 \in F(V_2)
\end{array}
$$

together with a morphism of k-graphs $\iota: F(h)(K_1) \to K_2$ in $F(V_2)$.

These two symmetric monoidal double categories $\mathcal{L}Csp(\text{Graph}_k)$ and $F\mathcal{C}sp$ are equivalent by Theorem 4.3.15.

4.4.3 Markov processes

In another previous work [8], Baez, Fong and Pollard used decorated cospans to construct a symmetric monoidal category of ‘open Markov processes’. In this framework, a Markov process on a finite set N is given by a diagram in Set:

$$
(0, \infty) \xleftarrow{r} E \xrightarrow{s} N
$$
where E and N are finite sets of edges and nodes, respectively. This is really just a special case of the previous example of passive linear circuits with $k = \mathbb{R}$. An open Markov process is then of course a cospan of finite sets where the apex is equipped with a Markov process:

$$X \xrightarrow{i} N \xleftarrow{o} Y \quad (0, \infty) \xleftarrow{r} E \xrightarrow{s} N$$

For example:

![Diagram](attachment:image.png)

Here we have an open Markov process on the finite set $N = \{a_1, b_1, c_1, c_2, d_1\}$ with input and output sets given by the singletons X and Y, respectively.

Baez, Fong and Pollard then add extra structure to open Markov processes such as populations at each node to obtain a symmetric monoidal category DetBalMark of open Markov processes in ‘detailed balance’ and then construct a black box functor $\mathbf{B} : \text{DetBalMark} \to \text{LinRel}$ that describes the steady state behavior of an open Markov process in detailed balance. On the way to doing this, one of the categories they construct using Fong’s decorated cospan machinery is a symmetric monoidal category Mark which has:

1. objects as finite sets and

2. morphisms as isomorphism classes of open Markov processes, where composition is by pushout.
This is done using a symmetric lax monoidal functor $F: \text{FinSet} \to \text{Set}$ which assigns to each finite set N the (large) set of all Markov processes on N as defined above. Viewing this functor F as now a symmetric lax monoidal pseudofunctor $F: \text{FinSet} \to \text{Cat}$ that assigns to a finite set N the category $F(N)$ of all Markov processes on N, we then get by Theorem 4.1.2 a symmetric monoidal double category $FC\text{sp}$ which has:

(1) finite sets as objects,

(2) functions as vertical 1-morphisms,

(3) open Markov processes as horizontal 1-cells, and

(4) maps of open Markov processes as 2-morphisms which are given by maps of cospans:

$$
\begin{array}{c}
\begin{array}{c}
X_1 \\
\downarrow f \\
X_2
\end{array}
\begin{array}{c}
i_1 \\
\downarrow h \\
i_2
\end{array}
\begin{array}{c}
N_1 \\
\leftarrow o_1 \\
Y_1
\end{array}
\begin{array}{c}
M_1 \\
\in F(N_1)
\end{array}
\begin{array}{c}
N_2 \\
\leftarrow o_2 \\
Y_2
\end{array}
\begin{array}{c}
M_2 \\
\in F(N_2)
\end{array}
\begin{array}{c}
f' \\
\downarrow f \\
f
\end{array}
\begin{array}{c}
X_2 \\
\downarrow i_2 \\
X_1
\end{array}
\end{array}
$$

together with a map of Markov processes $\iota: F(h)(M_1) \to M_2$ in $F(N_2)$, where a map between two Markov processes is given by a pair of functions (g, h) that make the following diagram commute:

$$
\begin{array}{c}
(0, \infty) \leftarrow \begin{array}{c}
E_1 \\
\downarrow g \\
E_2
\end{array} \\
\begin{array}{c}
t_1 \\
\uparrow h \\
t_2
\end{array} \\
\begin{array}{c}
N_1 \\
\leftarrow s_1 \\
N_2
\end{array}
\end{array}
$$

A symmetric monoidal double category of open Markov processes can also be obtained using structured cospans by defining a functor $L: \text{FinSet} \to \text{Mark}$ which assigns to a finite set N
the discrete Markov process \(L(N) \) with no edges and to a function \(f: N \to N' \) the induced map of discrete Markov processes. Both categories \(\text{FinSet} \) and \(\text{Mark} \) have finite colimits and the functor \(L \) is left adjoint to the forgetful functor \(R: \text{Mark} \to \text{FinSet} \) which maps a Markov process to its underlying set of states. By Theorem 3.1.5, we get a symmetric monoidal double category \(L \text{Csp} \text{(Mark)} \) which has:

1. objects as finite sets,
2. vertical 1-morphisms as functions,
3. horizontal 1-cells as cospans in \(\text{Mark} \) of the form:
 \[
 L(N_1) \xrightarrow{f_1} M \xleftarrow{g_2} L(N_2)
 \]
 and
4. 2-morphisms as maps of cospans in \(\text{Mark} \).

The two double categories \(F \text{Csp} \) and \(L \text{Csp} \text{(Mark)} \) are equivalent by Theorem 4.3.15.

In a more recent work [2] with Baez, we construct a symmetric monoidal double category of ‘open Markov processes’ and ‘coarse-grainings’, where roughly speaking, a coarse-graining is a way of approximating a larger open Markov process by a smaller one by partitioning the set of states into ‘lumps’. This construction uses neither decorated cospans nor structured cospans and is explored in Chapter 6.
4.4.4 Petri nets

In a previous work, Baez and Master used the framework of structured cospans to obtain a symmetric monoidal double category of ‘open Petri nets’ [9]. A Petri net is given by a diagram in \(\text{Set} \) of the form:

\[
\begin{array}{c}
T \xrightarrow{s} \mathbb{N}[S] \xleftarrow{t}
\end{array}
\]

Here, \(T \) is the set of transitions and \(S \) is the set of species, and then \(\mathbb{N}[S] \) is the free commutative monoid on the set \(S \). Each transition then has a formal linear combination of species given by an element of \(\mathbb{N}[S] \) as its source and target as prescribed by the functions \(s \) and \(t \), respectively. An example of a Petri net is given by:

\[
\begin{array}{c}
\text{H} \xrightarrow{\alpha} \text{H}_2\text{O}
\end{array}
\]

This Petri net has a single transition \(\alpha \) with \(2\text{H} + \text{O} \) as its source and \(\text{H}_2\text{O} \) as its target. See the original paper for more details on Petri nets [9].

Each set of species \(S \) gives rise to a discrete Petri net \(L(S) \) with \(S \) as its set of species and no transitions. Baez and Master show the existence of a left adjoint \(L: \text{Set} \to \text{Petri} \) where \(\text{Petri} \) is the category whose objects are Petri nets and whose morphisms are ‘morphisms of Petri nets’. They also show that \(\text{Petri} \) has finite colimits and thus using Theorem 3.1.5 obtain a symmetric monoidal double category \(\text{Open}(\text{Petri}) \) of open Petri nets which has:

1. objects given by sets,

2. vertical 1-morphisms given by functions,
(3) horizontal 1-cells as open Petri nets which are given by cospans in Petri of the form:

\[L(X) \xrightarrow{I} P \xleftarrow{O} L(Y) \]

and

(4) 2-morphisms as maps of cospans in Petri of the form:

\[
\begin{array}{c}
L(X_1) \xrightarrow{I_1} P_1 \xleftarrow{O_1} L(Y_1) \\
L(f) \downarrow \alpha \downarrow \downarrow L(g) \\
L(X_2) \xrightarrow{I_2} P_2 \xleftarrow{O_2} L(Y_2)
\end{array}
\]

We can also obtain a similar double category using decorated cospans: define a pseudo-functor \(F : \text{Set} \to \text{Cat} \) where given a set \(s \), \(F(s) \) is the category of all Petri net structures with \(s \) as its set of species. This pseudofunctor \(F \) is symmetric lax monoidal as both \((\text{Set}, +, \emptyset)\) and \((\text{Cat}, \times, 1)\) are symmetric monoidal and given Petri nets \(P \in F(s) \) and \(P' \in F(s') \), we can place them side by side and consider them together as a single Petri net \(P + P' \in F(s + s') \) with set of species \(s + s' \), and thus we have natural transformations \(\phi_{s,s'} : F(s) \times F(s') \to F(s + s') \) for any two sets \(s \) and \(s' \). The other structure morphism between monoidal units \(\phi : 1_{\text{Petri}} \to F(\emptyset) \) is defined by the unique morphism from the empty Petri net with the empty set for its set of species to the only possible Petri net on the empty set, which is also the empty Petri net. All of the diagrams that are required to commute are straightforward. Using Theorem 4.1.2, we obtain a symmetric monoidal double category \(F\text{Csp} \) which has:

(1) objects given by sets,

(2) vertical 1-morphisms given by functions,
(3) horizontal 1-cells given by open Petri nets presented as pairs:

\[
\begin{array}{c}
X \xrightarrow{i} Z \xleftarrow{o} Y \quad P \in F(Z)
\end{array}
\]

and

(4) 2-morphisms as maps of cospans in \textbf{Set}:

\[
\begin{array}{c}
\begin{array}{c}
X_1 \xrightarrow{i_1} Z_1 \xleftarrow{o_1} Y_1 \quad P_1 \in F(Z_1)
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
X_2 \xrightarrow{i_2} Z_2 \xleftarrow{o_2} Y_2 \quad P_2 \in F(Z_2)
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
f \downarrow \quad h \quad g
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
X_1 \xrightarrow{i_1} Z_1 \xleftarrow{o_1} Y_1
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
X_2 \xrightarrow{i_2} Z_2 \xleftarrow{o_2} Y_2
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
f
\downarrow \quad h \quad g
\end{array}
\end{array}
\]

together with a morphism of Petri nets \(\iota : F(h)(P_1) \to P_2 \) in \(F(Z_2) \).

Thus we have a symmetric monoidal double category \(\mathbb{O}pen(\text{Petri}) \) of open Petri nets obtained from structured cospans and a symmetric monoidal double category \(F\text{Csp} \) of open Petri nets obtain from decorated cospans, and of course, we have an equivalence \(\mathbb{O}pen(\text{Petri}) \simeq F\text{Csp} \) of symmetric monoidal double categories by Theorem 4.3.15.
Chapter 5

A brief digression on bicategories

If the reader prefers bicategories to double categories, one will be happy to learn that all of the main results in this thesis on double categories have bicategorical analogues thanks to a result of Mike Shulman [44]. Bicategories were defined in Chapter 4. First we discuss the relationship between 2-categories and double categories. As we are mainly interested in symmetric monoidal double categories, we are similarly primarily interested in ‘symmetric monoidal bicategories’. We will not define monoidal, braided monoidal, ‘sylleptic’ monoidal or symmetric monoidal bicategories here. These definitions can be found in a work of Mike Stay [46].

The first thing we point out is that 2-categories are just a special case of strict double categories and that every strict double category has at least two canonical underlying 2-categories. Given a strict double category \(\mathcal{C} \), there exists:

1. a 2-category \(\mathbf{H}(\mathcal{C}) \) called the horizontal 2-category of \(\mathcal{C} \) consisting of:

 a. objects as objects of \(\mathcal{C} \),
(b) morphisms as horizontal 1-cells of \(C \), and

each 2-morphisms as 2-morphisms of \(C \) with identity vertical 1-morphisms.

(2) a 2-category \(V(C) \) called the vertical 2-category of \(C \) consisting of:

(a) objects as objects of \(C \),

(b) morphisms as vertical 1-morphisms of \(C \), and

(c) 2-morphisms as 2-morphisms of \(C \) with identity horizontal 1-cells.

Every pseudo double category \(C \) has an underlying bicategory \(H(C) \) given by as above.

Using our conventions, there is no underlying vertical bicategory \(V(C) \) as composition of
horizontal 1-cells in a pseudo double category is associative only up to natural isomorphism.

Sometimes when the pseudo double category \(C \) is symmetric monoidal, the symmetric
monoidal structure can be lifted to the horizontal bicategory \(H(C) \). This is due to the
following result of Shulman [44]. The definitions of ‘isofibrant’ and ‘symmetric monoidal
double category’ may be found in the 8.

Theorem 5.0.1 (Shulman). Let \(X \) be an isofibrant symmetric monoidal pseudo double
category. Then the horizontal bicategory \(H(X) \) of \(X \) is a symmetric monoidal bicategory
which has:

(1) objects as those of \(X \),

(2) morphisms as horizontal 1-cells of \(X \), and

(3) 2-morphisms as globular 2-morphisms of \(X \).

The property of being isofibrant, meaning fibrant on vertical 1-isomorphisms, is precisely
what allows the horizontal bicategory \(H(X) \) to inherit the portion of the symmetric monoidal
structure that resides in the category of objects of \(\mathcal{X} \), namely, the associators, left and right unitors and braidings.

In the previous chapters we constructed various symmetric monoidal double categories which are in fact isofibrant, and thus have underlying symmetric monoidal bicategories.

5.1 Foot-replaced bicategories

Every foot-replaced double category \(L\mathcal{X} \) has an underlying foot-replaced bicategory \(H(L\mathcal{X}) \) given by taking the 2-morphisms of \(H(L\mathcal{X}) \) to be globular 2-morphisms of \(L\mathcal{X} \).

Lemma 5.1.1. Given a double category \(\mathcal{X} \), a category \(A \) and a functor \(L: A \to \mathcal{X}_0 \), there is a bicategory \(H(L\mathcal{X}) \) for which:

- objects are objects of \(A \),
- morphisms from \(a \in A \) to \(a' \in A \) are horizontal 1-cells \(M: L(a) \to L(a') \) of \(L\mathcal{X} \),
- 2-morphisms are globular 2-morphisms of \(L\mathcal{X} \),
- composition of morphisms is horizontal composition of horizontal 1-cells in \(L\mathcal{X} \),
- vertical and horizontal composition of 2-morphisms is vertical and horizontal composition of 2-cells in \(L\mathcal{X} \).

If the double category \(\mathcal{X} \) is isofibrant symmetric monoidal and we have a strong symmetric monoidal functor \(L: A \to \mathcal{X}_0 \), then Shulman’s Theorem 5.0.1 allows us to lift the monoidal structure of the foot-replaced double category \(L\mathcal{X} \) to obtain a symmetric monoidal foot-replaced bicategory \(H(L\mathcal{X}) \).
Lemma 5.1.2. If X is an isofibrant symmetric monoidal double category, A is a symmetric monoidal category and $L: A \to X_0$ is a (strong) symmetric monoidal functor, then the bicategory $H(LX)$ becomes symmetric monoidal in a canonical way.

Theorem 5.1.3. Let $L: A \to X$ be a functor where X is a category with pushouts. Then there is a bicategory $H(L\mathbb{Csp}(X))$ for which:

1. an object is an object of A,

2. a morphism from a to b is given by a cospan in X of the form:

 \[
 L(a) \longrightarrow x \longleftarrow L(b)
 \]

 with composition the same as composition of horizontal 1-cells in Theorem 3.1.3 and

3. 2-morphisms are given by maps of cospans which are commutative diagrams of the form:

 \[
 \begin{tikzcd}
 L(a) & x \\
 x & L(b)
 \end{tikzcd}
 \]

 with horizontal and vertical composition of 2-morphisms given by horizontal and vertical composition of globular 2-morphisms in Theorem 3.1.3.

Theorem 5.1.4. Let $L: A \to X$ be a functor preserving finite coproducts, where A has finite coproducts and X has finite colimits. Then the bicategory of Theorem 5.1.3 is symmetric monoidal with the monoidal structure given by:

1. the tensor product of two objects a_1 and a_2 is $a_1 + a_2$.

132
(2) the tensor product of two morphisms is given by the tensor product of two horizontal 1-cells in Theorem 3.1.5 and

(3) the tensor product of two 2-morphisms is given by:

\[
\begin{align*}
L(a_1) & \otimes L(a_2) = L(a_1 + a_2) \\
\phi & = \phi_{a_1, a_2}: L(a_1) \otimes L(a_2) \to L(a_1 + a_2)
\end{align*}
\]

where \(\phi \) is the natural isomorphism \(\phi_{a_1, a_2} : L(a_1) \otimes L(a_2) \to L(a_1 + a_2) \) of the strong symmetric monoidal functor \(L \). The unit for the tensor product is the initial object of \(X \) which is isomorphic to the image of the unit object of \(A \) under the functor \(L \), and the symmetry for any two objects \(a \) and \(b \) is defined using the canonical isomorphism \(a + b \cong b + a \).

5.1.1 Graphs

Theorem 5.1.5. There exists a symmetric monoidal bicategory \(\textbf{Graph} = \mathbf{H}(\mathcal{L} \mathbb{C} \mathbb{S} \mathbb{P} \text{(Graph)}) \) which has:

(1) sets as objects,

(2) cospans of graphs of the form

\[
L(a) \longrightarrow x \longleftarrow L(b)
\]

as morphisms, and

(3) maps of cospans of graphs as 2-morphisms, as in the following commutative diagram:
We can then decategorify this symmetric monoidal bicategory \textbf{Graph} to obtain a symmetric monoidal category \(D(\textbf{Graph}) \) consisting of:

(1) sets as objects, and

(2) isomorphism classes of cospans of graphs of the form

\[
L(a) \rightarrow x \leftarrow L(b)
\]

as morphisms, where two cospans of graphs are in the same isomorphism class if the following diagram commutes:

\[
\begin{array}{ccc}
L(a) & \overset{x}{\nearrow} & L(b) \\
\downarrow & \Downarrow h \sim & \\
y & \searrow & \end{array}
\]

Here, the graph isomorphism \(h: x \rightarrow y \) is really a pair of bijections \(f: N \rightarrow N' \) and \(g: E \rightarrow E' \) between the vertex and edge sets of the graphs \(x \) and \(y \) that make the following diagram commute:

\[
\begin{array}{ccc}
x & \overset{s}{\rightarrow} & E \\
\downarrow & \Downarrow g \sim & \\
y & \overset{t}{\leftarrow} & E' \\
\downarrow & \Downarrow f \sim & \\
N & \leftarrow & N'
\end{array}
\]

We can obtain a similar symmetric monoidal category using Fong’s decorated cospan machinery by defining a lax symmetric monoidal functor \(F: \textbf{Set} \rightarrow \textbf{Set} \) where for a finite set \(N \), \(F(N) \) is the (large) set of all possible graph structures on the set \(N \), where a graph structure on the set \(N \) is given by a diagram in \(\textbf{Set} \) of the form:

\[
E \overset{s}{\rightarrow} N \quad \text{with} \quad \begin{array}{ccc}
s & \rightarrow & N \\
\downarrow & \Downarrow t & \\
E & \leftarrow &
\end{array}
\]
Denoting this symmetric monoidal category as $F\text{Cospan}(\text{Set})$, we get an inclusion $G: F\text{Cospan}(\text{Set}) \rightarrow D(\text{Graph})$. This then solves the issue of two isomorphic graphs with isomorphic but not equal edge sets not being elements of the same isomorphism class. Explicitly, given two graphs:

![Diagram](image)

5.1.2 Electrical circuits

In Section 3.1.2, we constructed a symmetric monoidal double category of open k-graphs. This symmetric monoidal double category is in fact isofibrant, so we can apply Theorem 5.0.1 to obtain a symmetric monoidal bicategory:

Theorem 5.1.6. There exists a symmetric monoidal bicategory Graph_k where:

1. Objects are given by finite sets,
(2) morphisms are given by cospans of sets whose apices are decorated with the stuff of a k-graph, and

(3) 2-morphisms are given by maps of cospans such that the following diagrams commute.

$$
\begin{array}{c}
\begin{array}{c}
\text{L(a)} \\
\downarrow s \\
N \\
\downarrow f \\
\text{L(b)}
\end{array}
\end{array}
\quad
\begin{array}{c}
\begin{array}{c}
k^+ \xleftarrow{s'} E' \\
\downarrow f \\
N' \\
\downarrow f \\
N
\end{array}
\end{array}
$$

Proof. We take $\text{Graph}_k = H(\mathbb{Csp}(\text{Graph}_k))$.

We can then decategorify this symmetric monoidal bicategory Graph_k to obtain a symmetric monoidal category $D(\text{Graph}_k)$ where:

(1) objects are given by finite sets, and

(2) morphisms are given by isomorphism classes of cospans of sets whose apices are equipped with the stuff of a k-graph, where two morphisms are in the same isomorphism class if the following diagrams commute:

$$
\begin{array}{c}
\begin{array}{c}
\text{L(a)} \\
\downarrow s \\
N \\
\downarrow f \\
\text{L(b)}
\end{array}
\end{array}
\quad
\begin{array}{c}
\begin{array}{c}
k^+ \xleftarrow{s'} E' \\
\downarrow f \\
N' \\
\downarrow f \\
N
\end{array}
\end{array}
$$

We thus have the two symmetric monoidal categories, \mathcal{FCosp} obtained from the original incarnation of decorated cospans, and $D(\text{Graph}_k)$ constructed from the decategorification of structured cospans, each of which have the same objects. However, the second of
these contains more isomorphisms. For example, consider the following two passive linear networks:

\[
\begin{align*}
&\quad a \xrightarrow{i} N \xleftarrow{o} b \\
&k^+ \xrightarrow{r} E \xleftarrow{s} N \xrightarrow{\phi} E' \xleftarrow{s'} N \quad k^+ \xrightarrow{r'} E' \xleftarrow{s'} N
\end{align*}
\]

where there is a bijection \(\phi : E \to E' \) such that \(s = s' \circ \phi \) and \(t = t' \circ \phi \); this just says that the two networks look the same but have different edge labels. Then these two passive linear networks each constitutes distinct isomorphism classes in the symmetric monoidal category \(FCospan \), but are members of the same isomorphism class in the symmetric monoidal category \(D(Graph_k) \).

We can then define a functor \(G : FCospan(\text{FinSet}) \to D(Graph_k) \) that is the identity on objects and morphisms and then consider the following diagram:

\[
FCospan \xrightarrow{\bullet} \xrightarrow{G} LagRel_k \xrightarrow{\eta} D(Graph_k)
\]

Here the top functor \(\bullet : FCospan \to LagRel_k \) is the original black-boxing functor constructed by Baez and Fong [7] and we are extending the domain of this functor from \(FCospan \) to \(D(Graph_k) \). The former embeds into the latter but the latter has finer isomorphism classes in the sense of the example given above.

5.1.3 Markov processes

The double category \(\mathcal{L}^{\text{Csp}}(\text{Mark}) \) is also isofibrant, and so by Shulman’s Theorem 5.0.1 we can again obtain a symmetric monoidal bicategory.
Theorem 5.1.7. There exists a symmetric monoidal bicategory \textbf{Mark} where:

(1) objects are given by finite sets,

(2) morphisms are given by cospans of finite sets whose apices are equipped with the stuff of a Markov process, and

(3) 2-morphisms are given by maps of cospans whose apices are equipped with the stuff of a Markov process such that the following diagrams commute.

