
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Categories in Control: Applied PROPs

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

by

Jason Michael Erbele

December 2016

Dissertation Committee:

Dr. John C. Baez, Chairperson
Dr. Julie Bergner
Dr. Kevin Costello

Copyright by
Jason Michael Erbele

2016

The Dissertation of Jason Michael Erbele is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

Large parts of Chapters 1 and 3 of the current work appeared in 2015 in Theories and

Applications of Categories, Volume 30. This prior incarnation of Categories in control has

been expanded to the present corpus. I am grateful for the direction and supervision of

John Baez, whose clear exposition and advice have been incredibly useful. I could not

have completed this dissertation without his guidance, prodding, and helpful meddling.

Also valuable were the many conversations with Brendan Fong, which helped to crystallize

several ideas.

Most of all, I owe an enormous debt of gratitude to the late Dr. Gene Scott. The

scope of that debt is too large to fit in this section. The least of which, his leadership and

tenacity inspired me to pursue higher education and to persevere when the path looked

impossible.

iv

To the young at heart,

to the curious in mind,

to the kindred soul.

v

ABSTRACT OF THE DISSERTATION

Categories in Control: Applied PROPs

by

Jason Michael Erbele

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, December 2016

Dr. John C. Baez, Chairperson

Control theory uses ‘signal-flow diagrams’ to describe processes where real-valued func-

tions of time are added, multiplied by scalars, differentiated and integrated, duplicated and

deleted. These diagrams can be seen as string diagrams for the PROP FinRelk, the strict

version of the category of finite-dimensional vector spaces over the field of rational functions

k = R(s) and linear relations, where the variable s acts as differentiation and the monoidal

structure is direct sum rather than the usual tensor product of vector spaces. Control pro-

cesses are also described by controllability and observability—whether the input can drive

the process to any state, and whether any state can be determined from later outputs.

For any field k we give a presentation of FinRelk in terms of generators of the free PROP

of signal-flow diagrams together with the equations that give FinRelk its structure. The

‘cap’ and ‘cup’ generators, missing when the morphisms are linear maps, make it possible

to model feedback. The relations say, among other things, that the 1-dimensional vector

space k has two special commutative †-Frobenius structures, such that the multiplication

and unit of either one and the comultiplication and counit of the other fit together to form

a bimonoid. This sort of structure, but with tensor product replacing direct sum, is familiar

from the ‘ZX-calculus’ obeyed by a finite-dimensional Hilbert space with two mutually un-

vi

biased bases. In order to address controllability and observability, we construct the PROP

Statefulk and relate it back to the PROP of signal-flow diagrams. This provides a way to

graphically express controllability and observability for linear time-invariant processes.

vii

Contents

List of Figures x

1 Introduction 1
1.1 Outline . 1
1.2 PROPs, linear relations, and signal-flow diagrams 3
1.3 State space . 23
1.4 Controllability and observability in signal-flow diagrams 29
1.5 The ‘Box’ construction . 31

2 Generators and equations for PROPs 33

3 Generators and equations description of FinRelk 38
3.1 Presenting FinVectk . 43
3.2 Presenting FinRelk . 55
3.3 An example . 72
3.4 Related work . 78

4 The PROP Stateful 84
4.1 Constructing categories of state . 84
4.2 The Box construction . 86
4.3 The PROP Stateful . 94
4.4 Controllability and observability . 97

5 The PROP ContFlow 102
5.1 Finding ContFlowk . 104
5.2 Duality properties of ContFlowk . 122

6 Conclusions 125

Bibliography 130

A Proofs of selected derived equations 133
A.1 (D5) . 133
A.2 (D6)–(D7) . 134

viii

A.3 (D8)–(D9) . 134
A.4 Frobenius equations . 135
A.5 Additional connections . 136

B Generalization of the Box construction 138

ix

List of Figures

3.1 Schematic diagram of an inverted pendulum 72

4.1 A coherence law preserved by Box . 93

5.1 The PROP morphism ♦ makes this square commute 102

B.1 A hexagon law inside �C . 147

x

Chapter 1

Introduction

1.1 Outline

Control theory is the branch of engineering that focuses on manipulating ‘open

systems’—systems with inputs and outputs—to achieve desired goals. In control theory,

several graphical models—e.g. ‘signal-flow graphs’ and ‘box diagrams’—have been used to

describe linear ways of manipulating signals, which we will take here to be smooth real-

valued functions of time [14]. For a category theorist, at least, it is natural to treat these

graphical models as string diagrams in a symmetric monoidal category [16, 17]. Here we use

the term signal-flow diagram to refer to these string diagrams. This forces some small

changes of perspective, which we discuss below, but more important is the question: which

symmetric monoidal category?

We shall argue that a first approximation to the answer is: the category FinRelk

of finite-dimensional vector spaces over a certain field k, but with linear relations rather

than linear maps as morphisms, and direct sum rather than tensor product providing the

symmetric monoidal structure. We use the field k = R(s) consisting of rational functions

in one real variable s. This variable has the meaning of differentation. A linear relation

1

from km to kn is thus a system of linear constant-coefficient ordinary differential equations

relating m ‘input’ signals and n ‘output’ signals.

A second approximation to the answer is: the category Statefulk of finite-dimensional

vector spaces over a certain field k(s) with ‘stateful’ morphisms which, roughly speaking,

distinguish the paths that involve s from those that do not involve s. Now there are m

‘inputs’, n ‘states’, and p ‘outputs’. When k = R, we are again back to the situation of

rational functions in one real variable s. This category is developed and discussed in Chap-

ter 4. The key advantage to Statefulk over FinRelk(s) is the ability to extract the control

theoretic concepts of controllability and observability from a stateful morphism. The key

disadvantage is stateful morphisms evaluate to linear maps rather than linear relations. So

while every signal-flow diagram has a linear relation associated to it, not every signal-flow

diagram has a stateful morphism associated to it.

Our main goal for the first approximation is to provide a complete ‘generators and

equations’ picture of this symmetric monoidal category, with the generators being familiar

components of the graphical models used by control theorists. It turns out that the answer

has an intriguing but mysterious connection to ideas that are familiar in the diagrammatic

approach to quantum theory. Quantum theory also involves linear algebra, but it uses

linear maps between Hilbert spaces as morphisms, and the tensor product of Hilbert spaces

provides the symmetric monoidal structure.

For the second approximation, our main goal is to identify which signal-flow dia-

grams describe controllable (resp. observable) systems. It turns out that not all signal-flow

diagrams admit as ‘stateful’ description, so part of this goal is the question, for which

signal-flow diagrams can we ask about controllability and observability? We hope that the

category-theoretic viewpoint on signal-flow diagrams will shed new light on control theory.

However, in this dissertation we only lay the groundwork.

Briefly, the plan is as follows: Chapter 2 introduces the the machinery of PROPs,

2

explaining how to describe a PROP using generators and equations and how to work

with PROPs using this description. PROPs form a particularly simple class of symmetric

monoidal categories that includes FinRelk and Statefulk. By Mac Lane’s coherence theo-

rem [25], the PROPs Statefulk and FinRelk are equivalent to the categories Statefulk and

FinRelk described above. This leads to Chapter 3, which gives a presentation of FinRelk,

introduces signal-flow diagrams, and summarizes the main results of our first approxima-

tion. To get to the second approximation, Chapter 4 introduce a new PROP, Statefulk

and describes how it relates to FinRelk(s). Chapter 4 also describes how to determine

controllability and observability from a stateful morphism. The main result of the second

approximation appears in Chapter 5, where we consider signal-flow diagrams as mathemat-

ical entities in their own right and describe the subcategory of signal-flow diagrams that

admit a stateful description. For a signal-flow diagram that admit such a description, the

description provides a path to determining controllability and observability for the signal-

flow diagram. Finally, Chapter 6 deals with future work: we describe ways in which the

stateful description can be extended to larger subcategories of signal-flow diagrams and how

the category Circ of open passive electric circuits with linear circuit elements can be viewed

as a category of signal-flow diagrams. This second direction for future work would connect

the present work with that of Baez and Fong [4]. In the following sections we sketch some

of the main ideas of this plan.

1.2 PROPs, linear relations, and signal-flow diagrams

In his famous thesis, Lawvere [24] introduced ‘functorial semantics’. In this idea, a

functor F : C → D sends formal expressions, which are morphisms in C, to their ‘meanings’,

which are morphisms in D. One says that C provides the ‘syntax’ and D the ‘semantics’.

Here we apply this idea to control theory. For example, we may take C to be a category

3

where morphisms are signal-flow diagrams, and D to be FinRelk: then we shall construct

a ‘black-boxing functor’ sending any signal-flow diagram to the linear relation it stands for.

To apply Lawvere’s ideas one wants categories equipped with extra structure: in

our work we use PROPs, which are strict symmetric monoidal categories whose objects

are natural numbers, the tensor product of objects being given by addition. In Chapter 2

we explain how to describe PROPs using generators and equations. This follows the work

of Baez, Coya and Rebro [2], which is based on the work of Trimble [33]. Chapter 2 also

has parallels in Zanasi’s Ph.D. dissertation [37, Chap. 2.2].

Of key importance in the present work is the existence and uniqueness of a functor

from the free PROP on some generators to a PROP presented by those generators and

some equations. We continue in Chapter 3 with a generators and equations description

of FinRelk. This chapter can also be found in [3], with some minor changes made in

the present work to streamline its connections to the other chapters. This begins the

formalization into signal-flow diagrams of what control theorists do with their graphical

models. When k = R(s), a morphisms in FinRelk describes the relation between some input

signals and output signals, corresponding to what control theorists call ‘transfer functions’.1

The generators of FinRelk correspond to some of the most basic operations one might want

to perform when manipulating signals. The simplest operation is amplification, or ‘scaling’:

multiplying a signal by a scalar. A signal can be scaled by a constant factor:

f 7→ cf,

where c ∈ R. We can write this as a signal-flow diagram:

1Control theorists generally only deal with linear maps rather than linear relations in this context, so a
pedant may argue for the invention of a new jargon term here, ‘transfer relation’.

4

f

c

cf
.

Here the labels f and cf on top and bottom are just for explanatory purposes and not

really part of the diagram. Control theorists often draw arrows on the wires, but this is

unnecessary from the string diagram perspective. Arrows on wires are useful to distinguish

objects from their duals, but ultimately we will obtain a compact closed category where

each object is its own dual, so the arrows can be dropped. What we really need is for the

box denoting scalar multiplication to have a clearly defined input and output. This is why

we draw it as a triangle. Control theorists often use a rectangle or circle, using arrows on

wires to indicate which carries the input f and which the output cf .

