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ABSTRACT OF THE DISSERTATION

Circuits, Bond Graphs, and Signal-Flow Diagrams: A Categorical Perspective

by

Brandon Hector Coya

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2018

Professor John Baez, Chairperson

We use the framework of “props” to study electrical circuits, signal-flow diagrams, and

bond graphs. A prop is a strict symmetric monoidal category where the objects are natural

numbers, with the tensor product of objects given by addition. In this approach, electrical

circuits make up the morphisms in a prop, as do signal-flow diagrams, and bond graphs.

A network, such as an electrical circuit, with m inputs and n outputs is a morphism from

m to n, while putting networks together in series is composition, and setting them side

by side is tensoring. Here we work out the details of this approach for various kinds of

electrical circuits, then signal-flow diagrams, and then bond graphs. Each kind of network

corresponds to a mathematically natural prop. We also describe the “behavior” of electrical

circuits, bond graphs, and signal-flow diagrams using morphisms between props. To assign

a behavior to a network we “black box” the network, which forgets its inner workings and

records only the relation it imposes between inputs and outputs. The process of black-boxing

a network then corresponds to a morphism between props. Interestingly, there are two

different behaviors for any bond graph, related by a natural transformation. To achieve all

of this we first prove some foundational results about props. These results let us describe any
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prop in terms of generators and equations, and also define morphisms of props by naming

where the generators go and checking that relevant equations hold. Technically, the key

tools are the Rosebrugh–Sabadini–Walters result relating circuits to special commutative

Frobenius monoids, the monadic adjunction between props and signatures, and a result

saying which symmetric monoidal categories are equivalent to props.
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Chapter 1

Introduction

People, and more specifically scientists, are naturally inclined to draw diagrams and

pictures when they want to better understand a problem. One example is when Feynman

introduced his famous diagrams in 1949; particle physicists have been using them ever

since [19, 26]. In the 1940s Olson [35] pointed out analogies in electrical, mechanical,

thermodynamic, hydraulic, and chemical systems, which allowed “circuit diagrams” to be

applied to a wide variety of fields. These analogies are by now well-understood, and have

been well explained by Karnopp, Margolis, and Rosenberg [27, 28, 29] and Brown [14].

On April 24, 1959, Paynter [37, 38] woke up and invented the diagrammatic language

of bond graphs, now widely used in engineering [47, 49], to study generalized versions of

voltage and current, called “effort” and “flow,” which are implicit in the analogies found

by Olson. Carl Petri introduced “Petri nets” in computer science with his doctoral thesis;

however, he claims to have invented them as a teenager to describe chemical reactions [39].

Control theorists use “signal-flow diagrams” to study linear open dynamical systems [21].
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Although category theory predates some of these diagrams, it was not until the 1980s that

Joyal and Street [25] showed string digrams can be used to reason about morphisms in any

symmetric monoidal category. This motivates our first goal: view electrical circuits, signal-

flow diagrams, and bond graphs as string diagrams for morphisms in symmetric monoidal

categories. Doing so lets us study these networks from a compositional perspective. That

is, we study a big network by describing how it is composed of smaller pieces. Treating

networks as morphisms in a symmetric monoidal category lets us build larger ones from

smaller ones by composing and tensoring them: this makes the compositional perspective

into precise mathematics. To study a network in this way we must first define a notion of

“input” and “output” for the network diagram. Then gluing diagrams together, so long as

the outputs of one match the inputs of the other, defines the composition for a category.

Network diagrams are typically assigned data, such as the potential and current associ-

ated to a wire in an electrical circuit. Since the relation between the data tells us how a

network behaves, we call this relation the “behavior” of a network. The way in which we

assign behavior to a network comes from first treating a network as a “black box,” which is

a system with inputs and outputs whose internal mechanisms are unknown or ignored. A

simple example is the lock on a doorknob: one can insert a key and try to turn it; it either

opens the door or not, and it fulfills this function without us needing to know its inner

workings. We can treat a system as a black box through the process called “black-boxing,”

which forgets its inner workings and records only the relation it imposes between its inputs

and outputs.

Since systems with inputs and outputs can be seen as morphisms in a category we

expect black-boxing to be a functor out of a category of this sort. Assigning each diagram
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its behavior in a functorial way is formalized by functorial semantics, first introduced by

Lawvere [31] in his thesis. This consists of using categories with specific extra structure as

“theories” whose “models” are structure-preserving functors into other such categories. We

then think of the diagrams as a syntax, while the behaviors are the semantics. Thus black-

boxing is actually an example of functorial semantics. This leads us to another goal: to

study the functorial semantics, i.e. black-boxing functors, for electrical circuits, signal-flow

diagrams, and bond graphs.

Baez and Fong [5] began this type of work by showing how to describe circuits made

of wires, resistors, capacitors, and inductors, as morphisms in a category using “decorated

cospans.” Baez and Erbele [4], and Bonchi, Sobociński, and Zanasi [12] separately studied

signal flow diagrams as morphisms in some category. In other work Baez, Fong, and Pollard

[6] looked at Markov processes, while Baez and Pollard [7] studied reaction networks using

decorated cospans. In all of these cases, the functorial semantics of the categories were also

studied.

Our main tool is the framework of “props,” also called “PROPs,” introduced by Mac

Lane [32]. The acronym stands for products and permutations, and these operations roughly

describe what a prop can do. More precisely, a prop is a strict symmetric monoidal category

equipped with a distinguished object X such that every object is a tensor power X⊗n. Props

arise in our work because very often we think of a network as going between some set of

input nodes and some set of output nodes, where the nodes are indistinguishable from each

other. Thus we typically think of a network as simply having some natural number as an

input and some natural number as an output, so that the network is actually a morphism

in a prop.
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1.1 Circuits and bond graphs

We now briefly introduce circuits and bond graphs. Much more detail is contained in

the chapters where we study them, but this introduction serves as a guide for what to

picture and how to think whenever we casually mention the terminology found in electrical

engineering.

Here is an electrical circuit made of only perfectly conductive wires:

This is just a graph, consisting of a set N of nodes, a set E of edges, and maps s, t : E → N

sending each edge to its source and target node. We refer to the edges as perfectly conductive

wires and say that wires go between nodes. Then associated to each perfectly conductive

wire in an electrical circuit is a pair of real numbers called “potential,” φ, and “current,” I.

φ, I

Typically each node gets a potential, but in the above case the potential at either end

of a wire would be the same so we may as well associate the potential to the wire. Current

and potential in circuits like these obey two laws due to Kirchoff. First, at any node, the

sum of currents flowing into that node is equal to the sum of currents flowing out of that

node. The other law states that any connected wires must have the same potential.

We say that the above circuit is closed as opposed to being open because it does not

have any inputs or outputs. In order to talk about open circuits and thereby bring the
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“compositional persepective” into play we need a notion for inputs and outputs of a circuit.

We do this using two maps i : X → N and o : Y → N that specifiy the inputs and outputs

of a circuit. Here is an example:

X Y

We call the sets X, Y , and the disjoint union X + Y the inputs, outputs, and terminals

of the circuit, respectively. To each terminal we associate a potential and current. In total

this gives a space of allowed potentials and currents on the terminals and we call this space

the “behavior” of the circuit. Since we do this association without knowing the potentials

and currents inside the rest of the circuit we call this process “black-boxing” the circuit.

This process “black-boxes” the internal workings of the circuit and just tells us the relation

between inputs and outputs. In fact this association is functorial, but to understand the

functoriality first requires that we say how to compose these kinds of circuits. We save this

for later.

There are also electrical circuits that have “components” such as resistors, inductors,

voltage sources, and current sources. These are graphs as above, but with edges now labelled

by elements in some set L. Here is one for example:
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X Y

2

3

1 0.9

We call this an L-circuit. We may also black-box an L-circuit to get a space of potentials

and currents, i.e. the behavior of the L-circuit, and this process is functorial as well. The

components in a circuit determine the possible potential and current pairs because they

impose additional relationships. For example, a resistor between two nodes has a resistance

R and is drawn as:

(φ1, I1) (φ2, I2)
R

In an L-circuit this would be an edge labelled by some positive real number R. For a resistor

like this we know that I1 = I2 and that Ohm’s Law says φ2 − φ1 = I1R. This tells us how

to construct the black-boxing functor that extracts the right behavior.

Engineers often work with wires that come in pairs where the current on one wire is the

negative of the current on the other wire. In such a case engineers care about the difference

in potential more than each individual potential. For such pairs of perfectly conductive

wires:

φ2, I2

φ1, I1

we call V = φ2 − φ1 the “voltage” and I = I1 = −I2 the “current.” Note the word current

is used for two different, yet related concepts. We call a pair of wires like this a “bond” and
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a pair of nodes like this a “port.” To summarize we say that bonds go between ports, and

in a “bond graph” we draw a bond as follows:

I

V

Note that engineers do not explicitly draw ports at the ends of bonds; we follow this

notation and simply draw a bond as a thickened edge. Engineers who work with bond graphs

often use the terms “effort” and “flow” instead of “voltage” and “current”, respectively.

Thus a bond between two ports in a bond graph is drawn equipped with an effort and flow,

rather than a voltage and current, as follows:

F

E

A bond graph consists of bonds connected together using “1-junctions” and “0-junctions.”

These two types of junctions impose equations between the efforts and flows on the attached

bonds. The efforts on bonds connected together with a 1-junction sum to zero, while the

flows are all equal. For 0-junctions the efforts are all equal while the efforts sum to zero.

We explain bond graphs with more detail in Chapter 5, but for now the following suffices

as an example of a bond graph:

1
F1

E1

F2E2

0
E3

F3 F4

E4

F5E5

F6E6

The arrow at the end of a bond indicates which direction of current flow counts as

positive, while the bar is called the “causal stroke.” These are unnecessary for our work, so
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we adopt a simplified notation without the arrow or bar. Additionally, one may also attach

general circuit components, but we will also not consider these.

1.2 Plan of the thesis

In Chapter 2 we provide the necessary background for studying four categories FinSpan,

FinRel, FinCospan, and FinCorel as props. In particular, FinCospan and FinCorel are

crucial to our study of networks. Both categories have the natural numbers as objects, while

FinCospan has “cospans” as morphisms and FinCorel has “corelations” as morphisms. We

then equip FinCospan and FinCorel with additional structure making them into “dagger

compact categories.” In Corollary 2.3.4 we prove that any prop has a presentation in terms of

generators and equations. Then we recall the known presentations for FinSpan, FinCospan,

and FinRel. Proposition 2.3.7 lets us build props as quotient props of other props. All

of this work leads to Theorem 3.1.1 in Chapter 3, where we show that FinCorel is the

“prop for extraspecial commutative Frobenius monoids.” This also provides a presentation

for FinCorel which we continually use in our work on networks. Our results clarify the

relationship between FinSpan, FinRel, FinCospan, and FinCorel as props.

We begin Chapter 3 by showing that FinCorel is the prop for extraspecial commutative

Frobenius monoids. Then we define an “L-circuit” as a graph with specified inputs and

outputs, together with a labelling set for the egdes of the graph. L-circuits are morphisms

in the prop CircL. In Proposition 3.2.8 we show that CircL can be viewed as the coproduct

of FinCospan together with a free prop on the set L of labels. We define Circ to be the

prop CircL where L consists of a single element. Then we view Circ as the category whose
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morphisms are circuits made of only perfectly conductive wire. From any morphism in Circ

we extract a cospan of finite sets and then turn the cospan into a corelation. These two

processes are functorial so we get a method for sending a circuit made of only perfectly

conductive wires to a corelation:

Circ
H′−→ FinCospan

H−→ FinCorel.

There is also a functor K : FinCorel → FinRelk, where FinRelk is the category whose

objects are finite dimensional vector spaces V and whose morphisms R : U → V are linear

relations R ⊆ U⊕V . By composing with the above functors H ′ and H we associate a linear

relation R to any circuit made of perfectly conductive wires. On the other hand we get a

subspace for any such circuit by first assigning potential and current to each terminal, and

then subjecting these variables to the appropriate physical laws. It turns out that these

two ways of assigning a subspace to a morphism in Circ are the same. We call the linear

relation associated to a circuit using the composite KHH ′ the “behavior” of the circuit and

define the “black-boxing” functor to be the composite � := KHH ′ : Circ→ FinRelk. Note

that the underlying corelation of a circuit made of perfectly conductive wires completely

determines the behavior of the circuit via the functor K.

In Chapter 4 we reinterpret � as a morphism of props. We do this by introducing the

category LagRelk, whose objects are “symplectic” vector spaces and whose morphisms are

“Lagrangian” relations. Then in Proposition 4.1.6 we prove that the functor K : FinCorel→

FinRelk actually picks out a Lagrangian subspace for any corelation and thus determines a

morphism of props, which we also call K : FinCorel → LagRelk. Then we redefine black-

9



boxing to be the morphism of props given by the composite

Circ
H′−→ FinCospan

H−→ FinCorel
K−→ LagRelk.

After doing the hard work for circuits made of perfectly conductive wires we show the

power of our results on props by easily extending the black-boxing functor to circuits with

arbitrary label sets in Theorem 4.2.1. We apply this result in Proposition 4.2.2 to the

category CircRLC , whose morphisms are circuits made of resistors, inductors, and capacitors.

Then in Theorem 4.2.4 we prove the existence and uniqueness of a morphism of props

� : Circk → LagRelk for any field k.

We then recall how control theorists use “signal-flow diagrams” to draw linear relations.

These diagrams make up the category SigFlowk, which is the free prop generated by the

same generators as FinRelk. Similarly we define the prop C̃irck as the free prop generated by

the same generators as Circk. Then there is a strict symmetric monoidal functor T : C̃irck →

SigFlowk giving a commutative square:

C̃irck
P
//

T
��

Circk
�

// LagRelk� _

��

SigFlowk
�

// FinRelk.

Of course, circuits made of perfectly conductive wires are a special case of linear circuits.

We can express this fact using a commutative square:

C̃irc
P
//

� _

��

Circ� _

��

C̃irck
P
// Circk.
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Combining the diagrams we get a commutative diagram summarizing the relationship be-

tween linear circuits, cospans, corelations, and signal-flow diagrams:

C̃irc
P

//
� _

��

Circ� _

��

H′
// FinCospan

H
// FinCorel

K

��

C̃irck
P
//

T
��

Circk
�

// LagRelk� _

��

SigFlowk
�

// FinRelk.

We end the chapter by extending our work to circuits with voltage and current sources.

These types of circuits define affine relations instead of linear relations. Our prop framework

lets us extend to these types of circuits by showing that affine Lagrangian relations define

the morphisms in a prop AffLagRelk. This leads to Theorem 4.4.5, which says that for any

field k and label set L there exists a unique morphism of props

� : CircL → AffLagRelk

extending the other black-boxing functor.

In Chapter 5 we study bond graphs as morphisms in a category. Our goal is to define a

category BondGraph, whose morphisms are bond graphs, and then assign a space of efforts

and flows as behavior to any bond graph using a functor. We also construct a functor that

assigns a space of potentials and currents to any bond graph, which agrees with the way

that potential and current relate to effort and flow.

The way we define BondGraph comes from two different approaches to studying bond

graphs. The first way leads us to a subcategory FinCorel◦ of FinCorel, while the second way

leads us to a subcategory LagRel◦k of LagRelk. Instead of a commutative square relating
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these four categories, we obtain a pentagon that commutes up to a natural transformation

if we invent a new category BondGraph:

LagRel◦k
i′
// LagRelk

BondGraph

F
77

G ''

FinCorel◦
i
//

��

α

FinCorel.

K

OO

In our first approach we view a bond graph as an electrical circuit. We take advantage

of our earlier work on circuits and corelations by taking FinCorel to be the category whose

morphisms are circuits made of perfectly conductive wires. In this approach a terminal

is the object 1 and a wire is the identity corelation from 1 to 1, while a circuit from m

terminals to n terminals is a corelation from m to n.

Here we think of a port as the object 2, since a port is a pair of nodes. Then we think

of a bond as a pair of wires and hence the identity corelation from 2 to 2. Lastly, the two

junctions are two different ways of connecting ports together, and thus specific corelations

from 2m to 2n. It turns out that we may equip the object 2 with two different Frobenius

monoid structures and these interact with each other similarly to how 1-junctions and 0-

junctions interact with each other.

We want the morphisms built from the two Frobenius monoids to correspond to bond

graphs, since bond graphs are built out of series and parallel junctions. Unfortunately there

are some equations which hold between morphisms made from these Frobenius monoids

that do not hold for corresponding bond graphs. We define a category FinCorel◦ using the

morphisms that come from these two Frobenius monoids and move on to another attempt

at defining BondGraph.

12



Since bond graphs impose Lagrangian relations between effort and flow we look back at

LagRelk. The relations associated to a 1-junction make k ⊕ k into yet another Frobenius

monoid, while the relations associated to a 0-junction make k⊕ k into a different Frobenius

monoid. The two Frobenius monoid structures interact to form a “bimonoid.” Unfortu-

nately, a bimonoid has equations between morphisms that do not correspond to equations

between bond graphs, so this approach also does not result in morphisms that are bond

graphs. Regardless, we define the category LagRel◦k using the two Frobenius monoids here.

Since it turns out that FinCorel◦ and LagRel◦k have corresponding generators we define

BondGraph as a prop that also has corresponding generators, but with only the equations

found in both FinCorel◦ and LagRel◦k. By defining BondGraph in this way we automati-

cally have two functors F : BondGraph → LagRel◦k and G : BondGraph → FinCorel◦. The

functor F associates effort and flow to a bond graph, while the functor G lets us associate

potential and current to a bond graph using the previous work done on FinCorel. Then the

Lagrangian subspace relating effort, flow, potential, and current:

{(V, I, φ1, I1, φ2, I2)|V = φ2 − φ1, I = I1 = −I2}

defines a natural transformation in the following diagram:

LagRel◦k
i′
// LagRelk

BondGraph

F
77

G ''

FinCorel◦
i
//

��

α

FinCorel

K

OO

13



Putting this together with the above diagram we get one diagram which encompasses the

relationships between circuits, signal-flow diagrams, bond graphs, and their behaviors in

category theoretic terms.

C̃irc
P
//

� _

��

Circ� _

��

H′
// FinCospan

H
// FinCorel

K

��

FinCorel◦oo

EY

α BondGraph

G
gg

F
ww

C̃irck
P
//

T
��

Circk
�

// LagRelk� _

��

LagRel◦k
oo

SigFlowk
�

// FinRelk.

14



Chapter 2

Cospans, corelations, and props

We start by defining the categories FinSpan, FinRel, FinCospan, and FinCorel. Of

particular interest are FinCospan and FinCorel due to their relation to electrical circuits,

signal-flow diagrams, and bond graphs. To this end we equip FinCospan and FinCorel with

various structures which, in summary, make them into dagger compact categories, or more

informally, make them “network-like.” We also introduce the framework of “props,” i.e.

strict symmetric monoidal categories whose objects are the natural numbers. It turns out

that FinSpan, FinRel, FinCospan, and FinCorel are all equivalent to props. This fact lets

us nicely express their relationships to each other after some preliminary results.

In Corollary 2.3.4 we prove that any prop has a generators and equations presenta-

tion. The presentations for FinSpan,FinCospan, and FinRel are all well known. We can

completely understand how FinCorel is related as a prop to the other three categories by

presenting FinCorel as the “prop for extraspecial commutative Frobenius monoids.” In or-

der to arrive at this presentation we need to use Proposition 2.3.7, which says, among other

things, that adding extra equations to a prop creates a quotient prop. It turns out that
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FinCorel is a quotient of FinCospan, and that this is enough to present FinCorel as a prop

in terms of generators and equations.

2.1 Cospans and corelations

We use cospans to describe networks with inputs and outputs as morphisms in a category.

Definition 2.1.1. Given a category C a cospan in C is a diagram of the form:

N

X

f
>>

Y

g
``

We often view the apex of a cospan as the set of nodes for some network. Then the idea

is that the maps f and g pick out the input and output nodes of the network. This lets us

define the composite of two networks so long as we have a method for composing cospans.

Indeed there is a well known method for composing cospans by using pushouts.

Definition 2.1.2. Given a diagram of this form in a category C:

Y

X Z
f
oo

g

OO

the pushout of the morphisms f, g consists of an object P and two morphisms i1 : X → P

and i2 : Y → P such that the diagram:

P Y
i2
oo

X

i1

OO

Z
f
oo

g

OO

commutes and such that P is universal for this property. That is, for any object Q with

morphisms j1 : X → Q and j2 : Y → Q there exists a unique u : P → Q also making the

relevent diagrams commute.
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Note that a pushout is unique up to unique isomorphism so with a slight abuse of

language we say the pushout. A consequence of this brand of uniqueness is that pushouts

only determine a well-defined composite for isomorphism classes of cospans. The notion of

isomorphic cospans requies the notion of a map between cospans.

Definition 2.1.3. A map of cospans is a morphism h : N → N ′ between the apices of

two cospans such that the diagram:

N

h

��

X

f
>>

f ′   

Y

g
``

g′~~

N ′

commutes. If h is an isomorphism then we say the cospans are isomorphic.

When a category C has pushouts we may compose isomorphism classes of cospans in

the follwing way. Given two isomorphism classes of cospans with a common foot:

N N ′

X

f
>>

Y

g
``

f ′
>>

Z

g′
``

we take the pushout to form the diagram:

P

N

i
>>

N ′

i′
``

X

f
>>

Y

g
``

f ′
>>

Z

g′
``

and we say the composite is the isomorphism class of the following cospan:

P

X

if
>>

Z

i′g′
__
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For any category C with pushouts, one has a category Cospan(C) whose objects are

those of C and whose morphisms are the isomorphism classes of cospans of C [9]. The

category Cospan(FinSet), which we rename now, is of particular interest.

Definition 2.1.4. Let FinCospan be the category Cospan(FinSet) which has finite sets as

objects and isomorphism classes of cospans X → N ← Y as morphisms, where we compose

morphisms using pushouts.

From this point onward we say cospan when we mean isomorphism class of cospans. To

better understand cospans we also study what happens when we reverse the arrows in a

cospan.

Definition 2.1.5. Given a category C a span in C is a diagram of the form:

N
f

~~

g

  

X Y

Just as the composite of cospans is defined using pushouts, the composite of spans is

defined using pullbacks.

Definition 2.1.6. Given a diagram of this form in a category C:

Y

g

��

X
f
// Z

the pullback of the morphisms f, g consists of an object P and two morphisms p1 : P → X

and p2 : P → Y such that the diagram:

P
p2
//

p1

��

Y

g

��

X
f
// Z
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commutes and such that P is universal for this property. That is, for any object Q with

morphisms q1 : Q → X and q2 : Q → Y there exists a unique u : Q → P also making the

relevant diagrams commute.