We can then decategorify \textbf{Mark} to obtain a symmetric monoidal category \textit{D(Mark)} whose objects are finite sets and whose morphisms are isomorphism classes of open Markov processes, where two open Markov processes are in the same isomorphism class if the following diagrams commute:

Finally, we can then extend the black-boxing functor \textbf{■}: \textbf{Mark} \rightarrow \textbf{LinRel} constructed by Baez, Fong and Pollard [8] by defining a functor \textbf{G}: \textbf{Mark} \rightarrow \textit{D(Mark)} which is the identity on objects and morphisms. To do this, we define a new black-boxing functor

138
\[D(\text{Mark}) \to \text{LinRel} \] which makes the following diagram commute.

\[\begin{array}{c}
\text{Mark} \\
\downarrow \quad G \\
D(\text{Mark}) \end{array} \quad \begin{array}{c}
\text{LinRel} \\
\end{array} \]

\subsection*{5.1.4 Petri nets}

The symmetric monoidal double category \(\text{L } \text{Csp}(\text{Petri}_{\text{rates}}) \) is also isofibrant, and so we have the following.

\textbf{Theorem 5.1.8.} There exists a symmetric monoidal bicategory \(\text{Petri}_{\text{rates}} \) which has:

(1) finite sets as objects,

(2) cospans of finite sets whose apices are equipped with the stuff of a Petri net with rates, and

(3) maps of cospans whose apices are equipped with the stuff of a Petri net with rates such that the following diagrams commute.

\[\begin{array}{c}
\text{\ } \quad S \quad \text{\ } \quad \text{\ } \\
\downarrow f \\
L(a) \\
\end{array} \quad \begin{array}{c}
\text{\ } \\
\downarrow \text{i} \\
S' \end{array} \quad \begin{array}{c}
\text{\ } \\
\downarrow \text{o} \\
L(b) \end{array} \]

\[\begin{array}{c}
\text{[0, \infty]} \quad \text{\ } \quad \text{\ } \\
\downarrow r \\
T \\
\end{array} \quad \begin{array}{c}
\text{\ } \\
\downarrow s \\
N[S] \end{array} \]

\[\begin{array}{c}
\text{\ } \\
\downarrow t \\
0, \infty \end{array} \quad \begin{array}{c}
\text{\ } \\
\downarrow s' \\
T' \end{array} \quad \begin{array}{c}
\text{\ } \\
\downarrow o' \\
N[S'] \end{array} \]

\textit{Proof.} We have that \(\text{Petri}_{\text{rates}} = \text{H}(\text{L } \text{Csp}(\text{Petri}_{\text{rates}})) \).

Once again, we can then decategorify this bicategory \(\text{Petri}_{\text{rates}} \) to obtain a symmetric monoidal category \(D(\text{Petri}_{\text{rates}}) \) which has:
finite sets as objects, and

(2) isomorphism classes of cospans of sets whose apices are equipped with the stuff of a Petri net with rates as morphisms, where two morphisms are in the same isomorphism class if \(f : S \to S' \) is a bijection in the above diagram.

Finally, as a special case of the black-boxing functor \(
\square : \text{Dynam} \to \text{SemiAlgRel} \)
constructed by Baez and Pollard \([10]\), we can obtain a black-boxing functor \(\square : \text{Petri}_{\text{rates}} \to \text{SemiAlgRel} \)
and then extend this functor by defining a functor \(G : \text{Petri}_{\text{rates}} \to \text{D}(\text{Petri}_{\text{rates}}) \)
that is the identity on objects and morphisms. We can then extend the domain of the functor
\(\square : \text{Petri}_{\text{rates}} \to \text{SemiAlgRel} \)
to obtain a functor \(\square : \text{D}(\text{Petri}_{\text{rates}}) \to \text{SemiAlgRel} \)
where this second black-boxing functor is defined on objects and morphisms in the same way that the first one is.

\[
\begin{diagram}
\text{Petri}_{\text{rates}} & \xrightarrow{\square} & \text{SemiAlgRel} \\
\downarrow{G} & \vdash & \\
\text{D}(\text{Petri}_{\text{rates}}) & \xleftarrow{\square}
\end{diagram}
\]

5.2 Decorated cospan bicategories

Lemma 5.2.1. The double category \(\text{FCsp} \) constructed in Chapter 4 is fibrant.

Proof. Let \(f : c \to c' \) be a vertical 1-morphism in \(\text{FCsp} \). We can lift \(f \) to the companion horizontal 1-cell \(\hat{f} :
\begin{align*}
\begin{array}{ccc}
c & \xrightarrow{f} & c' \\
\downarrow{1} & & \downarrow{1} \\
!_{c'} & \in \mathcal{F}(c')
\end{array}
\end{align*}
\]

140
and then obtain the following two 2-morphisms:

\[
\begin{array}{cccccc}
 c & \overset{f}{\rightarrow} & c' & \overset{1}{\leftarrow} & c' & \overset{!}{\in} & F(c') \\
 \downarrow f & & \downarrow 1 & & \downarrow 1 & & \downarrow 1 \\
 c' & \overset{1}{\rightarrow} & c' & \overset{1}{\leftarrow} & c' & \overset{!}{\in} & F(c') \\
\end{array}
\]

\[\alpha = 1_{!c'}\]

\[
\begin{array}{cccccc}
 c & \overset{1}{\rightarrow} & c & \overset{1}{\leftarrow} & c & \overset{!}{\in} & F(c) \\
 \downarrow 1 & & \downarrow f & & \downarrow f & & \downarrow f \\
 c' & \overset{1}{\rightarrow} & c' & \overset{1}{\leftarrow} & c' & \overset{!}{\in} & F(c') \\
\end{array}
\]

\[\iota_f : F(f)(!c) \rightarrow !c'\]

which satisfy the equations:

\[
\begin{array}{ccc}
 !c & \in & F(c) \\
 \downarrow 1 & & \downarrow f \\
 c & \overset{1}{\rightarrow} & c' & \overset{1}{\leftarrow} & c' \\
 \downarrow 1 & & \downarrow f & & \downarrow f \\
 c' & \overset{1}{\rightarrow} & c' & \overset{1}{\leftarrow} & c' \\
\end{array}
\]

\[=\]

\[
\begin{array}{ccc}
 !c & \in & F(c) \\
 \downarrow 1 & & \downarrow f \\
 c & \overset{1}{\rightarrow} & c' & \overset{1}{\leftarrow} & c' \\
 \downarrow 1 & & \downarrow f & & \downarrow f \\
 c' & \overset{1}{\rightarrow} & c' & \overset{1}{\leftarrow} & c' \\
\end{array}
\]

\[\iota_f : F(f)(!c) \rightarrow !c'\]

\[\iota_c = 1_{!c'}\]

\[
\begin{array}{ccc}
 !c & \in & F(c) \\
 \downarrow 1 & & \downarrow f \\
 c & \overset{1}{\rightarrow} & c' & \overset{1}{\leftarrow} & c' \\
 \downarrow 1 & & \downarrow f & & \downarrow f \\
 c' & \overset{1}{\rightarrow} & c' & \overset{1}{\leftarrow} & c' \\
\end{array}
\]

\[=\]

\[
\begin{array}{ccc}
 !c & \in & F(c) \\
 \downarrow 1 & & \downarrow f \\
 c & \overset{1}{\rightarrow} & c' & \overset{1}{\leftarrow} & c' \\
 \downarrow 1 & & \downarrow f & & \downarrow f \\
 c' & \overset{1}{\rightarrow} & c' & \overset{1}{\leftarrow} & c' \\
\end{array}
\]

\[\iota_f : F(f)(!c) \rightarrow !c'\]

\[\iota_c = 1_{!c'}\]

\[\iota_c = 1_{!c'}\]

The right hand sides of the above two equations are given respectively by the 2-morphisms U_f and 1_f. The conjoint of f is given by the F-decorated cospan \hat{f} which is just the opposite of the companion above:

\[
\begin{array}{ccc}
 c' & \overset{1}{\rightarrow} & c' & \overset{f}{\leftarrow} & c \\
 \downarrow 1 & & \downarrow 1 & & \downarrow 1 \\
 c & \overset{1}{\rightarrow} & c' & \overset{1}{\leftarrow} & c' \\
\end{array}
\]

\[!c' \in F(c')\]
Corollary 5.2.2. Let $(\mathcal{C}, +, 0)$ be a category with finite colimits and $F: \mathcal{C} \to \text{Cat}$ a symmetric lax monoidal pseudofunctor. Then there exists a symmetric monoidal bicategory $F\text{Csp} := \mathbf{H}(F\text{Csp})$ which has:

(1) objects as those of \mathcal{A},

(2) morphisms as F-decorated cospans:

\[
\begin{array}{ccc}
 a & \xrightarrow{i} & c \\
 & \swarrow & \searrow \\
 b & \leftarrow & d \in F(c)
\end{array}
\]

and

(3) 2-morphisms as maps of cospans in \mathcal{A} of the form:

\[
\begin{array}{ccc}
 a & \xrightarrow{i} & c \\
 & \swarrow_h & \searrow \\
 b & \leftarrow & d \in F(c)
\end{array}
\]

\[
\begin{array}{ccc}
 a' & \xleftarrow{i'} & c' \\
 & \swarrow & \searrow \\
 b & \leftarrow & d' \in F(c')
\end{array}
\]

\[
\begin{array}{ccc}
 a & \xrightarrow{i} & c & \xrightarrow{o} & b \\
 & \swarrow_h & \searrow & \swarrow_h & \searrow \\
 a' & \xleftarrow{i'} & c' & \xrightarrow{o'} & b'
\end{array}
\]

\[
\begin{array}{ccc}
 d \in F(c) & & \\
 & \swarrow & \searrow \\
 d' \in F(c') & & \\
 & \swarrow & \searrow \\
 d'' \in F(c'') & &
\end{array}
\]

together with a morphism $\iota: F(h)(d) \to d'$ in $F(c')$.

Proof. This follows immediately by Shulman’s Theorem 5.0.1 above applied to the fibrant symmetric monoidal double category $F\text{Csp}$.

This symmetric monoidal bicategory $F\text{Csp}$ is a superior version of the symmetric monoidal bicategory $F\text{Cospan}(\mathcal{A})$ constructed earlier in a previous work [20] in that there is greater flexibility in what 2-morphisms are allowed.

5.2.1 Decorated cospans revisited

We can then decategorify this symmetric monoidal bicategory to obtain a symmetric monoidal category similar to the one obtained using Fong’s result, but with larger isomorphism classes:
Corollary 5.2.3. Given a symmetric lax monoidal pseudofunctor $F : A \to \text{Cat}$ where A is a category with finite colimits and whose monoidal structure is given by binary coproducts, there exists a symmetric monoidal category $F\text{Csp} = D(F\text{Csp})$ which has:

(1) objects as those of A and

(2) morphisms as isomorphism classes of F-decorated cospans of A, where an F-decorated cospan is given by a pair:

$$\begin{array}{ccc}
a & \xrightarrow{i} & c & \xleftarrow{o} & b \\
d & \in & F(c)
\end{array}$$

Given another F-decorated cospan:

$$\begin{array}{ccc}
a & \xrightarrow{i'} & c' & \xleftarrow{o'} & b \\
d' & \in & F(c')
\end{array}$$

these two F-decorated cospans are in the same isomorphism class if there exists an isomorphism $f : c \to c'$ such that following diagram commutes:

$$\begin{array}{ccc}
a & \xrightarrow{i} & c & \xleftarrow{o} & b \\
& \xleftarrow{f} & \downarrow{=} & \downarrow{=} \\
& \xleftarrow{i'} & c' & \xleftarrow{o'} & b
\end{array}$$

and there exists an isomorphism $\iota : F(f)(d) \to d'$ in $F(c')$.

In this symmetric monoidal category, isomorphism classes are as they should morally be, and the instance of two graphs having different edge sets does not prevent them from being in the same isomorphism class due to the isomorphism ι.

5.3 A biequivalence of compositional frameworks

In Chapter 4, we proved that under some conditions, we can start with a symmetric monoidal pseudofunctor $F : (A, +, 0) \to (\text{Cat}, \times, 1)$ and obtain a fully faithful left adjoint
$L: (A, +, 0) \to (X, +, 0)$ where $(X, +, 0) := (\int F, +, 0)$ and whose right adjoint $R: X \to A$

preserves finite colimits. From the pseudofunctor $F: A \to \textbf{Cat}$, we can obtain a symmetric monoidal double category of decorated cospans by Theorem 4.1.2 and from the left adjoint $L: A \to X$, we can obtain a symmetric monoidal double category of structured cospans by Theorem 3.1.5. By Theorem 4.3.15, we have an equivalence of symmetric monoidal double categories $F\text{Csp} \simeq L\text{Csp}(X)$. In the previous sections of the present chapter, we proved that each of these symmetric monoidal double categories are fibrant and give rise to underlying symmetric monoidal bicategories $F\text{Csp}$ and $H(L\text{Csp}(X))$, respectively, by Theorem 5.0.1 due to Shulman. We can use another result due to Shulman [45] to lift the double equivalence to a biequivalence of bicategories.

Proposition 5.3.1 (Shulman, Prop. B.3). An equivalence of fibrant double categories induces a biequivalence of horizontal bicategories.

Corollary 5.3.2. The bicategories $F\text{Csp}$ and $H(L\text{Csp}(X))$ are biequivalent.
Chapter 6

Coarse-graining open Markov processes

6.1 Introduction

A ‘Markov process’ is a stochastic model describing a sequence of transitions between states in which the probability of a transition depends only on the current state. The only Markov processes we consider here in this chapter are continuous-time Markov chains with a finite set of states. Such a Markov process can be drawn as a labeled graph:

In this example the set of states is $X = \{a, b, c, d\}$. The numbers labeling edges are transition rates, so the probability $\pi_i(t)$ of being in state $i \in X$ at time $t \in \mathbb{R}$ evolves according to a
linear differential equation
\[
\frac{d}{dt} \pi_i(t) = \sum_{j \in X} H_{ij} \pi_j(t)
\]
called the ‘master equation’, where the matrix \(H\) can be read off from the diagram:
\[
H = \begin{bmatrix}
-1/2 & 0 & 0 & 0 \\
0 & -2 & 1 & 0 \\
1/2 & 2 & -5 & 2 \\
0 & 0 & 4 & -2
\end{bmatrix}.
\]
If there is an edge from a state \(j\) to a distinct state \(i\), the matrix entry \(H_{ij}\) is the number labeling that edge, while if there is no such edge, \(H_{ij} = 0\). The diagonal entries \(H_{ii}\) are determined by the requirement that the sum of each column is zero. This requirement says that the rate at which probability leaves a state equals the rate at which it goes to other states. As a consequence, the total probability is conserved:
\[
\frac{d}{dt} \sum_{i \in X} \pi_i(t) = 0
\]
and is typically set equal to 1.

However, while this sum over all states is conserved, the same need not be true for the sum of \(\pi_i(t)\) over \(i\) in a subset \(Y \subset X\). This poses a challenge to studying a Markov process as built from smaller parts: the parts are not themselves Markov processes. The solution is to describe them as ‘open’ Markov processes. These are a generalization in which
probability can enter or leave from certain states designated as inputs and outputs:

In an open Markov process, probabilities change with time according to the ‘open master equation’, a generalization of the master equation that includes inflows and outflows. In the above example, the open master equation is

$$\frac{d}{dt} \begin{bmatrix} \pi_a(t) \\ \pi_b(t) \\ \pi_c(t) \\ \pi_d(t) \end{bmatrix} = \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 1/2 & 2 & -5 & 2 \\ 0 & 0 & 4 & -2 \end{bmatrix} \begin{bmatrix} \pi_a(t) \\ \pi_b(t) \\ \pi_c(t) \\ \pi_d(t) \end{bmatrix} + \begin{bmatrix} I_a(t) \\ I_b(t) \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \\ O_d(t) \end{bmatrix}.$$

To the master equation we have added a term describing inflows at the states a and b and subtracted a term describing outflows at the state d. The functions I_a, I_b and O_d are not part of the data of the open Markov process. Rather, they are arbitrary smooth real-valued functions of time. We think of these as provided from outside—for example, though not necessarily, from the rest of a larger Markov process of which the given open Markov process is part.

Open Markov processes can be seen as morphisms in a category, since we can compose two open Markov processes by identifying the outputs of the first with the inputs of the second. Composition lets us build a Markov process from smaller open parts—or conversely, analyze the behavior of a Markov process in terms of its parts. The resulting category has
been studied in a number of papers [7, 8, 26, 42], but here we go further and introduce a
double category to describe coarse-graining.

‘Coarse-graining’ is a widely used method of simplifying a Markov process by mapping its
set of states X onto some smaller set X' in a manner that respects, or at least approximately
respects, the dynamics [1, 14]. Here we introduce coarse-graining for open Markov processes.
We show how to extend this notion to the case of maps $p: X \to X'$ that are not surjective,
obtaining a general concept of morphism between open Markov processes.

Since open Markov processes are already morphisms in a category, it is natural to treat
morphisms between them as morphisms between morphisms, or ‘2-morphisms’. We can
do this using double categories. For the definition of double category, see Chapter 8. We
construct a double category Mark with:

(1) finite sets as objects,

(2) maps between finite sets as vertical 1-morphisms,

(3) open Markov processes as horizontal 1-cells,

(4) morphisms between open Markov processes as 2-morphisms.

Composition of open Markov processes is only weakly associative, so this is a pseudo double
category. Not only will Mark be a pseudo double category, but a symmetric monoidal double
category in the sense of Shulman [44]. This captures the fact that we can not only compose
open Markov processes but also ‘tensor’ them by setting them side by side. For example, if
we compose this open Markov process:

we obtain this open Markov process:

but if we tensor them, we obtain this:
If we fix constant probabilities at the inputs and outputs, there typically exist solutions of the open master equation with these boundary conditions that are constant as a function of time. These are called ‘steady states’. Often these are nonequilibrium steady states, meaning that there is a nonzero net flow of probabilities at the inputs and outputs. For example, probability can flow through an open Markov process at a constant rate in a nonequilibrium steady state.

In previous work, Baez, Fong and Pollard studied the relation between probabilities and flows at the inputs and outputs that holds in steady state [8, 10]. They called the process of extracting this relation from an open Markov process ‘black-boxing’, since it gives a way to forget the internal workings of an open system and remember only its externally observable behavior. They proved that black-boxing is compatible with composition and tensoring. This result can be summarized by saying that black-boxing is a symmetric monoidal functor.

For the main result [2], we show that black-boxing is compatible with morphisms between open Markov processes. To make this idea precise, we prove that black-boxing gives a map from the double category \textbf{Mark} to another double category, called \textbf{LinRel}, which has:

1) finite-dimensional real vector spaces U,V,W,\ldots as objects,

2) linear maps $f: V \to W$ as vertical 1-morphisms from V to W,

3) linear relations $R \subseteq V \oplus W$ as horizontal 1-cells from V to W,

150
Here a ‘linear relation’ from a vector space V to a vector space W is a linear subspace $R \subseteq V \oplus W$. Linear relations can be composed in the same way as relations [6]. The double category LinRel becomes symmetric monoidal using direct sum as the tensor product, but unlike Mark it is strict: that is, composition of linear relations is associative.

Maps between symmetric monoidal double categories are called ‘symmetric monoidal double functors’ [20]. The main result, Thm. 6.6.3, says that black-boxing gives a symmetric monoidal double functor

$$\blacksquare : \text{Mark} \to \text{LinRel}.$$

The hardest part is to show that black-boxing preserves composition of horizontal 1-cells: that is, black-boxing a composite of open Markov processes gives the composite of their black-boxings. Luckily, for this we can adapt a previous argument [10] due to Baez and Pollard. Thus, the new content of this result concerns the vertical 1-morphisms and especially the 2-morphisms, which describe coarse-grainings.

An alternative approach to studying morphisms between open Markov processes uses bicategories rather than double categories [13, 46]. This can be accomplished using a result of Shulman [44] to construct symmetric monoidal bicategories Mark and LinRel from the symmetric monoidal double categories Mark and LinRel. We conjecture that the black-
boxing double functor determines a functor between these symmetric monoidal bicategories. However, double categories seem to be a simpler framework for coarse-graining open Markov processes.

It is worth comparing some related work. Baez, Fong and Pollard constructed a symmetric monoidal category where the morphisms are open Markov processes [8, 10]. Like in this chapter, they only consider Markov processes where time is continuous and the set of states is finite. However, they formalized such Markov processes in a slightly different way than is done here: they defined a Markov process to be a directed multigraph where each edge is assigned a positive number called its ‘rate constant’. In other words, they defined it to be a diagram

$$(0, \infty) \xrightarrow{r} E \xrightarrow{s} t \xrightarrow{\rightarrow} X$$

where X is a finite set of vertices or ‘states’, E is a finite set of edges or ‘transitions’ between states, the functions $s, t: E \to X$ give the source and target of each edge, and $r: E \to (0, \infty)$ gives the rate constant of each edge. They explained how from this data one can extract a matrix of real numbers $(H_{ij})_{i,j \in X}$ called the ‘Hamiltonian’ of the Markov process, with two familiar properties:

1. $H_{ij} \geq 0$ if $i \neq j$,

2. $\sum_{i \in X} H_{ij} = 0$ for all $j \in X$.

A matrix with these properties is called ‘infinitesimal stochastic’, since these conditions are equivalent to $\exp(tH)$ being stochastic for all $t \geq 0$.

In the present work we skip the directed multigraphs and work directly with the Hamiltonians. Thus, we define a Markov process to be a finite set X together with an infinitesimal
stochastic matrix \((H_{ij})_{i,j \in X} \). This allows us to work more directly with the Hamiltonian and the all-important master equation

\[
\frac{d}{dt} \pi(t) = H \pi(t)
\]

which describes the evolution of a time-dependent probability distribution \(\pi(t) : X \rightarrow \mathbb{R} \).

Clerc, Humphrey and Panangaden have constructed a bicategory \cite{41} with finite sets as objects, ‘open discrete labeled Markov processes’ as morphisms, and ‘simulations’ as 2-morphisms. In their framework, ‘open’ has a similar meaning as it does in works listed above. These open discrete labeled Markov processes are also equipped with a set of ‘actions’ which represent interactions between the Markov process and the environment, such as an outside entity acting on a stochastic system. A ‘simulation’ is then a function between the state spaces that map the inputs, outputs and set of actions of one open discrete labeled Markov process to the inputs, outputs and set of actions of another.

Another compositional framework for Markov processes is given by de Francesco Albasini, Sabadini and Walters \cite{27} in which they construct an algebra of ‘Markov automata’. A Markov automaton is a family of matrices with nonnegative real coefficients that is indexed by elements of a binary product of sets, where one set represents a set of ‘signals on the left interface’ of the Markov automata and the other set analogously for the right interface.

6.2 Open Markov processes

Before explaining open Markov processes we should recall a bit about Markov processes. As mentioned in the Introduction, we use ‘Markov process’ as a short term for ‘continuous-
time Markov chain with a finite set of states', and we identify any such Markov process with the infinitesimal stochastic matrix appearing in its master equation. We make this precise with a bit of terminology that is useful throughout the chapter.