A signal can also be integrated with respect to the time variable:

f 7→
∫
f.

Mathematicians typically take differentiation as fundamental, but engineers sometimes pre-

fer integration, because it is more robust against small perturbations. In the end it will not

matter much here. We can again draw integration as a signal-flow diagram:

f

∫
∫
f

.

Since this looks like the diagram for scaling, it is natural to extend R to R(s), the field

of rational functions of a variable s which stands for differentiation. Then differentiation

5

becomes a special case of scalar multiplication, namely multiplication by s, and integration

becomes multiplication by 1/s. Engineers accomplish the same effect with Laplace trans-

forms, since differentiating a signal f is equivalent to multiplying its Laplace transform

(Lf)(s) =

∫ ∞
0

f(t)e−st dt

by the variable s. Another option is to use the Fourier transform: differentiating f is

equivalent to multiplying its Fourier transform

(Ff)(ω) =

∫ ∞
−∞

f(t)e−iωt dt

by −iω. Of course, the function f needs to be sufficiently well-behaved to justify calculations

involving its Laplace or Fourier transform. At a more basic level, it also requires some

work to treat integration as the two-sided inverse of differentiation. Engineers do this by

considering signals that vanish for t < 0, and choosing the antiderivative that vanishes under

the same condition. Luckily all these issues can be side-stepped in a formal treatment of

signal-flow diagrams: we can simply treat signals as living in an unspecified vector space

over the field R(s). The field C(s) would work just as well, and control theory relies heavily

on complex analysis. In most of this paper we work over an arbitrary field k.

The simplest possible signal processor is a rock, which takes the ‘input’ given by

the force F on the rock and produces as ‘output’ the rock’s position q. Thanks to Newton’s

second law F = ma, we can describe this using a signal-flow diagram:

6

q

∫ v

∫ a

1
m

F

.

Here composition of morphisms is drawn in the usual way, by attaching the output wire of

one morphism to the input wire of the next.

To build more interesting machines we need more building blocks, such as addition:

+: (f, g) 7→ f + g

and duplication:

∆: f 7→ (f, f).

When these linear maps are written as matrices, their matrices are transposes of each other.

This is reflected in the signal-flow diagrams for addition and duplication:

f g

f + g f f

f

.

The second is essentially an upside-down version of the first. However, we draw addition

as a dark triangle and duplication as a light one because we will later want another way

to ‘turn addition upside-down’ that does not give duplication. As an added bonus, a light

upside-down triangle resembles the Greek letter ∆, the usual symbol for duplication.

7

While they are typically not considered worthy of mention in control theory, for

completeness we must include two other building blocks. One is the zero map from {0} to

our field k, which we denote as 0 and draw its signal-flow diagram as follows:

0 .

The other is the zero map from k to {0}, sometimes called ‘deletion’, which we denote as !

and draw thus:

f

.

Just as the matrices for addition and duplication are transposes of each other, so

are the matrices for zero and deletion, though they are rather degenerate, being 1× 0 and

0×1 matrices, respectively. Addition and zero make k into a commutative monoid, meaning

that the following equations hold:

= = =

.

The equation at right is the commutative law, and the crossing of strands is the ‘braiding’

B : (f, g) 7→ (g, f)

by which we switch two signals. In fact this braiding is a ‘symmetry’, so it does not matter

which strand goes over which:

f

f

g

g

=

f

f

g

g
.

8

Dually, duplication and deletion make k into a cocommutative comonoid. This

means that if we reflect the equations obeyed by addition and zero across the horizontal

axis and turn dark operations into light ones, we obtain another set of valid equations:

= = =

.

There are also equations between the monoid and comonoid operations. For example,

adding two signals and then duplicating the result gives the same output as duplicating

each signal and then adding the results:

f g

f + g f + g

=

f g

f + g f + g
.

This diagram is familiar in the theory of Hopf algebras, or more generally bialgebras. Here it

is an example of the fact that the monoid operations on k are comonoid homomorphisms—

or equivalently, the comonoid operations are monoid homomorphisms. We summarize this

situation by saying that k is a bimonoid.

So far all our string diagrams denote linear maps. We can treat these as morphisms

in the category FinVectk, where objects are finite-dimensional vector spaces over a field k

and morphisms are linear maps. This category is equivalent to a skeleton where the only

objects are vector spaces kn for n ≥ 0, and then morphisms can be seen as n×m matrices.

This skeleton is actually a PROP. The space of signals is a vector space V over k which

may not be finite-dimensional, but this does not cause a problem: an n ×m matrix with

entries in k still defines a linear map from V n to V m in a functorial way.

In applications of string diagrams to quantum theory [5, 11], we make FinVectk

into a symmetric monoidal category using the tensor product of vector spaces. In control

9

theory, we instead make FinVectk into a symmetric monoidal category using the direct sum

of vector spaces. In Lemma 12 we prove that for any field k, FinVectk with direct sum

is generated as a symmetric monoidal category by the one object k together with these

morphisms:

c

,

where c ∈ k is arbitrary.

However, these generating morphisms obey some unexpected equations! For ex-

ample, we have:

=

−1

−1

.

Thus, it is important to find a complete set of equations obeyed by these generating mor-

phisms, thus obtaining a presentation of FinVectk as a PROP. We do this in Theorem 13.

In brief, these equations say:

1. (k,+, 0,∆, !) is a bicommutative bimonoid;

2. the rig operations of k can be recovered from the generating morphisms;

10

3. all the generating morphisms commute with scaling.

Here item (2) means that +, ·, 0 and 1 in the field k can be expressed in terms of signal-flow

diagrams as follows:

b+c = b c

c

b

=bc 1 = 0 =

.

Multiplicative inverses cannot be so expressed, so our signal-flow diagrams so far do not

know that k is a field. Additive inverses also cannot be expressed in this way. And indeed,

a version of Theorem 13 holds whenever k is a commutative rig: that is, a commutative

‘ring without negatives’, such as N. The case of a commutative rig k was examined by

Wadsley and Woods [35]: see Section 3.4 for details. The idea of finding a presentation for

the category FinVectk is not new. Indeed, Lafont [23] gave a presentation of FinVectk as a

monoidal category, with especial interest in the field of two elements, using generators and

equations similar to the ones given here.

While Theorem 13 is a step towards understanding the category-theoretic under-

pinnings of control theory, it does not treat signal-flow diagrams that include ‘feedback’.

Feedback is one of the most fundamental concepts in control theory because a control system

without feedback may be highly sensitive to disturbances or unmodeled behavior. Feedback

allows these disturbances to be mollified (or exacerbated!). As an annotated string diagram,

a basic feedback system might look like this:

11

reference

a controller

measured error

system input

b system

system output

csensor

measured output

−1

.

The user inputs a ‘reference’ signal, which is fed into a controller, whose output is fed into

a system, or ‘plant’, which in turn produces its own output. But then the system’s output

is duplicated, and one copy is fed into a sensor, whose output is added2 to the reference

signal.

In string diagrams—unlike in the usual thinking on control theory—it is essential

to be able to read any diagram from top to bottom as a composite of tensor products

of generating morphisms. Thus, to incorporate the idea of feedback, we need two more

generating morphisms. These are the ‘cup’:

f = g

f g

and ‘cap’:

2More typically this output is subtracted in controlled systems, since disturbances are frequently un-
wanted.

12

f = g

f g
.

These are not maps; they are relations. The cup imposes the relation that its two inputs

be equal, while the cap does the same for its two outputs. This is a way of describing how

a signal flows around a bend in a wire.

To make this precise, we use a category called FinRelk. An object of this category is

a finite-dimensional vector space over k, while a morphism from U to V , denoted L : U 9 V ,

is a linear relation, meaning a linear subspace

L ⊆ U ⊕ V.

In particular, when k = R(s), a linear relation L : km → kn is just an arbitrary system of

constant-coefficient linear ordinary differential equations relating m input variables and n

output variables.

Since the direct sum U ⊕ V is also the cartesian product of U and V , a linear

relation is indeed a relation in the usual sense, but with the property that if u ∈ U is

related to v ∈ V and u′ ∈ U is related to v′ ∈ V then cu + c′u′ is related to cv + c′v′

whenever c, c′ ∈ k. We compose linear relations L : U 9 V and L′ : V 9W as follows:

L′L = {(u,w) : ∃ v ∈ V (u, v) ∈ L and (v, w) ∈ L′}.

Any linear map f : U → V gives a linear relation F : U 9 V , namely the graph of that

map:

F = {(u, f(u)) : u ∈ U}.

Composing linear maps thus becomes a special case of composing linear relations, so

FinVectk becomes a subcategory of FinRelk. Furthermore, we can make FinRelk into a

13

monoidal category using direct sums, and it becomes symmetric monoidal using the braid-

ing already present in FinVectk.

In these terms, the cup is the linear relation

∪ : k2 9 {0}

given by

∪ = {(x, x, 0) : x ∈ k} ⊆ k2 ⊕ {0},

while the cap is the linear relation

∩ : {0}9 k2

given by

∩ = {(0, x, x) : x ∈ k} ⊆ {0} ⊕ k2.

These obey the zigzag equations:

= =

.

Thus, they make FinRelk into a compact closed category where k, and thus every object,

is its own dual. As with FinVectk, we will focus on a skeleton FinRelk of FinRelk, which is

a PROP.

Besides feedback, one of the things that make the cap and cup useful is that they

allow any morphism L : U 9 V to be ‘plugged in backwards’ and thus ‘turned around’. For

instance, turning around integration:

∫
:=∫

14

we (essentially) obtain differentiation. In general, using caps and cups we can turn around

any linear relation L : U 9 V and obtain a linear relation L† : V 9 U , called the adjoint

of L, which turns out to given by

L† = {(v, u) : (u, v) ∈ L}.

For example, if c ∈ k is nonzero, the adjoint of scalar multiplication by c is multiplication

by c−1:

c = c−1:=c

.

Thus, caps and cups allow us to express multiplicative inverses in terms of signal-flow

diagrams! One might think that a problem arises when when c = 0, but no: the adjoint of

scaling by 0 is the linear relation

{(0, x) : x ∈ k} ⊆ k ⊕ k.