For any category C with pullbacks, there is a category Span(C) with objects the objects

of C and morphisms the isomorphism classes of spans of C.

Definition 2.1.7. Let FinSpan be the category Span(FinSet) which has finite sets as objects

and isomorphism classes of spans X ← N → Y as morphisms, where we compose morphisms

using pullbacks.

Note also that cospans in a category C are the same as spans in Cop while pushouts in

a category C are the same as pullbacks in Cop. In this way FinSpan is dual to FinCospan.

There is also an interesting relationship between morphisms X → N ← Y in FinCospan

and partitions P of X + Y where “+” denotes disjoint union.

Definition 2.1.8. A cospan X
f→ S

g← Y in the category of finite sets is jointly epic if

f(X) ∪ g(Y ) = S.

A jointly epic cospan X
f→ N

g← Y determines a partition of X + Y , where two points

p, q ∈ X+Y are in the same part of the partition if and only if they map to the same point

of N via the function 〈f, g〉 : X + Y → N . To see this consider the following jointly epic

cospan of finite sets:

NX Y
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This jointly epic cospan determines the following partition, where elements in the same part

of the partition are drawn in the same part with a dashed line:

X Y

Jointly epic cospans determine a category. Given two jointly epic cospans:

S S′

X

f
<<

Y

g
aa

f ′
==

Z,

g′
bb

we compose them by first forming the pushout:

S +Y S
′

S

h
::

S′

h′
dd

X

f
;;

Y

g
dd

f ′
::

Z

g′
bb

and then forcing the composite cospan to be jointly epic:

h(S) ∪ h′(S′)

X

hf
88

Z.

h′g′
ff

There is a notion for composing partitions P of X + Y and P ′ of Y + Z which, as

expected, is equivalent to composing jointly epic cospans. We refrain from writing the

overly wordy definition and instead give a comprehensive example since the idea is simple.

Let the following be a partition of X + Y :
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X Y

and this be a partition of Y + Z:

Y Z

We compose them by putting elements of X and Z in the same part, if there is a ‘path’

between them:

X Z

Y

= X Z

Similarly, “jointly monic” spans X
f→ S

g← Y are equivalent to relations R ⊆ X × Y .

Since jointly monic spans are to jointly epic cospans as spans are to cospans, we make the

following definition.

Definition 2.1.9. Given sets X and Y , a corelation from X to Y is a partition of X+Y ,

or equivalently, an isomorphism class of joinly epic cospans X
f→ N

g← Y .

Definition 2.1.10. Let FinCorel be the category with finite sets as objects and corelations

as morphisms.
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Note that although a corelation is a type of cospan, FinCorel is not a subcategory of

FinCospan. Taking the composite of two corelations in the category FinCospan does not

necessarily result in a corelation. There is however a functor H : FinCospan → FinCorel

forcing any cospan to be jointly epic. Relations also determine a category FinRel and there

is a functor M : FinSpan→ FinRel forcing a span to be jointly monic.

Definition 2.1.11. Let FinRel be the category with finite sets as objects and relations as

morphisms.

In summary we have four important categories: FinCospan, FinCorel, FinSpan, and

FinRel. Cospans are to spans as corelations are to relations, and there are functors

H : FinCospan→ FinCorel, and M : FinSpan→ FinRel. There is much more to say about

the relationship between these four categories, which we do after introducing the framework

of props in Section 2.2. For now we focus on equipping FinCospan and FinCorel with more

structure with the purpose of making them network-like.

In many examples of networks—including electrical circuits, signal-flow diagrams, and

bond graphs—one can often set two networks side by side to form a larger network. These

networks also have a notion of “swapping” or permuting pieces. For example, in the case of

electrical circuits this is just passing wires across each other. In our terms, these structures

are encompassed by “symmetric monoidal categories.”

Definition 2.1.12. A monoidal category is a category C equipped with

• a functor ⊗ : C × C → C called the tensor product,

• an object I ∈ C called the unit object
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• a natural isomorphism ax,y,z : (x⊗ y)⊗ z → x⊗ (y ⊗ z) called the associator,

• a natural isomorphism λx : I ⊗ x→ x called the left unitor,

• a natural isomorphism ρx : x⊗ I → x called the right unitor,

such that the following two kinds of diagrams commute for all objects involved:

• triangle identity

(x⊗ I)⊗ y
ax,I,y

//

ρx⊗idy &&

x⊗ (I ⊗ y)

idx⊗λyxx

x⊗ y

• the pentagon identity

(w ⊗ x)⊗ (y ⊗ z)
aw,x,y⊗z

))

((w ⊗ x)⊗ y)⊗ z

aw⊗x,y,z

55

aw,x,y⊗idz
��

(w ⊗ (x⊗ (y ⊗ z)))

(w ⊗ (x⊗ y))⊗ z
aw,x⊗y,z

// w × ((x⊗ y)⊗ z)

idw⊗ax,y,z

OO

A monoidal category is strict if the associator, left unitor, and right unitor are identities.

In a monoidal category the tensor product provides a way that one can set objects “side

by side” with each other and also morphisms “side by side” with each other. If our category

also has a “braiding” then not only can we tensor, we can also permute.

Definition 2.1.13. A braided monoidal category is a monoidal category (C,⊗, I)

equipped with a natural isomorphism Bx,y : x ⊗ y → y ⊗ x called the braiding such that

the following two kinds of diagrams commute for all objects involved:

(x⊗ y)⊗ z
ax,y,z

//

Bx,y×idz

��

x⊗ (y ⊗ z)
Bx,y⊗z

// (y ⊗ z)⊗ x
ay,z,x

��

(y ⊗ x)⊗ z
ay,x,z

// y ⊗ (x⊗ z)
idy⊗Bx,z

// y ⊗ (z ⊗ x)

23



x⊗ (y ⊗ z)
a−1
x,y,z

//

idx⊗By,z

��

(x⊗ y)⊗ z
Bx⊗y,z

// z ⊗ (x⊗ y)

a−1
z,x,y

��

x⊗ (z ⊗ y)
a−1
x,z,y

// (x⊗ z)⊗ y)
Bx,z⊗idy

// (z ⊗ x)⊗ y

In all of our examples braiding two objects and then braiding them again is the same as

doing nothing at all. This happens in a symmetric monoidal category.

Definition 2.1.14. A symmetric monoidal category is a braided monoidal category

where the braiding is such that By,xBx,y = idx⊗y.

Example 2.1.15. FinCospan is a symmetric monoidal category where the tensor product is

disjoint union, denoted by +, and the unit object is the empty set. The braiding morphism

Bm,n : m + n → n + m is given by the cospan m + n
f→ m + n

g← n + m where the image

of m under f is the same as the last m of the apex, the image of n under f is the first n of

the apex, the image of m under g is the first m of the apex, and the image of n under g is

the last n of the apex.

Example 2.1.16. FinCorel is also a symmetric monoidal category with + as the tensor

product and the empty set as the unit object. Note that the braiding for FinCospan is

jointly epic so that the same braiding also makes FinCorel into a symmetric monoidal

category.

Example 2.1.17. FinSpan is a symmetric monoidal category where the tensor product is

also +, and the unit object is the empty set. The braiding morphism Bm,n : m×n→ n×m

is more easily understood as the relation

{(a, b, b, a) : a ∈ m, b ∈ n} ⊆ (m× n)× (n×m).
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This construction also makes FinRel into a symmetric monoidal category.

At first glance the braiding morphisms for FinCospan and FinCorel seem complicated.

However, Joyal and Street [25] rigorously justified reasoning in any symmetric monoidal

category using “string diagrams” so we may draw the morphisms in FinCospan and FinCorel

in this way.

Given a corelation X
f→ N

g← Y we connect elements of X and Y with strings if they are

in the same image of either f or g. That is, if elements are in the same part of the partition

we connect them with a string, otherwise we do not. Also, we do not bother to draw the

elements since the strings themselves tell us about the number of inputs and outputs.

For example, the following partition in FinCorel:

3 4

is drawn as:

3 4

We draw the unit object as “nothing,” and draw the tensor product of two string diagrams

by merely stacking one above the other. The braiding is represented by a crossing of the

strings. For example B1,1 : 2→ 2 is drawn as:

Composition of these string diagrams is essentially the same as composition of the par-

tition pictures. The following example, where we also include the partition notation, shows

25



the idea:

X Z

Y

= X Z

Although we have only explained the way in which corelations can be drawn as string

diagrams, we can do the same with cospans. However, in the case of cospans there may be

strings which are completely disconnected from the inputs and outputs. It is only because

corelations are jointly epic cospans that we can always eliminate completely disconnected

components. This fact follows from Theorem 3.1.1, which provides a normal form for any

corelation. Another reason for using string diagrams to represent corelations is because the

string diagrams look suspiciously similar to diagrams made of perfectly conductive wires.

In fact we shall see that corelations behave like circuits made of perfect wires.

Just as functors preserve the structure of categories, there are functors which preserve

these other structures. As expected, a monoidal functor preserves the monoidal structure

between monoidal categories and a symmetric monoidal functor preserves the braiding.

Definition 2.1.18. Let (C,⊗C , IC) and (D,⊗D, ID) be two monoidal categories. A monoidal

functor between them is

• a functor F : C → D

• an isomorphism ε : ID → F (IC)

• a natural isomorphism µx,y : F (x)⊗D F (y)→ F (x⊗C y) for all x, y ∈ C
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satisfying the following conditions:

• (associativity) For all objects x, y, z ∈ C the following diagram commutes:

(F (x)⊗D F (y))⊗D F (z)
aD
F (x),F (y),F (z)

//

µx,y⊗id

��

F (x)⊗D (F (y)⊗D F (z))

id⊗µy,z
��

F (x⊗C y)⊗D F (z)

µx⊗Cy,z

��

F (x)⊗D (F (y ⊗C z))
µx,y⊗Cz

��

F ((x⊗C y)⊗C z)
F (aCx,y,z)

// F (x⊗C (y ⊗C z))

where aC and aD denote the associators of the monoidal categories.

• (unitality) For all x ∈ C the following diagrams commute:

ID ⊗D F (x)
ε⊗id
//

`D
F (x)

��

F (IC)⊗D F (x)

µIC,x

��

F (x) F (IC ⊗C x)
F (`Cx )

oo

F (x)⊗D ID
id⊗ε
//

rD
F (x)

��

F (x)⊗D F (IC)

x,µIC
��

F (x) F (x⊗C IC)
F (rCx )

oo

A monoidal functor is strict if the maps ε, µx,y for all x, y are identities.

Definition 2.1.19. A monoidal functor F : (C,⊗C , IC)→ (D,⊗D, ID) between symmetric

monoidal categories is symmetric if for all x, y ∈ C the diagram:

F (x)⊗D F (y)
BF (x),F (y)

//

µx,y

��

F (x)⊗D F (y)

µy,x

��

F (x⊗C y)
F (Bx,y)

// F (x⊗C y)

commutes.

In Proposition 3.1.2 we show that forcing a cospan to be jointly epic determines a unique

strict symmetric monoidal functor H : FinCospan→ FinCorel. This functor plays a key role
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when we look at the relationships between FinCospan, FinCorel, and circuits made of only

of perfectly conductive wires. In many examples of networks the distinction between inputs

and outputs is arbitrary. For categories this property is encompassed by “dagger compact

categories.”

Definition 2.1.20. A dagger category is a category C equipped with an involutive

contravariant endofunctor (−)† : C → C that is identity on objects. This associates to any

morphism f : A → B a morphism f † : B → A such that for all f : A → B and g : B → C

we have idA = id†A, (gf)† = f †g†, and f †† = f . A morphism is unitary if its dagger is also

its inverse.

Definition 2.1.21. A symmetric monoidal dagger category is a symmetric monoidal

category C with a dagger structure (−)† : C → C that is symmetric monoidal and where

the associator, unitors, and braiding of C are unitary.

Example 2.1.22. To see why FinCorel is a dagger category, notice that for any corelation

f : m → n we get a corelation f † : n → m defined to give the same partition, but with the

input and output formally exchanged. It can be shown that this makes FinCorel into a

symmetric monoidal dagger category.

Definition 2.1.23. In a symmetric monoidal category C an object A∗ is a dual of A

if it is equipped with two morphisms called the unit ηA : I → A ⊗ A∗ and the counit

εA : A∗ ⊗A→ I such that the following diagrams commute:

I ⊗A ηA⊗idA
//

r−1
A `A

��

(A⊗A∗)⊗A
αA,A∗,A
��

A⊗ I A⊗ (A∗ ⊗A)
idA⊗εA

oo
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A∗ ⊗ I
idA∗⊗ηA

//

`−1
A rA

��

A∗ ⊗ (A⊗A∗)

α−1
A∗,A,A∗
��

I ⊗A∗ (A∗ ⊗A)⊗A∗
εA⊗idA

oo

A symmetric monoidal category C is compact closed if every object A has a dual object

A∗.

One can show that any two duals of an object are canonically isomorphic, so one may

speak of the dual.

Example 2.1.24. In FinCorel the objects are self-dual. This is most easily seen by looking

at the object 1 where the following morphisms act as the unit and counit respectively:

0→ 2 2→ 0

The first corelation depicts the partition from 0 to 2 where both elements are in the same

part, while the second is the same partition, but from 2 to 0. The identities in Definition

2.1.23 are sometimes called the “zig-zag identities.” This choice of name is clear when we

express the laws in terms of string diagrams:

= =

Definition 2.1.25. A dagger compact category is a symmetric monoidal dagger cate-

gory that is compact closed and such that the following diagram commutes for any A:

I
ε†A
//

ηA
##

A⊗A∗

BA,A∗

��

A∗ ⊗A
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where BA,A∗ is the braiding on A⊗A∗.

Example 2.1.26. Given a set n, the unit corelation ηn : 0 → 2n is defined as having n

parts arranged in the following pattern:

Note that the dagger of this corelation is precisely the same as the counit εn : 2n → 0.

When we compose ηn with the braiding morphism Bn,n the corelation does not change.

That is, the resulting corelation still has n parts arranged in the same pattern. Thus we say

that FinCorel is a dagger compact category. Fong showed that FinCospan is also a dagger

compact category [5].

Having made FinCorel and FinCospan into dagger compact categories, we are now ready

to look at monoids and comonoids inside these two categories.

Definition 2.1.27. Given a symmetric monoidal category C, a monoid (X,µ, ι) is an

object X ∈ C together with a multiplication µ : X ⊗X → X and unit ι : I → X obeying

the associative and unit laws. We can draw these laws using string diagrams as follows:

= = =

µ(µ⊗ idX) = µ(idX ⊗ µ) µ(ι⊗ idX) = idX = µ(id|X ⊗ ι)

Definition 2.1.28. A comonoid (X, δ, ε) in C is an object X ∈ C together with a co-

multiplication δ : X → X⊗X and counit ε : X → I obeying the coassociative and counit

laws:

= = =

(idX ⊗ δ)δ = (δ ⊗ idX)δ (ε⊗ idX)δ = idX = (idX ⊗ ε)δ
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Definition 2.1.29. A Frobenius monoid in a symmetric monoidal category C is a monoid

(X,µ, ι) together with a comonoid (X, δ, ε) obeying the Frobenius laws:

= =

(idX ⊗ µ)(δ ⊗ idX) = δµ = (µ⊗ idX)(idX ⊗ δ)

A Frobenius monoid is

• commutative if:

=

µB = µ

where B is the braiding on X ⊗X

• cocommutative if:

=

Bδ = δ

Note that a Frobenius monoid is cocommutative if and only if it is commutative.

• special if:

=

µδ = idX

• extra if:

=

ει = idI

There is also a notion which is weaker than commutivity, which we need later.

• A monoid is symmetric if:

=

εµB = εµ
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• A comonoid is cosymmetric if:

=

Bδι = δι

Note that a Frobenius monoid is cosymmetric if and only if it is symmetric.

We use the same style of string diagrams to depict both corelations and morphisms in

general symmetric monoidal categories, as in the above definitions, but context will clarify

what we mean in any particular situation. One can quickly show that the object 1 together

with the following morphisms in FinCorel make up an extraspecial commutative Frobenius

monoid by using string diagrams:

m : 1 + 1→ 1 i : 0→ 1 d : 1→ 1 + 1 e : 1→ 0

Note that (1,m, i, d, e) in FinCospan is a special commutative Frobenius monoid, that is,

we lose the extra property. After we introduce props we show that the relationship between

FinCospan and FinCorel can also be viewed in terms of imposing the extra law on special

commutative Frobenius monoids.

It should be noted that another common way of putting together a monoid and a

comonoid is by using a “bimonoid.” It turns out that bimonoids are useful for understanding

spans and relations, just as Frobenius monoids are useful for understanding cospans and

corelations. Props not only allow us to state these relationships more precisely, but they

also provide us with far more tools to study FinCospan, FinCorel, FinSpan, and FinRel.

Later, in Chapter 5, we use bimonoids and “weak” bimonoids to study bond graphs.
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2.2 Props

We now introduce the machinery of props. Mac Lane [32] introduced props in 1965 in

order to generalize Lawvere’s algebraic theories [31] to cases where the tensor product is not

cartesian. Mac Lane called them “PROPs,” which stands for “products and permutations,”

but we prefer to write prop. After proving that any prop can be presented in terms of gen-

erators and equations in Corollary 2.3.4, we provide the presentations for FinRel, FinSpan,

and FinCospan. We then prove Proposition 2.3.7 in order to view FinCorel as a quotient

prop of FinCospan.

One major reason to use props is because it is easy to define functors out of props by

naming where the generators go and checking that the relevant equations hold. This is

how we define the behavior of electrical circuits, signal-flow diagrams, and bond graphs.

That is, we view a network as a morphism in a prop; then the behavior of the network

corresponds to the image of that morphism under some functor. Even better, the functors

are morphisms of props.

Definition 2.2.1. A prop is a strict symmetric monoidal category having the natural

numbers as objects, with the tensor product of objects given by addition. We define a

morphism of props to be a strict symmetric monoidal functor that is the identity on

objects. Let PROP be the category of props.

The defining feature of a prop is that every object is isomorphic to a tensor power of some

chosen object x. Though not every symmetric monoidal category is a prop, the categories

FinCorel, FinCospan, FinRel, and FinSpan are all equivalent to props as a result of the

following proposition.
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Proposition 2.2.2. A symmetric monoidal category C is equivalent to a prop if and only if

there is an object x ∈ C such that every object of C is isomorphic to x⊗n = x⊗(x⊗(x⊗· · · ))

for some n ∈ N.

Proof. See Section 6.1.1 for a precise statement and proof. The proof gives a recipe for

actually constructing a prop equivalent to C when this is possible.

Proposition 2.2.3. Suppose C and T are props and F : C → T is a symmetric monoidal

functor. Then F is isomorphic to a strict symmetric monoidal functor G : C → T . If

F (1) = 1, then G is a morphism of props.

Proof. See Section 6.1.1 for a precise statement and proof.

To better understand props we study their algebras. The idea is that an algebra provides

a view of the morphisms in a prop as morphisms in some other category. As an example

to keep in mind, consider the yet to be defined prop “Circ,” whose morphisms are circuits

made only of perfectly conductive wires. Then a homset Circ(m,n) is the set of possible

circuits made only of perfectly conductive wires with m inputs and n outputs. In such a

case black-boxing is some algebra F : Circ→ C that outputs the behavior of each circuit as

a morphism in C.

Definition 2.2.4. If T is a prop and C is a symmetric monoidal category, an algebra of T

in C is a strict symmetric monoidal functor F : T → C. We define a morphism of algebras

of T in C to be a monoidal natural transformation between such functors.

In some contexts T (m,n) acts as the set of “operations” with m inputs and n outputs

and an algebra for T equips an object in another category with these operations. In any

case, by determining the algebras of a prop we gain a better understanding of it.
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Our goal is to determine the algebras of FinCorel viewed as a prop. This also provides

us with a presentation of FinCorel as a prop. We then study the relationships between

FinCospan, FinCorel, FinSpan, and FinRel in terms of their algebras. Before determining

the algebras of FinCorel we look at some other props whose algebras are already known.

Example 2.2.5. By Proposition 2.2.2 FinSet is equivalent to a prop. We henceforth write

FinSet for this equivalent prop. We can identify this prop with a skeleton of the category

of finite sets and functions, having finite ordinals 0, 1, 2, . . . as objects. It is known that the

algebras of FinSet are commutative monoids [40]. Consider the unique functions m : 2→ 1

and i : 0→ 1.

It is easy to check that (1,m, i) is a commutative monoid in FinSet. Then if F : FinSet→

C is a strict symmetric monoidal functor, the object F (1) becomes a commutative monoid

in C with multiplication F (m) : F (1) ⊗ F (1) → F (1) and unit F (i). It is more work to

check that any given commutative monoid in C comes from a unique choice of F .

Additionally, morphisms between algebras of FinSet in C correspond to morphisms of

commutative monoids in C. As a result we say that FinSet is the prop for commutative

monoids.

Example 2.2.6. Once again by Proposition 2.2.2 FinCospan is equivalent to a prop, which

we refer to as FinCospan. We again identify the objects of FinCospan with finite ordinals.

Lack [30] showed that FinCospan is the prop for special commutative Frobenius monoids.

To see this first notice that the cospans 2→ 1← 1 and 0→ 1← 1 make 1 ∈ FinCospan into

a commutative monoid. This induces a morphism of props FinSet→ FinCospan assigning

to any function f : X → Y between finite sets a cospan X
f→ Y

id← Y . Similarly the cospans
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1 → 1 ← 2 and 1 → 1 ← 0 make 1 ∈ FinCospan into a cocommutative comonoid. This

induces a morphism of props FinSetop → FinCospan assigning to any function f : X → Y

between finite sets a cospan Y
id→ Y

f← X.

It is easy to check that the commutative monoid and cocommutative comonoid struc-

tures on 1 ∈ FinCorel fit together to form a special commutative Frobenius monoid. The

difficult part is to find an elegant proof that the category of algebras of FinCospan in any

strict symmetric monoidal category C is equivalent to the category of special commutative

Frobenius monoids in C. Lack showed this and thus we say that FinCospan is the prop

for special commutative Frobenius monoids.

Example 2.2.7. By Proposition 2.2.2 FinSpan is equivalent to a prop, which we call

FinSpan. Lack [30] has shown that FinSpan is the prop for bicommutative bimonoids. A

bicommutative bimonoid in C is a commutative monoid (x, µ, ι) and a cocommutative

comonoid (x, δ, ε) in C which together obey the bimonoid laws:

=

=

=

=

To see that FinSpan is the prop for bicommutative bimonoids first notice that the spans

2
id← 2 → 1 and 0 ← 0 → 1 make the object 1 ∈ FinSpan into a commutative monoid.