Given a finite set X, we call a function $v: X \rightarrow \mathbb{R}$ a 'vector' and call its values at points $x \in X$ its 'components' v_x. We define a 'probability distribution' on X to be a vector $\pi: X \rightarrow \mathbb{R}$ whose components are nonnegative and sum to 1. As usual, we use \mathbb{R}^X to denote the vector space of functions $v: X \rightarrow \mathbb{R}$. Given a linear operator $T: \mathbb{R}^X \rightarrow \mathbb{R}^Y$ we have $(Tv)_i = \sum_{j \in X} T_{ij}v_j$ for some 'matrix' $T: Y \times X \rightarrow \mathbb{R}$ with entries T_{ij}.

Definition 6.2.1. Given a finite set X, a linear operator $H: \mathbb{R}^X \rightarrow \mathbb{R}^X$ is **infinitesimal stochastic** if

1. $H_{ij} \geq 0$ for $i \neq j$ and
2. $\sum_{i \in X} H_{ij} = 0$ for each $j \in X$.

The reason for being interested in such operators is that when exponentiated they give stochastic operators.

Definition 6.2.2. Given finite sets X and Y, a linear operator $T: \mathbb{R}^X \rightarrow \mathbb{R}^Y$ is **stochastic** if for any probability distribution π on X, $T\pi$ is a probability distribution on Y.

Equivalently, T is stochastic if and only if

1. $T_{ij} \geq 0$ for all $i \in Y$, $j \in X$ and
2. $\sum_{i \in Y} T_{ij} = 1$ for each $j \in X$.
If we think of T_{ij} as the probability for $j \in X$ to be mapped to $i \in Y$, these conditions make intuitive sense. Since stochastic operators are those that preserve probability distributions, the composite of stochastic operators is stochastic.

In Lemma 6.3.7 we recall that a linear operator $H : \mathbb{R}^X \to \mathbb{R}^X$ is infinitesimal stochastic if and only if its exponential

$$\exp(tH) = \sum_{n=0}^{\infty} \frac{(tH)^n}{n!}$$

is stochastic for all $t \geq 0$. Thus, given an infinitesimal stochastic operator H, for any time $t \geq 0$ we can apply the operator $\exp(tH) : \mathbb{R}^X \to \mathbb{R}^X$ to any probability distribution $\pi \in \mathbb{R}^X$ and get a probability distribution

$$\pi(t) = \exp(tH)\pi.$$

These probability distributions $\pi(t)$ obey the master equation

$$\frac{d}{dt}\pi(t) = H\pi(t).$$

Moreover, any solution of the master equation arises this way.

All the material so far is standard [38, Sec. 2.1]. We now turn to open Markov processes.

Definition 6.2.3. We define a **Markov process** to be a pair (X, H) where X is a finite set and $H : \mathbb{R}^X \to \mathbb{R}^X$ is an infinitesimal stochastic operator. We also call H a Markov process on X.

Definition 6.2.4. We define an **open Markov process** to consist of finite sets X, S and T and injections

$$
\begin{array}{c}
X \\
\downarrow \\
S \\
\downarrow \quad o \\
T \\
\end{array}
$$
together with a Markov process \((X, H)\). We call \(S\) the set of inputs and \(T\) the set of outputs.

Thus, an open Markov process is a cospan in \(\text{FinSet}\) with injections as legs and a Markov process on its apex. We do not require that the injections have disjoint range. We often abbreviate an open Markov process as

\[
\begin{array}{c}
\begin{array}{c}
(X, H) \\
\uparrow \scriptstyle i \\
S \\
\downarrow \scriptstyle o \end{array} \\
\end{array}
\begin{array}{c}
T \end{array}
\]

or simply \(S \xleftarrow{i} (X, H) \xrightarrow{o} T\).

Given an open Markov process we can write down an ‘open’ version of the master equation, where probability can also flow in or out of the inputs and outputs. To work with the open master equation we need two well-known concepts:

Definition 6.2.5. Let \(f: A \to B\) be a map between finite sets. The linear map \(f^*: \mathbb{R}^B \to \mathbb{R}^A\) sends any vector \(v \in \mathbb{R}^B\) to its pullback along \(f\), given by

\[
f^*(v) = v \circ f.
\]

The linear map \(f_*: \mathbb{R}^A \to \mathbb{R}^B\) sends any vector \(v \in \mathbb{R}^A\) to its pushforward along \(f\), given by

\[
(f_*(v))(b) = \sum_{\{a: f(a)=b\}} v(a).
\]

If we write \(f^*\) and \(f_*\) as matrices with respect to the standard bases of \(\mathbb{R}^A\) and \(\mathbb{R}^B\), they are simply transposes of one another.
Now, suppose we are given an open Markov process

$$(X, H)$$

$\xrightarrow{i} S \xleftarrow{o} T$$

together with inflows $I : \mathbb{R} \to \mathbb{R}^S$ and outflows $O : \mathbb{R} \to \mathbb{R}^T$, arbitrary smooth functions of time. We write the value of the inflow at $s \in S$ at time t as $I_s(t)$, and similarly for outflows and other functions of time. We say a function $v : \mathbb{R} \to \mathbb{R}^X$ obeys the open master equation if

$$\frac{dv(t)}{dt} = Hv(t) + i_s(I(t)) - o_s(O(t)).$$

This says that for any state $j \in X$ the time derivative of $v_j(t)$ takes into account not only the usual term from the master equation, but also inflows and outflows.

If the inflows and outflows are constant in time, a solution v of the open master equation that is also constant in time is called a steady state. More formally:

Definition 6.2.6. Given an open Markov process $S \xrightarrow{i} (X, H) \xleftarrow{o} T$ together with $I \in \mathbb{R}^S$ and $O \in \mathbb{R}^T$, a steady state with inflows I and outflows O is an element $v \in \mathbb{R}^X$ such that

$$Hv + i_s(I) - o_s(O) = 0.$$

Given $v \in \mathbb{R}^X$ we call $i^*(v) \in \mathbb{R}^S$ and $o^*(v) \in \mathbb{R}^T$ the input probabilities and output probabilities, respectively.

Definition 6.2.7. Given an open Markov process $S \xrightarrow{i} (X, H) \xleftarrow{o} T$, we define its black-boxing to be the set

$$\mathbf{\boxdot}(S \xrightarrow{i} (X, H) \xleftarrow{o} T) \subseteq \mathbb{R}^S \oplus \mathbb{R}^S \oplus \mathbb{R}^T \oplus \mathbb{R}^T$$

157
consisting of all 4-tuples \((i^*(v), I, o^*(v), O)\) where \(v \in \mathbb{R}^X\) is some steady state with inflows \(I \in \mathbb{R}^S\) and outflows \(O \in \mathbb{R}^T\).

Thus, black-boxing records the relation between input probabilities, inflows, output probabilities and outflows that holds in steady state. This is the ‘externally observable steady state behavior’ of the open Markov process. It has already been shown \([8, 10]\) that black-boxing can be seen as a functor between categories. Here we go further and describe it as a double functor between double categories, in order to study the effect of black-boxing on morphisms between open Markov processes.

6.3 Morphisms of open Markov processes

There are various ways to approximate a Markov process by another Markov process on a smaller set, all of which can be considered forms of coarse-graining \([14]\). A common approach is to take a Markov process \(H\) on a finite set \(X\) and a surjection \(p: X \to X'\) and create a Markov process on \(X'\). In general this requires a choice of ‘stochastic section’ for \(p\), defined as follows:

Definition 6.3.1. Given a function \(p: X \to X'\) between finite sets, a **stochastic section** for \(p\) is a stochastic operator \(s: \mathbb{R}^{X'} \to \mathbb{R}^X\) such that \(p_s = 1_{X'}\).

It is easy to check that a stochastic section for \(p\) exists if and only if \(p\) is a surjection. In Lemma 6.3.9 we show that given a Markov process \(H\) on \(X\) and a surjection \(p: X \to X'\), any stochastic section \(s: \mathbb{R}^{X'} \to \mathbb{R}^X\) gives a Markov process on \(X'\), namely

\[H' = p_s H s. \]
Experts call the matrix corresponding to \(p \) the **collector matrix**, and they call \(s \) the **distributor matrix** [14]. The names help clarify what is going on. The collector matrix, coming from the surjection \(p: X \to X' \), typically maps many states of \(X \) to each state of \(X' \). The distributor matrix, the stochastic section \(s: \mathbb{R}^{X'} \to \mathbb{R}^X \), typically maps each state in \(X' \) to a linear combination of many states in \(X \). Thus, \(H' = p_* H s \) distributes each state of \(X' \), applies \(H \), and then collects the results.

In general \(H' \) depends on the choice of \(s \), but sometimes it does not:

Definition 6.3.2. We say a Markov process \(H \) on \(X \) is **lumpable** with respect to a surjection \(p: X \to X' \) if the operator \(p_* H s \) is independent of the choice of stochastic section \(s: \mathbb{R}^{X'} \to \mathbb{R}^X \).

This concept is not new [14]. In Thm. 6.3.10 we show that it is equivalent to another traditional formulation, and also to an even simpler one: \(H \) is lumpable with respect to \(p \) if and only if \(p_* H = H' p_* \). This equation has the advantage of making sense even when \(p \) is not a surjection. Thus, we can use it to define a more general concept of morphism between Markov processes:

Definition 6.3.3. Given Markov processes \((X, H) \) and \((X', H') \), a **morphism of Markov processes** \(p: (X, H) \to (X', H') \) is a map \(p: X \to X' \) such that \(p_* H = H' p_* \).

There is a category \(\text{Mark} \) with Markov processes as objects and the morphisms as defined above, where composition is the usual composition of functions. But what is the meaning of such a morphism? Using Lemma 6.3.7 one can check that for any Markov processes \((X, H) \) and \((X', H') \), and any map \(p: X \to X' \), we have

\[
p_* H = H' p_* \iff p_* \exp(tH) = \exp(tH') p_* \text{ for all } t \geq 0.
\]
Thus, p is a morphism of Markov processes if evolving a probability distribution on X via $\exp(tH)$ and then pushing it forward along p is the same as pushing it forward and then evolving it via $\exp(tH')$.

We can also define morphisms between open Markov processes:

Definition 6.3.4. A morphism of open Markov processes from the open Markov process $S \xrightarrow{i} (X, H) \xleftarrow{o} T$ to the open Markov process $S' \xrightarrow{i'} (X', H') \xleftarrow{o'} T'$ is a triple of functions $f: S \to S'$, $p: X \to X'$, $g: T \to T'$ such that the squares in this diagram are pullbacks:

```
\[
\begin{array}{ccc}
S & \xrightarrow{i} & X & \xleftarrow{o} & T \\
\downarrow f & & \downarrow p & & \downarrow g \\
S' & \xrightarrow{i'} & X' & \xleftarrow{o'} & T'
\end{array}
\]
```

and $p_*H = H'p_*$.

We need the squares to be pullbacks so that in Lemma 6.6.1 we can black-box morphisms of open Markov processes. In Lemma 6.4.2 we show that horizontally composing these morphisms preserves this pullback property. But to do this, we need the horizontal arrows in these squares to be injections. This explains the conditions in Defs. 6.2.4 and 6.3.4.

As an example, consider the following diagram:
This is a way of drawing an open Markov process $S \xrightarrow{i} (X, H) \xleftarrow{o} T$ where $X = \{a, b_1, b_2, c\}$, S and T are one-element sets, i maps the one element of S to a, and o maps the one element of T to c. We can read off the infinitesimal stochastic operator $H: \mathbb{R}^X \rightarrow \mathbb{R}^X$ from this diagram and obtain

$$H = \begin{bmatrix}
-15 & 0 & 0 & 0 \\
8 & -10 & 0 & 0 \\
7 & 4 & -6 & 0 \\
0 & 6 & 6 & 0 \\
\end{bmatrix}.$$

The resulting open master equation is

$$\frac{d}{dt} \begin{bmatrix}
v_a(t) \\
v_{b_1}(t) \\
v_{b_2}(t) \\
v_c(t) \\
\end{bmatrix} = \begin{bmatrix}
-15 & 0 & 0 & 0 \\
8 & -10 & 0 & 0 \\
7 & 4 & -6 & 0 \\
0 & 6 & 6 & 0 \\
\end{bmatrix} \begin{bmatrix}
v_a(t) \\
v_{b_1}(t) \\
v_{b_2}(t) \\
v_c(t) \\
\end{bmatrix} + \begin{bmatrix} I(t) \\
0 \\
0 \\
0 \\
\end{bmatrix} - \begin{bmatrix} 0 \\
0 \\
0 \\
O(t) \\
\end{bmatrix}.$$

Here I is an arbitrary smooth function of time describing the inflow at the one point of S, and O is a similar function describing the outflow at the one point of T.

Suppose we want to simplify this open Markov process by identifying the states b_1 and b_2. To do this we take $X' = \{a, b, c\}$ and define $p: X \rightarrow X'$ by

$$p(a) = a, \quad p(b_1) = p(b_2) = b, \quad p(c) = c.$$
To construct the infinitesimal stochastic operator $H': \mathbb{R}^{X'} \to \mathbb{R}^{X'}$ for the simplified open Markov process we need to choose a stochastic section $s: \mathbb{R}^{X'} \to \mathbb{R}^X$ for p, for example

$$s = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 2/3 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

This says that if our simplified Markov process is in the state b, we assume the original Markov process has a $1/3$ chance of being in state b_1 and a $2/3$ chance of being in state b_2.

The operator $H' = p_* H s$ is then

$$H' = \begin{bmatrix} -15 & 0 & 0 \\ 15 & -6 & 0 \\ 0 & 6 & 0 \end{bmatrix}.$$

It may be difficult to justify the assumptions behind our choice of stochastic section, but the example at hand has a nice feature: H' is actually independent of this choice. In other words, H is lumpable with respect to p. The reason is explained in Thm. 6.3.10. Suppose we partition X into blocks, each the inverse image of some point of X'. Then H is lumpable with respect to p if and only if when we sum the rows in each block of H, all the columns
within any given block of the resulting matrix are identical. This matrix is p_*H:

$$
H = \begin{bmatrix}
-15 & 0 & 0 & 0 \\
8 & -10 & 0 & 0 \\
7 & 4 & -6 & 0 \\
0 & 6 & 6 & 0
\end{bmatrix}
\Rightarrow
p_*H = \begin{bmatrix}
-15 & 0 & 0 & 0 \\
15 & -6 & -6 & 0 \\
0 & 6 & 6 & 0
\end{bmatrix}.
$$

While coarse-graining is of practical importance even in the absence of lumpability, the lumpable case is better behaved, so we focus on this case.

So far we have described a morphism of Markov processes $p: (X, H) \to (X', H')$, but together with identity functions on the inputs S and outputs T this defines a morphism of open Markov processes, going from the above open Markov process to this one:

![Diagram](https://via.placeholder.com/150)

The open master equation for this new coarse-grained open Markov process is

$$
\frac{d}{dt} \begin{bmatrix}
v_a(t) \\
v_b(t) \\
v_c(t)
\end{bmatrix} = \begin{bmatrix}
-15 & 0 & 0 \\
15 & -6 & 0 \\
0 & 6 & 0
\end{bmatrix} \begin{bmatrix}
v_a(t) \\
v_b(t) \\
v_c(t)
\end{bmatrix} + \begin{bmatrix}
I(t) \\
0 \\
0
\end{bmatrix} - \begin{bmatrix}
0 \\
0 \\
O(t)
\end{bmatrix}.
$$

In Section 6.4 we construct a double category Mark with open Markov processes as horizontal 1-cells and morphisms between these as 2-morphisms. This double category is our main object of study. First, however, we should prove the results mentioned above. For this it is helpful to recall a few standard concepts:
Definition 6.3.5. A 1-parameter semigroup of operators is a collection of linear operators $U(t): V \to V$ on a vector space V, one for each $t \in [0, \infty)$, such that

1. $U(0) = 1$ and

2. $U(s+t) = U(s)U(t)$ for all $s, t \in [0, \infty)$. If V is finite-dimensional we say the collection $U(t)$ is continuous if $t \mapsto U(t)v$ is continuous for each $v \in V$.

Definition 6.3.6. Let X be a finite set. A Markov semigroup is a continuous 1-parameter semigroup $U(t): \mathbb{R}^X \to \mathbb{R}^X$ such that $U(t)$ is stochastic for each $t \in [0, \infty)$.

Lemma 6.3.7. Let X be a finite set and $U(t): \mathbb{R}^X \to \mathbb{R}^X$ a Markov semigroup. Then $U(t) = \exp(tH)$ for a unique infinitesimal stochastic operator $H: \mathbb{R}^X \to \mathbb{R}^X$, which is given by

$$Hv = \frac{d}{dt} U(t)v \bigg|_{t=0}$$

for all $v \in \mathbb{R}^X$. Conversely, given an infinitesimal stochastic operator H, then $\exp(tH) = U(t)$ is a Markov semigroup.

Proof. This is well-known. For a proof that every continuous one-parameter semigroup of operators $U(t)$ on a finite-dimensional vector space V is in fact differentiable and of the form $\exp(tH)$ where $Hv = \frac{d}{dt} U(t)v|_{t=0}$, see Engel and Nagel [24, Sec. I.2]. For a proof that $U(t)$ is then a Markov semigroup if and only if H is infinitesimal stochastic, see Norris [38, Thm. 2.1.2].

Lemma 6.3.8. Let $U(t): \mathbb{R}^X \to \mathbb{R}^X$ be a differentiable family of stochastic operators defined for $t \in [0, \infty)$ and having $U(0) = 1$. Then $\frac{d}{dt} U(t)|_{t=0}$ is infinitesimal stochastic.
Proof. Let \(H = \frac{d}{dt}U(t) \bigg|_{t=0} = \lim_{t \to 0^+} (U(t) - 1)/t \). As \(U(t) \) is stochastic, its entries are nonnegative and the column sum of any particular column is 1. Then the column sum of any particular column of \(U(t) - 1 \) will be 0 with the off-diagonal entries being nonnegative. Thus \(U(t) - 1 \) is infinitesimal stochastic for all \(t \geq 0 \), as is \((U(t) - 1)/t\), from which it follows that \(\lim_{t \to 0^+} (U(t) - U(0))/t = H \) is infinitesimal stochastic. \(\square \)

Lemma 6.3.9. Let \(p: X \to X' \) be a function between finite sets with a stochastic section \(s: \mathbb{R}^{X'} \to \mathbb{R}^X \), and let \(H: \mathbb{R}^X \to \mathbb{R}^X \) be an infinitesimal stochastic operator. Then \(H' = p_* H s: \mathbb{R}^{X'} \to \mathbb{R}^{X'} \) is also infinitesimal stochastic.

Proof. Lemma 6.3.7 implies that \(\exp(tH) \) is stochastic for all \(t \geq 0 \). For any map \(p: X \to X' \) the operator \(p_*: \mathbb{R}^X \to \mathbb{R}^{X'} \) is easily seen to be stochastic, and \(s \) is stochastic by assumption. Thus, \(U(t) = p_* \exp(tH)s \) is stochastic for all \(t \geq 0 \). Differentiating, we conclude that

\[
\frac{d}{dt}U(t) \bigg|_{t=0} = \frac{d}{dt} p_* \exp(tH)s \bigg|_{t=0} = p_* \exp(tH)s |_{t=0} = p_* H s
\]

is infinitesimal stochastic by Lemma 6.3.8. \(\square \)

We can now give some conditions equivalent to lumpability. The third is widely found in the literature [14] and the easiest to check in examples. It makes use of the standard basis vectors \(e_j \in \mathbb{R}^X \) associated to the elements \(j \) of any finite set \(X \). The surjection \(p: X \to X' \) defines a partition on \(X \) where two states \(j, j' \in X \) lie in the same block of the partition if and only if \(p(j) = p(j') \). The elements of \(X' \) correspond to these blocks. The third condition for lumpability says that \(p_* H \) has the same effect on two basis vectors \(e_j \) and \(e_{j'} \) when \(j \) and \(j' \) are in the same block. As mentioned in the example above, this condition says that if we sum the rows in each block of \(H \), all the columns in any given block of the resulting matrix \(p_* H \) are identical.
Theorem 6.3.10. Let $p: X \to X'$ be a surjection of finite sets and let H be a Markov process on X. Then the following conditions are equivalent:

(1) H is lumpable with respect to p.

(2) There exists a linear operator $H': \mathbb{R}^{X'} \to \mathbb{R}^{X'}$ such that $p_*H = H'p_*$.

(3) $p_*He_j = p_*He_{j'}$ for all $j, j' \in X$ such that $p(j) = p(j')$.

When these conditions hold there is a unique operator $H': \mathbb{R}^{X'} \to \mathbb{R}^{X'}$ such that $p_*H = H'p_*$, it is given by $H' = p_*Hs$ for any stochastic section s of p, and it is infinitesimal stochastic.

Proof. $(i) \implies (iii)$. Suppose that H is lumpable with respect to p. Thus, $p_*Hs: \mathbb{R}^{X'} \to \mathbb{R}^{X'}$ is independent of the choice of stochastic section $s: \mathbb{R}^{X'} \to \mathbb{R}^X$. Such a stochastic section is simply an arbitrary linear operator that maps each basis vector $e_i \in \mathbb{R}^{X'}$ to a probability distribution on X supported on the set $\{j \in X : p(j) = i\}$. Thus, for any $j, j' \in X$ with $p(j) = p(j') = i$, we can find stochastic sections $s, s': \mathbb{R}^{X'} \to \mathbb{R}^X$ such that $s(e_i) = e_j$ and $s'(e_i) = e_{j'}$. Since $p_*Hs = p_*Hs'$, we have

$$p_*He_j = p_*Hs(e_i) = p_*Hs'(e_i) = p_*He_{j'}.$$

$(iii) \implies (ii)$. Define $H': \mathbb{R}^{X'} \to \mathbb{R}^{X'}$ on basis vectors $e_i \in \mathbb{R}^{X'}$ by setting

$$H'e_i = p_*He_j$$

for any j with $p(j) = i$. Note that H' is well-defined: since p is a surjection such j exists, and since H is lumpable, H' is independent of the choice of such j. Next, note that for any $j \in X$, if we let $p(j) = i$ we have $p_*He_j = H'e_i = H'p_*e_j$. Since the vectors e_j form a basis for \mathbb{R}^X, it follows that $p_*H = H'p_*$.

166
Choose such an operator; then for any stochastic section s for p we have

$$p_* H s = H' p_* s = H'.$$

It follows that $p_* H s$ is independent of the stochastic section s, so H is lumpable with respect to p.