In Lemma 14 we show that FinRelk is generated, as a symmetric monoidal cate-

gory, by these morphisms:

c

,

where c ∈ k is arbitrary.

In Theorem 15 we find a complete set of equations obeyed by these generating

morphisms, thus giving a presentation of FinRelk as a PROP. To describe these equations,

it is useful to work with adjoints of the generating morphisms. We have already seen that the

adjoint of scaling by c is scaling by c−1, except when c = 0. Taking adjoints of the other four

15

generating morphisms of FinVectk, we obtain four important but perhaps unfamiliar linear

relations. We draw these as ‘turned around’ versions of the original generating morphisms:

• Coaddition is a linear relation from k to k2 that holds when the two outputs sum

to the input:

+† : k 9 k2

+† = {(x, y, z) : x = y + z} ⊆ k ⊕ k2

:=

• Cozero is a linear relation from k to {0} that holds when the input is zero:

0† : k 9 {0}

0† = {(0, 0)} ⊆ k ⊕ {0}

:=

• Coduplication is a linear relation from k2 to k that holds when the two inputs both

equal the output:

∆† : k2 9 k

∆† = {(x, y, z) : x = y = z} ⊆ k2 ⊕ k

:=

16

• Codeletion is a linear relation from {0} to k that holds always:

!† : {0}9 k

!† = {(0, x)} ⊆ {0} ⊕ k

:=
.

Since +†, 0†,∆† and !† automatically obey turned-around versions of the equations obeyed

by +, 0,∆ and !, we see that k acquires a second bicommutative bimonoid structure when

considered as an object in FinRelk.

Moreover, the four dark operations make k into a Frobenius monoid. This

means that (k,+, 0) is a monoid, (k,+†, 0†) is a comonoid, and the Frobenius relation

holds:

= =

.

All three expressions in this equation are linear relations saying that the sum of the two

inputs equal the sum of the two outputs.

The operation sending each linear relation to its adjoint extends to a contravariant

functor

† : FinRelk → FinRelk,

which obeys a list of properties that are summarized by saying that FinRelk is a ‘†-compact’

category [1, 28]. Because two of the operations in the Frobenius monoid (k,+, 0,+†, 0†) are

adjoints of the other two, it is a †-Frobenius monoid. This Frobenius monoid is also

special, meaning that comultiplication (in this case +†) followed by multiplication (in this

case +) equals the identity on k:

17

=

.

This Frobenius monoid is also commutative—and cocommutative, but for Frobenius monoids

this follows from commutativity.

Starting around 2008, commutative special †-Frobenius monoids have become im-

portant in the categorical foundations of quantum theory, where they can be understood

as ‘classical structures’ for quantum systems [12, 34]. The category FinHilb of finite-

dimensional Hilbert spaces and linear maps is a †-compact category, where any linear map

f : H → K has an adjoint f † : K → H given by

〈f †φ, ψ〉 = 〈φ, fψ〉

for all ψ ∈ H,φ ∈ K. A commutative special †-Frobenius monoid in FinHilb is then

the same as a Hilbert space with a chosen orthonormal basis. The reason is that given

an orthonormal basis ψi for a finite-dimensional Hilbert space H, we can make H into a

commutative special †-Frobenius monoid with multiplication m : H ⊗H → H given by

m(ψi ⊗ ψj) =

 ψi i = j

0 i 6= j

and unit i : C→ H given by

i(1) =
∑
i

ψi.

The comultiplication m† duplicates basis states:

m†(ψi) = ψi ⊗ ψi.

Conversely, any commutative special †-Frobenius monoid in FinHilb arises this way.

Considerably earlier, around 1995, commutative Frobenius monoids were recog-

nized as important in topological quantum field theory. The reason, ultimately, is that the

18

free symmetric monoidal category on a commutative Frobenius monoid is 2Cob, the cate-

gory with 2-dimensional oriented cobordisms as morphisms: see Kock’s textbook [20] and

the many references therein. But the free symmetric monoidal category on a commutative

special Frobenius monoid was worked out even earlier [9, 21, 27]: it is the category with

finite sets as objects, where a morphism f : X → Y is an isomorphism class of cospans

X −→ S ←− Y.

This category can be made into a †-compact category in an obvious way, and then the

1-element set becomes a commutative special †-Frobenius monoid.

For all these reasons, it is interesting to find a commutative special †-Frobenius

monoid lurking at the heart of control theory! However, the Frobenius monoid here has

yet another property, which is more unusual. Namely, the unit 0 : {0}9 k followed by the

counit 0† : k 9 {0} is the identity on {0}:

=
.

We call a special Frobenius monoid that also obeys this ‘extra’ law extra-special. One can

check that the free symmetric monoidal category on a commutative extra-special Frobenius

monoid is the category with finite sets as objects, where a morphism f : X → Y is an

equivalence relation on the disjoint union XtY , and we compose f : X → Y and g : Y → Z

by letting f and g generate an equivalence relation on X t Y t Z and then restricting this

to X t Z.

As if this were not enough, the light operations share many properties with the dark

ones. In particular, these operations make k into a commutative extra-special †-Frobenius

monoid in a second way. In summary:

• (k,+, 0,∆, !) is a bicommutative bimonoid;

• (k,∆†, !†,+†, 0†) is a bicommutative bimonoid;

19

• (k,+, 0,+†, 0†) is a commutative extra-special †-Frobenius monoid;

• (k,∆†, !†,∆, !) is a commutative extra-special †-Frobenius monoid.

It should be no surprise that with all these structures built in, signal-flow diagrams

are a powerful method of designing processes. However, it is surprising that most of these

structures are present in a seemingly very different context: the so-called ‘ZX calculus’,

a diagrammatic formalism for working with complementary observables in quantum the-

ory [10]. This arises naturally when one has an n-dimensional Hilbert space H with two

orthonormal bases ψi, φi that are ‘mutually unbiased’, meaning that

|〈ψi, φj〉|2 =
1

n

for all 1 ≤ i, j ≤ n. Each orthonormal basis makes H into commutative special †-Frobenius

monoid in FinHilb. Moreover, the multiplication and unit of either one of these Frobenius

monoids fits together with the comultiplication and counit of the other to form a bicommu-

tative bimonoid. So, we have all the structure present in the list above—except that these

Frobenius monoids are only extra-special if H is 1-dimensional.

The field k is also a 1-dimensional vector space, but this is a red herring: in FinRelk

every finite-dimensional vector space naturally acquires all four structures listed above, since

addition, zero, duplication and deletion are well-defined and obey all the equations we have

discussed. We focus on k in this paper simply because it generates all the objects FinRelk

via direct sum.

Finally, in FinRelk the cap and cup are related to the light and dark operations

as follows:

= −1 =

.

20

Note the curious factor of −1 in the second equation, which breaks some of the symmetry

we have seen so far. This equation says that two elements x, y ∈ k sum to zero if and only

if −x = y. Using the zigzag equations, the two equations above give the antipode

= −1

.

We thus see that in FinRelk, both additive and multiplicative inverses can be expressed in

terms of the generating morphisms used in signal-flow diagrams.

The break in symmetry at this point can be explained by yet another second way

of doing something. We have seen one contravariant functor on FinRelk, †, but there is a

second contravariant functor on FinRelk, ∗. This one extends a contravariant functor on

FinVectk that was already lurking in the background. The functor

∗ : FinRelk → FinRelk

extends the notion of transposition of linear maps, and these two equations relating the cap

and cup to light and dark operations show how to consistently extend transposition to cap

and cup, and thus to linear relations. Thus we have

• +∗ = ∆,

• ∆∗ = +,

• 0∗ =!,

• !∗ = 0,

• ∩∗ = ∪ ◦ (1⊕ s−1),

• ∪∗ = (1⊕ s−1) ◦ ∩.

21

Graphically,

∗ ∗ −1∗

.

Theorem 15 gives a presentation of FinRelk based on some of the ideas just dis-

cussed. Briefly, it says that FinRelk is the PROP generated by these morphisms:

1. addition +: k2 9 k

2. zero 0: {0}9 k

3. duplication ∆: k 9 k2

4. deletion ! : k 9 0

5. scaling sc : k 9 k for any c ∈ k

6. cup ∪ : k2 9 {0}

7. cap ∩ : {0}9 k2

obeying these equations:

1. (k,+, 0,∆, !) is a bicommutative bimonoid;

2. ∩ and ∪ obey the zigzag equations;

3. (k,+, 0,+†, 0†) is a commutative extra-special †-Frobenius monoid;

4. (k,∆†, !†,∆, !) is a commutative extra-special †-Frobenius monoid;

5. the field operations of k can be recovered from the generating morphisms;

6. the generating morphisms (1)–(4) commute with scaling.

22

Note that item (2) makes FinRelk into a †-compact category, allowing us to mention the

adjoints of generating morphisms in the subsequent equations. Item (5) means that +, ·, 0, 1

and also additive and multiplicative inverses in the field k can be expressed in terms of

signal-flow diagrams in the manner we have explained.

1.3 State space

Control theory underwent a paradigm shift in the 1960s with the advent of the

state-space approach. Chapter 4 introduces the basic ideas of this approach and builds up

to the PROP Statefulk, which we designed to describe this approach more closely than

FinRelk can.

The state-space approach to control theory was born around 1960 with Kalman’s

paper [18] that introduced to the world the concepts of controllability and observability.

This approach addresses some of the limitations of the frequency analysis approach, which

had enjoyed significant early success. Kalman noticed any linear time-invariant (LTI) con-

trol system can be partitioned into four subsystems3, only one of which is accounted for by

the transfer function of the frequency analysis approach. The other three subsystems lack

inputs, lack outputs, or lack both, thus are best studied by looking at the internal states of

a system. The continuous time version of the state-space approach uses matrix differential

equations that involve the input and output of a system, mediated by the internal state of

the system. In a linear time-invariant system, which is the only kind we consider, these

equations are

ẋ(t) = Ax(t) +Bu(t) (1.1)

y(t) = Cx(t) +Du(t), (1.2)

3This partitioning can also be done for nonlinear or time-varying systems, but the four parts are no longer
necessarily control systems in their own right.

23

where u(t) is the input vector, y(t) is the output vector, and x(t) is the state vector. These

equations can also be discretized to matrix difference equations for a discrete time approach.

Unless otherwise stated, we will use the convention that dim(u) = m, dim(x) = n, and

dim(y) = p.