This induces a morphisms of props FinSet→ FinSpan assigning to any function f : X → Y

between finite sets a span X
f← Y

id→ Y . The spans 1 ← 2
id→ 2 and 1 ← 0 → 0 make

36



1 ∈ FinSpan into a cocommutative comonoid. This induces a morphism of props FinSetop →

FinSpan assigning to any function f : X → Y between finite sets a span Y
id← Y

f→ X.

It follows that the two functions m : 2 → 1 and i : 0 → 1 induce four spans m′ : 2 → 1,

i′ : 0→ 1, d′ : 1→ 2, and e′ : 1→ 0, which make 1 into a bicommutative bimonoid.

Example 2.2.8. By Proposition 2.2.2 FinRel is equivalent to a prop, which we call FinRel.

It is the prop for special bicommutative bimonoids. The object 1 ∈ FinRel together with

the four spans m′ : 2 → 1, i′ : 0 → 1, d′ : 1 → 2, and e′ : 1 → 0 now make up a special

bicommutative bimonoid. This means there is a morphism of props FinSpan → FinRel

sending any span to a relation, which forces a span to be jointly monic. Notice that this

morphism of props sends each generator of FinSpan to its coresponding generator in FinRel.

However in FinRel an additional equation holds: the special law d′m′ = id1.

The relationship between forcing a span to be jointly monic and forcing a bicommutative

bimonoid to be special is as follows. Taking the jointly monic part of a span is equivalent to

iteratively replacing the span 1← 2→ 1 with the identity span 1← 1→ 1. This iterative

replacement is nothing more than forcing the equation d′m′ = id1 to hold in FinSpan.

Going from FinSpan to FinRel by imposing the special law hints at the way we shall go

from FinCospan to FinCorel by imposing the extra law. That is, forcing a cospan to be

jointly epic is equivalent to iteratively replacing the cospan 0 → 1 ← 0 with the identity

cospan 0→ 0← 0. The formal statement and proof requires some additional results.

Recall that each of the props FinSpan, FinRel, FinCospan, and FinCorel were also dagger

compact categories. Thus we make the following definitions.
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Definition 2.2.9. A dagger prop is a prop that is also a symmetric monoidal dagger

category. A dagger compact prop is a prop that is also a dagger compact category.

Most of the morphisms of props we look at also preserve the dagger structure of our

dagger props.

Definition 2.2.10. A symmetric monoidal dagger functor is a symmetric monoidal

functor F : C → D between symmetric monoidal dagger categories such that F ((−)†) =

(F (−))†, µx,y : F (x) ⊗ F (y) → F (x ⊗ y) is unitary for all x, y ∈ C, and η : I → F (I) is

unitary. A morphism of dagger props is a morphism of props F : C → D between

dagger props such that F ((−)†) = (F (−))†.

Next we prove that any prop, much like any group, has a presentation in terms of

generators and equations.

2.3 Presenting props

Obtaining a group from a free group using quotients is actually a special case of using

a coequalizer. Thus, coequalizers underlie the technique of presenting groups in terms of

generators and relations. We use coequalizers to obtain props from free props, and to

present props with generators and equations.

Definition 2.3.1. In a category C a diagram:

X
f
//

g
//

Y
p
// Z

is called a coequalizer if

(1) pf = pg;
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(2) p is universal for this property: i.e. if q : Y →W is a morphism in C such that qf = qg

then there is a unique morphism q′ : Z →W such that q′p = q.

We also call Z the coequalizer because it is unique up to canonical isomorphism. A

morphism p : Y → Z is called a regular epimorphism if there is a coequalizer diagram:

X
f
//

g
//

Y
p
// Z.

The idea here is that the coequalizer is the quotient of Y by equations imposed with the

maps f and g. This is how we present props with generators and equations.

Definition 2.3.2. We define the category of signatures to be the functor category SetN×N.

This has as objects the functors N×N→ Set and as morphisms the natural transformations

between such functors, where N× N is a discrete category.

Proposition 2.3.3. There is a forgetful functor

U : PROP→ SetN×N

sending any prop to its underlying signature and any morphism of props to its underlying

morphism of signatures. This functor is monadic: that is, it has a left adjoint

F : SetN×N → PROP

and the category of algebras of the monad UF is equivalent, via the canonical comparison

functor, to the category PROP.

Proof. This follows from the fact that props are algebras of a multi-sorted or ‘typed’ Lawvere

theory, together with a generalization of Lawvere’s fundamental result [31] to this context.

For details, see Appendix 6.1.
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We say that an element of Σ: N × N → Set is an element of some set Σ(m,n). We

say f : m → n when f is an element of some signature Σ with f ∈ Σ(m,n). For any

signature Σ, we call F (Σ) the free prop on Σ where the elements of the signature Σ are

the generators of the prop F (Σ). An important corollary to this proposition is that any

prop can be obtained from a free prop using a coequalizer.

Corollary 2.3.4. The category PROP is cocomplete, and any prop T is the coequalizer of

some diagram

F (E)
ρ
//

λ
// F (Σ).

Proof. This follows from the general theory of monads [8]. We can take Σ = U(T ) and

E = UFU(T ), with λ = FUεT and ρ = εFU(T ), where ε : FU ⇒ 1 is the counit of the

adjunction in Proposition 2.3.3.

To see how this proposition lets us define props in terms of generators and equations we

give an example in complete detail. The underlying idea is that elements of the signature

Σ provide generators for the morphisms in the prop T while elements of the signature E

impose equations between morphisms in T . Due to this we often refer to the elements of Σ

as generators and elements of E as equations.

Example 2.3.5. We now present the prop for monoids. We first need generators that

correspond to the multiplication µ : x ⊗ x → x and the unit ι : I → x associated to some

monoid x. Thus Σ is a functor Σ: N×N→ Set where the element µ ∈ Σ(2, 1) corresponds

to the multiplication and the element ι ∈ Σ(0, 1) corresponds to the unit. Since a monoid

only comes equipped with two morphisms we do not need any other elements so Σ(m,n) is
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the empty set for another other (m,n). Thus the free prop F (Σ) has two elements µ : 2→ 1

and ι : 0→ 1 as generators.

More generally, picking a generating set works the same way, but we can be more succinct.

In this case we instead say that Σ is a signature with elements µ : 2→ 1 and ι : 0→ 1, but

this really means Σ is a functor chosen in the above way.

Next, note that there are a total of 3 equations describing the laws of a monoid: one

for associativity and two for the unital laws. Thus we need the signature E : N× N→ Set

to pick out sets for each pair (m,n) corresponding to the arity of the expressions needed

to write the equations of a monoid. For example, associativity is expressed via morphisms

3→ 1, while the unit laws are expressed with morphisms 1→ 1. Thus define E(3, 1) to be

a singleton set and E(1, 1) to be a 2 element set since there is one equation of arity (3, 1)

and two equations of arity (1, 1). In short we say that E is the signature with 3 elements

called f : 3→ 1 and g, h : 1→ 1. This defines another free prop F (E).

To impose the equations of a monoid we use prop morphisms λ, ρ : F (E)→ F (Σ) between

the two free props. For each e ∈ E(m,n) the morphisms λ(e) and ρ(e) in F (Σ) are the left

and right sides of an equation, respectively.

We define λ in the following way:

λ(f) = µ(µ⊗ id1)

λ(g) = µ(ι⊗ id1)

λ(h) = id1

and ρ in the following way:

ρ(f) = µ(id1 ⊗ µ)
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ρ(g) = id1

ρ(h) = µ(id1 ⊗ ι)

These prop morphisms are well-defined just by naming where the generators go because

F (E) is a free prop. Notice that λ sends f to one side of the associativity equation, g to

one side of the left unit equation, and h to one side of the right unit equation. Meanwhile

ρ sends each element of E to the other side of each equation.

Now we take the coequalizer, which we can do since PROP is cocomplete:

F (E)
ρ
//

λ
// F (Σ) // T.

This results in the prop T which has the same morphisms as F (Σ) but with the required

equations holding between the above morphisms. Since T is the prop generated by two

morphisms making 1 into a monoid, with no additional properties, we say that T is the

prop for monoids.

Presenting a prop in the above way can be streamlined. In the above example for

monoids, we instead say that Σ consists of generators m : 2 → 1 and i : 0 → 1 while E

consists of the equations for a monoid. Then the coequalizer T is the prop for monoids.

If we know that a category is equivalent to a prop for some algebraic object then we can

easily present the prop as a coequalizer.

Example 2.3.6. To present FinCospan we can take Σ to be the signature with elements

m : 2 → 1, i : 0 → 1, d : 1 → 2, e : 1 → 0, and let the equations be those governing a special

commutative Frobenius monoid with multiplication m, unit i, comultiplication d and counit
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e. We obtain a coequalizer diagram:

F (E)
ρ
//

λ
// F (Σ) // FinCospan.

There is yet another useful consequence that comes from presenting props with coequal-

izers. Given a prop T presented by Σ and E we have the following commuting diagram:

F (E)
ρ
//

λ
// F (Σ)

t
// T.

By the universal property of the coequalizer if we have another commuting diagram:

F (E)
ρ
//

λ
// F (Σ)

f
// P.

then there is a unique morphism of props h : T → P making the resulting diagrams com-

mute. Thus if we have a prop P which has the same generators as T and includes the

equations for T then there automatically exists a morphism of props from P to T . For

example, if T is the prop for monoids and P is the prop for commutative monoids then

there must be a unique morphism f : T → P since every commutative monoid is a monoid.

The more general idea is that, roughly, adding generators to a presentation of a prop

P gives a new prop P ′ having P as a sub-prop, while adding equations gives a new prop

P ′ that is a quotient of P . This is encompassed by the following proposition about props,

however we prove even more general statements in the appendix.

Proposition 2.3.7. Suppose we have two coequalizer diagrams in PROP:

F (E)
ρ
//

λ
// F (Σ)

π
// P

F (E′)
ρ′
//

λ′
// F (Σ′)

π′
// P ′
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together with morphisms f : E → E′, g : Σ→ Σ′ such that these squares commute:

F (E)
λ
//

F (f)
��

F (Σ)

F (g)
��

F (E′)
λ′
// F (Σ′)

F (E)
ρ
//

F (f)
��

F (Σ)

F (g)
��

F (E′)
ρ′
// F (Σ′)

By the universal property of P there exists a unique morphism h : P → P ′ making the square

at right commute:

F (E)
ρ
//

λ
//

F (f)
��

F (Σ)
π
//

F (g)
��

P

h

��

F (E′)
ρ′
//

λ′
// F (Σ′)

π′
// P ′

In this situation, adding extra equations makes P ′ into a quotient object of P . More pre-

cisely, and also more generally: If g is an epimorphism, then h is a regular epimorphism.

Proof. Given that g is an epimorphism in SetT , it is a regular epimorphism. So is F (g),

since left adjoints preserve regular epimorphisms, and so is π′, by definition. It follows that

π′F (g) = hπ is a regular epimorphism, and thus so is h. This means that the following is a

coequalizer diagram:

F (E)
πρ
//

πλ
// P

h
// P ′

We are now ready to prove that FinCorel is the prop for extraspecial commutative Frobe-

nius monoids. Roughly speaking, this completes the relationship between spans, cospans,

relations, corelations. The following table summarizes the idea: going from spans to rela-

tions is akin to imposing the special condition on extra bicommutative bimonoids, while

going from cospans to corelations is akin to imposing the extra condition on special bicom-

mutative Frobenius monoids.
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spans cospans

extra bicommutative bimonoids special bicommutative Frobenius monoids

relations corelations

extraspecial bicommutative bimonoids extraspecial bicommutative Frobenius monoids
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Chapter 3

Circuits and linear relations

In the last chapter we described a symmetric monoidal category FinCorel whose mor-

phisms are corelations. We saw that FinCorel is equivalent to a prop where a morphism

f : m → n is a corelation from an m-element set to an n-element set. In this chapter we

shall give a presentation for the prop FinCorel and make mathematically precise the rela-

tionship that the props FinCorel and FinCospan have with electrical circuits and signal-flow

diagrams.

We begin by presenting FinCorel as a prop in Theorem 3.1.1. For now this result clarifies

the relationship between FinSpan, FinRel, FinCospan, and FinCorel as props, but later it

helps us to understand electrical circuits. To begin studying electrical circuits as morphisms

we define an “L-circuit” to be a graph labelled by some set L, together with a cospan picking

out inputs and outputs. Depending on the nature of the set L an L-circuit may represent

many different kinds of electrical circuits. For example, if L consists of non-negative real

numbers then an L-circuit may be viewed as a circuit with inputs and ouputs made up of

“resistors,” where the real number associated to an edge is the “resistance” of the resistor.
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Given a set L there is a prop CircL whose morphisms are L-circuits. Unsurprisingly CircL

is closely related to FinCospan and FinCorel; we show in Proposition 3.2.8 that CircL is

the coproduct of FinCospan and a prop coming from the set L.

In the special case where L = {`} is a one element set all of the edges in an L-circuit have

the same label; this is the same as an L-circuit with unlabelled edges. For this reason we

think of such L-circuits as being made of only perfectly conductive wires between terminals

and we define Circ := Circ{`}. In order to study more complicated circuits using our

framework we first understsand Circ as a prop. Due to Proposition 3.2.8 any morphism in

Circ has an underlying cospan, and due to Proposition 3.1.2, there is a unique morphism

of props from FinCospan to FinCorel. Thus any circuit made perfectly conductive wire has

an underlying corelation. In 3.4.2 we use the underlying corelation for a circuit to define

a black-boxing functor for circuits made only of perfectly conductive wire. This definition

agrees with the black-boxing functor defined by Baez and Fong [5], but has the nice property

of being completely determined by FinCorel. That is, the behavior of any circuit made of

only perfectly conductive wire is completely determined by the underlying corelation. As a

result, when we study bond graphs in Chapter 5 we take the view that corelations are the

same as circuits made only of perfectly conductive wire.

3.1 FinCorel as a Prop

Though the following result is purely categorical we shall also use it quite often when

dealing with electrical circuits and bond graphs.

Theorem 3.1.1. FinCorel is the prop for extraspecial commutative Frobenius monoids.
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Proof. Let Σ, E, λ, ρ present the prop FinCospan; the prop for special commutative Frobe-

nius monoids where F (Σ) is generated by m : 2 → 1, i : 0 → 1, d : 1 → 2, and e : 1 → 0. So

the following is a coequalizer diagram:

F (E)
ρ
//

λ
// F (Σ)

π
// FinCospan.

Let T be the prop for extraspecial commutative Frobenius monoids presented with

Σ, E′, λ′, ρ′ so the following is a coequalizer diagram:

F (E′)
ρ′
//

λ′
// F (Σ)

π′
// T.

It follows from Proposition 2.3.7 that since FinCospan and T are presented with the

same generators, there exists a unique h : FinCospan→ T which is a regular epimorphism.

In other words the following is another coequalizer:

F (E)
πρ
//

πλ
// FinCospan

h
// T.

Next we let EEx be a signature with just one element, namely ex : 0→ 0. Let the maps

ρEx, λEx : F (EEx)→ F (Σ) present the “extra” equation. That is, λEx(ex : 0→ 0) = ei : 0→

0 and ρEx(ex : 0→ 0) = id0 : 0→ 0.

We claim that the following is a coequalizer diagram:

F (EEx)
ρEx

//

λEx
// F (Σ)

π
// FinCospan

h
// T.

First π(λEx(ex)) = 0→ 1← 0 = π(λ(ex)) and π(ρEx(ex)) = 0→ 0← 0 = π(ρ(ex)). Then

since h is a coequalizer for πλ and πρ we get hπλEx(ex) = hπλ(ex) = hπρ(ex) = hπρEx(ex)

so that the diagram commutes. Next we check the universal property.
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Let C and g : FinCospan→ C be such that the diagram commutes:

F (EEx)
ρEx

//

λEx
// F (Σ)

π
// FinCospan

g
// C.

Note then that the following diagram commutes:

F (E)
πρ
//

πλ
// FinCospan

g
// C

and since the following is a coequalizer diagram:

F (E)
πρ
//

πλ
// FinCospan

h
// T

there exists a unique q : T → C making the following commute:

FinCospan h
//

g
%%

T

q

��

C.

Thus our claim is proven and so the following is a coequalizer diagram:

F (EEx)
ρEx

//

λEx
// F (Σ)

π
// FinCospan

h
// T.

Now we show that the following is also a coequalizer diagram:

F (EEx)
ρEx

//

λEx
// F (Σ)

π
// FinCospan

H
// FinCorel.

Here H : FinCospan→ FinCorel is the canonical one H(n
f→ a

g← m) = (n
f→ im[f, g]

g← m)

restricting the apex to the joint images of f and g. See Fong [23, Cor 3.18] for a proof that

this restriction is functorial. The diagram commutes because πλEx(ex) = 0 → 1 ← 0 and

πρEx(ex) = 0→ 0← 0, which are both mapped to 0→ 0← 0 under H. Now we show the

universal property.
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Let C and A : FinCospan→ C be such that:

F (EEx)
ρEx

//

λEx
// F (Σ)

π
// FinCospan

A
// C

also commutes. Note that H : FinCospan → FinCorel is surjective on morphisms so if we

show that any cospan n
f→ a

g← m has the same image as its jointly epic part n
f ′→ im[f, g]

g′←

m then we can define a map A′ : FinCorel → C by sending each jointly epic cospan to its

image as a cospan under A. We check this now. First:

A
(
n

f→ a
g← m

)
= A

(
n

f ′→ im[f, g]
g′← m

)
+A

(
0→ (a− im[f, g])← 0

)
.

Note that 0→ (a− im[f, g])← 0 is the same as the tensoring of the cospan 0→ 1← 0 with

itself (a− im[f, g])-many times so that:

A
(
n

f→ a
g← m

)
= A

(
n

f ′→ im[f, g]
g′← m

)
+A(0→ 1← 0) + · · ·+A(0→ 1← 0)

= A
(
n

f ′→ im[f, g]
g′← m

)
+AπλEx(ex) + · · ·+AπλEx(ex)

= A
(
n

f ′→ im[f, g]
g′← m

)
+AπρEx(ex) + · · ·+AπρEx(ex)

= A
(
n

f ′→ im[f, g]
g′← m

)
+A(0→ 0← 0) + · · ·+A(0→ 0← 0)

= A
(
n

f ′→ im[f, g]
g′← m

)
+ id0 + · · ·+ id0

= A
(
n

f ′→ im[f, g]
g′← m

)
Thus:

F (EEx
ρEx

//

λEx
// F (Σ)

π
// FinCospan

H
// FinCorel
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is a coequalizer diagram. Now T and FinCorel are both coequalizers in the following

diagram:

FinCospan

idFinCospan

��

// T

��

F (EEx)

λEx
55

ρEx

55

λEx

))ρEx ))

FinCospan // FinCorel.

The two triangles commute so that T and FinCorel are coequalizers of isomorphic diagrams

and thus must be isomorphic. Note that this also expresses FinCorel as a ‘quotient’ of

FinCospan.

Not only is the method for turning a cospan into a corelation functorial, but it determines

a unique morphism of props.

Proposition 3.1.2. The map H : FinCospan→ FinCorel is a unique morphism of props.

Proof. We need only show uniqueness of H. It suffices to show that H is uniquely deter-

mined on the generatorsm, i, d, e. By Example 2.3.6, H(m) : 2→ 1, H(i) : 0→ 1, H(d) : 1→

2 and H(e) : 1→ 0 must make 1 ∈ FinCorel into a special commutative Frobenius monoid.

There is a unique corelation from 0 to 1, so H(i) is uniquely determined. Similarly, H(e)

is uniquely determined. Each partition of a 3-element set gives a possible choice for H(m).

If we write H(m) as a partition of the set 2 + 1 with 2 = {a, b} and 1 = {c} these choices

are:

{{a, b, c}}, {{a}, {b}, {c}}, {{a, b}, {c}}, {{a}, {b, c}}, {{a, c}, {b}}.

The commutative law rules out those that are not invariant under switching a and b, leaving

us with these:

{{a, b, c}}, {{a}, {b}, {c}}, {{a, b}, {c}}.
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The associative law rules out the last of these. Either of the remaining two makes 1 ∈

FinCorel into a commutative monoid. Dually, there are two choices for H(d) making 1 into

a commutative comonoid. However, the ‘special’ law forces H(m)H(d) to be the identity

corelation. This ensures that H(m) is the partition with just one block, namely {{a, b, c}},

and similarly for H(d).

Since FinCorel is the prop for extraspecial commutative Frobenius monoids we may as

well use this to give a presentation of FinCorel.

Example 3.1.3. To present FinCorel we can use the same signature Σ as for FinCospan,

but the equations E′ include one additional equation, the so-called extra law:

ei = id0

in the definition of extraspecial commutative Frobenius monoids. Thus we obtain a co-

equalizer diagram:

F (E′)
ρ′
//

λ′
// F (Σ) // FinCorel.

More concisely we say that the prop FinCorel is generated by the following morphisms:

m : 1 + 1→ 1 i : 0→ 1 d : 1→ 1 + 1 e : 1→ 0

subject to the laws of an extraspecial commutative Frobenius monoid.

Note by Theorem 3.1.1 that symmetric monoidal functors F : FinCorel→ C, correspond

precisely to extraspecial commutative Frobenius monoids in C. Thus whenever we have a

category C with such an object we automatically have a functor FinCorel → C. Later we

see that for a field k, the one dimensional vector space k can be made into two different
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extraspecial commutative Frobenius monoids. This allows us to define a functor assigning

to any corelation a vector space of “potentials” and “currents.”

3.2 L-Circuits

Rosebrugh, Sabadini and Walters [43] explained how to construct a category where the

morphisms are circuits made of wires with “circuit elements” on them, such as resistors,

inductors and capacitors. We use their work to construct a symmetric monoidal category

CircL for any set L of circuit elements.

To begin with, a circuit consists of a finite graph with “wires” as edges:

Definition 3.2.1. A graph is a finite set E of edges and a finite set N of nodes equipped

with a pair of functions s, t : E → N assigning to each edge its source and target. We say

that e ∈ E is an edge from s(e) to t(e).

We then label the edges with elements of some set L:

Definition 3.2.2. Given a set L of labels, an L-graph is a graph s, t : E → N equipped

with a function ` : E → L assigning a label to each edge.

For example, we can describe a circuit made from resistors by labeling each edge with a

‘resistance’ chosen from the set L = (0,∞). Here is a typical L-graph in this case:

2

3

1 0.9
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However, to make circuits into the morphisms of a category, we need to specify some inputs

and outputs. We could do this by picking out two subsets of the set of nodes, but it turns

out to be better to use two maps into the set of nodes.