Suppose that any, hence all, of conditions $(i), (ii), (iii)$ hold. Suppose that $H': \mathbb{R}^{X'} \to \mathbb{R}^{X'}$ is an operator with $p_* H = H' p_*$. Then the argument in the previous paragraph shows that $H' = p_* H s$ for any stochastic section s of p. Thus H' is unique, and by Lemma 6.3.9 it is infinitesimal stochastic.

\[\square \]

6.4 A double category of open Markov processes

One of the main results of a joint work with Baez [2] is the construction of a double category Mark of open Markov processes. The pieces of the double category Mark work as follows:

1. An object is a finite set.
2. A vertical 1-morphism $f: S \to S'$ is a map between finite sets.
3. A horizontal 1-cell is an open Markov process

\[
\begin{array}{ccc}
S & \overset{i}{\to} & (X, H) \\
& & \overset{o}{\leftarrow} \\
& & T.
\end{array}
\]

In other words, it is a pair of injections $S \overset{i}{\to} X \overset{o}{\leftarrow} T$ together with a Markov process H on X.
(4) A 2-morphism is a morphism of open Markov processes
\[
\begin{array}{ccc}
S & \xrightarrow{i_1} & (X, H) & \xleftarrow{o_1} & T \\
\downarrow f & & \downarrow p & & \downarrow g \\
S' & \xrightarrow{i'_1} & (X', H') & \xleftarrow{o'_1} & T'.
\end{array}
\]

In other words, it is a triple of maps \(f, p, g \) such that these squares are pullbacks:
\[
\begin{array}{ccc}
S & \xrightarrow{i_1} & X & \xleftarrow{o_1} & T \\
\downarrow f & & \downarrow p & & \downarrow g \\
S' & \xrightarrow{i'_1} & X' & \xleftarrow{o'_1} & T'.
\end{array}
\]

and \(H'p_s = p_sH \).

Composition of vertical 1-morphisms in Mark is straightforward. So is vertical composition of 2-morphisms, since we can paste two pullback squares and get a new pullback square. Composition of horizontal 1-cells is a bit more subtle. Given open Markov processes
\[
\begin{array}{ccc}
S & \xrightarrow{i_1} & (X, H) & \xleftarrow{o_1} & T, \\
T & \xrightarrow{i_2} & (Y, G) & \xleftarrow{o_2} & U
\end{array}
\]

we first compose their underlying cospans using a pushout:
\[
\begin{array}{ccc}
S & \xrightarrow{i_1} & X & \xleftarrow{o_1} & T, \\
& & \uparrow j & & \uparrow k \\
Y & \xrightarrow{i_2} & U
\end{array}
\]

Since monomorphisms are stable under pushout in a topos, the legs of this new cospan are again injections, as required. We then define the composite open Markov process to be
\[
\begin{array}{ccc}
S & \xrightarrow{j_{i_1}} & (X + Y, H \circ G) & \xleftarrow{k_{o_2}} & U
\end{array}
\]

168
where
\[H \odot G = j_* H j^* + k_* G k^*. \tag{6.2} \]

Here we use both pullbacks and pushforwards along the maps \(j \) and \(k \), as defined in Def. 6.2.5. To check that \(H \odot G \) is a Markov process on \(X +_T Y \) we need to check that \(j_* H j^* \) and \(k_* G k^* \), and thus their sum, are infinitesimal stochastic:

Lemma 6.4.1. Suppose that \(f: X \to Y \) is any map between finite sets. If \(H: \mathbb{R}^X \to \mathbb{R}^X \) is infinitesimal stochastic, then \(f_* H f^*: \mathbb{R}^Y \to \mathbb{R}^Y \) is infinitesimal stochastic.

Proof. Using Def. 6.2.5, we see that the matrix elements of \(f^* \) and \(f_* \) are given by
\[
(f^*)_{ji} = (f_*)_{ij} = \begin{cases}
1 & f(j) = i \\
0 & \text{otherwise}
\end{cases}
\]
for all \(i \in Y, j \in X \). Thus, \(f_* H f^* \) has matrix entries
\[
(f_* H f^*)_{ii'} = \sum_{j,j': f(j)=i, f(j')=i'} H_{jj'}.
\]
To show that \(f_* H f^* \) is infinitesimal stochastic we need to show that its off-diagonal entries are nonnegative and its columns sum to zero. By the above formula, these follow from the same facts for \(H \). \(\square \)

Another formula for horizontal composition is also useful. Given the composable open Markov processes in Eq. (6.1) we can take the copairing of the maps \(j: X \to X +_T Y \) and \(k: Y \to X +_T Y \) and get a map \(\ell: X + Y \to X +_T Y \). Then
\[
H \odot G = \ell_* (H \oplus G) \ell^* \tag{6.3}
\]
where $H \oplus G : \mathbb{R}^{X+Y} \to \mathbb{R}^{X+Y}$ is the direct sum of the operators H and G. This is easy to check from the definitions.

Horizontal composition of 2-morphisms is even subtler:

Lemma 6.4.2. Suppose that we have horizontally composable 2-morphisms as follows:

\[
\begin{array}{c}
S \xrightarrow{i_1} (X, H) \xleftarrow{\alpha_1} T \\
\downarrow f \downarrow p \\
S' \xrightarrow{i'_1} (X', H') \xleftarrow{\alpha'_1} T'
\end{array}
\quad
\begin{array}{c}
T \xrightarrow{i_2} (Y, G) \xleftarrow{\alpha_2} U \\
\downarrow g \downarrow q \\
T' \xrightarrow{i'_2} (Y', G') \xleftarrow{\alpha'_2} U'
\end{array}
\]

Then there is a 2-morphism

\[
\begin{array}{c}
S \xrightarrow{i_3} (X +_T Y, H \circ G) \xleftarrow{\alpha_3} U \\
\downarrow f \downarrow (p + q) \\
S' \xrightarrow{i'_3} (X' +_{T'} Y', H' \circ G') \xleftarrow{\alpha'_3} U'
\end{array}
\]

whose underlying diagram of finite sets is

\[
\begin{array}{c}
S \xrightarrow{i_1} X \xrightarrow{j} X +_T Y \xleftarrow{k} Y \xleftarrow{\alpha_2} U \\
\downarrow f \downarrow (p + q) \\
S' \xrightarrow{i'_1} X' \xrightarrow{j'} X' +_{T'} Y' \xleftarrow{k'} Y' \xleftarrow{\alpha'_2} U'
\end{array}
\]

where j, k, j', k' are the canonical maps from X, Y, X', Y', respectively, to the pushouts $X +_T Y$ and $X' +_{T'} Y'$.

Proof. To show that we have defined a 2-morphism, we first check that the squares in the above diagram of finite sets are pullbacks. Then we show that $(p + q)_*(H \circ G) = (H' \circ G')(p + q)_*$.

170
For the first part, it suffices by the symmetry of the situation to consider the left square. We can write it as a pasting of two smaller squares:

\[
\begin{array}{c}
S & \xrightarrow{i_1} & X & \xrightarrow{j} & X +_T Y \\
\downarrow f & & \downarrow p & & \downarrow p +_q q \\
S' & \xrightarrow{i'_1} & X' & \xrightarrow{j'} & X' +_{T'} Y'
\end{array}
\]

By assumption the left-hand smaller square is a pullback, so it suffices to prove this for the right-hand one. For this we use that fact that FinSet is a topos and thus an adhesive category [34, 35], and consider this commutative cube:

\[
\begin{array}{c}
T & \xrightarrow{t_2} & X & \xrightarrow{j} & X +_T Y \\
\downarrow g & & \downarrow k & & \downarrow p +_q q \\
T' & \xrightarrow{i'_2} & X' & \xrightarrow{j'} & X' +_{T'} Y'
\end{array}
\]

By assumption the top and bottom faces are pushouts, the two left-hand vertical faces are pullbacks, and the arrows \(o'_1\) and \(i'_2\) are monic. In an adhesive category, this implies that the two right-hand vertical faces are pullbacks as well. One of these is the square in question.

To show that \((p +_q q)_*(H \odot G) = (H' \odot G')(p +_q q)_*\), we again use the above cube. Because its two right-hand vertical faces commute, we have

\[(p +_q q)_* j_* = j'_* p_* \quad \text{and} \quad (p +_q q)_* k_* = k'_* q_*\]
so using the definition of $H \odot G$ we obtain

$$(p + g)_*(H \odot G) = (p + g)_*(j_*Hj^* + k_*Gk^*)$$

$$= (p + g)_*j_*Hj^* + (p + g)_*k_*Gk^*$$

$$= j'_*p_*Hj^* + k'_*q_*Gk^*.$$

By assumption we have

$$p_*H = H'p_* \quad \text{and} \quad q_*G = G'q_*$$

so we can go a step further, obtaining

$$(p + g)_*(H \odot G) = j'_*H'p_*j^* + k'_*G'q_*k^*.$$

Because the two right-hand vertical faces of the cube are pullbacks, Lemma 6.4.3 below implies that

$$p_*j^* = j'^*(p + g)_* \quad \text{and} \quad q_*k^* = k'^*(p + g)_*.$$

Using these, we obtain

$$(p + g)_*(H \odot G) = j'_*H'j'^*(p + g)_* + k'_*G'k'^*(p + g)_*$$

$$= (j'_*H'j'^* + k'_*G'k'^*)(p + g)_*$$

$$= (H' \odot G')(p + g)_*$$

completing the proof.

The following lemma is reminiscent of the Beck–Chevalley condition for adjoint functors:
Lemma 6.4.3. Given a pullback square in FinSet:

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{g} & & \downarrow{h} \\
C & \xrightarrow{k} & D
\end{array}
\]

the following square of linear operators commutes:

\[
\begin{array}{ccc}
\mathbb{R}^A & \xleftarrow{f^*} & \mathbb{R}^B \\
\downarrow{g_*} & & \downarrow{h_*} \\
\mathbb{R}^C & \xleftarrow{k^*} & \mathbb{R}^D
\end{array}
\]

Proof. Choose $v \in \mathbb{R}_B$ and $c \in C$. Then

\[
(g_*f^*(v))(c) = \sum_{a : g(a) = c} v(f(a)),
\]

\[
(k^*h_*(v))(c) = \sum_{b : h(b) = k(c)} v(b),
\]

so to show $g_*f^* = k^*h_*$ it suffices to show that f restricts to a bijection

\[
f : \{a \in A : g(a) = c\} \sim \rightarrow \{b \in B : h(b) = k(c)\}.
\]

On the one hand, if $a \in A$ has $g(a) = c$ then $b = f(a)$ has $h(b) = h(f(a)) = k(g(a)) = k(c)$, so the above map is well-defined. On the other hand, if $b \in B$ has $h(b) = k(c)$, then by the definition of pullback there exists a unique $a \in A$ such that $f(a) = b$ and $g(a) = c$, so the above map is a bijection.

Theorem 6.4.4. There exists a double category Mark as defined above.
Proof. Let Mark_0, the ‘category of objects’, consist of finite sets and functions. Let Mark_1 the ‘category of arrows’, consist of open Markov processes and morphisms between these:

\[
\begin{array}{c}
S \xrightarrow{i_1} (X, H) \xleftarrow{a_1} T \\
f \\ S' \xrightarrow{i'_1} (X', H') \xleftarrow{a'_1} T'.
\end{array}
\]

To make Mark into a double category we need to specify the identity-assigning functor

\[u: \text{Mark}_0 \to \text{Mark}_1,\]

the source and target functors

\[s, t: \text{Mark}_1 \to \text{Mark}_0,\]

and the composition functor

\[\circ: \text{Mark}_1 \times_{\text{Mark}_0} \text{Mark}_1 \to \text{Mark}_1.\]

These are given as follows.

For a finite set S, $u(S)$ is given by

\[S \xrightarrow{1_S} (S, 0_S) \xleftarrow{1_S} S\]

where 0_S is the zero operator from \mathbb{R}^S to \mathbb{R}^S. For a map $f: S \to S'$ between finite sets, $u(f)$ is given by

\[
\begin{array}{c}
S \xrightarrow{f} (S, 0_S) \xleftarrow{f} S \\
S' \xrightarrow{f} (S', 0_{S'}) \xleftarrow{f} S'.
\end{array}
\]

174
The source and target functors \(s \) and \(t \) map a Markov process \(S \xrightarrow{i} (X, H) \xleftarrow{o} T \) to \(S \) and \(T \), respectively, and they map a morphism of open Markov processes \(S \xrightarrow{\phi} (X, H) \xleftarrow{\psi} T \) to \(f: S \to S' \) and \(g: T \to T' \), respectively. The composition functor \(\odot \) maps the pair of open Markov processes

\[
\begin{align*}
S & \xrightarrow{i_1} (X, H) & (X', H') & \xleftarrow{o_1} T \\
S' & \xrightarrow{i'_1} (X', H') & \xleftarrow{o'_1} T'
\end{align*}
\]

to \(f \colon S \to S' \) and \(g \colon T \to T' \), respectively. The composition functor \(\odot \) maps the pair of open Markov processes

\[
\begin{align*}
S & \xrightarrow{i_1} (X, H) & \xleftarrow{o_1} T & T \xrightarrow{i_2} (Y, G) \xleftarrow{o_2} U \\
S & \xrightarrow{j_1} (X, H) & \xleftarrow{k_0} U
\end{align*}
\]

to their composite

\[
\begin{align*}
S & \xrightarrow{j_1} (X, H) & \xleftarrow{k_0} U
\end{align*}
\]

defined as in Eq. (6.2), and it maps the pair of morphisms of open Markov processes

\[
\begin{align*}
S & \xrightarrow{i_1} (X, H) & \xleftarrow{o_1} T & T \xrightarrow{i_2} (Y, G) \xleftarrow{o_2} U \\
S' & \xrightarrow{i'_1} (X', H') & \xleftarrow{o'_1} T' & T' \xrightarrow{i'_2} (Y', G') \xleftarrow{o'_2} U'
\end{align*}
\]

to their horizontal composite as defined as in Lemma 6.4.2.

It is easy to check that \(u, s \) and \(t \) are functors. To prove that \(\odot \) is a functor, the main thing we need to check is the interchange law. Suppose we have four morphisms of open processes

\[
\begin{align*}
S & \xrightarrow{i_1} (X, H) & \xleftarrow{o_1} T \quad T \xrightarrow{i_2} (Y, G) \xleftarrow{o_2} U \\
S & \xrightarrow{j_1} (X, H) & \xleftarrow{k_0} U
\end{align*}
\]

...
Markov processes as follows:

Composing horizontally gives

and then composing vertically gives
Composing vertically gives

\[
\begin{array}{c}
\begin{array}{c}
S \xrightarrow{f' \circ f} (X, H) \xleftarrow{\delta} T \\
S'' \xrightarrow{g' \circ p} (X'', H'') \xleftarrow{T''}
\end{array} \\
\begin{array}{c}
T \xrightarrow{q' \circ g} (Y, G) \xleftarrow{\delta} U \\
T'' \xrightarrow{h' \circ h} (Y'', G'') \xleftarrow{U''}
\end{array}
\end{array}
\]

and then composing horizontally gives

\[
\begin{array}{c}
\begin{array}{c}
S \xrightarrow{(p' \circ p) + (g' \circ q)} (X + T, Y \circ G) \xleftarrow{\delta} U \\
S'' \xrightarrow{(p' \circ p) + (g' \circ q)} (X'' + T'', Y'' \circ G'') \xleftarrow{U''}
\end{array}
\end{array}
\]

The only apparent difference between the two results is the map in the middle: one has \((p' + g' q') \circ (p + g' q)\) while the other has \((p' \circ p) + (g' \circ q)\). But these are in fact the same map, so the interchange law holds.

The functors \(u, s, t\) and \(\circ\) obey the necessary relations

\[su = 1 = tu\]

and the relations saying that the source and target of a composite behave as they should.

Lastly, we have three natural isomorphisms: the associator, left unitor, and right unitor, which arise from the corresponding natural isomorphisms for the double category of finite sets, functions, cospans of finite sets, and maps of cospans. The triangle and pentagon equations hold in \(\text{Mark}\) because they do in this simpler double category [20].

Next we give \(\text{Mark}\) a symmetric monoidal structure. We call the tensor product ‘addition’. Given objects \(S, S' \in \text{Mark}_0\) we define their sum \(S + S'\) using a chosen coproduct.
in FinSet. The unit for this tensor product in Mark_0 is the empty set. We can similarly define the sum of morphisms in Mark_0, since given maps \(f : S \to T \) and \(f' : S' \to T' \) there is a natural map \(f + f' : S + S' \to T + T' \). Given two objects in Mark_1:

\[
S_1 \xrightarrow{i_1} (X_1, H_1) \xleftarrow{o_1} T_1 \\
S_2 \xrightarrow{i_2} (X_2, H_2) \xleftarrow{o_2} T_2
\]

we define their sum to be

\[
S_1 + S_2 \xrightarrow{i_1 + i_2} (X_1 + X_2, H_1 \oplus H_2) \xleftarrow{o_1 + o_2} T_1 + T_2
\]

where \(H_1 \oplus H_2 : \mathbb{R}^{X_1 + X_2} \to \mathbb{R}^{X_1 + X_2} \) is the direct sum of the operators \(H_1 \) and \(H_2 \). The unit for this tensor product in Mark_1 is \(\emptyset \mapsto (\emptyset, 0) \mapsto \emptyset \) where \(0: \mathbb{R}^\emptyset \to \mathbb{R}^\emptyset \) is the zero operator. Finally, given two morphisms in Mark_1:

\[
S_1 \xrightarrow{i_1} (X_1, H_1) \xleftarrow{o_1} T_1 \\
S_2 \xrightarrow{i_2} (X_2, H_2) \xleftarrow{o_2} T_2
\]

\[
f_1 \\
p_1 \\
g_1 \\
f_2 \\
p_2 \\
g_2
\]

we define their sum to be

\[
S_1 + S_2 \xrightarrow{i_1 + i_2} (X_1 + X_2, H_1 \oplus H_2) \xleftarrow{o_1 + o_2} T_1 + T_2
\]

\[
f_1 + f_2 \\
p_1 + p_2 \\
g_1 + g_2
\]

\[
S_1' + S_2' \xrightarrow{i_1' + i_2'} (X_1' + X_2', H_1' \oplus H_2') \xleftarrow{o_1' + o_2'} T_1' + T_2'
\]

We complete the description of Mark as a symmetric monoidal double category in the proof of this theorem:

Theorem 6.4.5. The double category Mark can be given a symmetric monoidal structure with the above properties.
Proof. First we complete the description of Mark_0 and Mark_1 as symmetric monoidal categories. The symmetric monoidal category Mark_0 is just the category of finite sets with a chosen coproduct of each pair of finite sets providing the symmetric monoidal structure. We have described the tensor product in Mark_1, which we call ‘addition’, so now we need to introduce the associator, unitors, and braiding, and check that they make Mark_1 into a symmetric monoidal category.

Given three objects in Mark_1

\[S_1 \rightarrow (X_1, H_1) \leftrightarrow T_1 \quad S_2 \rightarrow (X_2, H_2) \leftrightarrow T_2 \quad S_3 \rightarrow (X_3, H_3) \leftrightarrow T_3 \]

tensoring the first two and then the third results in

\[(S_1 + S_2) + S_3 \rightarrow ((X_1 + X_2) + X_3, (H_1 \oplus H_2) \oplus H_3) \leftrightarrow (T_1 + T_2 + T_3) \]

whereas tensoring the last two and then the first results in

\[S_1 + (S_2 + S_3) \rightarrow (X_1 + (X_2 + X_3), H_1 \oplus (H_2 \oplus H_3)) \leftrightarrow (T_1 + (T_2 + T_3)). \]

The associator for Mark_1 is then given as follows:

\[
\begin{array}{ccc}
(S_1 + S_2) + S_3 & \rightarrow & ((X_1 + X_2) + X_3, (H_1 \oplus H_2) \oplus H_3) \\
ap & \downarrow & ap & \downarrow & a \\
S_1 + (S_2 + S_3) & \rightarrow & (X_1 + (X_2 + X_3), H_1 \oplus (H_2 \oplus H_3)) & \leftrightarrow & (T_1 + (T_2 + T_3)
\end{array}
\]

where a is the associator in $(\text{FinSet}, +)$. If we abbreviate an object $S \rightarrow (X, H) \leftarrow T$ of Mark_1 as (X, H), and denote the associator for Mark_1 as α, the pentagon identity says...
that this diagram commutes:

$$\alpha \delta$$

$$\alpha \delta$$

$$\alpha \delta$$

$$\alpha \delta$$

$$\alpha \delta$$

which is clearly true. Recall that the monoidal unit for Mark_1 is given by $\emptyset \mapsto (\emptyset, 0) \hookrightarrow \emptyset$.

The left and right unitors for Mark_1, denoted λ and ρ, are given respectively by the following 2-morphisms:

$\ell \quad \ell$ $\quad \ell \quad r$

$S \quad \quad T$ $\quad S \quad \quad T$

where ℓ and r are the left and right unitors in FinSet. The left and right unitors and associator for Mark_1 satisfy the triangle identity:

The braiding in Mark_1 is given as follows:

The braiding in Mark_1 is given as follows:
where b is the braiding in $(\text{FinSet}, +)$. It is easy to check that the braiding in Mark_1 is its own inverse and obeys the hexagon identity, making Mark_1 into a symmetric monoidal category.

The source and target functors $s, t: \text{Mark}_1 \rightarrow \text{Mark}_0$ are strict symmetric monoidal functors, as required. To make Mark into a symmetric monoidal double category we must also give it two other pieces of structure. One, called χ, says how the composition of horizontal 1-cells interacts with the tensor product in the category of arrows. The other, called μ, says how the identity-assigning functor u relates the tensor product in the category of objects to the tensor product in the category of arrows. We now define these two isomorphisms.

Given horizontal 1-cells

$$
S_1 \xrightarrow{} (X_1, H_1) \leftrightarrow T_1 \\
S_2 \xrightarrow{} (X_2, H_2) \leftrightarrow T_2
$$

the horizontal composites of the top two and the bottom two are given, respectively, by

$$
S_1 \xrightarrow{} (X_1 + T_1 Y_1, H_1 \circ G_1) \leftrightarrow U_1 \\
S_2 \xrightarrow{} (X_2 + T_2 Y_2, H_2 \circ G_2) \leftrightarrow U_2
$$

‘Adding’ the left two and right two, respectively, we obtain

$$
S_1 + S_2 \xrightarrow{} (X_1 + X_2, H_1 \oplus H_2) \leftrightarrow (T_1 + T_2, U_1 + U_2)
$$

Thus the sum of the horizontal composites is

$$
S_1 + S_2 \xrightarrow{} ((X_1 + T_1 Y_1) + (X_2 + T_2 Y_2), (H_1 \circ G_1) \oplus (H_2 \circ G_2)) \leftrightarrow U_1 + U_2
$$

while the horizontal composite of the sums is

$$
S_1 + S_2 \xrightarrow{} ((X_1 + X_2) + T_1 + T_2 (Y_1 + Y_2), (H_1 \oplus H_2) \circ (G_1 \oplus G_2)) \leftrightarrow U_1 + U_2.$$
The required globular 2-isomorphism χ between these is

$$S_1 + S_2 \xrightarrow{\chi} ((X_1, H_1) \oplus (Y_1, G_1)) \oplus ((X_2, H_2) \oplus (Y_2, G_2)) \xleftarrow{1_{U_1 + U_2}} U_1 + U_2$$

where $\hat{\chi}$ is the bijection

$$\hat{\chi}: (X_1 + T_1 Y_1) + (X_2 + T_2 Y_2) \to (X_1 + X_2) + T_1 + T_2 (Y_1 + Y_2)$$

obtained from taking the colimit of the diagram

in two different ways. We call χ ‘globular’ because its source and target 1-morphisms are identities. We need to check that χ indeed defines a 2-isomorphism in Mark.