Equations 1.1 and 1.2 can be found lurking in the following signal-flow diagram:

A B

∫

C D

x

ẋ

y

u

y = Cx+Du

ẋ = Ax+Bu

where we have used the shorthand of drawing a single generating morphism where there

are zero or more parallel generating morphisms of the same kind and scaling representing

matrix multiplication. Note that taking integration to be scaling by 1
s , as when taking

Laplace transforms, the linear relation this signal-flow diagram depicts is the linear map

D + C(sI −A)−1B.

A system is controllable if for each state x and time t0 there is an input function

u(t) such that the state can be set to the equilibrium state, i.e. the zero vector, in a

finite amount of time. For the linear time-invariant systems we are interested in, there

is a simple characterization of controllability involving the row rank of the block matrix

Mc = [B,AB, . . . , An−1B]. This controllability matrix Mc is an n × mn matrix, and a

24

system is controllable when its row rank is n:

rank(Mc) = n.

A system is observable if for each state x and time t0, and with the input function

u(t) identically zero, measurements of the output function y(t) over a finite duration can

be used to determine the state x(t0). For the systems we are concerned with, there is a

characterization of observability in terms of the column rank of the block matrix Mo =

[C,CA, . . . , CAn−1]>. This observability matrix Mo is an np × n matrix, and a linear

time-invariant system is observable when its column rank is n:

rank(Mo) = n.

There are clear parallels in these descriptions of controllability and observability,

but there is a seeming fly in the ointment with observability depending on the input signal

being zero and controllability being independent of the output signal. Despite this oddity,

it is not difficult to guess there might be some kind of duality relating controllability and

observability. Indeed, Kalman defined observability in [18] as a dual notion to controllability,

and only defined it as a separate concept later. The action of Kalman’s duality reverses the

direction of time, swaps the roles of the matrices B and C, and transposes all the matrices

A, B, C, and D. Even in the time-varying case, this process transforms a controllable

system into an observable system, and an observable system into a controllable system.

It is curious to see what happens when Kalman’s duality is applied to the signal-

flow diagram above that encodes the state-space equations.

25

A

B

∫

C

D
A>

C>

∫

B>

D>

Recalling that the transposition duality ∗ : FinRelk → FinRelk vertically flips signal-flow

diagrams and reverses the colors of the generators, Kalman’s duality bears remarkable

resemblance to the transposition duality. The similarity to the transposition duality can

even be used to explain the oddity of controllability ignoring (deleting) the output signal

and observability setting the input signal to zero: !∗ = 0.

While it is clear something connects Kalman’s work on controllability and observ-

ability to the PROP FinRelk, taking the signal-flow diagrams above to be linear relations

hides the evidence of the connection: it is impossible to reconstruct A, B, C, and D from a

given linear relation. To deal with this shortcoming, we form a new PROP, �(FinVectk),

as a stepping stone towards finding the PROP Statefulk. The objects of �(FinVectk)

are the vector spaces kn just as with FinVectk, but the morphisms from V1 to V2 are now

4-tuples of linear maps, which can be conveniently organized as non-commutative squares:

V1

S T

V2
d

b

a

c

.

26

For compactness of notation, this square can also be written (d, c, a, b).

In Theorem 18 we show there is an evaluation functor eval : �(FinVectk) →

FinVectk that takes (d, c, a, b) to d + cab. Even better, eval is a PROP morphism. As

noted above, the signal-flow diagram that encodes the state-space equations (Equations 1.1

and 1.2) gives a linear map, D+C(sI−A)−1B. The maps D, C, A, and B are all morphisms

in FinVectk in the linear time-invariant case, so this looks very similar to the evaluation of

a �(FinVectk) morphism.

To get them to match, we define Statefulk as a subPROP of �(FinVectk(s)),

where d = D, c = C, a = (sI −A)−1, and b = B for some linear maps A, B, C, and D. In

Proposition 20 we show Statefulk is a PROP. Given a stateful morphism (d, c, a, b), it is

possible to find the linear maps A, B, C, and D used in the state-space equations. Because

eval(d, c, a, b) = D + C(sI − A)−1B for stateful morphisms, it is reasonable to allow the

signal-flow diagram

A

B

∫

C

D

to depict a stateful morphism, not just a linear relation. Furthermore, because it is possible

to find the linear maps A, B, C, and D used in the state-space equations, controllability and

observability are well-defined for stateful morphisms. This gives a sense in which Statefulk

is a more detailed picture of a signal processing apparatus which captures not only the linear

27

relation between inputs and outputs, but how the apparatus implements this relation.

In category theoretic terms, a linear map having full row rank means it is an

epimorphism, and having full column rank means it is a monomorphism. We can therefore

translate the linear time-invariant conditions for controllability and observability into signal-

flow diagram form as follows:

A stateful morphism (D,C, (sI −A)−1, B) is controllable when

B B B

A A

A

. . . A

B

A

n− 1

is an epimorphism in FinVectk, and it is observable when

C C C

A A

A

. . . A

C

A

n− 1

is a monomorphism in FinVectk.

Much of what has been discussed to this point has parallels in other contemporary

work. Bonchi, Sobociński and Zanasi [6, 7] built up a similar generators and equations

28

picture of SVk, a PROP which is identical to our FinRelk, using Lack’s idea [22] of com-

posing PROPs. Sobociński also continued by considering controllability, but again from

a different perspective: About 30 years after Kalman gave his definitions of controllabil-

ity and observability, Willems [36] proposed alternative definitions for controllability and

observability that are based on the behavior of a system. However, the duality between

controllability and observability is less apparent in Willems’ definition than in Kalman’s

definition. Nevertheless, Willems’ behavioral approach is very fruitful, and Fong, Rapis-

arda and Sobociński [13] use this alternative definition to give a categorical characterization

of behavioral controllability.

1.4 Controllability and observability in signal-flow diagrams

Signal-flow diagrams can do much more than depict linear relations. In Chapter 5

our goal is to define a PROP where the morphisms are the signal-flow diagrams used by

control theorists, for which the all-important notions of controllability and observability,

which we saw in the previous section, can be defined. We begin by defining a preliminary

free PROP SigFlowk, where morphisms are all diagrams that can be built up by these

generators:

c

,

where c ∈ k is arbitrary. Appending one more generator for integration

∫

extends SigFlowk to a larger free PROP, SigFlowk,s. All together, these are the generators

of FinRelk(s) with the element s treated separately, since integrators play a special role in

29

in control theory. SigFlowk,s is simply the free prop on these generators. There is thus a

morphism of props

� : SigFlowk,s → FinRelk(s)

sending each signal flow diagram to the linear relation between inputs and outputs that it

determines. We call this the ‘black-boxing’ functor.

However, many morphisms in SigFlowk,s are not signal-flow diagrams of the sort

used in control theory; for example, one never sees the ‘cup’ or ‘cap’ above all by itself in a

textbook on control theory. The challenge, then, is to pick out a subPROP ContFlowk which

consist of ‘reasonable’ signal-flow diagrams, for which controllability and observability can

be defined.

We already have a category Statefulk for which controllability and observability

of morphisms can be defined, and in Section 4.3 we constructed a functor eval : Statefulk →

FinVectk(s). Composing with the inclusion i : FinVectk(s) → FinRelk(s) gives us a PROP

morphism

i ◦ eval : Statefulk → FinRelk(s).

We would thus like ContFlowk to be a PROP equipped with an inclusion j : ContFlowk →

SigFlowk,s making this square commute:

SigFlowk,s

ContFlowk

FinRelk(s)

Statefulk
♦

j i ◦ eval

� .

In fact, this desire will lead us directly to the definition of the PROP ContFlowk in Defi-

nition 31. We conclude by showing some of the duality properties of ContFlowk and how

they are related to Kalman’s duality between controllability and observability.

30

1.5 The ‘Box’ construction

In Appendix A we offer diagrammatic proofs of some derived equations used in

the proof of Theorem 15. Some other diagrammatic proofs with miscellaneous connections

are also included to indicate a portion of the richness of the connection between Frobe-

nius bimonoids and bicommutative bimonoids. In Appendix B we expand on the ‘Box’

construction that led us to Statefulk in Chapter 4.

When we first examine the Box construction in Chapter 4, we only apply it to the

PROP FinVectk. The idea behind the Box construction of breaking up a morphism into

the direct and indirect influences of the input on the output generalizes to a broader class

of categories. It is straightforward to extend the Box construction to apply to the category

FinVectk, or any category that has biproducts. What is exciting for the purposes of future

work is that the Box construction can also be extended to apply to FinRelk and FinRelk.

The key property of FinRelk that makes it work is that FinVectk is an essentially wide

subcategory of FinRelk. That is, FinVectk ‘essentially’ contains all the objects of FinRelk.

More precisely, the inclusion functor i : FinVectk → FinRelk is essentially surjective.

Since FinVectk has biproducts, every object in FinVectk is a bicommutative bi-

monoid and every morphism is a bimonoid homomorphism. Thus every object in FinRelk

is a bicommutative bimonoid as well. In the Box construction in Chapter 4 we took advan-

tage of the other fact, that all morphisms of FinVectk are bimonoid homomorphisms. This

is no longer the case in FinRelk, but not all the arrows in the Box of a category need to

be bimonoid homomorphisms. This opens up the possibility for a more general version of

Statefulk, where a stateful morphism (d, c, a, b) is made up of linear relations a, b, c, and

d, instead of simply linear maps. Using the same string diagram criteria for controllability

and observability on the more general version of Statefulk could potentially generalize the

notions of controllability and observability in a way that has not been capitalized on in

31

control theory.

32

Chapter 2

Generators and equations for

PROPs

The formalism developed in this chapter gives us a way to present PROPs in an

analogous way to the presentation of groups, where elements in a group are the analog to

morphisms in a PROP. The signal-flow diagrams of control theory that appear throughout

this dissertation fit into the convenient framework formed by PROPs for formalizing such

diagrammatic techniques. Whereas a group is presented by a set of generators and a set of

relations, a PROP is presented by a distinguished object, together with a signature which

can be thought of as a collection of morphisms that generate the homsets, and a set of

equations between elements of the same homset. Stated slightly differently, a PROP is

presented by a distinguished object, a collection of generating morphisms, and a collection

of equations. Before we do anything with PROPs, it would be good to say what a PROP

is.

Definition 1 A PROP is a strict symmetric monoidal category for which objects are nat-

ural numbers and the monoidal product is addition. A PROP morphism is a strict sym-

metric monoidal functor that maps the object 1 to the object 1.