Definition 3.2.3. Given a set L and finite sets X and Y , an L-circuit from X to Y is

a cospan of finite sets:

N

X

i

>>

Y

o

``

together with an L-graph:

L E
s
//

t
//

`
oo N.

We call the sets X, Y , and ∂N = X ∪ Y the inputs, outputs, and terminals of the

L-circuit, respectively.

Here is an example of an L-circuit:

X Y

2

3

1 0.9

Note that in this example, two points of Y map to the same node. In general the input and

output sets do not need to map injectively; we make no additional restrictions so that our

work applies as generally as possible.

For example, we can compose these two L-circuits:
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X Y

2

3
1 0.9

Z

5

8

and obtain this one:

X Z

2

3

1 0.9

5

8

We formalize this using composition of cospans. Given cospans X
i→ N

o← Y and

Y
i′→ N ′

o′← Z, their composite is X
fi−→ N +Y N

′ f
′o′←− Z, where the finite set N +Y N

′ and

the functions f and f ′ are defined by this pushout:

N +Y N
′

N

f
::

N ′

f ′
dd

X

i

;;

Y

o

ee

i′
99

Z.

o′
cc

To make the composite cospan into an L-circuit, we must choose an L-graph whose set of

nodes is N +Y N
′. We use this L-graph:

L E + E′
j(s+s′)

//

j(t+t′)
//

〈`,`′〉
oo N +Y N

′

where

〈`, `′〉 : E + E′ → L
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is the ‘copairing’ of ` and `, i.e. the function that equals ` on E and `′ on E′, while the

functions

s+ s′, t+ t′ : E + E′ → N +N ′

are coproducts, and

jN,N ′ : N +N ′ → N +Y N
′

is the natural map from the coproduct to the pushout.

However, the pushout is only unique up to isomorphism, so to make composition asso-

ciative we must use isomorphism classes of L-circuits. Since an L-circuit can be seen as

a graph with an extra structure, an isomorphism between L-circuits is an isomorphism of

graphs that preserves this extra structure:

Definition 3.2.4. Two L-circuits

N

X

i

>>

Y

o

``
L E

s
//

t
//

`
oo N

and

N ′

X

i′
>>

Y

o′
``

L E′
s′
//

t′
//

`′
oo N ′

are isomorphic if there are bijections

fE : E → E′, fN : N → N ′
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such that these diagrams commute:

N

fN

��

X

i

>>

i′   

Y

o

``

o′~~

N ′

E

fE

��

`

~~

L

E′
`′

``

E

fE
��

s
// N

fN
��

E′
s′
// N ′

E

fE
��

t
// N

fN
��

E′
t′
// N ′

It is easy to check that composition of L-circuits is well-defined and associative at the level

of isomorphism classes.

We can also tensor two L-circuits by setting them side by side. This uses coproducts, or

disjoint unions, both of sets and of L-graphs. For example, tensoring this L-circuit:

X Y

2

3
1 0.9

with this one:

X ′ Y ′

5

3.2

give this one:
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X +X ′ Y + Y ′

2

3
1 0.9

5

3.2

In general, given L-circuits

N

X

i

>>

Y

o

``
L E

s
//

t
//

`
oo N

and

N ′

X ′

i′
==

Y ′

o′
``

L E′
s′
//

t′
//

`′
oo N ′

their tensor product is

N +N ′

X +X ′

i+i′
99

Y + Y ′

o+o′
ee

L E + E′
s+s′
//

t+t′
//

〈`,`′〉
oo N +N ′.

This operation is well-defined at the level of isomorphism classes. Indeed, we obtain a

symmetric monoidal category:

Proposition 3.2.5. For any set L, there is a symmetric monoidal category CircL where the

objects are finite sets, the morphisms are isomorphism classes of L-circuits, and composition

and the tensor product are defined as above.
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Proof. This was proved by Rosebrugh, Sabadini and Walters [43], who call this category

Csp(Graphfin/Σ), where Σ is their name for the label set L. Another style of proof uses

Fong’s theory of decorated cospans [22], which implies that CircL is a compact closed

symmetric monoidal category. Baez and Fong used this method in the special case where L

is the set of “positive elements” in a field [5, Cor. 5.3], but the argument does not depend

on the nature of the set L.

In fact, the work of Courser [15] and Stay [45] implies that CircL comes from a compact

closed symmetric monoidal bicategory. The objects in this bicategory are still finite sets,

but the morphisms in this bicategory are actual L-circuits, not isomorphism classes. We

expect this bicategorical approach to become important, but for now we are content to work

with mere categories.

Fix a set L. Then by Proposition 2.2.2, CircL is equivalent to a prop. Henceforth, by a

slight abuse of language, we use CircL to denote this prop. To understand CircL as a prop

first notice one very important fact: the object 1 equipped with the generating cospans

m : 2 → 1, i : 0 → 1, d : 1 → 2 and e : 1 → 0, thought of as L-circuits with no edges, is a

special commutative Frobenius monoid in CircL. It is no coincidence that m, i, d, and e

subject to the laws of a special commutative Frobenius monoid are also the generators of

FinCospan.

The idea is that the labelled edges in an L-circuit correspond to elements of L, while

cospans m, i, d, and e let us put the labelled edges together in interesting ways. In the prop

framework a labelled edge in an L-circuit is thought of as a morphism ` : 1 → 1 which is
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labelled by some element of L. If the prop CircL were generated only by morphisms ` like

this then the morphisms of CircL would only look like parallel edges.

Thus the overall idea is that an L-circuit can be built from generating cospans and

labelled edges; this intuition matches what we find out about the algebras of CircL. To

describe the algebras of CircL, we make a somewhat nonstandard definition. We say a set

L acts on an object x if for each element of L we have a morphism from x to itself:

Definition 3.2.6. An action of a set L on an object x in a category C is a function

α : L→ hom(x, x). We also call this an L-action. Given L-actions α : L→ hom(x, x) and

β : L → hom(y, y), a morphism of L-actions is a morphism f : x → y in C such that

fα(`) = β(`)f for all ` ∈ L.

Proposition 3.2.7. An algebra of CircL in a strict symmetric monoidal category C is a

special commutative Frobenius monoid in C whose underlying object is equipped with an

action of L. A morphism of algebras of CircL in C is a morphism of special commutative

Frobenius monoids that is also a morphism of L-actions.

Proof. This was proved by Rosebrugh, Sabadini and Walters [43], though stated in quite

different language.

We may thus say that CircL is the prop for special commutative Frobenius monoids whose

underlying object is equipped with an action of L.

Unsurprisingly, CircL is coproduct of two props: the prop for special commutative Frobe-

nius monoids and the prop for L-actions. To describe the latter, consider a signature with

one unary operation for each element of L, and no other operations. For simplicity we call

this signature simply L. The free prop F (L) has a morphism ` : 1 → 1 for each ` ∈ L.
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For any strict symmetric monoidal category C, the category of algebras of F (L) in C is

the category of L-actions and morphisms of L-actions. We thus call F (L) the prop for

L-actions.

Proposition 3.2.8. CircL is the coproduct of FinCospan and the prop for L-actions.

Proof. Let

F (E)
ρ
//

λ
// F (Σ)

be the presentation of FinCospan given in Example 2.3.6. Here Σ is the signature with

elements m : 2 → 1, i : 0 → 1, d : 1 → 2 and e : 1 → 0, and the equations are the laws for a

special commutative Frobenius monoid.

Since left adjoints preserve colimits, we have a natural isomorphism F (Σ) + F (L) ∼=

F (Σ + L). Let ι : F (Σ) → F (Σ + L) be the resulting monomorphism. By Corollary 2.3.4

we can form the coequalizer X here:

F (E)
ιρ
//

ιλ
// F (Σ + L) // X.

We claim that X ∼= CircL.

On the one hand, there is a morphism f : F (Σ) → CircL sending m, i, d and e in FΣ

to the corresponding morphisms in CircL, and fλ = fρ because these morphisms make

1 ∈ CircL into a special commutative Frobenius monoid. We thus have a commutative

diagram

F (E)
ιρ
//

ιλ
// F (Σ + L)

j
//

f
&&

X

CircL.

By the universal property of the coequalizer, there is a unique morphism g : X → CircL with

gj = f . On the other hand, the object 1 ∈ X is, by construction, a special commutative
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Frobenius monoid with L-action. By Proposition 3.2.7 we thus obtain an algebra of CircL

in X, that is, a morphism h as follows:

F (E)
ιρ
//

ιλ
// F (Σ + L)

j
//

f
&&

X

g

��

CircL.

h

OO

It is easy to check that hf = j by seeing how both sides act on the elements m, i, d, e, `

of F (Σ + L). By the universal property of X we have hg = 1, and because the Frobenius

monoid in CircL has no nontrivial automorphisms we also have gh = 1. Thus X ∼= CircL

and

F (E)
ρ
//

λ
// F (Σ + L)

f
// CircL (3.1)

is a coequalizer.

More generally, given presentations of props X1 and X2, we have coequalizers:

F (Ei)
ρi
//

λi
// F (Σi)

gi
// Xi, i = 1, 2

whose coproduct is another coequalizer:

F (E1) + F (E2)
ρ1+ρ2

//

λ1+λ2
// F (Σ1) + F (Σ2)

g1+g2
// X1 +X2.

Since left adjoints preserve coproducts, we obtain a coequalizer

F (E1 + E2) //
// F (Σ1 + Σ2) // X1 +X2

which gives a presentation for X1 +X2.

In our situation E ∼= E + 0 where 0 is the initial or ‘empty’ signature, so we have a

coequalizer

F (E) + F (0) //
// F (Σ) + F (L) // FinCorel + F (L)

Combining this with Equation (3.1), we see CircL ∼= FinCospan + F (L).
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With this result we think of CircL has being generated by morphisms:

subject to the laws of a special commutative Frobenius monoid, together with a generator

`

for each ` in L. This is exactly what we want since CircL is the coproduct of two props;

this means that it is generated by the generators of of both props. To see how these fits

with our initial definition of an L-circuit, consider the earlier example:

X Y

2

3

1 0.9

We build this morphism from the generators of the prop CircL by doing the following

composite:

1

3

2

.9

giving us a morphism f : 1→ 2 in the prop CircL.

3.3 Circuits made only of perfectly conductive wires

The simplest circuits are those made solely of perfectly conductive wires. Electrical

engineers would consider these circuits trivial. Nonetheless, they provide the foundation on

which all our results rest. In this case the underlying graph of the circuit has unlabeled
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edges—or equivalently, the set of labels has a single element. So, we make the following

definition:

Definition 3.3.1. Let Circ be symmetric monoidal category CircL where L = {`} is a

1-element set.

A morphism in Circ can be viewed an isomorphism class of cospans of finite sets

N

X

i

>>

Y

o

``

together with a graph Γ having N as its set of vertices since the labelling becomes trivial:

Γ = { E
s
//

t
// N }

For example, a morphism in Circ might look like this:

o(Y ) i(X)X YΓ

By Proposition 3.2.8 we can identify Circ with the coproduct FinCospan +F ({`}). This

gives us the generators of Circ, which we draw as follows:

Corollary 3.3.2. The prop Circ is generated by the following morphisms:

`

where the first four generators are subject to the laws of a special commutative Frobenius

monoid.
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Just as in Example 3.2, we could rewrite the above morphism in Circ as being built

from these generators. Each of the unlabelled edges would be labelled by ` and the other

generators would be used to glue appropriate edges together and to get the right number

of inputs and outputs.

As we shall see in detail later, for the behavior of a circuit made of perfectly conductive

wires, all that matters about the underlying graph is whether any given pair of nodes lie in

the same connected component or not: that is, whether or not there exists a path of edges

and their reverses from one node to another. If they lie in the same component, current can

flow between them; otherwise not, and this is all there is to say. We may thus replace the

graph Γ by its set of connected components, π0(Γ). There is map pΓ : N → π0(Γ) sending

each node to the connected component it lies in. We thus obtain obtain a cospan of finite

sets:

π0(Γ)

X

pΓi
<<

Y

pΓo
bb

In particular, the above example gives this cospan:

π0(Γ)X Y

This way of simplifying a circuit defines a functor

H ′ : Circ→ FinCospan.
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If instead we write Circ as the coproduct FinCospan + F ({`}) then there exists a unique

morphism of props

H ′ : Circ→ FinCospan

such that

H ′(f) = f

for any morphism f in FinCospan and

H ′(`) = 11.

In other words, H ′ does nothing to morphisms in the sub-prop FinCospan, while it sends

the morphism ` to the identity. It is thus a retraction for the inclusion of FinCospan in

Circ. Now, each edge of Γ corresponds to a copy of the morphism `. The functor G has the

effect of collapsing each edge of Γ to a point, since it sends ` to the identity. The result is

still a cospan of finite sets where the apex is the set of connected components π0(Γ).

Recall by Proposition 3.1.2 there is a unique morphism of props H : FinCospan →

FinCorel which forces a cospan to become jointly epic. In our example we obtain the

following jointly epic cospan:

pΓ(i(X)) ∪ pΓ(o(Y ))X Y

In short, we can simplify a circuit made of ideal conductive wires in two successive stages:

Circ
H′−→ FinCospan

H−→ FinCorel.
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In Section 3.4 we define a black-boxing functor

� : Circ→ FinRelk,

which maps any such circuit to its ‘behavior’: that is, the linear relation R ⊆ k2n that it

imposes between potentials and currents at its inputs and outputs. We construct this by

composing HH ′ : Circ→ FinCorel with a functor

K : FinCorel→ FinRelk.

This makes precise the sense in which the behavior of such a circuit depends only on its

underlying corelation.

This functor was constructed by Baez and Fong [5] using ‘decorated cospans,’ but we do

so using props. Since both approaches produce the same functor we state ours as a definition.

The functor K is defined by finding an extraspecial commutative Frobenius monoid in

FinRelk. In Chapter 4, more specifically in Proposition 4.1.6, we show that even though K

is not a morphism of props, it does determine one. Namely, K : FinCorel → LagRelk is a

morphism of props, where LagRelk has “Lagrangian relations” as morphisms.

3.4 Linear relations

Since the simplest circuits impose linear relations between potentials and currents at

their terminals, the study of circuits forces us to think carefully about linear relations. As

we shall see, for any field k there is a prop FinRelk where a morphism f : m→ n is a linear

relation from km to kn. A presentation for this prop has been worked out by Erbele and

Baez [4, 18] and independently by Bonchi, Sobociński and Zanasi [12, 13, 54]. Since we
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need some facts about this presentation to describe the black-boxing of circuits, we recall

it here.

For any field k, there is a category where an object is a finite-dimensional vector space

over k, while a morphism from U to V is a linear relation, meaning a linear subspace

L ⊆ U ⊕ V . We write a linear relation from U to V as L : U 9 V . Note that we also use

the same notation for linear maps since they are a special case of linear relations. Since the

direct sum U ⊕ V is also the cartesian product of U and V , a linear relation is a relation

in the usual sense, and we can compose linear relations L : U 9 V and L′ : V 9 W in the

usual way:

L′L = {(u,w) : ∃ v ∈ V (u, v) ∈ L and (v, w) ∈ L′}

the result being a linear relation L′L : U 9 W . Given linear relations L : U 9 V and

L′ : U ′ 9 V ′, the direct sum of subspaces gives a linear relation L⊕ L′ : U ⊕ U ′ 9 V ⊕ V ′,

and this gives our category a symmetric monoidal structure. By Proposition 2.2.2, this

symmetric monoidal category is equivalent to a prop. Concretely, we may describe this

prop as follows:

Definition 3.4.1. Let FinRelk be the prop where a morphism f : m → n is a linear

relation from km to kn, composition is the usual composition of relations, and the symmetric

monoidal structure is given by direct sum.

To give a presentation of FinRelk, we use a simple but nice fact: the object 1 ∈ FinRelk,

or in less pedantic terms the 1-dimensional vector space k, is an extraspecial Frobenius

monoid in two fundamentally different ways. To understand these, first note that for any
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linear relation L : U 9 V there is a linear relation L† : V 9 U given by

L† = {(v, u) : (u, v) ∈ L}.

This makes FinRelk into a dagger compact category [2, 4, 44]. Also recall that a linear map

is a special case of a linear relation.

The first way of making k into an extraspecial commutative Frobenius monoid in FinRelk

uses these morphisms:

• as comultiplication, the linear map called duplication:

∆: k 9 k2

∆ = {(x, x, x) : x ∈ k} ⊆ k ⊕ k2

• as counit, the linear map called deletion:

! : k 9 {0}

! = {(x, 0) : x ∈ k} ⊆ k ⊕ {0}

• as multiplication, the linear relation called coduplication:

∆† : k2 9 k

∆† = {(x, x, x) : x ∈ k} ⊆ k2 ⊕ k

• as unit, the linear relation called codeletion:

!† : {0}9 k

!† = {(0, x) : x ∈ k} ⊆ {0} ⊕ k.
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We call this the duplicative Frobenius structure on k. In circuit theory this is important

for working with the electric potential. The reason is that in a circuit of ideal conductive

wires the potential is constant on each connected component, so wires like this:

have the effect of duplicating the potential.

The second way of making k into an extraspecial commutative Frobenius monoid in

FinRelk uses these morphisms:

• as multiplication, the linear map called addition:

+: k2 9 k

+ = {(x, y, x+ y) : x, y ∈ k} ⊆ k2 ⊕ k

• as unit, the linear map called zero:

0 : {0}9 k

0 = {(0, x) : x ∈ k} ⊆ {0} ⊕ k

• as comultiplication, the linear relation called coaddition:

+† : k 9 k ⊕ k

+† = {(x+ y, x, y) : x, y ∈ k} ⊆ k ⊕ k2

• as counit, the linear relation called cozero:

0† : k 9 {0}

0† = {(x, 0)} ⊆ k ⊕ {0}.
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We call this the additive Frobenius structure on k. In circuit theory this structure is

important for working with electric current. The reason is that Kirchhoff’s current law says

that the sum of input currents must equal the sum of the output currents, so wires like this:

have the effect of adding currents.

The prop FinRelk is generated by the eight morphisms listed above together with a

morphism for each element c ∈ k, namely the map from k to itself given by multiplication

by c. We denote this simply as c:

c : k 9 k

x 7→ cx.

From the generators we can build two other important morphisms:

• the cup ∪ : k2 9 {0}: this is the composite of coduplication ∆† : k2 → k and deletion

! : k 9 {0}.

• the cap ∩ : {0} → k2: this is the composite of codeletion !† : {0} → k and duplication

∆: k → k2;

These are the unit and counit for an adjunction making k into its own dual. Since every

object in FinRelk is a tensor product of copies of k, every object becomes self-dual. Thus,

FinRelk becomes a dagger compact category. This explains the use of the dagger notation

for half of the eight morphisms listed above.
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Thanks to the work of Baez and Erbele [4, 18] and also Bonchi, Sobociński and Zanasi

[12, 13, 54], the prop FinRelk has a presentation of this form:

F (Ek)
ρk
//

λk
// F (Σ) + F (Σ) + F (k)

�
// FinRelk

Here the signature Σ has elements m : 2→ 1, ı : 0→ 1, d : 1→ 2, e : 1→ 0. The morphisms

in the free prop F (Σ) + F (Σ) + F (k) can be drawn as string diagrams, and these roughly

match what control theorists call “signal-flow diagrams.” The meaning of these generators

is best understood in terms of the linear relations they are mapped to under �, so we also

use them to draw linear relations. We discuss signal-flow diagrams in Section 4.3, but for

now only use the diagrams in reference to linear relations. In this presentation for FinRelk,

the first copy of F (Σ) is responsible for the duplicative Frobenius structure on k, so we call

its generators

• coduplication, ∆† : 2→ 1

• codeletion, !† : 0→ 1

• duplication, ∆: 1→ 2

• deletion, ! : 1→ 1

The second copy of F (Σ) is responsible for the additive Frobenius structure, so we call its

generators
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• addition, +: 2→ 1

• coaddition, +† : 1→ 2

• zero, 0 : 0→ 1

• cozero, 0† : 1→ 0

Finally, we have a copy of F (k), consisting of elements we call

• scalar multiplication, c : 1→ 1

c

one for each c ∈ k. All these generators are mapped by � to the previously described

morphisms with the same names in FinRelk.

We do not need a complete list of the equations in this presentation of FinRelk, but

among them are equations saying that in FinRelk

(1) (k,∆†, !,∆, !†) is an extraspecial commutative Frobenius monoid;

(2) (k,+, 0,+†, 0†) is an extraspecial commutative Frobenius monoid;

(3) (k,+, 0,∆, !) is a bicommutative bimonoid;

(4) (k,∆†, !†,+†, 0†) is a bicommutative bimonoid.
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Note that one could draw the above equations in terms of the above string diagrams.

In Section 3.3 we looked at circuits made of perfectly conductive wires and described mor-

phisms of props

Circ
H′−→ FinCospan

H−→ FinCorel.

However, so far we have only briefly touched on the “behavior” of such circuits: that is,

what they actually do. A circuit provides a relation between potentials and currents at its

inputs and outputs. For a circuit with m inputs and n outputs, this is a linear relation on

2m+ 2n variables. We now describe a functor called black-boxing, which takes any circuit

of ideal conductive wires and extracts this linear relation. Baez and Fong [5] used decorated

cospans to arrive at the same functor.

In Theorem 3.1.1 we saw that FinCorel is the prop for extraspecial commutative Frobe-

nius monoids. Thus, the presentation of FinRelk gives two prop morphisms from FinCorel

to FinRelk. The first is relevant to potentials, while the second is relevant to currents [5].

In any symmetric monoidal category, the tensor product of two monoids is a monoid in

standard way, and dually for comonoids. In the same way, the tensor product of extraspe-

cial commutative Frobenius monoids becomes another extraspecial commutative Frobenius

monoid. Thus, we can make k ⊕ k into an extraspecial commutative Frobenius monoid

in FinRelk where the first copy of k has the duplicative Frobenius structure and the sec-

ond copy has the additive structure. Thanks to Theorem 3.1.1, this determines a strict

symmetric monoidal functor

K : FinCorel→ FinRelk.
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Composing this with

HH ′ : Circ→ FinCorel

we get the black-boxing functor

� = KHH ′ : Circ→ FinRelk.

Definition 3.4.2. We call the functor

KHH ′ : Circ→ FinRelk.

the black-boxing functor for ideal circuits and write � := KHH ′.

In Proposition 4.1.6 we show that the black-boxing functor is determined, as a morphism

of props, by where it sends the generators of Circ, so we may as well provide that information

right now:

� �
// {(φ1, I1, φ2, I2, φ3, I3) : φ1 = φ2 = φ3, I1 + I2 = I3}

� �
// {(φ1, I1, φ2, I2, φ3, I3) : φ1 = φ2 = φ3, I1 = I2 + I3}

� �
// {(φ2, I2) : I2 = 0}

� �
// {(φ1, I1) : I1 = 0}

` � �
// {(φ1, I1, φ2, I2) : φ1 = φ2, I1 = I2}

Here ` is the generator corresponding to a perfectly conductive wire; black-boxing maps it

to the identity morphism on k2. Since black-boxing is a symmetric monoidal functor, we

can decompose a large circuit made of ideal conductive wires into simple building blocks in
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order to determine the relation it imposes between the potentials and currents at its inputs

and outputs.