To do this, we need to show that

$$((H_1 \oplus H_2) \oplus (G_1 \oplus G_2)) \hat{\chi} = \hat{\chi} ((H_1 \odot G_1) \oplus (H_2 \odot G_2)).$$

To simplify notation, let $K = (X_1 + T_1 Y_1) + (X_2 + T_2 Y_2)$ and $K' = (X_1 + X_2) + T_1 + T_2 (Y_1 + Y_2)$ so that $\hat{\chi}: K \xrightarrow{\sim} K'$. Let

$$q: X_1 + X_2 + Y_1 + Y_2 \to K, \quad q': X_1 + X_2 + Y_1 + Y_2 \to K'$$

be the canonical maps coming from the definitions of K and K' as colimits, and note that

$$q' = \hat{\chi} q$$

by the universal property of the colimit. A calculation using Eq. (6.3) implies that

$$(H_1 \odot G_1) \oplus (H_2 \odot G_2) = q_* ((H_1 \oplus H_2) \oplus (G_1 \oplus G_2)) q^*$$

182
and similarly

\[(H_1 \oplus H_2) \odot (G_1 \oplus G_2) = q'((H_1 \oplus H_2) \odot (G_1 \oplus G_2)) q''\].

Together these facts give

\[(H_1 \oplus H_2) \odot (G_1 \oplus G_2) = \hat{\chi} \ast q' \ast ((H_1 \oplus H_2) \odot (G_1 \oplus G_2)) q' \ast \hat{\chi}^*\].

and since \(\hat{\chi}\) is a bijection, \(\hat{\chi}^*\) is the inverse of \(\hat{\chi}^*\), so Eq. (6.4) follows.

For the other globular 2-isomorphism, if \(S\) and \(T\) are finite sets, then \(u(S + T)\) is given by

\[\begin{align*}
S + T & \xrightarrow{1_{S+T}} (S + T, 0_{S+T}) \leftarrow 1_{S+T} \quad S + T
\end{align*}\]

while \(u(S) \oplus u(T)\) is given by

\[\begin{align*}
S + T & \xrightarrow{1_{S+1_T}} (S + T, 0_S \oplus 0_T) \leftarrow 1_{S+1_T} \quad S + T
\end{align*}\]

so there is a globular 2-isomorphism \(\mu\) between these, namely the identity 2-morphism. All the commutative diagrams in the definition of symmetric monoidal double category [44] can be checked in a straightforward way.

\[\square\]

6.4.1 A bicategory of open Markov processes

If one prefers to work with bicategories as opposed to double categories, then one can lift the above symmetric monoidal double category \(\text{Mark}\) to a symmetric monoidal bicategory \(\text{Mark}\) using a result of Shulman. This bicategory \(\text{Mark}\) will have:

1. finite sets as objects,
(2) open Markov processes as morphisms,

(3) morphisms of open Markov processes as 2-morphisms.

To do this, we need to check that the symmetric monoidal double category Mark is isofibrant—meaning fibrant on vertical 1-morphisms which happen to be isomorphisms. See Chapter 5 for details.

Definition 6.4.6. Let \mathbb{D} be a double category. Then the **horizontal bicategory** of \mathbb{D}, which we denote as $H(\mathbb{D})$, is the bicategory with

1. objects of \mathbb{D} as objects,
2. horizontal 1-cells of \mathbb{D} as 1-morphisms,
3. globular 2-morphisms of \mathbb{D} (i.e., 2-morphisms with identities as their source and target) as 2-morphisms,

and vertical and horizontal composition, identities, associators and unitors arising from those in \mathbb{D}.

Lemma 6.4.7. The symmetric monoidal double category Mark is isofibrant.

Proof. In what follows, all unlabeled arrows are identities. To show that Mark is isofibrant, we need to show that every vertical 1-isomorphism has both a companion and a conjoint [44]. Given a vertical 1-isomorphism $f: S \to S'$, meaning a bijection between finite sets, then a companion of f is given by the horizontal 1-cell:

$$
\begin{align*}
S & \xrightarrow{f} (S', 0_{S'}) \\
& \leftarrow (S', 0_{S'})
\end{align*}
$$
together with two 2-morphisms

\[
\begin{array}{c}
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'} \\
\downarrow & \downarrow \\
S' \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\begin{array}{c}
S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

such that vertical composition gives

\[
\begin{array}{c}
S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S' \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\begin{array}{c}
S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S' \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\frac{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}}{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S}}
\]

and horizontal composition gives

\[
\begin{array}{c}
S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\begin{array}{c}
S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\frac{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}}{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S}}
\]

A conjoint of \(f: S \to S' \) is given by the horizontal 1-cell

\[
\begin{array}{c}
S' \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S' \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\begin{array}{c}
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\frac{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}}{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S}}
\]

\[
\begin{array}{c}
S' \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S' \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\begin{array}{c}
S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\frac{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}}{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S}}
\]

\[
\begin{array}{c}
S' \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S' \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\begin{array}{c}
S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\frac{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}}{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S}}
\]

A conjoint of \(f: S \to S' \) is given by the horizontal 1-cell

\[
\begin{array}{c}
S' \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S' \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\begin{array}{c}
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\frac{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}}{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S}}
\]

\[
\begin{array}{c}
S' \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S' \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\begin{array}{c}
S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\frac{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}}{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S}}
\]

\[
\begin{array}{c}
S' \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S' \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\begin{array}{c}
S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}
\end{array}
\]

\[
\frac{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S} \\
\downarrow & \downarrow \\
S \xrightarrow{f} (S', 0_{S'}) & \xleftarrow{S'}}{S \xrightarrow{f} (S, 0_S) & \xleftarrow{S}}
\]

185
that satisfy equations analogous to the two above.

\[\text{Theorem 6.4.8. Mark is a symmetric monoidal bicategory.} \]

\[\text{Proof. This follows immediately from Theorem 5.0.1: Mark is an isofibrant symmetric monoidal double category, so we obtain the symmetric monoidal bicategory Mark as the horizontal bicategory of Mark.} \]

6.5 A double category of linear relations

The general idea of ‘black-boxing’, as mentioned in Chapter 2, is to take a system and forget everything except the relation between its inputs and outputs, as if we had placed it in a black box and were unable to see its inner workings. Previous work of Baez and Pollard [10] constructed a black-boxing functor \(\square : \text{Dynam} \to \text{SemiAlgRel} \) where \(\text{Dynam} \) is a category of finite sets and ‘open dynamical systems’ and \(\text{SemiAlgRel} \) is a category of finite-dimensional real vector spaces and relations defined by polynomials and inequalities. When we black-box such an open dynamical system, we obtain the relation between inputs and outputs that holds in steady state.

A special case of an open dynamical system is an open Markov process as defined in this chapter. Thus, we could restrict the black-boxing functor \(\square : \text{Dynam} \to \text{SemiAlgRel} \) to a category \(\text{Mark} \) with finite sets as objects and open Markov processes as morphisms. Since the steady state behavior of a Markov process is linear, we would get a functor \(\square : \text{Mark} \to \text{LinRel} \) where \(\text{LinRel} \) is the category of finite-dimensional real vector spaces and linear relations [6]. However, we will go further and define black-boxing on the double
category \texttt{Mark}. This will exhibit the relation between black-boxing and morphisms between open Markov processes.

The symmetric monoidal double category \texttt{LinRel} of linear relations introduced in this section will serve as the codomain of a symmetric monoidal black-box double functor in Section 6.6. This double category \texttt{LinRel} will have:

(1) finite-dimensional real vector spaces U, V, W, \ldots as objects,

(2) linear maps $f : V \to W$ as vertical 1-morphisms from V to W,

(3) linear relations $R \subseteq V \oplus W$ as horizontal 1-cells from V to W,

(4) squares

$$
\begin{array}{c}
V_1 \xrightarrow{R \subseteq V_1 \oplus V_2} V_2 \\
\downarrow f \quad \downarrow g \\
W_1 \xrightarrow{S \subseteq W_1 \oplus W_2} W_2
\end{array}
$$

obeying $(f \oplus g)R \subseteq S$ as 2-morphisms.

The last item deserves some explanation. A preorder is a category such that for any pair of objects x, y there exists at most one morphism $\alpha : x \to y$. When such a morphism exists we usually write $x \leq y$. Similarly there is a kind of double category for which given any ‘frame’

$$
\begin{array}{c}
A \xrightarrow{M} B \\
\downarrow f \quad \downarrow g \\
C \xrightarrow{N} D
\end{array}
$$
there exists at most one 2-morphism

\[
\begin{array}{ccc}
A & \xrightarrow{M} & B \\
\downarrow \alpha & & \downarrow g \\
C & \xrightarrow{N} & D \\
\end{array}
\]

dfilling this frame. For lack of a better term let us call this a **degenerate** double category.

Item (4) implies that \(\text{LinRel} \) will be degenerate in this sense.

In \(\text{LinRel} \), composition of vertical 1-morphisms is the usual composition of linear maps, while composition of horizontal 1-cells is the usual composition of linear relations. Since composition of linear relations obeys the associative and unit laws strictly, \(\text{LinRel} \) will be a **strict** double category. Since \(\text{LinRel} \) is degenerate, there is at most one way to define the vertical composite of 2-morphisms

\[
\begin{array}{ccc}
U_1 & \xrightarrow{R \subseteq U_1 \oplus U_2} & U_2 \\
\downarrow f \quad \downarrow \alpha \quad \downarrow g \\
V_1 & \xrightarrow{S \subseteq V_1 \oplus V_2} & V_2 \\
\downarrow f' \quad \downarrow \beta \quad \downarrow g' \\
W_1 & \xrightarrow{T \subseteq W_1 \oplus W_2} & W_2 \\
\end{array}
\]

so we need merely check that a 2-morphism \(\beta \alpha \) filling the frame at right exists. This amounts to noting that

\[
(f \oplus g)R \subseteq S, \ (f' \oplus g')S \subseteq T \quad \implies \quad (f' \oplus g')(f \oplus g)R \subseteq T.
\]
Similarly, there is at most one way to define the horizontal composite of 2-morphisms

\[
\begin{array}{ccc}
V_1 & R \subseteq V_1 \oplus V_2 & V_2 \\
\downarrow \alpha & \Downarrow g & \Downarrow h \\
W_1 & S \subseteq W_1 \oplus W_2 & W_2
\end{array}
= \begin{array}{ccc}
V_1 & R' R \subseteq V_1 \oplus V_3 & V_3 \\
\downarrow \alpha' \circ \alpha & \Downarrow S' S \subseteq W_1 \oplus W_3 & W_3
\end{array}
\]

so we need merely check that a filler \(\alpha' \circ \alpha \) exists, which amounts to noting that

\[
(f \oplus g) R \subseteq S,
(g \oplus h) R' \subseteq S' \quad \Rightarrow \quad (f \oplus h)(R'R) \subseteq S'S.
\]

Theorem 6.5.1. There exists a strict double category \(\mathbb{LinRel} \) with the above properties.

Proof. The category of objects \(\mathbb{LinRel}_0 \) has finite-dimensional real vector spaces as objects and linear maps as morphisms. The category of arrows \(\mathbb{LinRel}_1 \) has linear relations as objects and squares

\[
\begin{array}{ccc}
V_1 & R \subseteq V_1 \oplus V_2 & V_2 \\
\downarrow f & \Downarrow g \\
W_1 & S \subseteq W_1 \oplus W_2 & W_2
\end{array}
\]

with \((f \oplus g) R \subseteq S \) as morphisms. The source and target functors \(s, t : \mathbb{LinRel}_1 \to \mathbb{LinRel}_0 \) are clear. The identity-assigning functor \(u : \mathbb{LinRel}_0 \to \mathbb{LinRel}_1 \) sends a finite-dimensional real vector space \(V \) to the identity map \(1_V \) and a linear map \(f : V \to W \) to the unique 2-morphism

\[
\begin{array}{ccc}
V & 1_V & V \\
\downarrow f & \Downarrow f \\
W & 1_W & W.
\end{array}
\]
The composition functor $\odot : \text{LinRel}_1 \times_{\text{LinRel}_0} \text{LinRel}_1 \to \text{LinRel}_1$ acts on objects by the usual composition of linear relations, and it acts on 2-morphisms by horizontal composition as described above. These functors can be shown to obey all the axioms of a double category. In particular, because LinRel is degenerate, all the required equations between 2-morphisms, such as the interchange law, hold automatically.

Next we make LinRel into a symmetric monoidal double category. To do this, we first give LinRel_0 the structure of a symmetric monoidal category. We do this using a specific choice of direct sum for each pair of finite-dimensional real vector spaces as the tensor product, and a specific 0-dimensional vector space as the unit object. Then we give LinRel_1 a symmetric monoidal structure as follows. Given linear relations $R \subseteq V_1 \oplus W_1$ and $R' \subseteq V_2 \oplus W_2$, we define their direct sum by

$$R \oplus R' = \{(v_1, v_2, w_1, w_2) : (v_1, w_1) \in R, (v_2, w_2) \in R'\} \subseteq V_1 \oplus V_2 \oplus W_1 \oplus W_2.$$

Given two 2-morphisms in LinRel_1:

$$\begin{array}{ccc}
V_1 \xrightarrow{R \subseteq V_1 \oplus V_2} V_2 \\
\downarrow f \swarrow \alpha \\
W_1 \times W_1 \oplus W_2 \\
\end{array} \quad \quad \begin{array}{ccc}
V'_1 \xrightarrow{R' \subseteq V'_1 \oplus V'_2} V'_2 \\
\downarrow f' \swarrow \alpha' \\
W'_1 \times W'_1 \oplus W'_2 \\
\end{array}$$

there is at most one way to define their direct sum

$$\begin{array}{ccc}
V_1 \oplus V'_1 \xrightarrow{R \oplus R' \subseteq V_1 \oplus V'_1 \oplus V_2 \oplus V'_2} V_2 \oplus V'_2 \\
\downarrow f \oplus f' \swarrow \alpha \oplus \alpha' \\
W_1 \oplus W'_1 \oplus W_1 \oplus W'_1 \oplus W_2 \oplus W'_2 \\
\end{array} \quad \quad \begin{array}{ccc}
S \oplus S' \subseteq W_1 \oplus W'_1 \oplus W_2 \oplus W'_2 \\
\downarrow g \oplus g' \\
W_2 \oplus W'_2 \\
\end{array}$$
because \texttt{LinRel} is degenerate. To show that \(\alpha \oplus \alpha' \) exists, we need merely note that
\[
(f \oplus g)R \subseteq S, \quad (f' \oplus g')R' \subseteq S' \quad \implies \quad (f \oplus f' \oplus g \oplus g')(R \oplus R') \subseteq S \oplus S'.
\]

Theorem 6.5.2. The double category \(\mathbb{LinRel} \) can be given the structure of a symmetric monoidal double category with the above properties.

Proof. We have described \(\mathbb{LinRel}_0 \) and \(\mathbb{LinRel}_1 \) as symmetric monoidal categories. The source and target functors \(s, t: \mathbb{LinRel}_1 \rightarrow \mathbb{LinRel}_0 \) are strict symmetric monoidal functors. The required globular 2-isomorphisms \(\chi \) and \(\mu \) are defined as follows. Given four horizontal 1-cells

\[
R_1 \subseteq U_1 \oplus V_1, \quad R_2 \subseteq V_1 \oplus W_1, \\
S_1 \subseteq U_2 \oplus V_2, \quad S_2 \subseteq V_2 \oplus W_2,
\]

the globular 2-isomorphism \(\chi: (R_2 \oplus S_2)(R_1 \oplus S_1) \Rightarrow (R_2R_1) \oplus (S_2S_1) \) is the identity 2-morphism

\[
\begin{array}{cc}
U_1 \oplus U_2 & \xrightarrow{(R_2 \oplus S_2)(R_1 \oplus S_1)} W_1 \oplus W_2 \\
1 & 1 \\
U_1 \oplus U_2 & \xrightarrow{(R_2R_1) \oplus (S_2S_1)} W_1 \oplus W_2.
\end{array}
\]

The globular 2-isomorphism \(\mu: u(V \oplus W) \Rightarrow u(V) \oplus u(W) \) is the identity 2-morphism

\[
\begin{array}{cc}
V \oplus W & \xrightarrow{1_{V \oplus W}} V \oplus W \\
1 & 1 \\
V \oplus W & \xrightarrow{1_V \oplus 1_W} V \oplus W.
\end{array}
\]
All the commutative diagrams in the definition of symmetric monoidal double category [44] can be checked straightforwardly. In particular, all diagrams of 2-morphisms commute automatically because \mathbb{LinRel} is degenerate.

\[\square\]

6.5.1 A bicategory of linear relations

We can also promote the symmetric monoidal double category \mathbb{LinRel} of linear relations from the previous section to a symmetric monoidal bicategory LinRel of linear relations due to Shulman’s Theroem 5.0.1 by showing LinRel is isofibrant.

Lemma 6.5.3. The symmetric monoidal double category \mathbb{LinRel} is isofibrant.

Proof. Let $f : X \to Y$ be a linear isomorphism between finite-dimensional real vector spaces. Define \hat{f} to be the linear relation given by the linear isomorphism f and define 2-morphisms in LinRel

\[
\begin{array}{ccc}
X & \xrightarrow{\hat{f}} & Y \\
\downarrow^{f} & \alpha_f \downarrow & \downarrow^{1} \\
Y & \xrightarrow{1} & Y \\
\end{array}
\quad
\begin{array}{ccc}
X & \xrightarrow{1} & X \\
\downarrow^{1} & f\alpha \downarrow & \downarrow^{f} \\
X & \xrightarrow{\hat{f}} & Y \\
\end{array}
\]

where α_f and $f\alpha$, the unique fillers of their frames, are identities. These two 2-morphisms and \hat{f} satisfy the required equations, and the conjoint of f is given by reversing the direction of \hat{f}, which is just $f^{-1} : Y \to X$. It follows that LinRel is isofibrant. \[\square\]

Theorem 6.5.4. There exists a symmetric monoidal bicategory LinRel with

(1) finite-dimensional real vector spaces as objects,

(2) linear relations $R \subseteq V \oplus W$ as morphisms from V to W,
(3) inclusions $R \subseteq S$ between linear relations $R, S \subseteq V \oplus W$ as 2-morphisms.

Proof. Apply Shulman’s result, Theorem 5.0.1, to the isofibrant symmetric monoidal double category LinRel to obtain the symmetric monoidal bicategory LinRel as the horizontal edge bicategory of $\mathbb{L}\text{inRel}$. □

6.6 Black-boxing for open Markov processes

In this section we present the main result of the chapter which is a symmetric monoidal double functor $\blacksquare : \text{Mark} \to \mathbb{L}\text{inRel}$. We proceed as follows:

(1) On objects: for a finite set S, we define $\blacksquare(S)$ to be the vector space $\mathbb{R}^S \oplus \mathbb{R}^S$.

(2) On horizontal 1-cells: for an open Markov process $S \xrightarrow{i} (X,H) \xleftarrow{o} T$, we define its black-boxing as in Def. 6.2.7:

$$\blacksquare(S \xrightarrow{i} (X,H) \xleftarrow{o} T) =$$

$$\{(i^*(v), I, o^*(v), O) : v \in \mathbb{R}^X, I \in \mathbb{R}^S, O \in \mathbb{R}^T \text{ and } H(v) + i_*(I) - o_*(O) = 0\}.$$ (3) On vertical 1-morphisms: for a map $f : S \to S'$, we define $\blacksquare(f) : \mathbb{R}^S \oplus \mathbb{R}^S \to \mathbb{R}^{S'} \oplus \mathbb{R}^{S'}$ to be the linear map $f_* \oplus f_*$. What remains to be done is define how \blacksquare acts on 2-morphisms of Mark. This describes the relation between steady state input and output concentrations and flows of a coarse-grained open Markov process in terms of the corresponding relation for the original process:
Lemma 6.6.1. Given a 2-morphism

\[
\begin{array}{ccc}
S & \xrightarrow{i} & (X,H) & \xleftarrow{o} & T \\
\downarrow f & & & & \downarrow g \\
S' & \xrightarrow{i'} & (X',H') & \xleftarrow{o'} & T',
\end{array}
\]

in Mark, there exists a (unique) 2-morphism

\[
\begin{array}{ccc}
\blacksquare(S) & \xrightarrow{(S \xrightarrow{i} (X,H) \xleftarrow{o} T)} & \blacksquare(T) \\
\downarrow \blacksquare(f) & & \downarrow \blacksquare(g) \\
\blacksquare(S') & \xrightarrow{(S' \xrightarrow{i'} (X',H') \xleftarrow{o'} T')} & \blacksquare(T')
\end{array}
\]

in LinRel.

Proof. Since LinRel is degenerate, if there exists a 2-morphism of the claimed kind it is automatically unique. To prove that such a 2-morphism exists, it suffices to prove

\[(i^*(v), I, o^*(v), O) \in V \implies (f_*(i^*(v)), f_*(I), g_* o^*(v), g_*(O)) \in W\]

where

\[V = \blacksquare(S \xrightarrow{i} (X,H) \xleftarrow{o} T) = \]

\[\{(i^*(v), I, o^*(v), O) : v \in \mathbb{R}^X, I \in \mathbb{R}^S, O \in \mathbb{R}^T \text{ and } H(v) + i_*(I) - o_*(O) = 0\}\]

and

\[W = \blacksquare(S' \xrightarrow{i'} (X',H') \xleftarrow{o'} T') = \]

\[\{(i'^*(v'), I', o'^*(v'), O') : v' \in \mathbb{R}^{X'}, I' \in \mathbb{R}^{S'}, O' \in \mathbb{R}^{T'} \text{ and } H'(v') + i'_*(I') - o'_*(O') = 0\}\].
To do this, assume \((i^*(v), I, o^*(v), O) \in V\), which implies that

\[
H(v) + i_s(I) - o_s(O) = 0. \tag{6.5}
\]

Since the commuting squares in \(\alpha\) are pullbacks, Lemma 6.4.3 implies that

\[
f_* i^* = i'^* p_*, \quad g_* o^* = o'^* p_*. \]

Thus

\[
(f_* i^*(v), f_*(I), g_* o^*(v), g_*(O)) = (i'^* p_*(v), f_*(I), o'^* p_*(v), g_*(O))
\]

and this is an element of \(W\) as desired if

\[
H' p_*(v) + i'_s f_*(I) - o'_s g_*(O) = 0. \tag{6.6}
\]

To prove Eq. (6.6), note that

\[
H' p_*(v) + i'_s f_*(I) - o'_s g_*(O) = p_* H(v) + p_* i_s(I) - p_* o_s(O)
\]

\[
= p_*(H(v) + i_s(I) - o_s(O))
\]

where in the first step we use the fact that the squares in \(\alpha\) commute, together with the fact that \(H' p_* = p_* H\). Thus, Eq. (6.5) implies Eq. (6.6).