33

Stated this way, the distinguished object is the natural number 1. We note by Mac Lane’s

coherence theorem [25] that any symmetric monoidal category is equivalent to a strict

symmetric monoidal category. We make the convention of using roman typeface (as in

FinRelk) for names of symmetric monoidal categories that may not be strict and typewriter

typeface (as in FinRelk) for names of strict symmetric monoidal categories. Other typefaces

are used for categories which, for the purposes of discussion, need not be symmetric monoidal

categories. In subsequent chapters it will be convenient to think of the objects of a PROP

as tensor powers of a distinguished object, X, using the one-to-one correspondence X⊗n 7→

n ∈ N. For example, we will be concerned with PROPs that have the vector spaces kn over

some field k as their objects, direct sum as tensor, and the one-dimensional vector space k

as the distinguished object. There is a category PROP of PROPs and PROP morphisms.

Definition 2 A symmetric monoidal theory T = (Σ, E) is a signature Σ together with

a set E of equations. A signature is a set of formal symbols σ : m → n, where m,n ∈ N.

From a signature Σ we may formally construct the set of Σ-terms. Defined inductively, a

Σ-term takes one of the following forms:

• the unit id : 1→ 1, the braiding b: 2→ 2, or the formal symbols σ : m→ n in Σ;

• β ◦ α : m→ p, where α : m→ n and β : n→ p are Σ-terms; or

• α+ γ : m+ p→ n+ q, where α : m→ n and γ : p→ q are Σ-terms.

We call (m,n) the type of a Σ-term α : m→ n. An equation is an ordered pair of Σ-terms

with the same type.

We can think of the type as an object in the discrete category N × N. Then a signature

is a functor from N × N to Set; to each type (m,n) ∈ N × N, a signature assigns a set of

formal symbols of that type. Note that each PROP P has an underlying signature, given

34

by the functor homP(·, ·) : N×N→ Set. The following result of Baez, Coya, and Rebro [2],

building on the work of Trimble [33], allows us to understand the category PROP.

Proposition 3 The underlying signature functor U : PROP→ SetN×N is monadic.

By saying U is monadic we mean U has a right adjoint F : SetN×N → PROP, and the

resulting functor from PROP to the category of algebras of the monad FU is an equivalence of

categories [8]. We call FΣ the free PROP on the signature Σ. In fact, any Σ-term determines

a morphism in FΣ, and all morphisms in FΣ arise this way. For a Σ-term α : m → n, we

abuse notation and refer to the corresponding morphism as α ∈ hom(X⊗m, X⊗n). For each

formal symbol σ : m → n in Σ, we refer to its corresponding morphism σ as a generator

for the free PROP on Σ.

Another important consequence of this proposition is that PROP is cocomplete.

This guarantees the existence of coequalizers, which we use to construct a PROP for a

symmetric monoidal theory.

Let (Σ, E) be a symmetric monoidal theory. Then E determines a signature E ,

where each ordered pair in E determines a formal symbol in E whose type is the same

as the type of the pair. We can define PROP morphisms λ, ρ : FE → FΣ mapping the F-

image of each equation to the F-images of the first element and second element of the pair,

respectively.

Definition 4 The PROP presented by a symmetric monoidal theory (Σ, E), denoted P(Σ, E),

is the coequalizer of the diagram

FE
λ
⇒
ρ
FΣ.

The intuition is that the coequalizer is the freest PROP subject to the constraints that the

‘left-hand side’ of each equation (α, β), given by λ, is equal to the ‘right-hand side’, given

by ρ.

35

Definition 5 A subPROP P′ of a given PROP P is the source of a monomorphism in

PROP, i : P′ → P. A quotient PROP Q of a given PROP P is the target of a regular

epimorphism in PROP, φ : P→ Q.

We are often interested in comparing PROPs that have similar generators and

equations. The next proposition can be phrased as the slogan, “Adding generators and

removing equations both result in bigger PROPs.” Once again, a proof of this proposition

will appear in [2].

Proposition 6 Given a symmetric monoidal theory (Σ, E), a signature Σ′ such that Σ ⊆

Σ′, and equations E′ ⊆ E, the following are true:

• P(Σ, E) is a subPROP of P(Σ′, E), and

• P(Σ, E) is a quotient PROP of P(Σ, E′).

It immediately follows that P(Σ′, E) is a quotient PROP of, and P(Σ, E′) is a subPROP

of P(Σ′, E′). Another immediate corollary is that P(Σ, E) is a quotient PROP of the free

PROP FΣ.

In later chapters we will show a PROP is the PROP for a symmetric monoidal

theory (Σ, E) by finding ‘standard forms’ for the morphisms.

Definition 7 Given a symmetric monoidal theory (Σ, E) and a PROP P such that φ : FΣ→

P is an epimorphism in PROP, a standard form for a morphism p in P is a particular

morphism p̃ in FΣ such that φp̃ = p.

The requirement that φ is an epimorphism in PROP means φ is surjective on

morphisms. Thus every morphism in P has a standard form. There is no requirement that

standard forms respect composition, so we do not get a functor P→ FΣ that satisfies p 7→ p̃.

However, there is a functor ν : UP→ UFΣ satisfying ν(Up) = Up̃ since signatures are discrete.

36

Proposition 8 Given a PROP P and a symmetric monoidal theory (Σ, E), let π : FΣ→ Q

be the coequalizer of FE ⇒ FΣ. Given any epimorphism φ : FΣ → P, such that φλ = φρ,

and π(f) = πφ̃(f) for all morphisms f in FΣ, then P and Q are isomorphic PROPs.

This theorem says that if P ‘respects the equations’ of the symmetric monoidal

theory and every morphism in the free PROP can be connected to a standard form using

the equations in E, then P is P(Σ, E).

Proof. As noted above, there is a functor ν : UP → UFΣ that sends morphisms

in P to their standard forms, on the level of signatures. That is, νf = f̃ . The condition

φλ = φρ means there is a unique morphism α : Q→ P such that φ = απ. We will show α is

an isomorphism by showing Uα is an isomorphism and lifting this isomorphism of signatures

to an isomorphism of PROPs. It is immediately evident that Uφ◦ν = 1UP, since the image of

the standard form of a morphism is the same as the original morphism. Thus Uα◦Uπ◦ν = 1.

It remains to show Uπ ◦ ν is a two-sided inverse.

Since π(f) = πφ̃(f), applying the functor U gives Uπ(f) = Uπ ◦ Ũφ(f) = Uπ ◦

ν(Uφ(f)). Thus Uπ = Uπ ◦ ν ◦ Uα ◦ Uπ. Now π is a regular epimorphism and U is a monadic

functor over SetN×N, a topos in which epimorphisms split (i.e. the Axiom of Choice holds),

so Uπ is an epimorphism [8, Thm. 4.4.4]. This means Uα can be cancelled on the right,

giving 1 = Uπ ◦ν ◦Uα. This shows Uπ ◦ν is a two-sided inverse to Uα. Because U is monadic,

U reflects isomorphisms [8, loc. cit.], which means α is an isomorphism, so P ∼= Q.

37

Chapter 3

Generators and equations

description of FinRelk

Now that we have the proper tools for presenting PROPs in terms of generators

and equations, we turn our attention to the PROP FinRelk, which we will use as the target

for several PROP morphisms. In what follows we fix a field k, and all vector spaces will be

over this field.

Definition 9 Given vector spaces U and V , a linear relation L : U 9 V , is a linear

subspace

L ⊆ U ⊕ V.

In particular, a linear relation L : km 9 kn is just an arbitrary system of linear equations

relatingm input variables to n output variables. This is why linear relations are fundamental

to control theory.

Since the direct sum U ⊕ V is also the cartesian product of U and V , a linear

relation is indeed a relation in the usual sense, but with the property that if u ∈ U is

related to v ∈ V and u′ ∈ U is related to v′ ∈ V then cu + c′u′ is related to cv + c′v′

38

whenever c, c′ ∈ k. We compose linear relations L : U 9 V and L′ : V 9 W in the usual

way of composing relations:

L′L = {(u,w) : ∃ v ∈ V (u, v) ∈ L and (v, w) ∈ L′}.

There is thus a category FinRelk whose objects are finite-dimensional vector spaces over k,

and whose morphisms are linear relations.

Moreover, FinRelk becomes symmetric monoidal, with the direct sum of vector

spaces providing the symmetric monoidal structure. In particular, given linear relations

L : U 9 V and L′ : U ′ 9 V ′, the linear relation L⊕ L′ : U ⊕ U ′ 9 V ⊕ V ′, is given by

L⊕ L′ = {(u, u′, v, v′) : (u, v) ∈ L and (u′, v′) ∈ L′}.

Any linear map f : U → V gives a linear relation F : U 9 V , namely the graph of

that map:

F = {(u, f(u)) : u ∈ U}.

Composing linear maps thus becomes a special case of composing linear relations. Thus,

the category FinVectk of finite-dimensional vector spaces and linear maps is a subcategory

of FinRelk. If we make FinVectk into a symmetric monoidal category using direct sum, the

inclusion of FinVectk in FinRelk is a symmetric monoidal functor.

To work with FinRelk using the machinery of PROPs, we make the following

definition:

Definition 10 For any field k, let FinRelk be the PROP where a morphism from m to n

is a linear relation from km to kn, with the usual composition of relations, with direct sum

providing the tensor product.

One can check that FinRelk is equivalent, as a symmetric monoidal category, to

FinRelk. It is a skeleton of FinRelk, so it is clearly equivalent as a category. However, note

39

that FinRelk has trivial associators and unitors (being a PROP), while FinRelk does not,

so the inclusion of FinRelk in FinRelk is not a strict symmetric monoidal functor.

Our generators for FinRelk are logically organized into three pairs together with

one ‘scaling’ morphism for each element of k. We make use of string diagrams to elucidate

various compositions.

The first pair is duplication and deletion:

.

Duplication is the linear relation ∆: k 9 k2 given by

∆ = {(x, x, x) : x ∈ k} ⊆ k ⊕ k2.

That is, ∆ outputs two copies of its input. Deletion is the linear relation ! : k 9 {0} given

by

! = {(x, 0) : x ∈ k} ⊆ k ⊕ {0},

where {0} is the zero-dimensional vector space. Thus ! ‘eats up’ its input, yielding no

output. Both of these linear relations are also linear maps: ∆ is the diagonal map, while !

is the unique (linear) map to {0}.