In terms of string diagrams black-boxing does the following:

� �
//

� �
//

� �
//

� �
//

` � �
//

In the next Chapter we characterize the linear relations that are picked out by �. Indeed,

this lets us reinterpret � as a morphism of props. We then extend black-boxing to CircL for

when L is the field k. Then we extend black-boxing even further to allow for affine relations

instead of just linear relations.
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Chapter 4

Black-boxing

We begin this chapter by showing that � : Circ → FinRelk determines a morphism

of props. This follows because linear relations which arise from our circuits are actually

“Lagrangian” relations. These kinds of relations determine another prop LagRelk whose

objects are symplectic vector spaces (k ⊕ k)n. In Proposition 4.1.6 we redefine � as a

morphism of props � : Circ→ LagRelk.

In Theorem 4.2.1 we extend black-boxing to the category CircL where L is an arbitrary

set. To do so we take advantage of the presentation for CircL as FinCospan + F (L). We

then apply our work to particular types of circuits by choosing L to obtain “RLC circuits”:

that is, circuits made of resistors, capacitors, and inductors. This happens in Proposition

4.2.2 where we view black-boxing of RLC circuits as a morphism of props. In Theorem

4.2.4 we look at the case where L is the field k and this gives us the black-boxing functor

for passive linear circuits.

We then use our framework to understand the relationship between linear circuits and

signal-flow diagrams. We define SigFlowk to be the free prop with the same generators as
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FinRelk. Since this is a free prop while Circk is not, there is no useful morphism of props

from Circk to SigFlowk. Thus we consider the free prop C̃irck which has Circk as a quotient,

and a morphism of props from this to SigFlowk, which we think of as a method for turning

a circuit into a signal-flow diagram.

This is all summarized by the commutative diagram in Theorem 4.3.3:

C̃irc
P

//
� _

��

Circ� _

��

H′
// FinCospan

H
// FinCorel

K

��

C̃irck
P
//

T
��

Circk
�

// LagRelk� _

��

SigFlowk
�

// FinRelk.

4.1 Black-boxing as a morphism of props

The black-boxing functor as described so far is not a morphism of props, since it sends

the object 1 ∈ Circ to the object 2 ∈ FinRelk, that is, the vector space k2. However, it can

reinterpreted as a morphism of props with the help of some symplectic geometry. Instead

of linear relations between finite-dimensional vector spaces, we use Lagrangian relations

between symplectic vector spaces. For a detailed explanation of this idea, see Baez and

Fong [5]; here we simply state the key facts.

Definition 4.1.1. A symplectic vector space V over a field k is a finite-dimensional

vector space equipped with a symplectic structure ω, meaning a map ω : V × V → k

that is:

• bilinear,

• alternating: ω(v, v) = 0 for all v ∈ V ,
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• nondegenerate: if ω(u, v) = 0 for all u ∈ V then v = 0.

There is a standard way to make k ⊕ k into a symplectic vector space, namely

ω((φ, I), (φ′, I ′)) = φI ′ − φ′I.

Given two symplectic vector spaces (V1, ω1) and (V2, ω2), we give their direct sum the

symplectic structure

(ω1 ⊕ ω2)((u1, u2), (v1, v2)) = ω1(u1, v1) + ω2(u2, v2).

In what follows, whenever we treat as (k ⊕ k)n as a symplectic vector space, we give it the

symplectic structure obtained by taking a direct sum of copies of k⊕ k with the symplectic

structure described above. Every symplectic vector space is isomorphic to (k⊕k)n for some

n, so every symplectic vector space is even dimensional [24, Thm. 21.2].

The concept of a “Lagrangian relation” looks subtle at first, but it has become clear

in mathematical physics that for many purposes this is the right notion of morphism be-

tween symplectic vector spaces [50, 51]. Lagrangian relations are also known as ‘canonical

relations’. The definition has a few prerequisites:

Definition 4.1.2. Given a symplectic structure ω on a vector space V , we define its con-

jugate to be the symplectic structure ω = −ω, and write the conjugate symplectic vector

space (V, ω) as V .

Definition 4.1.3. A subspace L of symplectic vector space (V, ω) is isotropic if ω(v, w) = 0

for all v, w ∈ V . It is Lagrangian if is isotropic and not properly contained in any other

isotropic subspace.
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One can show that a subspace L ⊆ V is Lagrangian if and only it is isotropic and dim(L) =

1
2 dim(V ). This condition is often easier to check.

Definition 4.1.4. Given symplectic vector spaces (V, ω) and (V ′, ω′), a linear Lagrangian

relation L : V 9 V ′ is a Lagrangian subspace L ⊆ V ⊕ V ′.

We need the conjugate symplectic structure on V to show that the identity relation is

a linear Lagrangian relation. With this twist, linear Lagrangian relations are also closed

under composition [5, Prop. 6.8]. Thus, there is a category with symplectic vector spaces as

objects and linear Lagrangian relations as morphisms. This becomes symmetric monoidal

using direct sums: in particular, if the linear relations L : U 9 V and L′ : U ′ 9 V ′ are

Lagrangian, so is L⊕L′ : U ⊕U ′ 9 V ⊕V ′. One can show using Proposition 2.2.2 that this

symmetric monoidal category is equivalent to the following prop.

Definition 4.1.5. Let LagRelk be the prop where a morphism f : m → n is a linear

Lagrangian relation from (k ⊕ k)m to (k ⊕ k)n, composition is the usual composition of

relations, and the symmetric monoidal structure is given by direct sum.

We can now redefine the functor K : FinCorel→ FinRelk, and the black-boxing functor

� : Circ → FinRelk, to be morphisms of props taking values in LagRelk. This is the view

we take henceforth.

Proposition 4.1.6. The strict symmetric monoidal functor K : FinCorel→ FinRelk maps

any morphism f : m → n is any morphism in FinCospan to a Lagrangian linear relation

K(f) : (k ⊕ k)m 9 (k ⊕ k)n. It thus defines a morphism of props, which we call

K : FinCorel→ LagRelk.
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Proof. First note that LagRelk is a symmetric monoidal subcategory of FinRelk: composi-

tion and direct sum for linear Lagrangian relations is a special case of composition and direct

sum for linear relations. Second, note that while K applied to the object n ∈ FinCospan

gives the vector space (k ⊕ k)n, which is the object 2n in FinRelk, this is the object n in

LagRelk. Thus, to check that strict symmetric monoidal functor K : FinCospan→ FinRelk

defines a morphism of props from FinCospan to LagRelk, we just need to check that K(f)

is Lagrangian for each generator f of FinCospan. We have

K(m) = {(φ1, I1, φ2, I2, φ3, I3) : φ1 = φ2 = φ3, I1 + I2 = I3}

K(d) = {(φ1, I1, φ2, I2, φ3, I3) : φ1 = φ2 = φ3, I1 = I2 + I3}

K(i) = {(φ2, I2) : I2 = 0}

K(e) = {(φ1, I1) : I1 = 0}

In each case the relation is an isotropic subspace of half the total dimension, so it is La-

grangian.

We can characterize this new improved K as follows:

Proposition 4.1.7. There exists a unique morphism of props

K : FinCorel→ LagRelk

sending the extraspecial commutative Frobenus monoid 1 ∈ FinCorel to the extraspecial

commutative Frobenius monoid k ⊕ k ∈ LagRelk, where the first copy of k is equipped with

its duplicative Frobenius structure and the second is equipped with its additive Frobenius

structure.
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Proof. Existence follows from 4.1.6; uniqueness follows from the fact that FinCorel is the

prop for extraspecial commutative Frobenius monoids.

We can now reinterpret black-boxing of circuits of perfectly conductive wires as a mor-

phism of props:

Definition 4.1.8. We define black-boxing of circuits made of perfect wire to be the

morphism of props � : Circ→ LagRelk given by the composite

Circ
H′−→ FinCospan

H−→ FinCorel
K−→ LagRelk.

4.2 Black-boxing linear circuits

Black-boxing circuits of ideal conductive wires is just the first step. We now extend

black-boxing to circuits made of wires labeled by elements of any set L. The elements of L

play the role of ‘circuit elements’ such as resistors, inductors and capacitors. The extended

black-boxing functor can be chosen so that these circuit elements are mapped to arbitrary

Lagrangian linear relations from k ⊕ k to itself.

The key to doing this is Proposition 3.2.8, which says that

CircL ∼= FinCospan + F (L).

We also need Propositions 3.1.2 and 4.1.7, which give prop morphisms H : FinCospan →

FinCorel and K : FinCorel→ LagRelk, respectively.

Theorem 4.2.1. For any field k and label set L, there exists a unique morphism of props

� : CircL ∼= FinCospan + F (L)→ LagRelk
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such that �|FinCospan is the composite

FinCospan
H−→ FinCorel

K−→ LagRelk

and �|F (L) maps each ` ∈ L to an arbitrarily chosen Lagrangian linear relation from k ⊕ k

to itself.

Proof. By the universal property of the coproduct and the fact that F (L) is the prop for

L-actions, there exists a unique morphism of props

� : FinCospan + F (L)→ LagRelk

such that �|FinCospan = KH and φ|F (L) maps each ` ∈ L to an arbitrarily chosen Lagrangian

linear relation from k ⊕ k to itself.

We can apply this theorem to circuits made of resistors. Any resistor has a resistance

R, which is a positive real number. Thus, if we take the label set L to be R+, we obtain

a prop CircL that models circuits made of resistors. Electrical engineers typically draw a

resistor as a wiggly line:

(φ1, I1) (φ2, I2)
R

Here (φ1, I1) ∈ R⊕R are the potential and current at the resistor’s input and (φ2, I2) ∈

R⊕ R are the potential and current at its output. To define a black-boxing functor

� : CircL → FinRelk

we need to choose a linear relation between these four quantities for each choice of the

resistance R. We do this using Kirchhoff’s current law which requires that the current

flowing in equals the current flowing out: I1 = I2. To relate current and potential we use
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Ohm’s Law, which says that V = RI where I = I1 = I2 is called the current through the

resistor and V = φ2 − φ1 is called the voltage across the resistor. Thus, for each R ∈ R+

we choose

�(R) = {(φ1, I1, φ2, I2) : φ2 − φ1 = RI1, I1 = I2}.

We could stop here, but suppose we also want to include inductors and capacitors. An

inductor comes with an inductance L ∈ R+ (not to be confused with our notation for a

label set), while a capacitor comes with a capacitance C ∈ R+. These circuit elements are

drawn as follows:

(φ1, I1) (φ2, I2)
L

(φ1, I1) (φ2, I2)

C

These circuit elements apply to time-dependent currents and voltages, and they impose the

relations V = Lİ and I = CV̇ , where the dot stands for the time derivative. Engineers deal

with this using the Laplace transform. As explained in detail elsewhere [4, 5], this comes

down to adjoining a variable s to the field R and letting k = R(s) be the field of rational

functions in one real variable. The variable s has the meaning of a time derivative. If we

now use V and I to denote the Laplace transforms of current and voltage, we thus obtain

the relations V = sLI for the inductor and I = sCV for the capacitor. Thus if we extend

our label set to the disjoint union of three copies of R+, defining

RLC = R+ + R+ + R+,

we obtain a prop CircRLC that describes circuits of resistors, inductors and capacitors.

The name “CircRLC” is a bit of a pun, since electrical engineers call a circuit made of one

resistor, one inductor and one capacitor an “RLC circuit.”
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To construct the black-boxing functor

� : CircRLC → FinRelk

we specify it separately on each kind of circuit element. Thus, on the first copy of R+,

corresponding to resistors, we set

�(R) = {(φ1, I1, φ2, I2) : φ2 − φ1 = RI1, I1 = I2}

as before. On the second copy we set

�(L) = {(φ1, I1, φ2, I2) : φ2 − φ1 = sLI1, I1 = I2}

and on the third we set

�(C) = {(φ1, I1, φ2, I2) : sC(φ2 − φ1) = I1, I1 = I2}.

We have:

Proposition 4.2.2. If f : m → n is any morphism in CircRLC , the linear relation �(f) :

(k ⊕ k)m 9 (k ⊕ k)n is Lagrangian. We thus obtain a morphism of props

� : CircRLC → LagRelk

where k = R(s).

Proof. By Theorem 4.2.1 it suffices to check that the linear relations �(R),�(L) and �(C)

are Lagrangian for any R,L,C ∈ R+. To do this, one can check that these relations are

2-dimensional isotropic subspaces of (k ⊕ k)⊕ (k ⊕ k).

A similar result was proved by Baez and Fong [5, 23] using different methods: decorated

cospan categories rather than props. In their work, resistors, inductors and capacitors were
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subsumed in a mathematically more natural class of circuit elements. We can do something

similar here. At the same time, we might as well generalize to an arbitrary field k and work

with the prop Circk, meaning CircL where the label set L is taken to be k.

Definition 4.2.3. We call a morphism in Circk a linear circuit.

Engineers might instead call such a morphism a ‘passive’ linear circuit [5], but we will

never need any other kind.

Theorem 4.2.4. For any field k there exists a unique morphism of props

� : Circk ∼= FinCospan + F (k)→ LagRelk

such that �|FinCospan is the composite

FinCospan
H−→ FinCorel

K−→ LagRelk

and for each Z ∈ k, the linear Lagrangian relation

�(Z) : k ⊕ k 9 k ⊕ k

is given by

�(Z) = {(φ1, I1, φ2, I2) : φ2 − φ1 = ZI1, I1 = I2}.

Proof. By Theorem 4.2.1 it suffices to check that �(Z) is a linear Lagrangian relation

for any Z ∈ k. To do this, check that �(Z) is a 2-dimensional isotropic subspace of

(k ⊕ k)⊕ (k ⊕ k).

In electrical engineering, Z is called the “impedance:” a circuit element with one input

and one output has impedance Z if the voltage across it is Z times the current through
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it. Resistance is a special case of impedance. In particular, a perfectly conductive wire has

impedance zero. Mathematically, this fact is reflected in an inclusion of props

Circ ↪→ Circk

that sends the generator ` in Circ ∼= FinCospan + F ({`}) to the generator 0 ∈ k in Circ ∼=

FinCospan + F (k), while it is the identity on FinCospan. Black-boxing for linear circuits

then extends black-boxing as previously defined for circuits of ideal conductive wires. That

is, we have a commutative triangle:

Circ

�

%%

� _

��

Circk �
// LagRelk.

(4.1)

4.3 Signal-flow diagrams

Control theory is the branch of engineering that studies the behavior of open dynamical

systems: that is, systems with inputs and outputs. Control theorists have intensively studied

linear open dynamical systems, and they specify these using signal-flow diagrams. We now

know that signal-flow diagrams are a syntax for linear relations. In other words, we can

see signal-flow diagrams as morphisms in a free prop that maps onto the prop of linear

relations, FinRelk. This is a nice example of functorial semantics drawn from engineering.

The machinery of props lets us map circuit diagrams to signal-flow diagrams in a manner

compatible with composition, addressing a problem raised by Willems [52]. To do this,

because circuits as we have defined them obey some nontrivial equations, while the prop of

signal-flow diagrams is free, we need to introduce free props that map onto Circ and Circk.
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In Section 3.4 we discussed this presentation of FinRelk:

F (Ek)
ρk
//

λk
// F (Σ) + F (Σ) + F (k)

�
// FinRelk.

The morphisms in the free prop F (Σ) + F (Σ) + F (k) can be drawn as string diagrams,

and these roughly match what control theorists call signal-flow diagrams. So, we make the

following definition:

Definition 4.3.1. Define SigFlowk to be F (Σ) + F (Σ) + F (k). We call a morphism in

SigFlowk a signal-flow diagram.

The prop SigFlowk is free on eight generators together with one generator for each

element of k. The meaning of these generators is best understood in terms of the linear

relations they are mapped to under �. We discussed those linear relations in Section 4.1.

So, we give the generators of SigFlowk the same names. Baez and Erbele also drew pictures

of them, loosely modeled after the notation in signal-flow diagrams [4]. Recall that the

generators of the first copy of F (Σ) are:

• coduplication, ∆† : 2→ 1

• codeletion, !† : 0→ 1

• duplication, ∆: 1→ 2

• deletion, ! : 1→ 1
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The generators of the second copy of F (Σ) are:

• addition, +: 2→ 1

• coaddition, +† : 1→ 2

• zero, 0 : 0→ 1

• cozero, 0† : 1→ 0

The generators of F (k) are:

• for each c ∈ k, scalar multiplication, c : 1→ 1

c

Since SigFlowk is a free prop, while Circk is not, there is no useful morphism of props from

Circk to SigFlowk. However, there is a free prop C̃irck having Circk as a quotient, and a

morphism from this free prop to SigFlowk. This morphism lifts the black-boxing functor

described in Theorem 4.2.4 to a morphism between free props.

Definition 4.3.2. For any set L define the prop C̃ircL by

C̃ircL = F (Σ) + F (L).

Here L stands for the signature with one unary operation for each element of L while Σ is

the signature with elements m : 2→ 1, i : 0→ 1, d : 1→ 2 and e : 1→ 0.
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In Example 2.3.6 we saw this presentation for FinCospan:

F (E)
ρ
//

λ
// F (Σ) // FinCospan

where the equations in E are the laws for a special commutative Frobenius monoid. In the

proof of Proposition 3.2.8 we derived this presentation for CircL:

F (E)
ιρ
//

ιλ
// F (Σ) + F (L) // FinCospan + F (L) ∼= CircL

where ι is the inclusion of F (Σ) in F (Σ)+F (L). Since F (Σ)+F (k) = C̃irck, we can rewrite

this as

F (E)
ιρ
//

ιλ
// C̃ircL // CircL

The last arrow here, which we call P : C̃ircL → CircL, imposes the laws of a special com-

mutative Frobenius monoid on the object 1.

The most important case of this construction is when L is some field k:

Theorem 4.3.3. For any field k, there is a strict symmetric monoidal functor T : C̃irck →

SigFlowk giving a commutative square of strict symmetric monoidal functors

C̃irck
P
//

T
��

Circk
�

// LagRelk� _

��

SigFlowk
�

// FinRelk.

The horizontal arrows in this diagram are morphisms of props. The vertical ones are not,

because they send the object 1 to the object 2.

Proof. We define the strict symmetric monoidal functor T : C̃irck → SigFlowk as follows.

It sends the object 1 to 2 and has the following action on the generating morphisms of
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C̃irck = F (Σ) + F (k):

T : m
� //

T : i
� //

T : d
� //

T : e
� //

and for each element Z ∈ k,

T : Z
� // Z

where we use string diagram notation for morphisms in SigFlowk. To check that T with

these properties exists and is unique, let SigFlowev
k be the full subcategory of SigFlowk

whose objects are even natural numbers. This becomes a prop if we rename each ob-

ject 2n, calling it n. Then, since C̃irck is free, there exists a unique morphism of props

T : C̃irck → SigFlowev
k defined on generators as above. Since SigFlowev

k is a symmetric

monoidal subcategory of SigFlowk, we can reinterpret T as a strict symmetric monoidal

functor T : C̃irck → SigFlowk, and this too is uniquely determined by its action on the

generators.

To prove that the square in the statement of the theorem commutes, it suffices to check it

on the generators of C̃irck. For this we use the properties of black-boxing stated in Theorem
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4.2.4. First, note that these morphisms in SigFlowk:

T (m) =

T (i) =

T (d) =

T (e) =

are mapped by � to the same multiplication, unit, comultiplication and counit on k⊕ k as

given by �(m),�(i),�(d) and �(e). Namely, these four linear relations make k ⊕ k into

Frobenius monoid where the first copy of k has the duplicative Frobenius structure and the

second copy has the additive Frobenius structure. Second, note that the morphism

T (Z) = Z

in SigFlowk is mapped by � to the linear relation

{(φ1, I1, φ2, I2) : φ2 − φ1 = ZI1, I1 = I2},

while Theorem 4.2.4 states that �(Z) is the same relation, viewed as a Lagrangian linear

relation.

Recall that when L = {`}, we call CircL simply Circ. We have seen that the map {`} → k

sending ` to 0 induces a morphism of props Circ ↪→ Circk, which expresses how circuits of
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perfectly conductive wires are a special case of linear circuits. We can define a morphism of

props C̃irc ↪→ C̃irck in an analogous way. Due to the naturality of the above construction,

we obtain a commutative square

C̃irc
P
//

� _

��

Circ� _

��

C̃irck
P
// Circk

We can combine this with the commutative square in Theorem 4.3.3 and the commutative

triangle in Equation 4.1, which expands to a square when we use the definition of black-

boxing for circuits of perfectly conductive wires. The resulting diagram summarizes the

relationship between linear circuits, cospans, corelations, and signal-flow diagrams:

C̃irc
P

//
� _

��

Circ� _

��

H′
// FinCospan

H
// FinCorel

K

��

C̃irck
P
//

T
��

Circk
�

// LagRelk� _

��

SigFlowk
�

// FinRelk.

In conclusion, we warn the reader that Erbele [18] uses a different definition of SigFlowk.

His prop with this name is free on the following generators:

• addition, +: 2→ 1

• zero, 0 : 0→ 1

• duplication, ∆: 1→ 2

• deletion, ! : 1→ 0

• for each c ∈ k, scalar multiplication c : 1→ 1
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• the cup, ∪ : 2→ 0

• the cap, ∩ : 0→ 2

The main advantage is that string diagrams for morphisms in his prop more closely resemble

the signal-flow diagrams actually drawn by control theorists; however, see his discussion of

some subtleties. All the results above can easily be adapted to Erbele’s definition.

4.4 Voltage and current sources

In the previous work on electrical circuits by Baez and Fong [5], batteries were not

included. Resistors, capacitors, and inductors define linear relations between potential and

current. Batteries, also known as “voltage sources,” define affine relations between these

quantities. The same is true of current sources. Thus, to handle these additional circuit

elements, we need a black-boxing functor that takes values in a different prop. The ease

with which we can do this illustrates the flexibility of working with props. In what follows,

we continue to work over an arbitrary field k, which in electrical engineering is either R or

R(s).

A voltage source is typically drawn as follows:

(φ1, I1) (φ2, I2)

V

It sets the difference between the output and input potentials to a constant value V ∈ k.