The following result is a special case of a result by Pollard and Baez on black-boxing open dynamical systems [10]. To make this chapter self-contained we adapt the proof to the case at hand:

Lemma 6.6.2. The black-boxing of a composite of two open Markov processes equals the composite of their black-boxings.
Proof. Consider composable open Markov processes

\[S \xrightarrow{i} (X, H) \xleftarrow{\alpha} T, \quad T \xrightarrow{i'} (Y, G) \xleftarrow{\beta'} U. \]

To compose these, we first form the pushout

\[
\begin{array}{c}
S \xrightarrow{i} X \\
\downarrow j \quad \downarrow k \\
X +_T Y \xleftarrow{o} T \\
\downarrow o' \quad \downarrow d \\
T \xleftarrow{\psi} Y \xrightarrow{\psi'} U
\end{array}
\]

Then their composite is

\[S \xrightarrow{j\beta} (X +_T Y, H \odot G) \xleftarrow{ko'} U \]

where

\[H \odot G = j^*Hj^* + k^*Gk^*. \]

To prove that \(\square \) preserves composition, we first show that

\[\square(Y, G) \square(X, H) \subseteq \square(X +_T Y, H \odot G). \]

Thus, given

\[(i^*(v), I, o^*(v), O) \in \square(X, H), \quad (i'^*(v'), I', o'^*(v'), O') \in \square(Y, G) \]

with

\[o^*(v) = i'^*(v'), \quad O = I' \]

we need to prove that

\[(i^*(v), I, o'^*(v'), O') \in \square(X +_T Y, H \odot G). \]
To do this, it suffices to find \(w \in \mathbb{R}^{X+T} \) such that
\[
(i^*(v), I, o^*(v'), O') = ((ji)^*(w), I, (ko')^*(w), O')
\]
and \(w \) is a steady state of \((X+T, Y, H \odot G)\) with inflows \(I \) and outflows \(O' \).

Since \(o^*(v) = i'^*(v') \), this diagram commutes:

\[
\begin{array}{c}
X \\
\downarrow o \\
Y
\end{array}
\quad \begin{array}{c}
v \\
\uparrow \quad v'
\end{array}
\end{array}
\]

so by the universal property of the pushout there is a unique map \(w: X +_T Y \to \mathbb{R} \) such that this commutes:

\[
\begin{array}{c}
X +_T Y \\
\downarrow j \\
X \\
\downarrow o \\
T \\
\downarrow k \\
Y \\
\downarrow o' \\
T \\
\downarrow i' \\
\end{array}
\quad \begin{array}{c}
v \\
\uparrow \\
w \\
\uparrow \\
\end{array}
\quad \begin{array}{c}
v' \\
\uparrow \\
v' \\
\uparrow
\end{array}
\end{array}
\]

This simply says that because the functions \(v \) and \(v' \) agree on the ‘overlap’ of our two open Markov processes, we can find a function \(w \) that restricts to \(v \) on \(X \) and \(v' \) on \(Y \).

We now prove that \(w \) is a steady state of the composite open Markov process with inflows \(I \) and outflows \(O' \):
\[
(H \odot G)(w) + (ji)_*(I) - (ko')_*(O') = 0.
\]
(6.8)

To do this we use the fact that \(v \) is a steady state of \(S \xrightarrow{i} (X, H) \xleftarrow{o} T \) with inflows \(I \) and outflows \(O \):
\[
H(v) + i_*(I) - o_*(O) = 0
\]
(6.9)
and \(v' \) is a steady state of \(T \overset{i'}{\rightarrow} (Y,G) \overset{o'}{\leftarrow} U \) with inflows \(I' \) and outflows \(O' \):

\[
G(v') + i'_*(I') - o'_*(O') = 0. \tag{6.10}
\]

We push Eq. (6.9) forward along \(j \), push Eq. (6.10) forward along \(k \), and sum them:

\[
j_*(H(v)) + (ji)_*(I) - (jo)_*(O) + k_*(G(v')) + (ki')_*(I') - (ko')_*(O') = 0.
\]

Since \(O = I' \) and \(jo = ki' \), two terms cancel, leaving us with

\[
j_*(H(v)) + (ji)_*(I) + k_*(G(v')) - (ko')_*(O') = 0.
\]

Next we combine the terms involving the infinitesimal stochastic operators \(H \) and \(G \), with the help of Eq. (6.7) and the definition of \(H \odot G \):

\[
j_*(H(v)) + k_*(G(v')) = (j_*Hj^* + k_*Gk^*)(w) = (H \odot G)(w). \tag{6.11}
\]

This leaves us with

\[
(H \odot G)(w) + (ji)_*(I) - (ko')_*(O') = 0
\]

which is Eq. (6.8), precisely what we needed to show.

To finish showing that \(\Box \) is a functor, we need to show that

\[
\Box(X +_TY, H \odot G) \subseteq \Box(Y, G) \Box(X, H).
\]

So, suppose we have

\[
((ji)^*(w), I, (ko')^*(w), O') \in \Box(X +_TY, H \odot G).
\]

We need to show

\[
((ji)^*(w), I, (ko')^*(w), O') = (i^*(v), I, o'^*(v'), O') \tag{6.12}
\]

198
where

\[(i^*(v), I, o^*(v), O) \in \boxtimes(X,H), \quad (i'^*(v'), I', o'^*(v'), O') \in \boxtimes(Y,G)\]

and

\[o^*(v) = i'^*(v'), \quad O = I'.\]

To do this, we begin by choosing

\[v = j^*(w), \quad v' = k^*(w).\]

This ensures that Eq. (6.12) holds, and since \(jo = ki'\), it also ensures that

\[o^*(v) = (jo)^*(w) = (ki')^*(w) = i'^*(v').\]

To finish the job, we need to find an element \(O = I' \in \mathbb{R}^T\) such that \(v\) is a steady state of \((X,H)\) with inflows \(I\) and outflows \(O\) and \(v'\) is a steady state of \((Y,G)\) with inflows \(I'\) and outflows \(O'\). Of course, we are given the fact that \(w\) is a steady state of \((X + T Y, H \odot G)\) with inflows \(I\) and outflows \(O'\).

In short, we are given Eq. (6.8), and we seek \(O = I'\) such that Eqs. (6.9) and (6.10) hold. Thanks to our choices of \(v\) and \(v'\), we can use Eq. (6.11) and rewrite Eq. (6.8) as

\[j_*(H(v) + i_*(I)) + k_*(G(v') - o'_*(O')) = 0. \tag{6.13}\]

Eqs. (6.9) and (6.10) say that

\[H(v) + i_*(I) - o_*(O) = 0 \tag{6.14}\]

\[G(v') + i'_*(I') - o'_*(O') = 0.\]
Now we use the fact that

![Diagram](image)

is a pushout. Applying the ‘free vector space on a finite set’ functor, which preserves colimits, this implies that

![Diagram](image)

is a pushout in the category of vector spaces. Since a pushout is formed by taking first a coproduct and then a coequalizer, this implies that

\[
\mathbb{R}^T \xrightarrow{(o_*, 0)} \mathbb{R}^X \oplus \mathbb{R}^Y \xrightarrow{[j_*, k_*]} \mathbb{R}^{X+TY}
\]

is a coequalizer. Thus, the kernel of \([j_*, k_*]\) is the image of \((o_*, 0) - (0, i'_*)\). Eq. (6.13) says precisely that

\[
(H(v) + i_*(I), G(v') - o'_*(O')) \in \ker([j_*, k_*]).
\]

Thus, it is in the image of \((o_*, 0) - (0, i'_*)\). In other words, there exists some element \(O = I' \in \mathbb{R}^T\) such that

\[
(H(v) + i_*(I), G(v') - o'_*(O')) = (o_*(O), -i'_*(I')).
\]

This says that Eqs. (6.9) and (6.10) hold, as desired.

This is the main result of the paper on coarse-graining open Markov processes [2]:

200
Theorem 6.6.3. There exists a symmetric monoidal double functor \(\Box: \text{Mark} \to \text{LinRel}\) with the following behavior:

1. **Objects:** \(\Box\) sends any finite set \(S\) to the vector space \(\mathbb{R}^S \oplus \mathbb{R}^S\).

2. **Vertical 1-morphisms:** \(\Box\) sends any map \(f: S \to S'\) to the linear map \(f_\ast \oplus f_\ast: \mathbb{R}^S \oplus \mathbb{R}^S \to \mathbb{R}^{S'} \oplus \mathbb{R}^{S'}\).

3. **Horizontal 1-cells:** \(\Box\) sends any open Markov process \(\xymatrix{ S \ar[r]^i \ar[d]_f & (X,H) \ar[d]^p \ar[l]_o \ar@{..}_{H} \ar[r]^\pi & T \ar[d]_g \ar[l]_\sigma} \) to the linear relation given in Def. 6.2.7:

\[
\Box(S \xymatrix{ i \ar[r] & (X,H) \ar[l]_o \ar@{..}_{H} \ar[r]^\pi & T) = \\
\{(i^*(v), I, o^*(v), O) : H(v) + i_*(I) - o_*(O) = 0 \text{ for some } I \in \mathbb{R}^S, v \in \mathbb{R}^X, O \in \mathbb{R}^T\}.
\]

4. **2-Morphisms:** \(\Box\) sends any morphism of open Markov processes

\[
\xymatrix{ S \ar[r]^i \ar[d]_f & (X,H) \ar[d]^p \ar[l]_o \ar@{..}_{H} \ar[r]^\pi & T \ar[d]_g \ar[l]_\sigma \\
S' \ar[r]^{i'} & (X',H') \ar[l]^{o'} \ar@{..}_{H'} \ar[r]^\pi' & T'
}
\]

to the 2-morphism in \(\text{LinRel}\) given in Lemma 6.6.1:

\[
\xymatrix{ \Box(S) \ar[r] & \Box(S \xymatrix{ i \ar[r] & (X,H) \ar[l]_o \ar@{..}_{H} \ar[r]^\pi & T) \ar[r] & \Box(T) \\
\Box(f) \ar[r] & \Box(f) \\
\Box(S') \ar[r] & \Box(S' \xymatrix{ i' \ar[r] & (X',H') \ar[l]^{o'} \ar@{..}_{H'} \ar[r]^\pi' & T')}
\]

Proof. First we must define functors \(\Box_0: \text{Mark}_0 \to \text{LinRel}_0\) and \(\Box_1: \text{Mark}_1 \to \text{LinRel}_1\).

The functor \(\Box_0\) is defined on finite sets and maps between these as described in (i) and (ii)
of the theorem statement, while $\mathbf{1}$ is defined on open Markov processes and morphisms between these as described in (iii) and (iv). Lemma 6.6.1 shows that $\mathbf{1}$ is well-defined on morphisms between open Markov processes; given this it easy to check that $\mathbf{1}$ is a functor. One can verify that $\mathbf{0}$ and $\mathbf{1}$ combine to define a double functor $\mathbf{0}: \text{Mark} \to \text{LinRel}$: the hard part is checking that horizontal composition of open Markov processes is preserved, but this was shown in Lemma 6.6.2. Horizontal composition of 2-morphisms is automatically preserved because LinRel is degenerate.

To make $\mathbf{0}$ into a symmetric monoidal double functor we need to make $\mathbf{0}$ and $\mathbf{1}$ into symmetric monoidal functors, which we do using these extra structures:

- an isomorphism in LinRel_0 between $\{0\}$ and $\mathbf{0}(\emptyset)$,
- a natural isomorphism between $\mathbf{0}(S) \oplus \mathbf{0}(S')$ and $\mathbf{0}(S + S')$ for any two objects $S, S' \in \text{Mark}_0$,
- an isomorphism in LinRel_1 between the unique linear relation $\{0\} \to \{0\}$ and $\mathbf{0}(\emptyset \to (\emptyset, 0) \leftarrow \emptyset)$, and
- a natural isomorphism between

$$
\mathbf{0}((S \to (X, H) \leftarrow T) \oplus (S' \to (X', H') \leftarrow T'))
$$

and

$$
\mathbf{0}(S + S' \to (X + X', H \oplus H') \leftarrow T + T')
$$

for any two objects $S \to (X, H) \leftarrow T, S' \to (X', H') \leftarrow T'$ of Mark_1.

There is an evident choice for each of these extra structures, and it is straightforward to check that they not only make $\mathbf{0}$ and $\mathbf{1}$ into symmetric monoidal functors but also meet
the extra requirements for a symmetric monoidal double functor listed in Shulman’s paper [44]. In particular, all diagrams of 2-morphisms commute automatically because LinRel is degenerate.

6.6.1 A corresponding functor of bicategories

We have symmetric monoidal bicategories Mark and LinRel, both of which come from discarding the vertical 1-morphisms of the symmetric monoidal double categories Mark and LinRel, respectively. Morally, we should be able to do something similar to the symmetric monoidal double functor $\Box: \text{Mark} \to \text{LinRel}$ to obtain a symmetric monoidal functor of bicategories $\Box: \text{Mark} \to \text{LinRel}$.

Conjecture 6.6.4. There exists a symmetric monoidal functor $\Box: \text{Mark} \to \text{LinRel}$ that maps:

1. any finite set S to the finite-dimensional real vector space $\Box(S) = \mathbb{R}^S \oplus \mathbb{R}^S$,
2. any open Markov process $S \xrightarrow{i} (X, H) \xleftarrow{o} T$ to the linear relation from $\Box(S)$ to $\Box(T)$ given by the linear subspace

$$\Box(S \xrightarrow{i} (X, H) \xleftarrow{o} T) =$$

$$\{(i^*(v), I, o^*(v), O) : H(v) + i^*(I) - o^*(O) = 0 \} \subseteq \mathbb{R}^S \oplus \mathbb{R}^S \oplus \mathbb{R}^T \oplus \mathbb{R}^T,$$

3. any morphism of open Markov processes

$$
\begin{array}{ccc}
\xymatrix{ S \ar[r]^{i_1} \ar[d]_{1_S} & (X, H) \ar[d]_p \ar[l]_{o_1} & \ar[r]^{a_1} \ar[d]_{1_T} & T \\
S \ar[r]^{i'_1} & (X', H') & \ar[l]_{o'_1} }
\end{array}
$$
to the inclusion

\[\mathcal{M}(X, H) \subseteq \mathcal{M}(X', H'). \]
Chapter 7

Possible future work

In this final chapter before the Appendix, I will touch on a few possible avenues in which the work in this thesis can be improved. The three main results are the contents of Chapter 3, Chapter 4 and Chapter 6.

Chapter 3 presents the results regarding the foot-replaced double categories formalism. While not the most general form of the framework, the most convenient involves a left adjoint $L: \mathbf{A} \to \mathbf{X}$ between two categories with finite colimits from which a symmetric monoidal double category $L\mathbf{Csp}(\mathbf{X})$ is obtained. One possible route is to let L be a ‘2-adjoint’ between two 2-categories \mathbf{A} and \mathbf{X} with finite ‘2-colimits’. In the conjectured symmetric monoidal double category $L\mathbf{Csp}(\mathbf{X})$ obtained from this 2-adjoint L, composing two horizontal 1-cells - two cospans in \mathbf{X} - would involve taking ‘2-pushouts’ which involve the typical pushout square commuting not on the nose but only up to isomorphism, and likewise for the 2-morphisms - maps of cospans in \mathbf{X}.

As for the more general foot-replaced double categories, the idea of replacing the category of objects of a double category \mathbf{X} with some other category \mathbf{A} is easily transferable to even
higher level categorifications. For example, if X is a ‘triple category’, which would involve a category X_0 of objects, a category X_1 of arrows and a category X_2 of ‘faces’, we could replace the category of objects X_0 with some other category A, or even both the category of objects X_0 and category of arrows X_1 with some double category A in the event that the pair (X_0, X_1) form a double category. One version of a triple category due to Grandis and Parè [30] is an ‘intercategory’ which is, roughly speaking, a pair of double categories sharing a common ‘side category’.

Chapter 4 explores improvements to Fong’s original conception of decorated cospans [25]. Here, the main insight was not consider a set of decorations but a category of decorations. Even further generalizations could be made here by replacing the finitely cocartesian category A with a finitely 2-cocartesian 2-category A and viewing Cat as a 3-category and defining an appropriate functor $F: A \to \text{Cat}$. In this framework, we could then decorate objects with ‘higher level stuff’ [11], such as a decoration that makes a 2-category c into a monoidal 2-category $(c, \otimes, 1)$.

Above are only some possible improvements to the frameworks themselves, but each framework is suitable to applications not mentioned in this thesis. Biological sciences, economics and even social sciences are bound to have situations which can be modeled by either of the above frameworks. Anytime a concept or an idea can be thought of as a set equipped with some extra structure, decorated cospans is lurking in the background, and very often a trivial form of this structure is captured by a left adjoint.

Chapter 6 is the chapter on coarse-graining open Markov processes. Here, the Markov processes we consider are really finite state Markov chains, but more general Markov processes can be considered. Moreover, more general forms of coarse-graining outside of lumpa-
bility can also be considered, but would require a different definition of 2-morphism in the resulting double category. In a ‘triple category’ of coarse-grainings, 3-morphisms would then represent maps between two different ways of applying a coarse-graining to a Markov process. This idea would not be well suited for the double category of coarse-grainings presented here, as the category of arrows Mark_1 is locally posetal, meaning that there is at most one coarse-graining as we have defined it [2] between two open Markov processes. Potentially one could also define ‘fine-grainings’ as inverses to coarse-grainings.
Chapter 8

Appendix

8.1 Ordinary categories

This is a thesis largely about applications of double categories in network theory. The most obvious place to start is with the following question: What is a category?

Definition 8.1.1. A category \mathbf{C} consists of a collection of objects denoted $\text{Ob}(\mathbf{C})$ and a collection of morphisms denoted $\text{Mor}(\mathbf{C})$ such that:

1. every morphism $f \in \text{Mor}(\mathbf{C})$ has a source object $s(f) \in \text{Ob}(\mathbf{C})$ and a target object $t(f) \in \text{Ob}(\mathbf{C})$. A morphism f with source x and target y we denote as $f : x \rightarrow y$, and we denote the collection of all morphisms with source x and target y by $\text{hom}(x, y)$ or $\text{hom}_\mathbf{C}(x, y)$.

2. Given a morphism $f : x \rightarrow y$ and a morphism $g : y \rightarrow z$, there exists a composite morphism $gf : x \rightarrow z$. In other words, there is a well-defined map

$$\text{hom}(x, y) \times \text{hom}(y, z) \rightarrow \text{hom}(x, z).$$
(3) Composition of morphisms is associative, meaning that given three composable morphisms \(f, g, h \in \text{Mor}(C) \) we have \(h(gf) = (hg)f \).

(4) Every object \(x \in \text{Ob}(C) \) has an identity morphism \(\text{id}_x : x \to x \) such that for any morphism \(f : x \to y \), we have
\[
f \text{id}_x = f = \text{id}_y f.
\]

If both \(\text{Ob}(C) \) and \(\text{Mor}(C) \) are sets, we say that \(C \) is a small category. If for every pair of objects \(x, y \in \text{Ob}(C) \) we have that \(\text{hom}(x, y) \) is a set, we say that \(C \) is a locally small category. Here are some examples:

(1) The primordial example of a category is \(\text{Set} \) of sets and function.

(2) The category \(\text{Grp} \) of groups and group homomorphisms.

(3) The category \(\text{Top} \) of topological spaces and continuous maps.

(4) The category \(\text{Mat}_{n,m}(k) \) of natural numbers and \(n \times m \) matrices with entries in a field \(k \) with composition given by matrix multiplication.

(5) Every monoid is a locally small category with a single object whose morphisms are given by the elements of the monoid.

(6) The category \(\text{Cat} \) of categories and ‘functors’.

(7) The category \(\text{Vect} \) of vector spaces and linear maps.

(8) The category \(\text{Diff} \) of smooth manifolds and smooth maps.

(9) The category \(\text{Rel} \) of sets and relations.
(10) The category Ord of preordered sets and monotone functions.

(11) The category Graph of (directed) graphs and graph morphisms, which are pairs of functions preserving the source and target of each edge.

(12) Any set S gives rise to a category \mathcal{S} whose objects are the elements of the set S containing only identity morphisms.

(13) There's a category 1 with only one object \star and only an identity morphism id_\star.

Even though a category is usually named after its objects, it’s the morphisms of a category that are the real stars of the show. In fact, we can ‘do away’ with all the objects as the collection of all identity morphisms tell us precisely what the objects of a category are.

Any sort of mathematical gizmo is boring and pointless to study unless that mathematical gizmo can ‘talk’ to other similar mathematical gizmos via maps between the two. How do categories talk to each other?

Definition 8.1.2. Given categories \mathcal{C} and \mathcal{D}, a **functor** $F: \mathcal{C} \to \mathcal{D}$ consists of a map $\text{Ob}(F): \text{Ob}(\mathcal{C}) \to \text{Ob}(\mathcal{D})$ and a map $\text{Mor}(F): \text{Mor}(\mathcal{C}) \to \text{Mor}(\mathcal{D})$ respecting source and target such that:

1. For any two composable morphisms $f: x \to y$ and $g: y \to z$ in \mathcal{C}, we have $F(f)F(g) = F(fg)$, and
2. For any object $x \in \mathcal{C}$, we have $F(\text{id}_x) = \text{id}_{F(x)}$.

We usually denote the maps $\text{Ob}(F)$ and $\text{Mor}(F)$ simply as F.

210
Here are some examples:

1. For any category C, there’s an identity functor $\text{id}_C: C \to C$ that maps every object and morphism of C to itself.

2. There’s a forgetful functor $U: \text{Grp} \to \text{Set}$ that maps any group G to its underlying set $U(G)$ and any group homomorphism $f: G \to G'$ to its underlying function $U(f): U(G) \to U(G')$.

3. For any category C, there’s a functor $!: C \to 1$ which maps every object of C to the one object \star of 1 and any morphism in C to the only morphism id_\star of 1.

4. There’s a functor $F: \text{Set} \to \text{Cat}$ which maps any set S to the discrete category on S whose objects are given by elements of S and whose only morphisms are identity morphisms.

5. Given categories C and D and an object $d \in D$, there’s a functor $F_d: C \to D$ called the constant functor at d which maps every object C to the object d in D and every morphism of C to the morphism id_d.

Functors may look a little similar to functions in that they are maps between objects that we are interested in. However, in the same way that the morphisms are the real stars of the show in a category, one could make the same argument that it’s functors that are the real stars of category theory - after all, a category C is ultimately determined by the identity functor 1_C on that category, but we won’t go down that road. The real fun of category theory starts when we start to consider maps between maps. Our first examples of
a map between maps, which are also one of the main reasons that Eilenberg and Mac Lane invented category theory in the 1940’s, are natural transformations.

Definition 8.1.3. Let $F: C \rightarrow D$ and $G: C \rightarrow D$ be functors. Then a natural transformation $\alpha: F \Rightarrow G$ consists of a family of morphisms α_x indexed by the objects of C such that for any morphism $f: x \rightarrow y$ in C, the following naturality square commutes.

\[
\begin{array}{ccc}
F(x) & \xrightarrow{F(f)} & F(y) \\
\downarrow{\alpha_x} & & \downarrow{\alpha_y} \\
G(x) & \xrightarrow{G(f)} & G(y)
\end{array}
\]

We call α_x the component of α at x. If each map α_x is an isomorphism, then we say that $\alpha: F \Rightarrow G$ is a natural isomorphism.