Our next pair is addition and zero:

.

Addition is the linear relation +: k2 9 k given by

+ = {(x, y, x+ y) : x, y ∈ k} ⊆ k2 ⊕ k.

40

That is, its output is the sum of its two inputs. Zero is the linear relation 0: {0}9 k given

by

0 = {(0, 0)} ⊆ {0} ⊕ k.

Thus 0 takes no input and outputs the number 0. As with the first pair, these linear

relations are also linear maps, where 0 is the unique linear map from {0}.

For any c ∈ k, the scaling morphism sc, depicted

c

,

is the linear relation sc : k 9 k given by

sc = {(x, cx) : x ∈ k} ⊆ k ⊕ k.

Thus sc scales its input by a factor of c. That each sc is a linear map is a direct consequence

of the closure of multiplication in any field.

The final pair is cup and cap:

.

Cup is the linear relation ∪ : k2 9 {0} given by

∪ = {(x, x, 0) : x ∈ k} ⊆ k2 ⊕ {0}.

Thus ∪ is a partial function and not a linear map. Cap is the linear relation ∩ : {0} 9 k2

given by

∩ = {(0, x, x) : x ∈ k} ⊆ {0} ⊕ k2.

41

Thus ∩ is a multi-valued function and not a linear map. Informally, both ∪ and ∩ can be

thought of as ‘bent identity morphisms’, where the two inputs (resp. outputs) are identified.

Bending a string twice allows the output of a morphism to affect its own input, which gives

us a way to model feedback in a control system.

While other choices can be made for the generators, this choice has the advantage

that all the generators are linear maps, with the exception of ∪ and ∩. Omitting these gen-

erators and the equations that include them leaves us with a presentation for the subPROP

FinVectk ⊆ FinRelk of finite-dimensional vector spaces over k and linear maps, which is

another important category.

While the list of equations in our presentation of FinRelk is lengthy, they can be

summarized as those necessary for several nice properties to hold:

1. (k,+, 0,∆, !) is a bicommutative bimonoid;

2. +, 0, ∆ and ! commute with scaling;

3. ∪ and ∩ obey the zigzag equations;

4. (k,+, 0,+†, 0†) is a commutative extra-special †-Frobenius monoid;

5. (k,∆†, !†,∆, !) is a commutative extra-special †-Frobenius monoid;

6. the field operations of k can be recovered from the generators.

Note that item (3) makes FinRelk into a †-compact category, allowing us to mention the

adjoints of generating morphisms in the subsequent properties.

The word ‘separable’ is sometimes used as a synonym for ‘special’ here [27]. A

Frobenius monoid is special if the comultiplication followed by the multiplication is equal to

the identity. An extra-special Frobenius monoid has an additional, less common property:

the unit followed by the counit of the monoid is also equal to the identity (but now the

42

identity on the unit object for the tensor product). This ‘extra’ equation is one of two from

the four bimonoid equations that can be added to a †-Frobenius monoid without making

the monoid trivial [15]. The other bimonoid equation that can be added is a consequence

of the ‘special’ equation. See Appendix A.5 for a demonstration. Because of its graphical

depiction, the extra equation has been called the ‘bone’ equation by others [13, 31].

We have placed some emphasis on the fact that cup and cap obey the zigzag

equations, which allows for a duality functor, † : FinRelk → FinRelk, which ‘turns mor-

phisms around’. There is another duality on FinRelk that is somewhat subtler. The functor

∗ : FinRelk → FinRelk ‘turns morphisms around’ and ‘swaps the color’ of morphisms. To

wit, +∗ = ∆, 0∗ = !, ∩∗ = (−1⊕ 1) ◦ ∪, and s∗c = sc:

7→ 7→ 7→
−1

c 7→ c

.

The extra factor of −1 in ∩∗ may seem surprising, given that cap and cup do not appear

to have any colors to swap, and turning the morphism around just alternates between cap

and cup. We shall later see equations (29) and (30), which show the cap and cup do have

an implicit color that is swapped here. As with †, f∗∗ = f for any morphism f . Other

authors, such as Sobociński [29], have compared this second duality to the Bizarro World

in the Superman universe, where ‘good’ and ‘evil’ are swapped, leading them to refer to

this duality as ‘bizarro’ duality. Unlike the −† duality, the −∗ duality can be restricted to

a duality on FinVectk, in which case it is identifiable with transposition.1

3.1 Presenting FinVectk

As a warmup for our presentation of FinRelk, in this section we give a presentation

of a simpler PROP called FinVectk, in which the morphisms are linear maps, rather than

1It is also possible to encode complex numbers so that f∗ is the conjugate transpose of f , as in [30].

43

fully general linear relations. Our generators for FinVectk are a subset of our generators for

FinRelk: we simply leave out the cup and cap, and keep the rest. The equations amount

to saying:

1. (k,+, 0,∆, !) is a bicommutative bimonoid;

2. +, 0, ∆ and ! commute with scaling;

3. the rig operations of k can be recovered from the generators.

Here a rig is a ‘ring without negatives’, so the rig operations of k are the binary operations

of addition and multiplication, together with the nullary operations (or constants) 0 and 1.

In Definition 10, we said that in the PROP FinRelk the morphisms from m to n

are linear relations L : km 9 kn. We have seen that linear maps are a special case of linear

relations. Thus we make the following definition:

Definition 11 Let FinVectk be the subPROP of FinRelk whose morphisms are linear

maps.

One can check that FinVectk is equivalent as a symmetric monoidal category to

FinVectk, where the objects are all finite-dimensional vector spaces over k and where the

morphisms are linear maps between these.

Lemma 12 For any field k, the PROP FinVectk is generated by these morphisms:

1. scaling sc : k → k for any c ∈ k

2. addition +: k ⊕ k → k

3. zero 0: {0} → k

4. duplication ∆: k → k ⊕ k

5. deletion ! : k → {0}

44

Proof. By this we mean that every morphism in FinVectk can be obtained from

these morphisms using composition, tensor product, identity morphisms and the braiding.

A linear map in FinVectk, T : km → kn can be expressed as n k-linear combinations of

m elements of k. That is, T (k1, . . . , km) = (
∑

j a1jkj , . . . ,
∑

j anjkj), aij ∈ k. Any k-

linear combination of r elements can be constructed with only addition, multiplication,

and zero, with zero only necessary when providing the unique k-linear combination for

r = 0. When r = 1, a1(k1) is an arbitrary k-linear combination. For r > 1, +(Sr−1, ar(kr))

yields an arbitrary k-linear combination on r elements, where Sr−1 is an arbitrary k-linear

combination of r − 1 elements. The inclusion of duplication allows the process of forming

k-linear combinations to be repeated an arbitrary (finite) positive number of times, and

deletion allows the process to be repeated zero times. When n k-linear combinations are

needed, each input may be duplicated n− 1 times. Because FinVectk is being generated as

a PROP, the mn outputs can then be permuted into n collections of m outputs: one output

from each input for each collection. Each collection can then form a k-linear combination,

as above. The following diagrams illustrate the pieces that form this inductive argument.

k1

a1

a1k1

r−1∑
j=1

ajkj

ar

kr

r∑
j=1

ajkj

k1

ai1

ai1k1k1

r−1∑
j=1

aijkj

kr
r∑
j=1

aijkj

air

kr

Since scaling provides the map k1 7→ a1k1, as in the far left diagram, the middle-left

diagram can be used inductively to form a k-linear combination of any number of inputs. In

particular, we have any linear map Sr : km → k given by (k1, . . . , km) 7→ (
∑

j arjkj). Using

duplication as in the middle-right diagram, one can produce the map k1 7→ (k1, ai1k1), to

45

which the right diagram can be inductively applied. Thus we can build any linear map,

Tj ∈ FinVectk, Tj : km → km+1 given by (k1, . . . , km) 7→ (k1, . . . , km,
∑

j aijkj). If we

represent the identity map on kr as 1r, the r-fold monoidal product of the identity map on

k, any linear map T : km → kn can be given by (k1, . . . , km) 7→ (
∑

j a1jkj , . . . ,
∑

j anjkj),

which can be expressed as T = (S1 ⊕ 1n−1)(T2 ⊕ 1n−2) · · · (Tn−1 ⊕ 11)Tn. The above works

as long as m,n 6= 0. Otherwise, f : km → {0} can be written as an m-fold tensor product of

deletion, !m, and f : {0} → kn can be written as an n-fold tensor product of zero, 0n. Since

f : {0} → {0} is the monoidal unit, this has an empty diagram for its string diagram.

It is easy to see that the morphisms given in Lemma 12 obey the following 18

equations:

(1)–(3) Addition and zero make k into a commutative monoid:

= = =

(4)–(6) Duplication and deletion make k into a cocommutative comonoid:

= = =

(7)–(10) The monoid and comonoid structures on k fit together to form a bimonoid:

= = = =

(11)–(14) The rig structure of k can be recovered from the generating morphisms:

46

c

b

=bc b+c = b c 1 = 0 =

(15)–(16) Scaling commutes with addition and zero:

c c

=
c c =

(17)–(18) Scaling commutes with duplication and deletion:

c c
=

c c =

.

In fact, these equations are enough: any two ways of drawing a linear map as a

signal-flow diagram can be connected using these equations. That is, together with the

generators, they give a presentation of FinVectk as a PROP. More precisely, the generating

morphisms are the F-images of a signature ΣFinVectk , these 18 equations are the 2|k|2 +

4|k| + 12 pairs2 of Σ-terms EFinVectk , and FinVectk is the coequalizer of FEFinVectk ⇒

FΣFinVectk . Thus FinVectk is the PROP presented by the symmetric monoidal theory

(ΣFinVectk , EFinVectk).

Theorem 13 The PROP FinVectk is presented by the generators given in Lemma 12, and

equations (1)–(18) as listed above.

2Equations (11) and (12) listed above are each |k|2 pairs of Σ-terms, and equations (15)–(18) are each
|k| pairs of Σ-terms.

47

Proof. To prove this, we find a standard form for morphisms in FinVectk and

use Theorem 8. That is, it suffices to show that any string diagram built from generating

morphisms and the braiding can be put into a standard form using topological equivalences

and equations (1)–(18).