Thus, to define a black-boxing functor for voltage sources, we want to set

�(V ) = {(φ1, I1, φ2, I2) : φ2 − φ1 = V, I1 = I2}.
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Similarly, a current source is drawn as

(φ1, I1) (φ2, I2)

I

and it fixes the current at both input and output to a constant value I, giving this relation:

�(I) = {(φ1, I1, φ2, I2) : I1 = I2 = I}.

We could define a black-boxing functor suitable for voltage and current sources by using

a prop where the morphisms f : m → n are arbitrary relations from (k ⊕ k)m to (k ⊕ k)n.

However, the relations shown above are better than average. First, they are ‘affine relations’:

that is, translates of linear subspaces of (k ⊕ k)m ⊕ (k ⊕ k)n. For voltage sources we have

�(V ) = (0, 0, V, 0) + {(φ1, I1, φ1, I1)}

and for current sources we have

�(I) = (I, 0, I, 0) + {(φ1, 0, φ2, 0)}.

Second, these affine relations are ‘Lagrangian’: that is, they are translates of Lagrangian

linear relations.

Thus, we proceed as follows:

Definition 4.4.1. Given symplectic vector spaces (V, ω) and (V ′, ω′), an Lagrangian

affine relation R : V 9 V ′ is an affine subspace R ⊆ V ⊕ V ′ that is also a Lagrangian

subvariety of V ⊕ V ′.

Here recall that a subset A of a vector space is said to be an affine subspace if it is

closed under affine linear combinations: if a, a′ ∈ A then so is ta + (1 − t)a′ for all t ∈ R.
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A subvariety R ⊆ V ⊕ V ′ is said to be Lagrangian if each of its tangent spaces, when

identified with a linear subspace of V ⊕ V ′, is Lagrangian. If R is an affine subspace of

V ⊕ V ′ it is automatically a subvariety, and it is either empty or a translate L + (v, v′) of

some linear subspace L ⊆ V ⊕V ′. In the latter case all its tangent spaces become the same

when identified with linear subspaces of V ⊕ V ′: they are all simply L. We thus have:

Proposition 4.4.2. Given symplectic vector spaces (V, ω) and (V ′, ω′), any Lagrangian

affine relation R : V 9 V ′ is either empty or a translate of a Lagrangian linear relation.

This allows us to construct the following category:

Proposition 4.4.3. There is a category where the objects are symplectic vector spaces,

the morphisms are Lagrangian affine relations, and composition is the usual composition of

relations. This is a symmetric monoidal subcategory of the category of sets and relations

with the symmetric monoidal structure coming from the cartesian product of sets.

Proof. It suffices to check that morphisms are closed under composition and tensor product

and that the braiding is a Lagrangian affine relation. Let R : U 9 V and S : V 9 W be

two Lagrangian affine relations. If the composite SR is empty then we are done, so suppose

it is not. Thus there exist u ∈ U, v ∈ V,w ∈ W such that (u, v) ∈ R, (v, w) ∈ S, and

(u,w) ∈ SR. Consider the subspaces −(u, v) + R = L and −(v, w) + S = M . These are

both affine subspaces containing the origin and thus are linear subspaces. Since R and S is

are Lagrangian affine subspaces so are their translates L and M , so these are Lagrangian

linear relations from U to W . It follows that ML : V 9W is a Lagrangian linear relation.

We claim that SR = (u,w) + ML so that morphisms in our proposed category are closed
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under composition. First write R = L+ (u, v) and S = M + (v, w) so that

SR = {(x, z)|∃y ∈ V s.t. (x, y) ∈ R and (y, z) ∈ S}

= {(x, z)|∃y ∈ V s.t. (x, y) ∈ L+ (u, v) and (y, z) ∈M + (v, w)}

= {(x, z)|∃y ∈ V s.t. x = l1 + u

y = l2 + v

(l1, l2) ∈ L

y = m1 + v

z = m2 + w

(m1,m2) ∈M}

which gives us that l2 = m1 so finally we have

SR = {(l1 + u,m2 + w)|∃l2 ∈ V s.t. (l1, l2) ∈ L and (l2,m2) ∈M}

= (u,w) +ML

as desired.

The tensor product of Lagrangian affine relations R : U 9 V and R′ : U ′ 9 V ′ is given

by

R⊕R′ = {(u, u′, v, v′) : (u, v) ∈ R, (u′, v′) ∈ R′} : U ⊕ U ′ 9 V ⊕ V ′,

and this is a Lagrangian affine relation because it is a translate of a Lagrangian linear

relation. Finally, note that the braiding morphism BU,V : U ⊕ V 9 V ⊕ U defined by

BU,V = {(u, v, v, u)|u ∈ U, v ∈ V } is a Lagrangian relation so it is an affine Lagrangian

relation.

By Proposition 2.2.2, the above symmetric monoidal category is equivalent to the fol-

lowing prop:
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Definition 4.4.4. Let AffLagRelk be the prop where a morphism f : m→ n is an affine

Lagrangian relation from (k ⊕ k)m to (k ⊕ k)n, composition is the usual composition of

relations, and the symmetric monoidal structure is given as above.

We can extend the black-boxing functor from linear circuits to a circuits that include

voltage and/or current sources. The target of this extended black-boxing functor will be,

not LagRelk, but AffLagRelk.

Theorem 4.4.5. For any field k and label set L, there exists a unique morphism of props

� : CircL ∼= FinCospan + F (L)→ AffLagRelk

such that �|FinCospan is the composite

FinCospan
H−→ FinCorel

K−→ LagRelk ↪→ AffLagRelk

and �|F (L) maps each ` ∈ L to an arbitrarily chosen Lagrangian affine relation from k ⊕ k

to itself.

Proof. The proof mimics that of Theorem 4.2.1.

Using the formulas given above for the relations between potentials and currents for

voltage sources and current sources, we can use this theorem to define black-boxing func-

tors for circuits that include these additional circuit elements. A similar strategy can be

used to define black-boxing for circuits containing other nonlinear circuit elements, such as

transistors. We merely need to expand the target of this black-boxing functor to include all

the relations between potentials and currents that arise.
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Chapter 5

Bond graphs

In this chapter we study bond graphs, which are another diagrammatic tool used by

engineers. Recall that a bond graph consists of edges called bonds which are connected to

one another via 1-junctions and 0-junctions. Although bonds go between ports we do not

draw the ports since neither do engineers. Also, recall that each bond is associated with a

pair of real numbers called effort, E, and flow, F , where effort is a generalization of voltage

and flow is a generalization of current. We adopt a notion of inputs and ouputs for bond

graphs where think of effort and flow as going from left to right. That is, bonds which go

into a junction from the left are inputs while bonds going out to the right are outputs.

The 1-junction puts the associated bonds into a “series” connection. A 1-junction with

n bonds, where k are inputs and n− k are outputs, imposes the equations

k∑
i=1

Ei =
n∑

i=k+1

Ei

and

F1 = F2 = · · · = Fn
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In other words the sum of efforts going into a 1-junction is equal to the sum of efforts going

out while all of the flows are equal. These equations come from using a different convention

than what engineers use, but this does not cause any issues. As an example consider the

following 1-junction with 3 bonds:

1

F2

E2

F1

E1

F3

E3

Since there are 3 bonds and thus 3 ports this is sometimes called a “3-port” while a junction

with n bonds is sometimes called an “n-port.” Using our convention the efforts obey the

equation E1 +E2 = E3. Meanwhile the flows obey the equation F1 = F2 = F3. We say that

this 1-junction adds efforts and coduplicates flows. We may also turn this picture around

to get another 1-junction with one input and two outputs:

1

F3

E3

F2

E2

F1

E1

We say that this junction coadds effort and duplicates flow since now E1 = E2 + E3 and

F1 = F2 = F3.

The other type of junction is the 0-junction, i.e. the “parallel” junction. A 0-junction

with n bonds, where k are inputs and n− k are outputs, imposes the equations

k∑
i=1

Fi =

n∑
i=k+1

Fi = 0

and

E1 = E2 = · · · = En.

When there are 3 bonds this junction is drawn as follows:
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0

F2

E2

F1

E1

F3

E3

Now F1+F2 = F3 and E1 = E2 = E3 so we say that this junction adds flow and coduplicates

effort. Similarly, the reflected 0-junction coadds flow and duplicates effort. This is drawn

as:

0

F3

E3

F2

E2

F1

E1

and imposes equations F1 = F2 + F3 and E1 = E2 = E3.

These four junctions can be stuck together in various ways to make larger bond graphs.

There are also rules for simplifying bond graphs that are derived from the equations above.

However, some bond graphs never appear in the engineering literature though one could

imagine drawing them. This is typically because the result is trivial or does not have a

useful physical interpretation in electrical engineering. One simple example is the following:

11

Viewing this as the composite of some 2-output morphism and some 2-input morphism

presents a mild roadblock. Since in a category we cannot arbitrarily stop compatible mor-

phisms from composing, such a bond graph must be given meaning. Also, there are no

junctions with fewer than 3 total inputs and outputs, but with some experience using bond

graphs one can imagine constructing such junctions. To overcome these obstacles we con-

struct a prop BondGraph such that:
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(1) BondGraph has generating morphisms corresponding to 1-junctions and 0-junctions

for n = 3 and n = 1.

(2) The morphisms in BondGraph obey relations that can be derived from the equations

governing the junctions.

(3) There is a functor assigning to any morphism in BondGraph a Lagrangian subspace

of efforts and flows consistent with equations governing junctions.

(4) There is also a functor assigning to any morphism in BondGraph a Lagrangian sub-

space of potentials and currents consistent with the laws governing potential and

current along wires.

More explicitly, this means that the prop BondGraph shall have two generators of type

(2, 1) and two of type (1, 2), as well as two of type (0, 1) and two of type (1, 0). Thus one

may wonder about morphisms corresponding to junctions that have either two bonds or no

bonds, i.e when n = 0 or n = 2. Since BondGraph is a prop we can build such morphisms

as long as we have the proper relations. For example, the extra law dictates that the only

junction between no ports is the junction that does nothing. The n = 2 case corresponds

to either the identity morphism due to the special law, or different kinds of caps and cups.

The functors in 3) and 4) suggest two ways of defining the category BondGraph. Neither

approach succeeds, but putting them together we can succeed in defining this category.

In our first attempt at defining BondGraph we look more closely at the object 2 in

FinCorel, where now we think of FinCorel as the category whose morphisms are circuits

made only of perfectly conductive wire. We can do this because the functor K : FinCorel→

LagRelk in Proposition 4.1.7 completely determines the behavior of a circuit made only of
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perfectly conductive wires. The reason we look at the object 2 is that in this view the object

1 is seen as a single terminal. Since bonds go between pairs of terminals where current on

one terminal is equal and opposite to current on the other, it makes sense to think of 2 as

the end of a bond, i.e. a port.

We equip the object 2 in FinCorel with two different Frobenius monoid structures. The

first Frobenius monoid has a multiplication and comultiplication that behave similarly to

1-junctions. Due to this we think of the unit and counit of this Frobenius monoid as

being unary versions of 1-junctions. The other Frobenius monoid has a multiplication and

comultiplication that behave similarly to 0-junctions, so we also think of the unit and counit

here as unary versions of 0-junctions. The overall idea is that by thinking of the object 2 as

a pair of terminals, the two Frobenius structures on 2 correspond with 1- and 0-junctions

together with unary versions.

However, we quickly see that this method is not the way to define BondGraph, although

we still get an idea as to what properties BondGraph should have. There are some equations

that hold between morphisms coming from these Frobenius monoids which do not hold

between the corresponding bond graphs. This approach culminates with the definition

of FinCorel◦, which is the subcategory of FinCorel generated by the two aforementioned

Frobenius structures.

In our second attempt to define BondGraph we look at the category LagRelk where

there some morphisms coming from Frobenius monoids that also seem to correspond to 1-

and 0-junctions. This is expected since a bond graph is automatically associated with a

Lagrangian subspace. However once again some issues arise; there are equations that hold

between some of the Lagrangian relations which do not hold between corresponding bond
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graphs. Thus instead of defining BondGraph using the Frobenius structures in LagRelk we

define another prop LagRel◦k using them.

Finally, we notice that FinCorel◦ and LagRel◦k actually have corresponding generators

together with many corresponding equations. We define BondGraph to be the prop gener-

ated by morphisms corresponding to the generators of FinCorel◦ and LagRel◦k, obeying the

equations found in both FinCorel◦ and LagRel◦k. This definition lets us define two functors

out of BondGraph:

LagRel◦k

BondGraph

F
77

G ''

FinCorel◦

The functor G equips a bond graph with the behavior of a circuit by composing with

K : FinCorel → LagRelk, while F equips a bond graph with the behavior of a bond graph

in terms of effort and flow. Lastly, we show in Theorem 5.4.4 that there is a natural

transformation between these two functors which comes from the relationship between effort,

flow, potential, and current given by the equations V = φ2 − φ1 and I = I1 = −I2. All of

this is summarized in the following diagram:

LagRel◦k
i′
// LagRelk

BondGraph

F
77

G ''

FinCorel◦
i
//

��

α

FinCorel.

K

OO
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5.1 1- and 0-junctions

The first Frobenius monoid structure on the object 2 arises naturally as a monad con-

structed from an adjunction. We shall see that the multiplication and comultiplication

morphisms associated to this Frobenius monoid resemble 1-junctions because of the rela-

tions obeyed. Later, we apply the functor K : FinCorel → LagRelk to these morphisms,

and see that they are mapped to the behaviors corresponding to 1-junctions. This is a more

definitive reason for the association.

First recall the generators of FinCorel.

m : 1 + 1→ 1 i : 0→ 1 d : 1→ 1 + 1 e : 1→ 0

Also, recall that the object 1 in FinCorel is self-dual, where the two morphisms d ◦ i : 0→ 2

and e ◦m : 2→ 0 are the unit and counit. We draw these two composites as follows:

:= = d ◦ i : 0→ 2

:= = e ◦m : 0→ 2

Finally, recall that these morphisms obey the zig-zag identities:

= =

As a result of obeying the zig-zag identities, the two morphisms form an adjunction in

FinCorel, viewed as a one-object 2-category. Now recall that from any adjunction one can

construct a monad [46]. For us this makes 2 in FinCorel into a monoid with the morphisms

id1 +(e◦m)+id1 : 4→ 2 and d◦ i : 0→ 2, acting as multiplication and the unit respectively.

These are drawn as follows:
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m2 := = id1 + (e ◦m) + id1 : 4→ 2

i2 := = d ◦ i : 0→ 2

Although the way in which (2,m2, i2) forms a monoid is well known, we give the di-

agrammatic proof using our string diagrams in FinCorel for completeness. Associativity

follows from only the monoidal structure of FinCorel, while the left and right unit laws

follow from the zig-zag identities governing adjunctions:

= =

= =

Since FinCorel is dagger compact, 2 can also be made into a comonoid. First, we turn

m2 and i2 around to get two more corelations which we call d2 and e2. These are drawn in

the following way:

d2 = = id1 + (d ◦ i) + id1 : 2→ 4

e2 = = e ◦m : 0→ 2

and they give us a comonoid (2, d2, e2):

= =
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= =

On the other hand, 1-junctions impose equations which allow one to simplify and redraw

bond graphs. These simplifications correspond to how the multiplication and comultiplica-

tion morphisms here interact. These laws are just a small part of the larger story: how the

monoid (2,m2, i2) interacts with the comonoid (2, d2, e2).

Theorem 5.1.1. The object (2,m2, i2, d2, e2) in FinCorel is an extraspecial symmetric

Frobenius monoid.

Proof. We already have the monoid and comonoid structure so we begin with the Frobenius

laws. These follow due only to the monoidal structure of FinCorel:

= =

The other Frobenius law is proven in a similar manner. For the extraspecial structure, it

is necessary to first show the extra property, e2 ◦ i2 = id0. This comes from first using the

special property m ◦ d = id1 and then the extra property i ◦ e = id0:

= = =

Using this fact we can show the special property, d2 ◦m2 = id2:

=

Since the multiplication for 1 is commutative, it is also symmetric. We use this symmetric

property to show the multiplication for 2 is also symmetric. We begin by using the sym-
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metric property to remove one braiding. Then due to the naturality of the braiding we are

able to remove another braiding. The last equation merely makes the picture look nicer.

= = =

We can further simplify this by using the naturality of the braiding again, which allows us

to move the cup past the braiding. Since we are in a symmetric monoidal category we can

then cancel the two braidings:

=

Next we equip 2 with another Frobenius monoid structure through another very common

construction. Recall that from a pair of monoids (X,mX , iX) and (Y,mY , iY ) in a braided

monoidal category, there is a standard way to make X ⊗ Y into a monoid with

(mX ⊗mY ) ◦ (idX ⊗BX,Y ⊗ idY ) : (X ⊗ Y )⊗ (X ⊗ Y )→ (X ⊗ Y )

as multiplication and

iX ⊗ iY : I → (X ⊗ Y )

as the unit. Consider the object 1 + 1 = 2 ∈ FinCorel with the following morphisms:

µ2 := = (m+m) ◦ (id1 +B1,1 + id1) : 4→ 2

ι2 := = i+ i : 0→ 2

Then (2, µ2, ι2) is a monoid in FinCorel. Since both monoids in this construction are

(1,m, i), our new monoid inherits the same properties that (1,m, i) has. Using the dagger

structure in FinCorel, we also obtain corelations δ2 and ε2, which when drawn as string

diagrams are reflections of µ2 and ι2 respectively:
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δ2 := = (id1 +B1,1 + id1) ◦ (d+ d) : 2→ 4

ε2 := = e+ e : 2→ 0

Theorem 5.1.2. The object (2, µ2, ι2, δ2, ε2) in FinCorel is an extraspecial commutative

Frobenius monoid.

Proof. Each law is inherited from the extraspecial commutative Frobenius monoid 1 due to

the naturality of the braiding. We start with the monoid laws:

=

= =

Similarly we get a comonoid structure:

=

= =

We next have the Frobenius laws:

= =

Then we have the extra and special laws:

=

=
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Finally, we have commutativity:

= =

The equations imposed by 0-junctions let us simplify and redraw bond graphs. This

Frobenius monoid perfectly captures the ways in which we can do so. Next we show that

the way in which these two Frobenius monoids interact corresponds nicely to the way in

which 1- and 0-junctions interect. However, we shall see some issues arise, which force us

to consider a second approach.

5.2 Bond graphs as corelations

We have found two Frobenius monoid structures on the object 2 ∈ FinCorel, one

related to 1-junctions and one related to 0-junctions. Surpisingly, the two structures

(2,m2, i2, d2, e2) and (2, µ2, ι2, δ2, ε2) combine to form a pair of “weak bimonoids.” These

were introduced by Pastro and Street in their work on quantum categories [36].

Definition 5.2.1. A weak bimonoid in a braided monoidal bicategory C is a pair con-

sisting of a monoid (X,µ, ι) in C together with a comonoid (X, δ, ε) in C obeying:

=

= =

= =
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This differs from a bimonoid, where the second and third sets of equations are replaced

by:

=

=

=

It is a fun exercise to show that every bimonoid is a weak bimonoid using string diagrams.

Frobenius monoids and bimonoids are the more commonly studied structures that combine

monoids and comonoids, while weak bimonoids are much newer. Pastro and Street also

proved the following fact, which we use to show how our monoids interact.

Theorem 5.2.2 (Pastro, Street, [36]). If X is a special commutative Frobenius monoid in

a braided monoidal category then X ⊗X, equipped with the following morphisms, is a weak

bimonoid:

Since the Frobenius monoid (1,m, i, d, e) is also commutative, we can replace the multi-

plication morphism with the following:

and the theorem still holds. This gives us a weak bimonoid, but since (1,m, i, d, e) is an

extraspecial commutative Frobenius monoid our weak bimonoid will obey some additional

equations. In fact, because FinCorel is dagger compact there is a second weak bimonoid.

Theorem 5.2.3. (2, µ2, ι2, d2, e2) and (2,m2, i2, δ2, ε2) are weak bimonoids. Additionally:
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• the extra law for both weak bimonoids holds: ε2 ◦ i2 = id0 = e2 ◦ ι2

• m2 ◦ δ2 = µ2 ◦ d2

• (m2 ◦ δ2)2 = m2 ◦ δ2.

Proof. We first prove that (2, µ2, ι2, d2, e2) is a weak bimonoid. Note that proving (2,m2, i2, δ2, ε2)

is a weak bimonoid amounts to the same thing. Our diagrammatic proofs are similar to

those used by Pastro and Street [36].

The first weak bimonoid law to show is:

(µ2 + µ2) ◦ (id2 +B2,2 + id2) ◦ (d2 + d2) = d2 ◦ µ2.

We begin by using the naturality of the braiding; then we use the cocommutativity of the

comonoid (1, d, e). Following this we use the Frobenius and special laws for (1,m, i, d, e):
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=

= =

= =

=

Next we have the other weak bimonoid laws:

= =

The easiest way to see that these are true is to note that these are both corelations from

6 inputs to 0 outputs where all of the inputs are connected to each other. Thus they are

both the partition with all inputs in the same part, and no outputs, so they are the same

corelation.
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The last weak bimonoid law is the following:

= =

This comes from passing the two inner unit morphisms through the braiding and then using

the unit laws to delete them. Then we merely have two caps in between two units as we

want. This shows that (2, µ2, ι2, d2, e2) is a weak bimonoid.

We prove only one of the extra laws, since the other is similar:

= = =

We also have m2 ◦ δ2 = d ◦m = µ2 ◦ d2:

= =

One way to see this is that these all describe the corelation from 2 to 2 where all of the

inputs and outputs are in the same part. We may also understand this by noticing that

commutativity allows the inner “loop” to be drawn as a cup or cap. Finally, (m2 ◦ δ2)2 =

m2 ◦ δ2, comes from d ◦m being idempotent, since d ◦m ◦ d ◦m = d ◦ id2 ◦m = d ◦m. It

follows that (µ2 ◦ d2)2 = µ2 ◦ d2.

The weak bimonoid laws encapsulate properties that are known to hold for interacting

1- and 0-junctions, including their unary versions. Unfortunately the law:

m2 ◦ δ2 = µ2 ◦ d2

is not a property that holds for bond graphs. It would indicate that a 0-junction followed

by a 1-junction is equivalent to the composite in the other order, but this is not true for

bond graphs.
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However, it is still interesting to consider the following category.

Definition 5.2.4. Let FinCorel◦ be the symmetric monoidal subcategory of FinCorel whose

objects are 0, 2, 4, ... and whose morphisms are generated by composing and tensoring the

morphisms:

i.e. the morphisms {m2, i2, δ2, ε2, µ2, ι2, d2, e2} in FinCorel.

Note that FinCorel◦ is equivalent to a prop since the objects are generated by 2.