Here are some examples of natural transformations:

(1) For any functor $F: C \rightarrow D$, there’s an identity natural transformation $1: F \Rightarrow F$ in which the component at each object x is the identity $1_{F(x)}$. This is a natural isomorphism.

(2) Given a functor $F_d: C \rightarrow D$ which is constant at some object $d \in D$ and another functor $G: C \rightarrow D$, a natural transformation $\alpha: F_d \Rightarrow G$ is a cone over D, which consists of a family of morphisms α_x which make a cone-like commutative diagram in which all the top triangular faces commute.
(3) Let Grp denote the category of groups and group homomorphisms and AbGrp the category of abelian group and group homomorphisms. Then there’s a natural transformation $\pi: 1_{\text{Grp}} \Rightarrow 1_{\text{AbGrp}}$ where the component at each group is given by its abelianization $\pi_G: G \to G/[G,G]$ which sends each group G to G modulo its commutator subgroup $[G,G]$. For any group homomorphism $f: G \to H$, the following square commutes, where f_{ab} denotes the group homomorphism $f: G \to H$ restricted to the abelianizations of the groups G and H.

$$
\begin{array}{ccc}
G & \xrightarrow{f} & H \\
\downarrow{\pi_G} & & \downarrow{\pi_H} \\
G/[G,G] & \xrightarrow{f_{ab}} & H/[H,H]
\end{array}
$$

This is not a natural isomorphism.

(4) Given a field k and a finite dimensional vector space V over k, there’s a canonical isomorphism $\alpha_V: V \to V^{**}$ from the vector space V to its double dual. This gives a natural transformation $\alpha: 1_{\text{FinVect}_k} \Rightarrow 1_{\text{FinVect}_k}$ in which the following square commutes for every linear map $L: V \to W$ of finite dimensional k-vector spaces.

$$
\begin{array}{ccc}
V & \xrightarrow{L} & W \\
\downarrow{\alpha_V} & & \downarrow{\alpha_W} \\
V^{**} & \xrightarrow{L^{**}} & W^{**}
\end{array}
$$
This is a natural isomorphism if all the vector spaces are finite dimensional. If we allow for infinite dimensional vector spaces, we still have a natural transformation, but each map $\alpha_V : V \to V^{**}$ is no longer an isomorphism.

(5) Given commutative rings R and S and a ring homomorphism $f : R \to S$, the ring homomorphism $f : R \to S$ restricts to a group homomorphism $f^* : R^* \to S^*$ where R^* denotes the group of units of the commutative ring R. This defines a functor $^* : \text{CommRing} \to \text{AbGrp}$. There are also well known groups of linear transformations $GL_n(R)$ and $GL_n(S)$, and every ring homomorphism $f : R \to S$ induces a map $GL_n(f) : GL_n(R) \to GL_n(S)$ given by application of f to every entry of some $H \in GL_n(R)$. This defines another functor $GL_n : \text{CommRing} \to \text{AbGrp}$. There is then a natural transformation $\det : GL_n \Rightarrow ^*$ where given $H \in GL_n(R)$, $\det_R(H)$ is the determinant of H. The following square commutes for every ring homomorphism $f : R \to S$.

\[
\begin{array}{ccc}
GL_n(R) & \xrightarrow{GL_n(f)} & GL_n(S) \\
\downarrow \det_R & & \downarrow \det_S \\
R^* & \xrightarrow{f^*} & S^*
\end{array}
\]

8.1.1 Monoidal categories and monoidal functors

Next we introduce ‘monoidal’ categories, which are largely the kinds of categories that this thesis is about. Roughly speaking, a monoidal category is a category with a binary operation in which we can multiply or ‘tensor’ two objects in the category much like we can multiply two objects in a monoid.
Definition 8.1.4. A **monoidal** category is a category \mathcal{C} equipped with the extra structure of:

1. a functor $\otimes: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ called the *tensor product* of \mathcal{C},
2. an object $1_\mathcal{C} \in \mathcal{C}$ called the *(monoidal) unit* of \mathcal{C},
3. for any three objects $a, b, c \in \mathcal{C}$, a natural isomorphism called the *associator*
 \[\alpha: ((-) \otimes (-)) \otimes (-) \xrightarrow{\sim} (-) \otimes ((-) \otimes (-)) \]
 whose components are of the form
 \[\alpha_{a,b,c}: (a \otimes b) \otimes c \xrightarrow{\sim} a \otimes (b \otimes c) \]
4. for any object c, a natural isomorphism called the *left unitor*
 \[\lambda: (1_\mathcal{C} \otimes (-)) \xrightarrow{\sim} (-) \]
 whose components are of the form
 \[\lambda_c: 1_\mathcal{C} \otimes c \xrightarrow{\sim} c \]
5. for any object c, a natural isomorphism called the *right unitor*
 \[\rho: ((-) \otimes 1_\mathcal{C}) \xrightarrow{\sim} (-) \]
 whose components are of the form
 \[\rho_c: c \otimes 1_\mathcal{C} \xrightarrow{\sim} c \]
such that the following two diagrams commute. The pentagon identity:

$$
\begin{array}{c}
\alpha_{a \otimes (b \otimes c) \otimes d} \\
\alpha_{a \otimes b, c \otimes d} \\
\alpha_{a, b, c \otimes d} \\
\alpha_{a, b, c \otimes d} \\
\end{array}
$$

and the triangle identity:

Sometimes we abbreviate a monoidal category C with tensor product \otimes and monoidal unit 1_C as $(C, \otimes, 1_C)$. Some examples of monoidal categories which are relevant in this thesis are the following:

1. The category Set together with the tensor product given by cartesian product and monoidal unit given by a singleton $\{\star\}$.

2. If C is a category with finite colimits, then C is monoidal with the tensor product given by binary coproducts and monoidal unit given by an initial object 0.

3. The large category Cat together with the tensor product given by the product of two categories and monoidal unit given by a terminal category 1.

216
Sometimes there is a relationship between the two tensor products \(a \otimes b \) and \(b \otimes a \) for two objects \(a \) and \(b \) in a monoidal category \((\mathcal{C}, \otimes, 1_{\mathcal{C}}) \).

Definition 8.1.5. A **braided monoidal category** is a monoidal category \((\mathcal{C}, \otimes, 1_{\mathcal{C}}) \) equipped with a family of natural isomorphisms

\[
\beta_{a,b} \colon a \otimes b \xrightarrow{\sim} b \otimes a
\]

called the **braiding** such that the following hexagons commute.

All of the above examples of monoidal categories are in fact braided monoidal categories. Sometimes the braiding \(\beta \) is its own inverse, which finally brings us to:

Definition 8.1.6. A **symmetric monoidal category** is a braided monoidal category \((\mathcal{C}, \otimes, 1_{\mathcal{C}}) \) such that for any two objects \(a \) and \(b \) of \(\mathcal{C} \), the braiding \(\beta \) is its own inverse, meaning that

\[
\beta_{b,a} \beta_{a,b} = 1_{a \otimes b}.
\]

All of the above examples are in fact symmetric monoidal categories. What about maps between various such categories?
Definition 8.1.7. Let \((C, \otimes, 1_C)\) and \((D, \otimes, 1_D)\) be monoidal categories. A \textbf{(strong)} monoidal functor is a functor \(F: C \to D\) such that:

1. there exists an isomorphism \(\mu: 1_D \to F(1_C)\) and
2. for every pair of objects \(a\) and \(b\) of \(C\), there exists a natural isomorphism

\[\mu_{a,b}: F(a) \otimes F(b) \to F(a \otimes b)\]

which make the following diagrams commute:

\[
\begin{array}{ccc}
(F(a) \otimes F(b)) \otimes F(c) & \xrightarrow{a'} & F(a) \otimes (F(b) \otimes F(c)) \\
\downarrow{\mu_{a,b} \otimes 1_{F(c)}} & & \downarrow{1_{F(a)} \otimes \mu_{b,c}} \\
F(a \otimes b) \otimes F(c) & & F(a) \otimes F(b \otimes c) \\
\downarrow{\mu_{a \otimes b,c}} & & \downarrow{\mu_{a,b \otimes c}} \\
F((a \otimes b) \otimes c) & \xrightarrow{F(a)} & F(a \otimes (b \otimes c))
\end{array}
\]

\[
\begin{array}{ccc}
F(a) \otimes 1_D & \xrightarrow{\rho'_{F(a)}} & F(a) \\
\downarrow{1_{F(a)} \otimes \mu} & & \downarrow{F(\rho_a)} \\
F(a) \otimes F(1_C) & \xrightarrow{\mu_{a,1_C}} & F(a \otimes 1_C) \\
\downarrow{F(1_C) \otimes F(a)} & & \downarrow{F(1_C \otimes a)} \\
F(1_C) \otimes F(a) & \xrightarrow{\mu_{1_C,a}} & F(1_C \otimes a)
\end{array}
\]

The monoidal functor \(F\) is called \textbf{lax} if the isomorphism \(\mu\) and family of natural isomorphisms \(\mu_{-,-}\) are only a morphism and family of natural transformations, respectively, and the monoidal functor \(F\) is called \textbf{oplax} or \textbf{colax} if \(F: C^{\text{op}} \to D^{\text{op}}\) is a lax monoidal functor.

Definition 8.1.8. A (possibly lax or oplax) monoidal functor \(F: C \to D\) is a \textbf{braided monoidal functor} if \(C\) and \(D\) are braided monoidal categories and the following diagram
Definition 8.1.9. A (possibly lax or oplax) **symmetric monoidal functor** is a braided monoidal functor $F : C \to D$ between symmetric monoidal categories.

Definition 8.1.10. Given monoidal functors $F : (C, \otimes, 1_C) \to (D, \otimes, 1_D)$ and $G : (C, \otimes, 1_C) \to (D, \otimes, 1_D)$, a **monoidal natural transformation** $\alpha : F \Rightarrow G$ is a transformation $\alpha : F \Rightarrow G$ such that the following diagrams commute.

A monoidal transformation α is braided monoidal or symmetric monoidal if the functors F and G are braided monoidal or symmetric monoidal, respectively.

8.1.2 Colimits

Given an arbitrary category C, a **diagram** in the category C is given by a functor $F : D \to C$ where the category D serves as the shape of the diagram in the category C. Given a diagram $F : D \to C$ in C, the limit of the diagram F which we denote as $\text{lim} F$ is given by an object which we also denote by $\text{lim} F$ together with with a family of morphisms $\phi_i : \text{lim} F \to F(d_i)$ for every $i \in C$ such that for any morphism $f : d_i \to d_j$ in d, we have
that \(F(f) \phi_i = \phi_j \). Moreover, the object \(\text{lim} F \) together with the family of morphisms \(\{ \phi_i : i \in \mathcal{D} \} \) are universal among such, meaning that given another object \(c \) together with a family of morphisms \(\psi_i : c \to F(d_i) \) such that \(F(f) \psi_i = \psi_j \), there exists a unique morphism \(\theta : c \to \text{lim} F \) such that \(\psi_i = \phi_i \theta \) for every \(i \in \mathcal{D} \). A limit is finite if the category \(\mathcal{D} \) is finite. Then, a colimit is just a limit in the opposite category, meaning that given a functor \(F : \mathcal{D} \to \mathcal{C} \), the colimit of \(F \) denoted by \(\text{colim} F \) is given by the limit of \(F : \mathcal{D}^{\text{op}} \to \mathcal{C}^{\text{op}} \).

We largely work with finite colimits in this thesis, and so the examples presented next will be of such. The most famous examples of finite colimits are easily the following:

1. initial objects
2. bicary coproducts
3. coequalizers
4. pushouts

In fact, a category \(\mathcal{C} \) has finite colimits iff \(\mathcal{C} \) has an initial object and pushouts iff \(\mathcal{C} \) has binary coproducts and coequalizers. We discuss about pushouts in the next section, but let’s briefly introduce the other three famous finite colimits.

An initial object \(0 \) is the colimit of the empty functor \(F : \emptyset \to \mathcal{C} \). Unraveling what this means, it means that it’s an object \(0 \) in \(\mathcal{C} \) together with an empty family of morphisms satisfying no properties such for any other object \(c \) together with an empty family of morphisms satisfying no properties, there exists a unique morphism \(!_c : 0 \to c \) which satisfies no properties. In other words, it’s just an object \(0 \) of \(\mathcal{C} \) with a unique morphism to any other object of \(\mathcal{C} \). If \(\mathcal{C} = \text{Set} \), then \(0 = \emptyset \), and surely there is a unique function \(!_S : \emptyset \to S \) for

220
any set S. Another way of saying this is that an initial object is the colimit of the empty diagram given by the category with no objects.

A binary coproduct is the colimit of the functor $F: \{\star \star\} \to C$ where $\{\star \star\}$ denotes the category with two objects and only identity morphisms. Unraveling what this means, given two objects c_1 and c_2 in C, their binary coproduct which we denote as $c_1 + c_2$ is an object which we also denote as $c_1 + c_2$ together with two morphisms $\phi_{c_1}: c_1 \to c_1 + c_2$ and $\phi_{c_2}: c_2 \to c_1 + c_2$ such that for any other object c also with morphisms $\psi_1: c_1 \to c$ and $\psi_2: c_2 \to c$, there exists a unique morphism $\theta: c_1 + c_2 \to c$ such that $\psi_i = \theta \phi_i$ for $i = 1, 2$.

In other words, the object $c_1 + c_2$ and morphisms (ϕ_1, ϕ_2) are initial among such. A typical example of a binary coproduct is the disjoint union of two sets together with the natural injection maps of each set into the disjoint union, or the direct sum of two vector spaces V_1 and V_2 together with the maps $((\text{id}_{V_1}, 0), (0, \text{id}_{V_2}))$ into the direct sum.

A coequalizer is the colimit of the functor $F: \{\star \Rightarrow \star\} \to C$ where $\{\star \Rightarrow \star\}$ denotes the category with two objects, two morphisms from one to the other, and two identity morphisms. Unraveling what this means, given two morphisms $f, g: c \to c'$ in C, their coequalizer which we denote as $\text{coeq}(f, g)$ is an object $\text{coeq}(f, g)$ together with a morphism $\phi: c' \to \text{coeq}(f, g)$ such that $\phi f = \phi g$. This object and morphism are universal among such, meaning that given another object \hat{c} and morphism $\psi: c' \to \hat{c}$ such that $\psi f = \psi g$, there
exists a unique morphism \(\theta : \text{coeq}(f, g) \to \hat{c} \) such that \(\theta \phi = \psi \).

In other words, the object \(\text{coeq}(f, g) \) and morphism \(\theta \) are initial among such. An example of a coequalizer is in the category \(\text{Grp} \): given any group homomorphism \(f : G \to H \), there’s always a unique group homomorphism \(0 : G \to H \) which sends every element of \(G \) to the identity element of \(H \), in which case \(\text{coeq}(f, 0) = \ker(f) \).

Cospans

A pushout is the colimit of a span.

Definition 8.1.11. Given a span in any category which is a diagram of the form:

\[
\begin{array}{ccc}
& b & \\
\downarrow & \searrow & \downarrow \\
a_1 & i & \rightarrow & a_2 \\
\end{array}
\]

a pushout is the colimit of this span, which is an object \(a_1 +_b a_2 \) together with a pair of maps \(j : a_1 \to a_1 +_b a_2 \) and \(k : a_2 \to a_1 +_b a_2 \) making the induced square commute, meaning that \(ji = ko \). This object and pair of maps are universal among such, meaning that given another object \(q \) and maps \(j' : a_1 \to q \) and \(k' : a_2 \to q \) such that \(j'i = k'o \), there exists a
unique $\psi: a_1 + b\ a_2 \to q$ such that $j' = \psi j$ and $k' = \psi k$.

In other words, the pushout is initial among such triples (j', k', q).

Composing cospans is by taking pushouts. In other words, given two composable cospans

we take the pushout of the span formed by the morphisms o and i'

and then the resulting cospan is given by taking the composition of outer morphisms leading up to the apex.
8.2 Double categories

Definition 8.2.1. Given a category \mathcal{A} with finite limits, a category internal to \mathcal{A} consists of:

1. an object of objects $a_0 \in \mathcal{A}$
2. an object of morphisms $a_1 \in \mathcal{A}$
3. source and target assigning morphisms $s, t : a_1 \to a_0$
4. an identity assigning morphism $i : a_0 \to a_1$
5. a composition assigning morphism $c : a_1 \times_{a_0} a_1 \to a_1$
6. the following square is a pullback

\[
\begin{array}{c}
\begin{array}{ccc}
\times_{a_0} a_1 & \rightarrow & a_1 \\
p_1 & & \downarrow s \\
a_1 & \rightarrow & a_0 \\
p_2
\end{array}
\end{array}
\]

such that the following diagrams commute:

\[
\begin{array}{c}
\begin{array}{ccc}
a_0 & \rightarrow & a_1 \\
i & & \downarrow t \\
a_1 & \rightarrow & a_0
\end{array}
\end{array}
\]

which specifies the source and target of an identity morphism,
which say that the source and target of a composite of morphisms are the source and target of the first and second morphisms, respectively,

\[
\begin{array}{c}
a_0 \times_{a_0} a_1 \times_{a_0} a_1 \\
\downarrow \quad \downarrow c \quad \quad \downarrow \quad \downarrow c \quad \quad \downarrow \quad \downarrow c \\
a_0 \times_{a_0} a_1 & \quad a_1 \times_{a_0} a_1 \quad a_1 \\
\end{array}
\]

which says that composition of morphisms is strictly associative, and

\[
\begin{array}{c}
a_0 \times_{a_0} a_1 \quad i \times_{a_0} 1 \quad \quad 1 \times_{a_0} i \\
\downarrow \quad \downarrow c \quad \quad \downarrow \quad \downarrow c \quad \quad \downarrow \quad \downarrow c \\
a_0 \times_{a_0} a_1 & \quad a_1 \times_{a_0} a_1 \quad a_1 \times_{a_0} a_0 \\
\end{array}
\]

which says how the left and right unit laws are compatible with composition.

Definition 8.2.2. Given a 2-category A with finite limits, a **pseudocategory object** in A consists of the same data as a category object internal to A viewed as an ordinary category A, except that the following diagrams commute up to isomorphism.

\[
\begin{array}{c}
a_1 \times_{a_0} a_1 \quad 1 \times c \\
\downarrow \quad \downarrow \alpha \quad \quad \downarrow \quad \downarrow c \\
a_1 \times_{a_0} a_1 & \quad a_1 \times_{a_0} a_1 \\
\end{array}
\]

\[
\begin{array}{c}
a_0 \times_{a_0} a_1 \quad i \times_{a_0} 1 \\
\downarrow \quad \downarrow \lambda \quad \quad \downarrow \quad \downarrow \rho \\
a_0 \times_{a_0} a_1 & \quad a_1 \times_{a_0} a_1 \\
\end{array}
\]

The isomorphisms α, λ and ρ satisfy the pentagon and triangle identities of a monoidal category.

Definition 8.2.3. A (strict) **double category** is a category object internal to Cat viewed as an ordinary category with finite limits.
Definition 8.2.4. A (pseudo) double category is a pseudocategory object internal to \textbf{Cat} viewed as a 2-category with finite limits.

In a nutshell, a (strict) double category is a category \textit{internal} to the category \textbf{Cat} of categories and functors, similar to how an ordinary (small) category is a category internal to the category \textbf{Set} of sets and functions. What this means is that instead of having a set of object and a set of morphisms, we will instead have a \textit{category} of objects and a \textit{category} or morphisms. There are various kinds of double categories one can consider depending on how strict we are with the internalization; whereas \textbf{Set} is a mere category, \textbf{Cat} is a 2-category which allows us to consider a triple composite of morphisms up to a 2-morphism. Internalizing a category in the ordinary category \textbf{Cat} leads to what are typically known as \textit{strict} double categories, whereas internalizing a category in \textbf{Cat} viewed as a 2-category leads to \textit{pseudo} double categories, where the left and right unitors and associators no longer hold on-the-nose but only up to isomorphism. These latter pseudo double categories are the ones that we are primarily interested in. It is helpful to have the following picture in mind. A double category has 2-morphisms shaped like:

\[
\begin{array}{ccc}
A & \xrightarrow{M} & B \\
\downarrow f & & \downarrow g \\
C & \xrightarrow{N} & D \\
\end{array}
\]

We call \(A, B, C\) and \(D\) \textbf{objects} or \textbf{0-cells}, \(f\) and \(g\) \textbf{vertical 1-morphisms}, \(M\) and \(N\) \textbf{horizontal 1-cells} and \(a\) a \textbf{2-morphism}. Note that a vertical 1-morphism is a morphism between 0-cells and a 2-morphism is a morphism between horizontal 1-cells. We will denote both vertical 1-morphisms and horizontal 1-cells as a single arrow, namely \(\rightarrow\). We follow the notation of Shulman [44] with the following definitions.
Definition 8.2.5. A pseudo double category \mathcal{D}, or doublecategory for short, consists of a category of objects \mathcal{D}_0 and a category of arrows \mathcal{D}_1 with the following functors

$$U : \mathcal{D}_0 \to \mathcal{D}_1$$

$$S, T : \mathcal{D}_1 \Rightarrow \mathcal{D}_0$$

$$\odot : \mathcal{D}_1 \times_{\mathcal{D}_0} \mathcal{D}_1 \to \mathcal{D}_1$$ (where the pullback is taken over $\mathcal{D}_1 \xrightarrow{T} \mathcal{D}_0 \xleftarrow{S} \mathcal{D}_1$)

such that

$$S(UA) = A = T(UA)$$

$$S(M \odot N) = SN$$

$$T(M \odot N) = TM$$

equipped with natural isomorphisms

$$\alpha : (M \odot N) \odot P \xrightarrow{\sim} M \odot (N \odot P)$$

$$\lambda : UB \odot M \xrightarrow{\sim} M$$

$$\rho : M \odot UA \xrightarrow{\sim} M$$

such that $S(\alpha), S(\lambda), S(\rho), T(\alpha), T(\lambda)$ and $T(\rho)$ are all identities and that the coherence axioms of a monoidal category are satisfied. Following the notation of Shulman, objects of \mathcal{D}_0 are called 0 – cells or objects and morphisms of \mathcal{D}_0 are called vertical1 – morphisms. Objects of \mathcal{D}_1 are called horizontal1 – cells and morphisms of \mathcal{D}_1 are called 2 – morphisms.