A qualitative description of this standard form will be helpful for understanding

how an arbitrary string diagram can be rewritten in this form. By way of example, consider

the linear transformation T : R3 → R2 given by

(x1, x2, x3) 7→ (y1, y2) = (3x1 + 7x2 + 2x3, 9x1 + x2).

Its standard form looks like this:

x1 x2 x3

3 9 7 1 2 0

y1 y2 .

This is a string diagram picture of the following equation:

Tx =

 3 7 2

9 1 0

x1

x2

x3

 =

 y1

y2

 .

In general, given a k-linear transformation T : km → kn, we can describe it using

an n×m matrix with entries in k. The case where m and/or n is zero gives a matrix with

no entries, so their standard form will be treated separately. For positive values of m and

n, the standard form has three distinct layers. The top layer consists of m clusters of n− 1

instances of ∆. The middle layer is mn scalings. The n outputs of the jth cluster connect

to the inputs of the scalings by {a1j , . . . , anj}, where aij is the ij entry of A, the matrix for

48

T . The bottom layer consists of n clusters of m − 1 instances of +. There will generally

be braiding in this layer as well, but since the category is being generated as symmetric

monoidal, the locations of the braidings doesn’t matter so long as the topology of the string

diagram is preserved. The topology of the sum layer is that the ith sum cluster gets its m

inputs from the outputs of the scalings by {ai1, . . . , aim}. The arrangement of the instances

of ∆ and + within their respective clusters does not matter, due to the associativity of +

via equation (2) and coassociativity of ∆ via equation (5). For the sake of making the

standard form explicit with respect to these equations, we may assume the right output of

a ∆ is always connected to a scaling input, and the right input of a + is always connected

to a scaling output. This gives a prescription for drawing the standard form of a string

diagram with a corresponding matrix A.

The standard form for T : k0 → kn is n zeros (0⊕ · · · ⊕ 0), and the standard form

for T : km → k0 is m deletions (!⊕ · · ·⊕ !).

Each of the generating morphisms can easily be put into standard form: the string

diagrams for zero, deletion, and scaling are already in standard form. The string diagram

for duplication (resp. addition) can be put into standard form by attaching the scaling s1,

equation (13), to each of the outputs (resp. inputs).

1 1

=
1 1

=

The braiding morphism is just as basic to our argument as the generating morphisms,

so we will need to write the string diagram for B in standard form as well. The matrix

corresponding to braiding is 0 1

1 0

 ,
49

so its standard form is as follows:

=
0 1 1 0

.

For n > 1, any morphism built from n copies of the basic morphisms—that

is, generating morphisms and the braiding—can be built up from a morphism built from

n−1 copies by composing or tensoring with one more basic morphism. Thus, to prove that

any string diagram built from basic morphisms can be put into its standard form, we can

proceed by induction on the number of basic morphisms.

Furthermore, because strings can be extended using the identity morphism, equa-

tion (13) can be used to show tensoring with any generating morphism is equivalent to

tensoring with 1, followed by a composition: ∆ = ∆ ◦ 1, + = 1 ◦ +, c = 1 ◦ c, ! = ! ◦ 1,

0 = 1 ◦ 0. In the case of braiding, the step of tensoring with 1 is repeated once before

making the composition: B = (1⊕ 1) ◦B.

⊕ G = ⊕

G

= ⊕

G

1 1

Thus there are 11 cases to consider for this induction: ⊕1, +◦, ◦∆, ∆◦, ◦+, ◦c, c◦, ◦0, !◦,

B◦, ◦B. Without loss of generality, the string diagram S to which a generating morphism

is added will be assumed to be in standard form already. Labels ij on diagrams illustrating

these cases correspond to strings incident to the scalings by aij .

• ⊕1

When tensoring morphisms together, the matrix corresponding to C ⊕ D is the block

50

diagonal matrix C 0

0 D

 ,
where, by abuse of notation, the block C is the matrix corresponding to morphism C,

and respectively D with D. Thus, when tensoring S by 1, we write the matrix for S

with one extra row and one extra column. Each of these new entries will be 0 with the

exception of a 1 at the bottom of the extra column. The string diagram corresponding

to the new matrix can be drawn in standard form as prescribed above. Using equations

(14), (4), and (1), the standard form reduces to S ⊕ 1. The process is reversible, so if

the string diagram S can be drawn in standard form, the string diagram S ⊕ 1 can be

drawn in standard form, too. The diagrams below show the relevant strings before they

are reduced.

0

n+1,jnj

2j1j

1

n+1,m+10

n,m+10

2,m+1

0

1,m+1

i,m+1

im

i2i1

Note that for i = n + 1, ai2 = · · · = aim = 0, so the scalings going to the sum cluster

will be s0, and ai,m+1 = 1. Otherwise ai,m+1 = 0, and the rest of the aij depend on the

matrix corresponding to S. When S = (! ⊕ · · · ⊕ !), the matrix corresponding to S ⊕ 1

has a single row, (0 · · · 0 1), and the standard form generated is just the middle diagram

above. When the same simplifications are applied, no sum cluster exists to eliminate the

zeros, so the standard form still simplifies to S ⊕ 1. Dually, when S = (0⊕ · · · ⊕ 0), the

matrix representation of S ⊕ 1 is a column matrix. No duplication cluster exists in the

standard form for this matrix, so the same simplifications again reduce to S ⊕ 1.

51

• +◦

If we compose the string diagram for addition with S, first consider only the affected

clusters of additions: two clusters are combined into a larger cluster. Without loss of

generality we can assume these are the first two clusters, or formally, (+⊕ 1n−2)(S). We

can rearrange the sums using the associative law, equation (2), and permute the inputs

of this large cluster using the commutative law, equation (3). After several iterations of

these two equations, the desired result is obtained:

1m

1211

2m

2221

=
1m 2m

12 2211 21

.

Now the right side of equation (12) appears in the diagram m times with a1j and a2j

in place of b and c. Equation (12) can therefore be used to simplify to the scalings of

a1j + a2j .

a1j+a2j=a2ja1j

The simplification removes one instance of ∆ from each of the m clusters of ∆ and m

instances of + from the large addition cluster. There will remain (m − 1) + (m − 1) +

(1) − (m) = m − 1 instances of +, which is the correct number for the cluster. I.e. the

composition has been reduced to standard form.

The argument is vastly simpler if S = (0⊕ · · · ⊕ 0). In that case equation (1) deletes the

addition and one of the 0 morphisms, and S is still in the same form.

52

=

• ◦∆

The argument for S ◦ (∆⊕1m−2) is dual to the above argument, using the light equations

(4), (5) and (6) instead of the dark equations (1), (2) and (3).

• ∆◦

For (∆⊕ 1n−1) ◦S, equation (7) can be used iteratively to ‘float’ the ∆ layer above each

of the two + clusters formed by the first iteration.

1m

11 12

=

11 12

1m

=

11 12 1m· · ·

Each of these instances of ∆ can pass through the scaling layer to ∆ clusters using

equation (17).

As before, we consider the subcase S = (0 ⊕ · · · ⊕ 0) separately. Equation (8) removes

the duplication and creates a new zero, so S remains in the same form.

• ◦+

For S(+⊕1m−1), the argument is dual to the previous one: equation (7) is used to ‘float’

the additions down, equation (15) sends the additions through the scalings, and equation

(9) removes the addition and creates a new deletion in the subcase S = (!⊕ · · ·⊕!).

• ◦sc

We can iterate equation (17) when a scaling is composed on top, as in S(sc ⊕ 1m−1).

53

c

11 21

n1

=

c c c

11 21 · · · n1

The double scalings in the scaling layer reduce to a single scaling via equation (11),

sc ◦aij = caij , which leaves the diagram in standard form. The composition does nothing

when S = (!⊕ · · · ⊕ !), due to equation (18).

• sc◦

A dual argument can be made for (sc ⊕ 1n−1) ◦ S using equations (15), (11) and (16).

• ◦0

For S(0⊕1m−1), equations (8) and (16) eradicate the first ∆ cluster and all the scalings

incident to it, leaving behind n zeros. Equation (1) erases each of these zeros along with

one addition per addition cluster, leaving a diagram that is in standard form.

11 21

n1
= · · ·

11 21 n1
ai1 =

i2

i3

im
=

i2 i3

im

When S = (!⊕ · · · ⊕ !), the zero annihilates one of the deletions via equation (10).

• !◦

A dual argument erases the indicated output for the composition (! ⊕ 1n−1) ◦ S using

equations (9), (18), and (4). Again, equation (10) annihilates the deletion and one of

the zeros if S = (0⊕ · · · ⊕ 0).

• B◦

Since this category of string diagrams is symmetric monoidal, an appended braiding will

54

naturally commute with the addition cluster morphisms. The principle that only the

topology matters means the composition (B ⊕ 1n−2) ◦ S is in standard form. Braiding

will similarly commute with deletion morphisms.

= =

• ◦B

Composing with B on the top, braiding commutes with duplication, scaling and zero, so

S ◦ (B ⊕ 1m−2) almost trivially comes into standard form.

Having exhausted the ways basic morphisms can be attached to a given morphism, this

completes the induction.

An interesting exercise is to use these equations to derive an equation that ex-

presses the braiding in terms of other basic morphisms. One example of such a relation

appeared in the introduction, Section 1.2. Here is another:

−1 −1=

.

With a few more equations, FinVectk can be presented as merely a monoidal category.

Lafont [23] mentioned this fact, and gave a full proof in the special case where k is the field

with two elements.

3.2 Presenting FinRelk

Lemma 14 For any field k, the PROP FinRelk is generated by these morphisms:

55

• addition +: k ⊕ k 9 k

• zero 0: {0}9 k

• duplication ∆: k 9 k ⊕ k

• deletion ! : k 9 {0}

• scaling sc : k 9 k for any c ∈ k

• cup ∪ : k ⊕ k 9 {0}

• cap ∩ : {0}9 k ⊕ k

Proof. A morphism of FinRelk, R : km 9 kn is a subspace of km⊕kn ∼= km+n. In

FinRelk this isomorphism is an equality. This subspace can be expressed as a system of k-

linear equations in km+n. Theorem 13 tells us any number of arbitrary k-linear combinations

of the inputs may be generated. Any k-linear equation of those inputs can be formed by

setting such a k-linear combination equal to zero. In particular, if caps are placed on each

of the outputs to make them inputs and all the k-linear combinations are set equal to zero,

any k-linear system of equations of the inputs and outputs can be formed. Expressed in

terms of string diagrams,

km+n . . . km+1

fi

.