Conjecture 5.2.5. The prop FinCorel◦ can be presented with 8 generators corresponding

to {m2, i2, δ2, ε2, µ2, ι2, d2, e2} and the equations shown in Theorem 5.1.1, Theorem 5.1.2,

and Theorem 5.2.3.

By definition, given a symmetric monoidal functor F : FinCorel◦ → C, the object F (2)

together with the associated morphisms obey the required equations. However, the converse

is once again much more difficult to show.

In Proposition 5.4.2 we shall see how the functor K : FinCorel → LagRelk acts on

FinCorel◦. For now we look back at some Frobenius monoids in LagRelk that arise from

the equations imposed by 1- and 0-junctions. These Frobenius monoids also come close to

modelling bond graphs, but once again we get too many relations.
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5.3 Bond graphs as Lagrangian relations

As we saw in Chapter 4, any circuit can be associated with a Lagrangian subspace of

possible potential and current pairs, which is then called the “behavior” of the circuit.

Similarly, a bond graph can be associated with a space of possible effort and flow pairs,

which is called the behavior of the bond graph. These too are Lagrangian subspaces, and

they come from the equations imposed by 1- and 0-junctions. Best of all, the Lagrangian

subspaces associated to 1- and 0-junctions can all be written in terms of the additive and

duplicative structures on the vector space k defined in Chapter 3.

The 0-junction with two inputs and one output determines the following Lagrangian

subspace:

∆† ⊕+ = {(E1, . . . , F3) : E1 = E2 = E3, F1 + F2 = F3, } : k4 9 k2.

Here the efforts are coduplicated while the flows are added together. Recall that in Section

3.4 we used string diagrams to depict the additive and duplicative Frobenius structures in

FinRelk. Using these we draw the Lagrangian subspace as follows:

By switching the inputs and outputs we also have a Lagrangian subspace associated to a

0-junction with one input and two outputs:

∆⊕+† = {(E1, . . . , F3) : E1 = E2 = E3, F1 = F2 + F3} : k2 9 k4.

Again we may draw such a Lagrangian subspace with our string diagrams:
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In a similar way, a 1-junction with two inputs and one outputs has corresponding La-

grangian subspace:

+⊕∆† = {(E1, . . . , F3) : E1 + E2 = E3, F1 = F2 = F3} : k4 9 k2

so that now efforts are added and flows are coduplicated. This is drawn as:

Similarly, the 1-junction with one input and two outputs has corresponding Lagrangian

subspace:

+† ⊕∆ = {(E1, . . . , F3) : E1 = E2 + E3, F1 = F2 = F3} : k2 9 k4

which may be drawn as:

Note that (k⊕ k,∆†⊕+, !†⊕ 0,∆⊕+†, !⊕ 0†) was the extraspecial commutative Frobe-

nius monoid we used to define the black-boxing functor � : CircL → LagRelk in Theorem

4.2.1. Since the multiplication and comultiplication of this Frobenius monoid are the two

Lagrangian subspaces associated to the two types of 0-junctions, a natural attempt at defin-

ing unary 0-junctions is using the unit and counit of this Frobenius monoid.
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We draw the unit:

!† ⊕ 0 = {(E,F ) : F = 0} : {0}9 k2

as:

We draw the counit:

!⊕ 0† = {(E,F ) : F = 0} : k2 9 {0}

as:

By tensoring the additive structure on the left with the duplicative structure on the right

we construct another extraspecial commutative Frobenius monoid (k⊕k,+⊕∆†, 0⊕!†,+†⊕

∆, 0†⊕!). Here the multiplication and comultiplication are the Lagrangian subspaces asso-

ciated to the two types of 1-junctions. Thus it is natural to try defining unary 1-junctions

using the unit and counit for this Frobenius monoid.

The unit:

0 ⊕ !† = {(E,F ) : E = 0} : {0}9 k2

is drawn as:

The counit:

0† ⊕ ! = {(E,F ) : E = 0} : k2 9 {0}
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is drawn as:

Since the multiplications and comultiplications for the two Frobenius monoids come

from the equations that define 0- and 1-junctions it is no surprise that they correspond to

these junctions. However, when the morphisms from the two Frobenius monoids interact

something unexepcted occurs. We get equations that are too strong.

Theorem 5.3.1. We have two extraspecial commutative Frobenius monoids

• (k ⊕ k,+⊕∆†, 0⊕!†,+† ⊕∆, 0†⊕!)

• (k ⊕ k,∆† ⊕+, !† ⊕ 0,∆⊕+†, !⊕ 0†)

which come together as two bimonoids

• (k ⊕ k,∆† ⊕+, !† ⊕ 0,+† ⊕∆, 0†⊕!)
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• (k ⊕ k,+⊕∆†, 0⊕!†,∆⊕+†, !⊕ 0†).

Additionally:

(∆† ⊕+) ◦ (+† ⊕∆) = ((+⊕∆†) ◦ (∆⊕+†))−1

Proof. These facts follow from relations shown by Bonchi, Sobociński, and Zanasi [9].

We define another category using the above ideas.

Definition 5.3.2. Let LagRel◦k be the subcategory of LagRelk generated by the 8 mor-

phisms:

(+⊕∆†, 0⊕!†,+† ⊕∆, 0†⊕!,∆† ⊕+, !† ⊕ 0,∆⊕+†, !⊕ 0†)

which are drawn as:

Note that LagRel◦k is equivalent to a prop. Henceforth we refer to this prop as LagRel◦k.

Conjecture 5.3.3. We conjecture that LagRel◦k is presented by generators and equations

corresponding to Theorem 5.3.1.
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To summarize the two approaches we say that FinCorel◦ correctly captures the inter-

action between 1- and 0-junctions, while LagRel◦k correctly captures the behavior of each

junction separately.

5.4 The prop of bond graphs

Using the framework of props we can describe a category having only the equations

that appear in both FinCorel◦ and LagRel◦k. Since these two props have a correspondence

between generators as well as many overlapping equations, this is easy enough to do.

Definition 5.4.1. Let BondGraph be the prop generated by the 8 morphisms:

1

M : 2→ 1

1

I : 0→ 1

1

D : 1→ 2

1

E : 1→ 0

0

M ′ : 2→ 1

0

I ′ : 0→ 1

0

D′ : 1→ 2

0

E′ : 1→ 0

such that:

• (1,M, I,D,E) is an extraspecial symmetric Frobenius monoid.

1

1

= = 1

1

1

1
=

1

1
1 1 = 1 1

1

1

= = 1

1
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1

1
=

1

1

1

1
11 ==

1

1

11 =
1 1 =

• (1,M ′, I ′, D′, E′) is an extraspecial symmetric Frobenius monoid.

0

0

= = 0

0

0

0
=

0

0
0 0 = 0 0

0

0

= = 0

0

0

0
=

0

0

0

0
00 ==

0

0

00 =
0 0 =

• (1,M, I,D′, E′) is a weak bimonoid.
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10

10

= 01

1 0 = 0

1

1

0

0

= 0

1

1

0

0

01 = 1

0

0

1

1

= 1

0

0

1

1

• (1,M ′, I ′, D,E) is a weak bimonoid.

01

01

= 10

0 1 = 1

0

0

1

1

= 1

0

0

1

1

10 = 0

1

1

0

0

= 0

1

1

0

0

• E ◦ I ′ = id0 = E′ ◦ I
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01 = = 10

• (M ′ ◦D ◦M ◦D′)2 = M ′ ◦D ◦M ◦D′

I.e., this morphism:

1 1 00

is idempotent.

• (M ◦D′ ◦M ′ ◦D)2 = M ◦D′ ◦M ′ ◦D

I.e., this morphism:

0 0 11

is idempotent.

Further, we equip BondGraph with a dagger structure where if f : m→ n is a morphism

then f † : n→ m is the reflected version of f . This is the unique way to make this prop into

a symmetric monoidal dagger category such that

M † = D, I† = E, M ′† = D′, I ′† = E′.

Composing the inclusion i : FinCorel◦ → FinCorel with K : FinCorel→ LagRelk we obtain

a symmetric monoidal dagger functor, whose action on generators we can describe explicitly

as follows:
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Proposition 5.4.2. Ki : FinCorel◦ → LagRelk is a symmetric monoidal dagger functor

that is determined by the following:

Ki(m2) = {(φ1, . . . , I6) : φ1 = φ5, I1 = I5, φ4 = φ6, I4 = I6, φ2 = φ3, I2 + I3 = 0}

: k8 9 k4

Ki(i2) = {(φ1, I1, φ2, I2) : I1 + I2 = 0, φ1 = φ2}

: {0}9 k4

Ki(µ2) = {(φ1, . . . , I6) : φ1 = φ3 = φ5, φ2 = φ4 = φ6, I1 + I3 = I5, I2 + I4 = I6}

: k8 9 k4

Ki(ι2) = {(φ1, I1, φ2, I2) : I1 = 0, I2 = 0}

: {0}9 k4

In terms of string diagrams we draw:

� Ki
//

� Ki
//

� Ki
//

� Ki
//

Proof. Ki is a symmetric monoidal dagger functor since K and i are. It is tedious, but not

difficult, to check that Ki does act on the morphisms m2, i2, µ2, ι2 in the above way. We

just write them in terms of m, d, i, e and then compose the results in LagRelk. Since Ki is
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a dagger functor the following is a consequence:

Ki(d2) = {(φ1, . . . , I6) : φ1 = φ3, I1 = I3, φ2 = φ6, I2 = I6, φ4 = φ4, I4 + I5 = 0}

: k4 9 k8

Ki(e2) = {(φ1, I1, φ2, I2) : I1 + I2 = 0, φ1 = φ2}

: k4 9 {0}

Ki(δ2) = {(φ1, . . . , I6) : φ1 = φ3 = φ5, φ2 = φ4 = φ5, I1 = I3 + I5, I2 = I4 + I6}

: k4 9 k8

Ki(ε2) = {(φ1, I1, φ2, I2) : I1 = 0, I2 = 0}

: k4 9 {0}.

In terms of string diagrams we draw:

� Ki
//

� Ki
//

� Ki
//

� Ki
//

The only thing to show is that the symmetric monoidal functor Ki is uniquely determined

by its action on these 8 morphisms. This follows from the fact that these 8 morphisms

generate FinCorel◦ as a prop.
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So far we have the following diagram of symmetric monoidal dagger functors between

props:

LagRel◦k
i′
// LagRelk

FinCorel◦
i
// FinCorel

K

OO

By using BondGraph we can extend this to a diagram that commutes up to a natural

transformation.

Proposition 5.4.3. There exist unique morphisms of dagger props G : BondGraph →

FinCorel◦ and F : BondGraph→ LagRel◦k defined by:

• G(M) = m2

G : 1
� //

• G(I) = i2

G : 1
� //

• G(M ′) = µ2

G : 0
� //

• G(I ′) = ι2

G : 0
� //

• F (M) = +⊕∆†

F : 1
� //

• F (I) = 0 ⊕ !†
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F : 1
� //

• F (M ′) = ∆† ⊕+

F : 0
� //

• F (I ′) =!† ⊕ 0

F : 0
� //

Proof. We first prove uniqueness of G. Suppose that G is a morphism of dagger props such

that G(M) = m2, G(I) = i2, G(M ′) = µ2, and G(I ′) = ι2 as pictured above. Note that

since G is a dagger functor, G must do the following to the other 4 generators:

• G(D) = d2

G : 1
� //

• G(E) = e2

G : 1
� //

• G(D′) = δ2

G : 0
� //

• G(E′) = ε2

G : 0
� //

We know what G does to all 8 generators, so G is the unique morphism of props acting

in this way on those generators. Similarly F is the unique morphism of props such that

F (M) = +⊕∆†, F (I) = 0⊕!†, F (M ′) = ∆†⊕+, and F (I ′) =!†⊕0. On the other generators,

F acts as follows:
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• F (D) = +† ⊕∆

F : 1
� //

• F (E) =!⊕ 0†

F : 1
� //

• F (D′) = ∆⊕+†

F : 0
� //

• F (E′) =!⊕ 0†

F : 0
� //

Next we show that these morphisms of dagger props exist. Let G be defined on the

generators of BondGraph as described above. We must show that the necessary relations

hold in FinCorel◦. Most of the required relations have been shown or follow immediately

from what has been shown. The only ones to check are the idempotency laws:

• (G(M ′) ◦G(D) ◦G(M) ◦G(D′))2 = G(M ′) ◦G(D) ◦G(M) ◦G(D′)

• (G(M) ◦G(D′) ◦G(M ′) ◦G(D))2 = G(M) ◦G(D′) ◦G(M ′) ◦G(D)

We have that :

(G(M ′) ◦G(D) ◦G(M) ◦G(D′))2 = (µ2 ◦ d2 ◦m2 ◦ δ2) ◦ (µ2 ◦ d2 ◦m2 ◦ δ2)

= (µ2 ◦ d2 ◦ µ2 ◦ d2) ◦ (m2 ◦ δ2 ◦m2 ◦ δ2)

= (µ2 ◦ d2 ◦m2 ◦ δ2)

= G(M ′) ◦G(D) ◦G(M) ◦G(D′)
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One can similarly show (G(M) ◦G(D′) ◦G(M ′) ◦G(D))2 = G(M) ◦G(D′) ◦G(M ′) ◦G(D).

Thus such a morphism of props exists.

Next we show that F exists. Once again we define it on the generators as above and

check the necessary relations. The only ones left to check are again the idempotency laws:

• (F (M) ◦ F (D′) ◦ F (M ′) ◦ F (D))2 = F (M) ◦ F (D′) ◦ F (M ′) ◦ F (D)

• (F (M ′) ◦ F (D) ◦ F (M) ◦ F (D′))2 = F (M ′) ◦ F (D) ◦ F (M) ◦ F (D′)

We have that:

F (M) ◦ F (D′) ◦ F (M ′) ◦ F (D) = (+⊕∆†) ◦ (∆⊕+†) ◦ (∆† ⊕+) ◦ (+† ⊕∆)

= id2

Since id2 ◦ id2 = id2, we get:

(F (M) ◦ F (D′) ◦ F (M ′) ◦ F (D))2 = F (M) ◦ F (D′) ◦ F (M ′) ◦ F (D).

Similarly one can show that:

(F (M ′) ◦ F (D) ◦ F (M) ◦ F (D′))2 = F (M ′) ◦ F (D) ◦ F (M) ◦ F (D′).

Thus F is a morphism of props. Finally, one can see F is a morphism of dagger props by

noting that F (f †) = F (f)† whenver f is one of our chosen generators of BondGraph, and

similarly for G. The dagger structures associated to FinCorel◦, LagRel◦k, and BondGraph

are all reflections.
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We have now assembled the following diagram where the arrows are symmetric monoidal

dagger functors:

LagRel◦k
i′
// LagRelk

BondGraph

F
77

G ''

FinCorel◦
i
// FinCorel

K

OO

This does not commute. However, we shall prove that it commutes up to a natural trans-

formation. The idea is that FinCorel◦ is the category that allows us to understand bond

graphs in terms of potential and current, while LagRel◦k is the category that allows us to

understand bond graphs in terms of effort and flow. Then the Lagrangian relation relating

potential and current to effort and flow:

{(V, I, φ1, I1, φ2, I2)|V = φ2 − φ1, I = I1 = −I2}

defines a natural transformation between the two functors shown from BondGraph to

LagRelk. We can also draw this Lagrangian relation:

−1

−1

Theorem 5.4.4. There is a natural transformation α : i′F ⇒ KiG such that

α1 = {(V, I, φ1, I1, φ2, I2)|V = φ2 − φ1, I = I1 = −I2}

and αn =
⊕n

1 α1 for any n ∈ BondGraph.
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Proof. For 1 ∈ BondGraph let α1 : k2 9 k4 be defined by:

α1 = {(V, I, φ1, I1, φ2, I2)|V = φ2 − φ1, I = I1 = −I2}.

Then we define αn =
⊕n

1 α1. Note since LagRelk is a dagger category we have that

α†1 = {(φ1, I1, φ2, I2, V, I, )|V = φ2 − φ1, I = I1 = −I2}

and that α†n =
⊕n

1 α
†
1. It can be shown that α†n ◦ αn = idk2n so α†n is a left inverse of αn.

We want to show the following square commutes for any f : m→ n in BondGraph:

k2m

αm

��

i′F (f)
// k2n

αn

��

k4n

KiG(f)
// k4m

Thus we need to show that

i′F (f) ◦ αm = αn ◦KiG(f)

which is equivalent to showing

α†n ◦ i′F (f) ◦ αm = KiG(f).

We proceed by showing that both sides determine strict monoidal functors that are equal

on identities, generators, and the braiding. Since all of the morphisms in BondGraph are

built up by starting with generators and repeatedly composing, tensoring, and braiding,

this proves that the two functors are equal.

We first show that the left side, α†n ◦KiG(f) ◦ αm, defines a functor

α† ◦KiG ◦ α : BondGraph→ LagRelk
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that sends each object m in BondGraph to the object 2m in LagRelk and has

(α† ◦KiG ◦ α)f = α†n ◦KiG(f) ◦ αm

for a morphism f : m→ n. It is clear that identities are preserved so to prove it is a functor

we need only show that

α†n ◦KiG(fg) ◦ αm = α†k ◦KiG(f) ◦ αn ◦ α†n ◦KiG(g) ◦ αm

for any f : n→ k and g : m→ n. We prove this inductively. First, we need that

KiG(f)αm = αnα
†
nKiG(f)αm

for any generator f : m → n and for the braiding B1,1 : 2 → 2. These calculations are left

until the end of the proof. Next we show that if

KiG(f)αa = αbα
†
bKiG(f)αa

KiG(g)αc = αdα
†
dKiG(g)αc

for two morphisms f and g, then

KiG(f ⊕ g)αm = αnα
†
nKiG(f ⊕ g)αm.
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Let f : a→ b and g : c→ d, where a+ c = m and b+ d = n. Then we get

KiG(f ⊕ g)αm = KiG(f ⊕ g) ◦ (αa ⊕ αc)

= (KiG(f)⊕ KiG(g)) ◦ (αa ⊕ αc)

= KiG(f)αa ⊕KiG(g)αc

= (αbα
†
bKiG(f)αa)⊕ (αdα

†
dKiG(g)αc)

= (αbαd)(α
†
bα
†
d)(KiG(f)⊕KiG(g))αaαc

= αnα
†
n(KiG(f)⊕KiG(g))αm

= αnα
†
nKiG(f ⊕ g)αm.

Finally, we show that if

KiG(f)αk = αnα
†
nKiG(f)αk

KiG(g)αm = αkα
†
kKiG(g)αm

for two morphisms f and g, then

KiG(fg)αm = αnα
†
nKiG(fg)αm.

Let f : k → n and g : m→ k.

KiG(fg)αm = KiG(f)KiG(g)αm

= KiG(f)αkα
†
kKiG(g)αm

= αnα
†
nKiG(f)αkα

†
kKiG(g)αm

= αnα
†
nKiG(f)KiG(g)αm

= αnα
†
nKiG(fg)αm.
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Since any morphism in BondGraph can be built from generators and braiding morphisms

by repeatedly tensoring and composing, this shows that

KiG(f)αm = αnα
†
nKiG(f)αm

for any morphism f : m→ n. Then finally we can say that

α†n ◦KiG(fg) ◦ αm = α†n ◦KiG(f)KiG(g) ◦ αm

= α†n ◦KiG(f)αkα
†
kKiG(g) ◦ αm

so that we have a functor.

Next we show that both functors, α†◦KiG◦α : BondGraph→ LagRelk and i′F : BondGraph→

LagRelk, are strict monoidal. It is clear that i′F is a strict monoidal functor since it is the

composite of two strict monoidal functors. Thus, it suffices to show that α† ◦ KiG ◦ α is

strict monoidal.

For an object m in BondGraph we have (α† ◦KiG ◦ α)(m) = 2m so that

(α† ◦KiG ◦ α)(m) + (α† ◦KiG ◦ α)(n) = 2m+ 2n = (α† ◦KiG ◦ α)(m+ n).

The unit object in LagRelk is 0 and is equal to (α† ◦ KiG ◦ α)(0). Thus α† ◦ KiG ◦ α is

strict monoidal.

Since both functors are strict monoidal the two functors are equal if they are equal on

the generators, the braiding, and the identities. We give the proof for the morphism M .

α†1 ◦KiG(M) = {(φ5, I5, φ6, I6, V, I)|V = φ6 − φ5, I = I5 = −I6}

◦ {(φ1, . . . , I6) : φ1 = φ5

I1 = I5

φ4 = φ6

I4 = I6

φ2 = φ3

I2 + I3 = 0}.
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From relation composition this results in:

α†1 ◦KiG(M) = {(φ1, . . . , I4, V, I)|V = φ4 − φ1, I = I1 = −I4

I1 = I5,φ2 = φ3,I2 + I3 = 0}.

Then we compose with

α2 = {(V,′ I ′, V ′′, I ′′, φ1, . . . , I4)|V ′ = φ2 − φ1, I
′ = I1 = −I2

V ′′ = φ4 − φ3,I
′′ = I3 = −I4}

which gives us

α†1 ◦KiG(M) ◦ α2 = {(V ′, I ′, V ′′, I ′′, V, I) : V ′ + V ′′ = V, I = I ′ = I ′′}.

This is the same as the Lagragian subspace

i′F (M) = {(E1, F1, E2, F2, E3, F3) : E1 + E2 = E3, F1 = F2 = F3}.

The proof of the other generators is similar. Thus the two functors are equal on all

morphisms in BondGraph, which shows that

α†n ◦ i′F (f) ◦ αm = KiG(f)

for any morphism f ∈ BondGraph. Thus α is a natural transformation, as desired.

Finally, we check that KiG(f)αm = αnα
†
nKiG(f)αm when f is a generator or the

braiding B1,1. Consider again the generator M : 2→ 1. We need that

KiG(M)α2 = α1α
†
1KiG(M)α2.

We have KiG(M)α2 = {(V, I, V ′, I ′, φ5, I5, φ6, I6)} such that

V + V ′ = φ6 − φ5 I = I ′ = I5 = −I6.

By composing with α†1 we get {(V, I, V ′, I ′, V ′′, I ′′)} such that
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V + V ′ = φ6 − φ5 I = I ′ = I5 = −I6

V ′′ = φ6 − φ5 I ′′ = I5 = −I6.

These equations simplify to become

V + V ′ = V ′′ I = I ′ = I ′′.

Now if we compose with α1 we get {(V, I, V ′, I ′, φ7, I7, φ8, I8)} such that

V + V ′ = V ′′ I = I ′ = I ′′

V ′′ = φ8 − φ7 I ′′ = I7 = −I8

which can be reduced to

V + V ′ = φ8 − φ7 I = I7 = −I8.