The morphisms of \mathcal{D}_0, which are vertical 1-morphisms, will be denoted $f : A \to C$ and we denote a 1-cell M with $S(M) = A, T(M) = B$ by $M : A \to B$. Then a 2-morphism

227
$a: M \to N$ of D_1 with $S(a) = f, T(a) = g$ would look like:

\[
\begin{array}{ccc}
A & \overset{M}{\to} & B \\
f & \downarrow \, a & \downarrow g \\
C & \overset{N}{\to} & D
\end{array}
\]

The horizontal and vertical composition of 2-morphisms together obey a ‘middle-four’ interchange law, or simply, interchange law, expressing the compatibility of horizontal and vertical composition with each other. Specifically, given four 2-morphisms as such:

\[
\begin{array}{ccc}
A & \overset{M}{\to} & B & \overset{O}{\to} & E \\
\downarrow f & \downarrow \, a & \downarrow g & \downarrow \, b & \downarrow h \\
C & \overset{N}{\to} & D & \overset{P}{\to} & F \\
\downarrow f' & \downarrow \, g' & \downarrow \, g' & \downarrow \, h' & \\
G & \overset{Q}{\to} & H & \overset{R}{\to} & I
\end{array}
\]

the following equality holds, where \circ denotes horizontal composition and juxtaposition denotes vertical composition.

\[
(a' \circ b')(a \circ b) = (a' \circ a)(b' \circ b)
\]

The key difference between a strict double category and a pseudo double category is that in a pseudo double category, horizontal composition is associative and unital only up to natural isomorphism. The natural isomorphisms α, λ and ρ are identities in a strict double category. Let’s look at a few examples.

If C is any category, there exists a (strict) double category $Sq(C)$, where ‘Sq’ denotes ‘square’, which has:
(1) objects given by those of C,

(2) vertical 1-morphisms given by morphisms of C,

(3) horizontal 1-cells also given by morphisms of C, and

(4) 2-morphisms as commutative squares in C.

Composition of horizontal 1-cells coincides with composition of morphisms in C and both the horizontal and vertical composite of 2-morphisms is given by composing the edges of the commutative squares.

If C is a category with pushouts, then an example of a *pseudo* double category, and probably the most important example of a double category in this thesis, is given by $\mathcal{Csp}(C)$, where “\mathcal{Csp}” denotes “cospan”, which has:

(1) objects as those of C,

(2) vertical 1-morphisms as morphisms of C,

(3) horizontal 1-cells as cospans in C, and

(4) 2-morphisms as maps of cospans in C which are given by commutative diagrams of the form:

\[
\begin{array}{ccc}
| & i_1 & | & o_1 & | & \\ |
| \uparrow f & \downarrow g & \downarrow h & \\|
| a_1 & b & b' & a_2
\end{array}
\]

Composition of vertical 1-morphisms and the vertical composite of 2-morphisms is given by composition of morphisms in C, and composition of horizontal 1-cells and the horizontal
composite of 2-morphisms is given by pushouts in \mathcal{C}

\[
\begin{array}{c}
\begin{array}{cc}
a_1 & i_1 \\
\downarrow f & \downarrow g \\
a'_1 & i_2 \\
\end{array}
\end{array}
\quad
\begin{array}{cc}
a_2 & i_3 \\
\downarrow h & \downarrow k \\
a'_2 & i_4 \\
\end{array}
\quad
\begin{array}{cc}
a_3 & J_{\psi_1} \\
\downarrow l & \downarrow g + h k \\
a'_3 & J_{\psi_2} \\
\end{array}
\end{array}
\]

\[
= \begin{array}{c}
\begin{array}{cc}
a_1 & a_2' \\
\downarrow f & \downarrow g + h k \\
a_1 & a_2' \\
\end{array}
\end{array}
\quad
\begin{array}{cc}
a_2 & a_3 \\
\downarrow h & \downarrow o_4 \\
a_2 & a_3 \\
\end{array}
\quad
\begin{array}{cc}
a_3 & a_3 \\
\downarrow l & \downarrow o_3 \\
a_3 & a_3 \\
\end{array}
\end{array}
\]

where ψ is the natural map into a coproduct and J is the natural map from a coproduct to a pushout, for example, $\psi: b \to b + c$ and $J: b + c \to b + a_2 c$.

The pseudo double categories that we are interested in all share a certain ‘lifting’ property between the vertical 1-morphisms and horizontal 1-cells.

Definition 8.2.6. Let \mathbb{D} be a double category and $f: A \to B$ a vertical 1-morphism. A **companion** of f is a horizontal 1-cell $\hat{f}: A \to B$ together with 2-morphisms

\[
\begin{array}{ccc}
A & \xrightarrow{\hat{f}} & B \\
\downarrow f & \downarrow \psi & \downarrow 1 \\
B & \xrightarrow{\psi} & B
\end{array}
\quad
\text{and}
\quad
\begin{array}{ccc}
A & \xrightarrow{U_A} & A \\
\downarrow 1 & \downarrow \psi & \downarrow f \\
A & \xrightarrow{f} & B
\end{array}
\]

such that the following equations hold.

\[
\begin{array}{cccc}
A & \xrightarrow{U_A} & A \\
\downarrow 1 & \downarrow \psi & \downarrow f & \downarrow 1 \\
A & \xrightarrow{\hat{f}} & B \\
\end{array}
\quad
\begin{array}{cccc}
A & \xrightarrow{U_A} & A \\
\downarrow 1 & \downarrow \psi & \downarrow f & \downarrow 1 \\
A & \xrightarrow{\hat{f}} & B \\
\end{array}
\quad
\begin{array}{cccc}
A & \xrightarrow{U_A} & A \\
\downarrow 1 & \downarrow \psi & \downarrow f & \downarrow 1 \\
A & \xrightarrow{\hat{f}} & B \\
\end{array}
\end{array}
\]

(8.1)

A **conjoint** of f, denoted $\check{f}: B \to A$, is a companion of f in the double category $\mathbb{D}^{h\cdot \text{op}}$ obtained by reversing the horizontal 1-cells, but not the vertical 1-morphisms, of \mathbb{D}.

In a pseudo double category, the second equation above requires an insertion of unit isomorphisms to make sense due to horizontal composition only holding up to isomorphism.
Definition 8.2.7. We say that a double category is **fibrant** if every vertical 1-morphism has both a companion and a conjoint and **isofibrant** if every vertical 1-isomorphism has both a companion and a conjoint.

The property of isofibrancy in a double category is key as we are primarily interested in *symmetric monoidal* double categories and bicategories, and it is precisely the property of isofibrancy that allows us to lift the portion of the monoidal structure of a symmetric monoidal double category that resides in the category of objects, such as the unitors, associators and braidings, to obtain a symmetric monoidal bicategory using a result of Shulman [44].

Next, we define the kinds of maps between double categories.

Definition 8.2.8. Let \mathbb{A} and \mathbb{B} be pseudo double categories. A **lax double functor** is a functor $F: \mathbb{A} \to \mathbb{B}$ that takes items of \mathbb{A} to items of \mathbb{B} of the corresponding type, respecting vertical composition in the strict sense and the horizontal composition up to an assigned comparison ϕ. This means that we have functors $F_0: \mathbb{A}_0 \to \mathbb{B}_0$ and $F_1: \mathbb{A}_1 \to \mathbb{B}_1$ such that the following equations are satisfied:

$$S \circ F_1 = F_0 \circ S$$

$$T \circ F_1 = F_0 \circ T$$

Sometimes for brevity, we will omit the subscripts and simply say F. As to whether we mean F_0 or F_1 will be clear from context.

Also, every object a is equipped with a special globular 2-morphism $\phi_a: 1_{F(a)} \to F(1_a)$ (the identity comparison), and every horizontal composition $N_1 \circ N_2$ is equipped with a
special globular 2-morphism $\phi(N_1, N_2) : F(N_1) \circ F(N_2) \to F(N_1 \circ N_2)$ (the composition comparison), in a coherent way. This means that the following diagrams commute.

(1) For a horizontal composite, $\beta \circ \alpha$,

\[
\begin{array}{ccc}
F(A) & \overset{F(N_1)}{\longrightarrow} & F(N_2) \\
\downarrow F(\alpha) & & \downarrow F(\beta) \\
F(A') & \overset{F(N_3)}{\longrightarrow} & F(N_4) \\
\downarrow \phi(N_3, N_4) & & \downarrow \phi(N_1, N_2) \\
F(B') & \overset{F(C')}{\longrightarrow} & F(C)
\end{array}
= \begin{array}{ccc}
F(A) & \overset{F(N_1)}{\longrightarrow} & F(N_2) \\
\downarrow 1 & & \downarrow 1 \\
F(A') & \overset{F(N_3)}{\longrightarrow} & F(N_4) \\
\downarrow 1 & & \downarrow 1 \\
F(B') & \overset{F(C')}{\longrightarrow} & F(C)
\end{array}
\]

\[\phi(N_1, N_2) \circ \phi(N_3, N_4) = \phi(N_1 \circ N_2, N_3) \circ \phi(N_1, N_2 \circ N_3) \] \hspace{2cm} (8.2)

(2) For a horizontal 1-cell $N : A \to B$, the following diagrams are commutative (under horizontal composition).

\[
\begin{array}{cccc}
F(N) \otimes 1_{F(A)} & \overset{\rho_{F(N)}}{\longrightarrow} & F(N) \\
\downarrow 1 \otimes \phi_A & & \downarrow \phi_B \otimes 1 \\
F(N) \otimes F(1_A) & \overset{\phi(N, 1_A)}{\longrightarrow} & F(N \otimes 1_A) \\
\downarrow F_{\rho} & & \downarrow F\lambda \\
1_{F(N)} & \overset{\phi(1_B, N)}{\longrightarrow} & F(1_B \otimes N)
\end{array}
\]

(3) For consecutive horizontal 1-cells N_1, N_2 and N_3, the following diagram is commutative.

\[
\begin{array}{ccc}
(F(N_1) \otimes F(N_2)) \circ F(N_3) & \overset{\alpha'}{\longrightarrow} & F(N_1) \circ (F(N_2) \circ F(N_3)) \\
\downarrow \phi(N_1, N_2) \otimes 1 & & \downarrow 1 \circ \phi(N_2, N_3) \\
F(N_1 \otimes N_2) \circ F(N_3) & \overset{\phi(N_1, N_2 \circ N_3)}{\longrightarrow} & F(N_1 \circ N_2 \circ N_3) \\
\downarrow \phi(N_1 \circ N_2, N_3) & & \downarrow \phi(N_1, N_2 \circ N_3) \\
F((N_1 \otimes N_2) \otimes N_3) & \overset{F\alpha}{\longrightarrow} & F(N_1 \otimes (N_2 \circ N_3))
\end{array}
\]
We say the double functor F is **strict** if the comparison constraints ϕ_a and ϕ_{N_1,N_2} are identities, **pseudo** if the comparison constraints are isomorphisms, and **oplax** if the comparison constraints go in the opposite direction.

We can also consider maps between maps of double functors, also known as double transformations. These are only used in Section 3.2 of this thesis.

Definition 8.2.9. A **double transformation** $\alpha : F \Rightarrow G$ between two double functors $F : A \rightarrow B$ and $G : A \rightarrow B$ consists of two natural transformations $\alpha_0 : F_0 \Rightarrow G_0$ and $\alpha_1 : F_1 \Rightarrow G_1$ such that for all horizontal 1-cells M we have that $S(\alpha_1 M) = \alpha_0 S(M)$ and $T(\alpha_1 M) = \alpha_0 T(M)$ and for composable horizontal 1-cells M and N, we have that $F(a) F(b) F(c) = G(a) G(b) G(c)$.

We call α_0 the **object component** and α_1 the **arrow component** of the double transformation α.

233
8.2.1 Monoidal double categories

Let \(\textbf{Dbl} \) denote the 2-category of double categories, double functors and double transformations. One can check that \(\textbf{Dbl} \) has finite products, and in any 2-category with finite products we can define a ‘pseudomonoid’ or a ‘weak’ monoid, which is a categorified analogue of a monoid in which the left and right unitors and associators are not identities but natural isomorphisms. It is the 2-categorical structure of \(\textbf{Dbl} \), or more generally, any 2-category with finite limits, that enables us to do this. For example, a pseudomonoid in \(\textbf{Cat} \) is a monoidal category. We are primarily concerned with the (weak) monoidal double categories in which the associators and left and right unitors are natural isomorphisms.

\textbf{Definition 8.2.10.} Let \((C, \otimes, 1)\) be a monoidal category. A \textbf{monoid internal to} \(C \) consists of an object \(M \in C \) together with a functor \(m: M \otimes M \to M \) for multiplication and a functor \(i: 1 \to M \) satisfying the associative law

\[
\begin{array}{c}
(M \otimes M) \otimes M \\
m \otimes i \quad m \otimes 1 \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
M \otimes M \\
m \\
M \\
m \\
M \otimes M
\end{array}
\]

and left and right unit laws.

\[
\begin{array}{c}
1 \otimes M \\
i \otimes 1 \\
\downarrow \quad \downarrow \\
M \otimes M \\
m \\
M \\
\downarrow \quad \downarrow \\
1 \otimes i \\
M \otimes 1
\end{array}
\]
A **pseudomonoid** is a monoid internal to a monoidal 2-category \((\mathcal{C}, \otimes, 1)\). This means that the above commutative diagrams no longer commute on the nose but up to a 2-morphism.

\[
\begin{array}{ccc}
(M \otimes M) \otimes M & \xrightarrow{\alpha} & M \otimes (M \otimes M) \\
\downarrow{m \otimes 1} & & \downarrow{1 \otimes m} \\
M \otimes M & \xrightarrow{m} & M
\end{array}
\]

Definition 8.2.11. A **braided pseudomonoid** is a pseudomonoid \(M\) equipped with the extra structure of a braiding isomorphism \(\beta: \otimes \cong \otimes \circ t\) where \(t\) is the ‘twist’ isomorphism

\[
t: M \otimes M \to M \otimes M
\]

that together with the associators make the usual hexagons of a braided monoidal category commute. A **symmetric pseudomonoid** is a braided pseudomonoid such that the braiding isomorphism \(\beta: \otimes \cong \otimes \circ t\) is self-inverse.

Definition 8.2.12. A **monoidal double category** is a pseudomonoid in the monoidal 2-category \(\text{Dbl}\).

Explicitly, a monoidal double category is a double category equipped with double functors \(\otimes: \mathbb{D} \times \mathbb{D} \to \mathbb{D}\) and \(I: * \to \mathbb{D}\) where \(*\) is the terminal double category, along with invertible double transformations called the **associator**:

\[
A: \otimes \circ (1_{\mathbb{D}} \times \otimes) \Rightarrow \otimes \circ (\otimes \times 1_{\mathbb{D}}).
\]
left unitor:

\[L: \otimes \circ (1_\mathbb{D} \times I) \Rightarrow 1_\mathbb{D}, \]

and right unitor:

\[R: \otimes \circ (I \times 1_\mathbb{D}) \Rightarrow 1_\mathbb{D} \]

satisfying the pentagon axiom and triangle axioms.

This is a very nice and compact definition which encapsulates the structure of a monoidal double category. Unraveling this a bit, this means that:

1. \(\mathbb{D}_0 \) and \(\mathbb{D}_1 \) are both monoidal categories.

2. If \(I \) is the monoidal unit of \(\mathbb{D}_0 \), then \(U_I \) is the monoidal unit of \(\mathbb{D}_1 \).

3. The functors \(S \) and \(T \) are strict monoidal, meaning that

\[S(M \otimes N) = SM \otimes SN \]

and

\[T(M \otimes N) = TM \otimes TN \]

and \(S \) and \(T \) also preserve the associativity and unit constraints.

4. We have globular isomorphisms

\[\chi: (M_1 \otimes N_1) \circ (M_2 \otimes N_2) \simto (M_1 \circ M_2) \otimes (N_1 \circ N_2) \]

and

\[\mu: U_{A \otimes B} \simto (U_A \otimes U_B) \]

which arise from squares:
expressing the *weak* commutativity of \otimes with the structure functors U and \circ.

These globular isomorphisms χ and μ make the following diagrams commute:

(5) The following diagrams commute expressing the constraint data for the double functor \otimes.

\[
\begin{array}{ccc}
(M \otimes N_1) \otimes (M_2 \otimes N_2) \otimes (M_3 \otimes N_3) & \xrightarrow{\chi \otimes 1} & (M_1 \otimes (M_2 \otimes (N_1 \otimes N_2)) \otimes (M_3 \otimes N_3) \\
(M_1 \otimes N_1) \circ ((M_2 \otimes N_2) \circ (M_3 \otimes N_3)) & \xrightarrow{\chi} & ((M_1 \circ M_2) \circ ((N_1 \otimes N_2) \circ N_3)) \\
1 \circ \chi & \xrightarrow{\chi} & (M_1 \circ (M_2 \circ M_3)) \circ (N_1 \circ (N_2 \circ N_3)) \\
(M \otimes N) \otimes U_{C \otimes D} & \xrightarrow{1 \circ \mu} & (M \otimes N) \circ (U_C \otimes U_D) \\
M \otimes N & \xleftarrow{\rho \otimes \rho} & (M \otimes U_C) \circ (N \otimes U_D) \\
\end{array}
\]

(6) The following diagrams commute expressing the associativity isomorphism for \otimes is a transformation of double categories.

\[
\begin{array}{ccc}
(M_1 \otimes N_1) \otimes (P_1) & \xrightarrow{\alpha \otimes \alpha} & (M_1 \otimes (N_1 \otimes P_1)) \otimes (M_2 \otimes (N_2 \otimes P_2)) \\
M_1 \otimes (N_1 \otimes N_2) \otimes P_1 & \xrightarrow{\alpha} & (M_1 \otimes (N_1 \otimes (N_1 \otimes N_2)) \otimes (P_1 \otimes P_2)) \\
1 \otimes \chi & \xrightarrow{1 \otimes \chi} & (M_1 \otimes M_2) \otimes ((N_1 \otimes N_2) \otimes (P_1 \otimes P_2)) \\
\end{array}
\]

237
(7) The following diagrams commute expressing that the unit isomorphisms for \otimes are transformations of double categories.

Thus, the definition of monoidal double category that we take is that of a pseudomonoid object weakly internal to the 2-category \mathbf{Dbl} of double categories, double functors and double transformations. In other words, a pseudomonoid internal to categories weakly internal to categories. A weak internalization breaks the more well known commutativity of abstraction, meaning that our definition is not the same as a monoidal double category taken as a pseudocategory object weakly internal the the 2-category \mathbf{MonCat} of monoidal categories, strong monoidal functors and monoidal transformations, or, in other words, a pseudocategory object internal to pseudomonoids weakly internal to categories. One consequence of the former convention over the latter is that the structure functors S and T are strict monoidal functors as opposed to strong monoidal functors in the latter convention.
Definition 8.2.13. A braided monoidal double category is a braided pseudomonoid internal to Dbl.

This means that a braided monoidal double category is a monoidal double category equipped with an invertible double transformation

$$\beta : \otimes \Rightarrow \otimes \circ \tau$$

called the braiding, where $\tau : \mathbb{D} \times \mathbb{D} \rightarrow \mathbb{D} \times \mathbb{D}$ is the twist double functor sending pairs in the object and arrow categories to the same pairs in the opposite order. The braiding is required to satisfy the usual two hexagon identities [39, Sec. XI.1]. If the braiding is self-inverse we say that \mathbb{D} is a symmetric pseudomonoid internal to Dbl and that \mathbb{D} is a symmetric monoidal double category.

Unraveling this a bit, we get that a braided monoidal double category is a monoidal double category such that:

(8) \mathbb{D}_0 and \mathbb{D}_1 are braided monoidal categories.

(9) The functors S and T are strict braided monoidal functors.

(10) The following diagrams commute expressing that the braiding is a transformation of double categories.

$$\begin{array}{ccc}
(M_1 \otimes M_2) \otimes (N_1 \otimes N_2) & \xrightarrow{\beta} & (N_1 \otimes N_2) \otimes (M_1 \otimes M_2) \\
\delta & \downarrow & \delta \\
(M_1 \otimes N_1) \otimes (M_2 \otimes N_2) & \xrightarrow{\beta \otimes \beta} & (N_1 \otimes M_1) \otimes (N_2 \otimes M_2) \\
\mu & \downarrow & \mu \\
U_A \otimes U_B & \leftarrow & U_{A \otimes B} \\
\beta & \downarrow & \beta \\
U_B \otimes U_A & \leftarrow & U_{B \otimes A}
\end{array}$$

Finally, a symmetric monoidal double category is a braided monoidal double category \mathbb{D} such that:
8.3 Monoidal double functors

We also have maps between symmetric monoidal double categories, which just as maps between ordinary symmetric monoidal categories, can come in three flavors according to direction of the comparison maps $\phi_{(\cdot,\cdot)}$.

Definition 8.3.1. A (strong) monoidal lax double functor $F: C \to D$ between monoidal double categories C and D is a lax double functor $F: C \to D$ such that

- F_0 and F_1 are monoidal functors, meaning that there exists

 1. an isomorphism $\epsilon: 1_D \to F(1_C)$
 2. a natural isomorphism $\mu_{A,B}: F(A) \otimes F(B) \to F(A \otimes B)$ for all objects A and B of C
 3. an isomorphism $\delta: U_1D \to F(U_1C)$
 4. a natural isomorphism $\nu_{M,N}: F(M) \otimes F(N) \to F(M \otimes N)$ for all horizontal 1-cells N and M of C

such that the following diagrams commute: for objects A, B and C of C,

\[
\begin{align*}
(F(A) \otimes F(B)) \otimes F(C) & \xrightarrow{\alpha'} F(A) \otimes (F(B) \otimes F(C)) \\
\mu_{A,B} \otimes 1 & \downarrow \mu_{A,B} \otimes 1 \\
F(A \otimes B) \otimes F(C) & \xrightarrow{\mu_{A \otimes B,C}} F(A \otimes (B \otimes C)) \\
\mu_{A,B} & \downarrow \mu_{A,B} \\
F((A \otimes B) \otimes C) & \xrightarrow{\alpha} F(A \otimes (B \otimes C))
\end{align*}
\]
and for horizontal 1-cells N_1, N_2 and N_3 of C,

\[
\begin{align*}
(F\circ N_1) \otimes (F\circ N_2) \otimes (F\circ N_3) & \xrightarrow{\alpha'} (F(N_1) \otimes (F(N_2) \otimes F(N_3))) \\
F(N_1 \otimes N_2) \otimes F(N_3) & \xrightarrow{\nu_{N_1\otimes N_2,N_3}} (F(N_1) \otimes F(N_2 \otimes N_3)) \\
((N_1 \otimes N_2) \otimes N_3) & \xrightarrow{\mu_{N_1,N_2\otimes N_3}} F(N_1 \otimes (N_2 \otimes N_3))
\end{align*}
\]

- $S \circ F_1 = F_0 S$ and $T \circ F_1 = F_0 T$ are equations between monoidal functors, and

- the composition and unit comparisons $\phi(N_1, N_2): F_1(N_1) \otimes F_1(N_2) \to F_1(N_1 \otimes N_2)$ and $\phi_A: U_{F_0(A)} \to F_1(U_A)$ are monoidal natural transformations.

The monoidal lax double functor is **braided** if F_0 and F_1 are braided monoidal functors and **symmetric** if they are symmetric monoidal functors, and lax monoidal or oplax monoidal if the isomorphisms and families of natural isomorphisms of items (1)-(4) above are merely morphisms and natural transformations going in the appropriate directions.
Bibliography

242

243
[29] M. Grandis and R. Paré, Adjoin

244