This is KiG(M)α2 with a change of names. We can see the general pattern with just

this generator. Composing with αnα
†
n simply renames the potentials and currents without

changing any of the relations. For potentials, the relations defining the subspaces deal only

with the differences in potentials. Thus by writing the difference in potential as voltage,

we get relations that define the subspace in terms of voltage. However, this does nothing

because voltage is the difference in potential. So when we convert back to potential, the

same relations hold. A similar process ensures that the current can be renamed through

the same process without changing the subspace. With similar reasoning we conclude that

the equation holds for the other generators as well as the braiding.

Recall that at the end of Section 4.3 we presented a commututing diagram summariz-

ing the relationship between linear circuits, cospans, corelations, and signal-flow diagrams.
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Combining that diagram with the result from Theorem 5.4.4 we show how bond graphs fit

into the same story:

C̃irc
P
//

� _

��

Circ� _

��

H′
// FinCospan

H
// FinCorel

K

��

FinCorel◦oo

EY

α BondGraph

G
gg

F
ww

C̃irck
P
//

T
��

Circk
�

// LagRelk� _

��

LagRel◦k
oo

SigFlowk
�

// FinRelk.
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Chapter 6

Appendix

6.1 The mathematics of props

6.1.1 Props from symmetric monoidal categories

There is a 2-category SymmMonCat where:

• objects are symmetric monoidal categories,

• morphisms are symmetric monoidal functors, and

• 2-morphisms are monoidal natural transformations.

Here our default notions are the ‘weak’ ones (which Mac Lane [33] calls ‘strong’), where

all laws hold up to coherent natural isomorphism. Props, on the other hand, are strict

symmetric monoidal categories where every object is equal to a natural number, and mor-

phisms between them are strict symmetric monoidal functors sending each object n to itself.

Categorical structures found in nature are often weak. Thus, to study them using props,
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one needs to ‘strictify’ them. Thanks to conversations with Steve Lack we can state the

following results, which accomplish this strictification.

The first question is when a symmetric monoidal category C is equivalent, as an object of

SymmMonCat, to a prop. In other words: when is does there exist a prop T and symmetric

monoidal functors j : T → C, k : C → T together with monoidal natural isomorphisms

jk ∼= 1C and kj ∼= 1T ? This is answered by Proposition 2.2.2:

Proposition 2.2.2 A symmetric monoidal category C is equivalent, as an object of SymmMonCat,

to a prop if and only if there is an object x ∈ C such that every object of C is isomorphic

to the nth tensor power of x for some n ∈ N.

Proof. The ‘only if’ condition is obvious, so suppose that C is any symmetric monoidal

category with x ∈ C such that every object of C is isomorphic to a tensor power of x. We

use a method due to A. J. Power, based on this lemma:

Lemma 6.1.1 (Lemma 3.3, [41]). 1. Any functor f : A→ B can be factored as je where e

is bijective on objects and j is fully faithful.

2. Given a square that commutes up to a natural isomorphism α:

A

v
 α

h
//

u

��

B

v

��

C g
// D

where h is bijective on objects and g is fully faithful, there exists a unique functor w : B → C

and natural transformation β : v ⇒ gw such that wh = u and βh = α. Moreover β is a

natural isomorphism.
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LetN be the strict symmetric monoidal category with one object for each natural number

and only identity morphisms, with the tensor product of objects being given by addition.

There exists a symmetric monoidal functor f : N → C that sends the nth object of N to

x⊗n = x⊗ (x⊗ (x⊗ · · · )). By Part 1 of Lemma 6.1.1 we can factor f as a composite

N
e−→ T

j−→ C

where e is bijective on objects and j is fully faithful. By our condition on C, f is essen-

tially surjective. It follows that j is also essentially surjective, and thus an equivalence of

categories. We claim that T can be given the structure of a strict symmetric monoidal

category making j symmetric monoidal. It will follow that T is a prop and j : T → C can

be promoted to an equivalence in SymmMonCat.

To prove the claim, we use the 2-monad P on Cat whose strict algebras are strict

symmetric monoidal categories. For any category A, P (A) is the ‘free strict symmetric

monoidal category’ on A. Explicitly, an object of P (A) consists of a finite list (a1 . . . , an)

of objects of A. A morphism from (a1, . . . , an) to (b1, . . . bm) exists only if n = m, in which

case it consists of a permutation σ ∈ Sn and a morphism from ai to bσ(i) in A for each i. For

the rest of the 2-monad structure see for example [20, Sec. 4.1]. Any symmetric monoidal

category can be made into a pseudoalgebra of P , and then the pseudomorphisms between

such pseudoalgebras are the symmetric monoidal functors.

Power’s method [41] applies to 2-monads that preserve the class of functors that are

bijective on objects. The 2-monad P has this property.

We can takeN above to be P (1), since they are isomorphic. Any object x ∈ C determines

a functor 1 → C and so a pseudomorphism F : P (1) → C. Replacing F by an equivalent
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pseudomorphism if necessary, we can assume F (n) = x⊗n, so the situation in the first

paragraph holds with this choice of F , and we can factor F as P (1)
e→ T

j→ C as before.

Since F is a pseudomorphism, this square commutes up to a natural isomorphism α:

P (P (1))

w� α

P (e)
//

m1

��

P (T )

P (j)
��

P (1)

e

��

P (C)

a

��

T
j

// C

where a comes from the pseudoalgebra structure and m1 comes the multiplication in the

2-monad. The functor P (e) is bijective on objects because P is, and j : T → C is fully

faithful. Thus, by Part 2 of Lemma 6.1.1, there exists a unique functor w : P (T )→ T and

natural isomorphism β : aP (j) → jw such that wP (e) = em1 and βP (e) = α. Thus, w

makes T into a strict algebra of P and β makes j into a pseudomorphism from T to C.

This proves the claim: T has been given the structure of a symmetric monoidal category

for which j : T → C is a symmmetric monoidal functor.

The second question is when a symmetric monoidal functor f : C → T between props

is isomorphic, in SymmMonCat, to a morphism of props. In other words: when is there a

morphism of props g : C → T and a monoidal natural isomorphism f ∼= g? This is answered

by Proposition 2.2.3:

Proposition 2.2.3 Suppose C and T are props and f : C → T is a symmetric monoidal

functor. Then f is isomorphic to a strict symmetric monoidal functor g : C → T . If

f(1) = 1, then g is a morphism of props.
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Proof. As in the previous proof, let P be the 2-monad on Cat whose strict algebras are

strict monoidal categories. The objects of P (1) correspond to natural numbers, with tensor

product being given addition, so we can write the nth object as n. There is a unique strict

monoidal functor e : P (1) → C with e(n) = n for all n. By a result of Blackwell, Kelly

and Power [11, Cor. 5.6], any free algebra of a 2-monad is ‘flexible’, meaning that pseudo-

morphisms out of this algebra are isomorphic to strict morphisms. Thus, the symmetric

monoidal functor fe : P (1) → T is isomorphic, in SymmMonCat, to a strict symmetric

monoidal functor h : P (1)→ T . Let α : fe⇒ h be the isomorphism.

We can define a strict symmetric monoidal functor g : C → T as follows. On objects,

define g(n) = h(n). For any morphism φ : m→ n, there is a unique morphism g(φ) making

this square commute:

f(m)
f(φ)
//

αm

��

f(n)

αn

��

g(m)
g(φ)
// g(n)

One can check that g is a strict symmetric monoidal functor. The above square gives a

natural isomorphism between f and g, which by abuse of language we could call α : f ⇒ g.

It is easy to check that this is a monoidal natural isomorphism.

It is worth noting that Propositions 2.2.2 and 2.2.3, and the proofs just given, generalize

straightforwardly from props to ‘C-colored’ props, with N replaced everywhere by the free

commutative monoid on the set of colors, C.

6.1.2 The adjunction between props and signatures

Our goal in this section is to prove Proposition 2.3.3:
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Proposition 2.3.3 There is a forgetful functor

U : PROP→ SetN×N

sending any prop to its underlying signature and any morphism of props to its underlying

morphism of signatures. This functor is monadic.

Proof. The plan of the proof is as follows. We show that props are models of a typed

Lawvere theory ΘPROP whose set of types is N× N. We write this as follows:

PROP ' Mod(ΘPROP).

This lets us apply the following theorem, which says that for any typed Lawvere theory Θ

with T as its set of types, the forgetful functor

U : Mod(Θ)→ SetT

is monadic. The desired result follows.

Theorem 6.1.2. If Θ is a typed Lawvere theory with T as its set of types, then the forgetful

functor U : Mod(Θ)→ SetT is monadic.

Proof. The origin of this result may be lost in the mists of time, though the case T = 1

is famous, and was proved in Lawvere’s thesis [31]. This result appears as Theorem A.41

in Adámek, Rosický and Vitale’s book on algebraic theories [1]. Trimble has proved a

generalization where Set is replaced by any category C that is cocomplete and has the

property that finite products distribute over colimits [48]. An even more general result

appears in the work of Nishisawa and Power [34].
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Now let us define the terms here and see how this result applies to our situation. First,

for any set T , let N[T ] be the set of finite linear combinations of elements of T with natural

number coefficients. This becomes a commutative monoid under addition, in fact the free

commutative monoid on T . Define a T -typed Lawvere theory to be a category Θ with

finite products whose set of objects is N[T ], with the product of objects given by addition

in N[T ]. We call the elements of T types.

Suppose Θ is an T -typed Lawvere theory. Let Mod(Θ) be the category whose objects

are functors F : Θ → Set preserving finite products, and whose morphisms are natural

transformations between such functors. We call an object of Mod(Θ) a model of Θ, and

call a morphism in Mod(Θ) a morphism of models.

There is an inclusion T ↪→ N[T ], since N[T ] is the free commutative monoid on T . Thus,

any model M of Θ gives, for each type t ∈ T , a set M(t). Similarly, any morphism of

models α : M →M ′ gives, for each type t ∈ T , a function αt : M(t)→M ′(t). Indeed, there

is a functor

U : Mod(Θ)→ SetT

with U(M)(t) = M(t) for each model M and U(α)(t) = αt for each morphism of models

α : M →M ′. If we call SetT the category of signatures for T -typed Lawvere theories, then

U sends models to their underlying signatures and morphisms of models to morphisms of

their underlying signatures. Theorem 6.1.2 says that U is monadic.

To complete the proof of Proposition 2.3.3 we need to give a typed Lawvere theory

ΘPROP whose models are props. We can do this by giving a “sketch.” Since this idea has

been described very carefully by Barr and Wells [8] and others, we content ourselves with

a quick intuitive explanation of the special case we really need which could be called a
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“products sketch.” This is a way of presenting a T -typed Lawvere theory by specifying a set

T of generating objects (or types), a set of generating morphisms between formal products

of these generating objects, and a set of relations given as commutative diagrams. These

commutative diagrams can involve the generating morphisms and also morphisms built from

these using the machinery available in a category with finite products.

To present the typed Lawvere theory ΘPROP we start by taking T = N × N. For the

purposes of easy comprehension, we call the corresponding generating objects hom(m,n)

for m,n ∈ N, since these will be mapped by any model of ΘPROP to the homsets that a

prop must have. We then include the following generating morphisms:

• For any m we include a morphism ιm : 1→ hom(m,m). These give rise to the identity

morphisms in any model of ΘPROP.

• For any `,m, n, we include a morphism ◦`,m,n : hom(m,n)× hom(`,m)→ hom(`, n).

These give us the ability to compose morphisms in any model of ΘPROP.

• For any m,n,m′, n′, we include a morphism ⊗m,n,m′,n′ : hom(m′, n′) × hom(m,n) →

hom(m+m′, n+ n′). These allow us to take the tensor product of morphisms in any

model of ΘPROP.

• For any m,m′, we include a morphism bm,m′ : 1→ hom(m+m′,m′ +m). These give

the braidings in any model of ΘPROP.

Finally, we impose relations via the following commutative diagrams. In these diagrams,

unlabeled arrows are morphisms provided by the structure of a category with finite products.

We omit the subscripts on morphisms since they can be inferred from context. We begin
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with a set of diagrams, one for each m,n ∈ N, that ensure associativity of composition in

any model of ΘPROP:

hom(m,n)× hom(l,m)× hom(k, l)

hom(l, n)× hom(k, l) hom(m,n)× hom(k,m)

hom(k, n)

◦ × 1 1× ◦

◦ ◦

Next, a diagram that ensures each ιm picks out an identity morphism:

1× hom(m,n) hom(m,n) hom(m,n)× 1

hom(n, n)× hom(m,n) hom(m,n) hom(m,n)× hom(m,m)

ι× 1 1 1× ι

◦ ◦

Next, a diagram that ensures associativity of the tensor product of morphisms:

hom(m,n)× hom(m′, n′)× hom(m′′, n′′)

hom(m+m′, n+ n′)× hom(m′′ + n′′) hom(m,n)× hom(m′ +m′′, n′ + n′′)

hom(m+m′ +m′′, n+ n′ + n′′)

⊗× 1 1×⊗

⊗ ⊗

Next, a diagram that ensures that tensoring with the identity morphism on 0 acts trivially

on morphisms:
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1× hom(m,n) hom(m,n)× 1

hom(0, 0)× hom(m,n) hom(m,n) hom(m,n)× hom(0, 0)

ι× 1 1× ι

⊗ ⊗

Next, a diagram that ensures that the tensor product preserves composition:

hom(m′, n′)× hom(l′,m′)× hom(m,n)× hom(l,m)

hom(l′, n′)× hom(l, n)

hom(m′, n′)× hom(m,n)× hom(l′,m′)× hom(l,m)

hom(m+m′, n+ n′)× hom(l + l′,m+m′)

hom(l + l′, n+ n′)

◦ × ◦

⊗

⊗×⊗

◦

Next, a diagram that ensures the naturality of the braiding:

1× hom(m′, n′)× hom(m,n) hom(m′, n′)× 1× hom(m,n) hom(m′, n′)× hom(m,n)× 1

hom(n+ n′, n′ + n)× hom(m+m′, n+ n′) hom(m+m′, n+ n′)× hom(m+m′,m′ +m)

hom(m+m′, n′ + n)

b×⊗

◦

⊗× b

◦

Next, a diagram that ensures that the braiding is a symmetry:
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1× 1

hom(m′ +m,m+m′)× hom(m+m′,m′ +m) 1

hom(m+m′,m+m′)

bm′,m × bm,m′

◦ ιm+m′

Next, a diagram that ensures that the braidings b0,n are identity morphisms:

1 hom(n, n)

ιn

b0,n

Finally, we need a diagram to ensure the braiding obeys the hexagon identities. However,

since the associators are trivial and the braiding is a symmetry, the two hexagons reduce

to a single triangle. To provide for this, we use the following diagram:
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1 1× 1× 1× 1

hom(m+m′′,m′′ +m)× hom(m′,m′)× hom(m′′,m′′)× hom(m+m′,m′ +m)

hom(m′ +m+m′′,m′ +m′′ +m)× hom(m+m′ +m′′,m′ +m+m′′)

hom(m+m′ +m′′,m′ +m′′ +m)

b× ι× ι× b

⊗×⊗

◦

b

This completes the list of commutative diagrams in the sketch for ΘPROP. These dia-

grams simply state the definition of a PROP, so there is a 1-1 correspondence between mod-

els of ΘPROP in Set and props. Similarly, morphisms of models of ΘPROP in Set correspond

to morphisms of props. This gives an isomorphism of categories PROP ∼= Mod(ΘPROP) as

desired. This concludes the proof.

It is worth noting that Proposition 2.3.3, and the proof just given, generalize straightfor-

wardly from props to ‘C-colored’ props, with N replaced everywhere by the free commutative

monoid on a set C, called the set of ‘colors’. There is also a version for operads, a version

for C-colored operads, and a version for T -typed Lawvere theories: there is a typed Lawvere

theory whose models in Set are T -typed Lawvere theories! In each case we simply need to

write down a sketch that describes the structure under consideration.

Proposition 2.3.3 has a wealth of consequences; we conclude with two that Erbele needed

in his work on control theory [18, Prop. 6]. In rough terms, these results say that adding
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generators to a presentation of a prop P gives a new prop P ′ having P as a sub-prop, while

adding equations gives a new prop P ′ that is a quotient of P . We actually prove more

general statements.

In all that follows, let Θ be a T -typed Lawvere theory. Let U : Mod(Θ) → SetT be the

forgetful functor and F : SetT → Mod(Θ) its left adjoint. Further, suppose we have two

coequalizer diagrams in Mod(Θ):

F (E)
ρ
//

λ
// F (Σ)

π
// P

F (E′)
ρ′
//

λ′
// F (Σ′)

π′
// P ′

together with morphisms f : E → E′, g : Σ→ Σ′ such that these squares commute:

F (E)
λ
//

F (f)
��

F (Σ)

F (g)
��

F (E′)
λ′
// F (Σ′)

F (E)
ρ
//

F (f)
��

F (Σ)

F (g)
��

F (E′)
ρ′
// F (Σ′)

Then, thanks to the universal property of P , there exists a unique morphism h : P → P ′

making the square at right commute:

F (E)
ρ
//

λ
//

F (f)
��

F (Σ)
π
//

F (g)
��

P

h
��

F (E′)
ρ′
//

λ′
// F (Σ′)

π′
// P ′

In this situation, adding extra equations makes P ′ into a quotient object of P . More

precisely, and also more generally:

Corollary 6.1.3. If g is an epimorphism, then h is a regular epimorphism.

Proof. Given that g is an epimorphism in SetT , it is a regular epimorphism. So is F (g),

since left adjoints preserve regular epimorphisms, and so is π′, by definition. It follows that

π′ ◦ F (g) = h ◦ π is a regular epimorphism, and thus so is h.
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One might hope that in the same situation, adding extra generators makes P into a

subobject of P ′. More precisely, one might hope that if f is an isomorphism and g is a

monomorphism, h is a monomorphism. This is not true in general, but it is when the typed

Lawvere theory Θ is ΘPROP.

To see why some extra conditions are needed, consider a counterexample provided by

Charles Rezk [42]. There is a typed Lawvere theory with two types whose models consist

of:

• a ring R,

• a set S,

• a function f : S → R with f(s) = 0 and f(s) = 1 for all s ∈ S.

Thanks to the peculiar laws imposed on f , the only models are pairs (R,S) where R is an

arbitrary ring and S is empty, and pairs (R,S) where R is a terminal ring (one with 0 = 1)

and S is an arbitrary set. The free model on (∅, ∅) ∈ Set2 is (Z, ∅), while the free model

on (∅, 1) is ({0}, 1). Thus, the monomorphism (∅, ∅) → (∅, 1) in Set2 does not induce a

monomorphism between the corresponding free models: the extra generator in the set part

of (R,S) causes the ring part to ‘collapse’.

This problem does not occur for Lawvere theories with just one type, nor does it hap-

pen for typed Lawvere theories that arise from typed operads, more commonly known as

‘colored’ operads [10, 53]. A typed Lawvere theory arises from a typed operad when it can

be presented in terms of operations obeying purely equational laws for which each variable

appearing in an equation shows up exactly once on each side. The laws governing props are

of this form: for example, the operations for composition of morphisms obey the associative
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law

(f ◦ g) ◦ h = f ◦ (g ◦ h).

It follows that ΘPROP arises from a typed operad, so the following corollary applies to this

example:

Corollary 6.1.4. Suppose that either Θ is a T -typed Lawvere theory with T = 1 or Θ

arises from a T -typed operad. If f is an isomorphism and g is a monomorphism, then h is

a monomorphism.

Proof. We may assume without loss of generality that f : E → E′ is the identity and

g : Σ → Σ′ is monic. Since monomorphisms in SetT are just T -tuples of injections, we

can write Σ′ ∼= Σ + ∆ for some signature ∆ in such a way that g : Σ → ∆ is isomorphic

to the coprojection Σ → Σ + ∆. It follows that F (g) is isomorphic to the coprojection

i : F (Σ)→ F (Σ) + F (∆), and the diagram

F (E)
ρ
//

λ
//

F (f)
��

F (Σ)
π
//

F (g)
��

P

h
��

F (E′)
ρ′
//

λ′
// F (Σ′)

π′
// P ′

is isomorphic to this diagram:

F (E)
ρ

//

λ
//

1
��

F (Σ)
π

//

i
��

P

j

��

F (E′)
ρ
//

λ
// F (Σ) + F (∆)

π+1
// P + F (∆)

where j is the coprojection from P to P + F (∆). Thus it suffices to prove the following:

Lemma 6.1.5. Suppose that either Θ is a T -typed Lawvere theory with T = 1 or Θ arises

from a T -typed operad. If P ∈ Mod(Θ) and ∆ ∈ SetT then the coprojection j : P →

P + F (∆) is a monomorphism.
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Proof. We thank Todd Trimble for this proof. First suppose T = 1. To show that j is

monic it suffices to show that U(j) is injective, since U : Mod(Θ) → Set is faithful and

thus it reflects monomorphisms [1, Prop. 11.8]. Either U(P ) is empty and the injectivity is

trivial, or U(P ) is nonempty, in which case we can split the coprojection j : P → P +F (∆),

since all we need for this is a morphism F (∆)→ P , or equivalently, a function ∆→ U(P ).

Next suppose that Θ is a T -typed Lawvere theory that comes from a T -typed operad

O. Here we can use the following construction: given P ∈ Mod(Θ), we can form a model

P ∗ ∈ Mod(Θ) that has an extra element for each type t ∈ T . To do this, we first set

M∗(t) = M(t) t {xt}

for all t ∈ T , where xt is an arbitrary extra element. Then, we make P ∗ into an algebra

of O as follows. Suppose f ∈ O(t1, . . . , tn; t) is any operation of O with inputs of type

t1, . . . , tn ∈ T and output of type t ∈ T . Since P is an algebra of O, f acts on P as some

function

P (f) : P (t1)× · · · × P (tn)→ P (t).

Then we let f act on P ∗ as the function

P ∗(f) : P ∗(t1)× · · · × P ∗(tn)→ P ∗(t).

that equals P (f) on n-tuples (p1, . . . , pn) with pi ∈ P (ti) for all i, and otherwise gives xt.

One can readily check that this really defines an algebra of O and thus a model of Θ. The

evident morphism of models k : P → P ∗ is monic because again U is faithful [1, Prop. 14.8]

and the underlying morphism of signatures U(k) : U(P )→ U(P ∗) is monic.

With this construction in hand, we can show that the coprojection j : P → P + F (∆)

is monic. We have just constructed a monomorphism k : P → P ∗. Now extend this to a
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morphism ` : P + F (∆)→ P ∗: to do this, we just need a morphism F (∆)→ P ∗, which we

can take to be the one corresponding to the map X → U(P ∗) whose component X(t) →

U(P ∗)(t) is the function mapping every element of X(t) to xt. Then, we have k = ` ◦ j,

and since k is monic, j must be as well.
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