The left diagram turns the n outputs into inputs by placing caps on all of them. The

morphism zero gives the k-linear combination zero, so an arbitrary k-linear combination

in km+n is set equal to zero (fi = 0) via the cozero morphism. These elements can be

combined with Theorem 13 to express any system of k-linear equations in km+n.

56

Putting these elements together, taking the FinVectk portion as a black box and

drawing a single string for zero or more copies of k, the picture is fairly simple:

.

To obtain a presentation of FinRelk as a PROP, we need to find enough equa-

tions obeyed by the generating morphisms listed in Lemma 14. Equations (1)–(18) from

Theorem 13 still apply, but we need more.

For convenience, in the list below we draw the adjoint of any generating morphism

by rotating it by 180◦. It will follow from equations (19) and (20) that the cap is the

adjoint of the cup, so this convenient trick is consistent even in that case, where a priori

there might have been an ambiguity.

(19)–(20) ∩ and ∪ obey the zigzag equations, and thus give a †-compact category:

= =

(21)–(22) (k,+, 0,+†, 0†) is a Frobenius monoid:

= =

(23)–(24) (k,∆†, !†,∆, !) is a Frobenius monoid:

= =

57

(25)–(26) The Frobenius monoid (k,+, 0,+†, 0†) is extra-special:

= =

(27)–(28) The Frobenius monoid (k,∆†, !†,∆, !) is extra-special:

= =

(29) ∪ with a scaling of −1 inserted can be expressed in terms of + and 0:

−1 =

(30) ∩ can be expressed in terms of ∆ and !:

=

(31) For any c ∈ k with c 6= 0, scaling by c−1 is the adjoint of scaling by c:

c = c−1

.

Some curious identities can be derived from equations (1)–(31), beyond those

already arising from (1)–(18). For example:

(D1)–(D2) Deletion and zero can be expressed in terms of other generating morphisms:

58

=
(27)

=
(30)†

=
(28)

=
(14)

0 =
(D1)† 0

.

This does not diminish the role of deletion and zero. Indeed, regarding these generating

morphisms as superfluous buries some of the structure of FinRelk.

(D3) Addition can be expressed in terms of coaddition and scaling by −1, and the cup:

−1
=

(29)
=

(21)
=

(1)†

.

(D4) Duplication can be expressed in terms of coduplication and the cap:

=

,

where the proof is similar to that of (D3).

(D5)–(D7) We can reformulate the bimonoid equations (7)–(9) using daggers:

=

= =

.

59

(D8)–(D9) When c 6= 1, we have:

c = c =

.

Derived equations (D5)–(D8) are used below, and their proofs can be found in Appendix A.

While derived equation (D9) is not used below, it is dual to equation (D8). With a different

standard form on FinRelk, equation (D9) would be used in the proof of Theorem 15 below

instead of equation (D8).

Next we show that equations (1)–(31) are enough to give a presentation of

FinRelk as a PROP. In terms of symmetric monoidal theories, this means FinRelk is the

coequalizer of FEFinRelk ⇒ FΣFinRelk , where the generating morphisms are the F-images of

the signature ΣFinRelk , and the Σ-terms of EFinRelk are these 31 equations. As before, we

demonstrate the presentation by giving a standard form that any FinRelk morphism can

be written in and use induction to show that an arbitrary diagram can be rewritten in its

standard form using the given equations.

Theorem 15 The PROP FinRelk is presented by the morphisms given in Lemma 14, and

equations (1)–(31) as listed above.

Proof. We prove this theorem by using the equations (1)–(31) to put any string

diagram built from the generating morphisms and braiding into a standard form, so that

any two string diagrams corresponding to the same morphism in FinRelk have the same

standard form.

As before, we induct on the number of basic morphisms involved in a string dia-

gram, where the basic morphisms are the generating morphisms together with the braiding.

If we let R : km 9 kn be a morphism in FinRelk, we can build a string diagram S for R

60

as in Lemma 14. Each output of S is capped, and, together with the inputs of S, form

inputs for a FinVectk block, T . For some r ≤ m + n, there are r outputs of T–linear

combinations of the m+ n inputs–each set equal to zero via (0†)r. When T is in standard

form for FinVectk, we say S is in prestandard form, and can be depicted as follows:

.

While the linear subspace of km+n defined by R is determined by a system of r linear equa-

tions, the converse is not true, meaning there may be multiple prestandard string diagrams

for a single morphism R. The second stage of this proof collapses all the prestandard forms

into a standard form using some basic linear algebra. The standard form will correspond

to when the matrix representation of T is written in row-reduced echelon form. For this

stage it will suffice to show all the elementary row operations correspond to equations that

hold between diagrams. By Theorem 13, an arbitrary FinVectk block can be rewritten in

its standard form, so the FinVectk blocks here need not be demonstrated in their standard

form.

There are eight base cases of a string diagram with one basic morphism to consider, one

case per basic morphism. In each of these basic cases, the block of the diagram equivalent

to a morphism in FinVectk is denoted by a dashed rectangle. We first consider ∪.

(D10)

=
(13)

(11)

−1

−1

=
(29)

−1

Capping each of the inputs turns this into the standard form of ∩. Aside from deletion,

61

the remaining generating morphisms can be formed by introducing a zigzag at each output

and rewriting the resulting cups as above. The standard forms for 0 and ! have simpler

expressions.

=

−1

c =

−c

=

−1

= =

−1

=

Braiding is two copies of s1 (scaling by 1) that have been braided together.

=

−1 −1

Assuming any string diagram with j basic morphisms can be written in prestandard form,

we show an arbitrary diagram with j + 1 basic morphisms can be written in prestandard

form as well. Let S be a string diagram on j basic morphisms, rewritten into prestandard

form, with a maximal FinVectk subdiagram T . Several cases are considered: those putting

a basic morphism above S, beside S, and below S.

• S ◦G for a basic morphism G 6= ∩

If a diagram G is composed above S, G can combine with T to make a larger FinVectk

subdiagram if G is c, ∆, +, B, or 0, as these are morphisms in FinVectk. The generating

62

morphisms ∩, ∪ and ! are not on this list, though a composition with ∪ (resp. !) would

be equivalent to tensoring by ∪ (resp. !).

=

G

for

G = c

, , , , or

Putting these morphisms on top of S reduces to performing those compositions on T .

The maximal FinVectk subdiagram now includes T and G, with S unchanged outside

the FinVectk block.

• B ◦ S

B commutes with caps because the category is symmetric monoidal, so capping the

braiding is equivalent to putting the braiding on top of T . B is ‘absorbed’ into T , just

as in the S ◦G case.

• S ⊕G for any basic morphism G

If any two prestandard string diagrams S and S′ are tensored together, the result combines

into one prestandard diagram. This is evident because the category of string diagrams

is symmetric monoidal, and the FinVectk blocks can be placed next to each other as

the tensor of two FinVectk blocks. These combine into a single FinVectk block, and

absorbing all the braidings into this block as above brings the diagram into prestandard

form. Since each basic morphism can be written as a prestandard diagram, the tensor

S ⊕G is a special case of this.

⊕
=

63

• sc ◦ S for c 6= 0

Because the outputs of S are capped, putting any morphism on the bottom of S is

equivalent (via equations (19) and (20)) to putting its adjoint on top of T . Putting

c 6= 0 below S reduces to putting c−1 on top of T by equation (31). The case of s0 will

be considered below. The other cases of adjoints of generating morphisms that need to

be considered more carefully are the ones that put ∆†, +† and ∩ = ∪† on top of T .

c =

c−1

• ∆ ◦ S

When putting ∆† on top of T , the idea is to make it ‘trickle down.’ If there is a nonzero

scaling incident to the ∆ cluster, ∆† can slide through the ∆s using equation (23) to the

first nonzero scaling, switching to equation (24). When it encounters this sc, equation

(31) turns c into (c−1)†, equation (17)† allows ∆† to pass through (c−1)†. Both copies of

(c−1)† can return to being c by another application of equation (31), and the ∆† moves

on to the next layer.

0

=
(23) 0

c

=
(24)

c c

=
(31)†

c−1

=
(17)†

c−1 c−1

=
(31)†

c c

When the codelta gets to a + cluster, derived equation (D5) has a net effect of bringing it

to the bottom of the subdiagram, as the other morphisms involved all belong to FinVectk.

This allows the process to be repeated on the next addition until ∆† reaches the bottom

of the + cluster. Once there, codelta interacts with the cozero layer below T ; equation

(8)† reduces it to a pair of cozeros.

64

=
(D5)

=
(8)†

If all the scalings incident to the ∆ cluster are by 0, rather than trickling down, ∆†

composes with ! (due to equation (14)), which gives ∪ by equation (30)†. By the zigzag

identities, this cup becomes a cap that is tensored with a subdiagram of S that is in

prestandard form.

0 0 0

=
(14)
(4) · · ·

=
(30)†

· · ·

• + ◦ S

There is a similar trickle down argument for +†. First rewriting all instances of s0 via

equation (14), the two ∆ clusters incident to the coaddition can either reduce to ∆

clusters that are incident only to nonzero scalings or reduce to a single deletion, as above,

if all incident scalings were s0. There are three cases of what can happen from here.

– Both ∆ clusters were incident to only s0

In the first case, as above, the ∆ clusters will reduce to ! incident to the outputs of +†.

Equations (D7) and (28) delete the coaddition.

– One ∆ cluster was incident to only s0

Without loss of generality, the ! incident to +† is on the left. Equation (D7) replaces

! and +† with !†◦!, and equation (30) replaces ∆ and !† with a cap. The ∆ was – and

the cap is – incident to some scaling sc, c 6= 0. Without loss of generality, sc is incident

65

to the bottom addition in the cluster. Equation (29) replaces the addition and cozero

with a cup and s−1, which combines with sc by equation (11). The cup and cap turn

s−c around to its adjoint, which is scaling by −c−1, by equation (31).

c

=
(D7)†

(30)
c

c =
(29)
(11)

−c =
(31)

−c−1

An addition cluster is above the −c−1 scaling and a duplication cluster is below, but

because those clusters are not otherwise connected to each other, there is a vertical

arrangement of the morphisms in the FinVectk block of the string diagram such that

no cups or caps are present.

– Both ∆ clusters are incident to at least one nonzero scaling

Using equation (D5)†, a +† will pass through one ∆ at a time. A new ∆† is created

each time, but this can trickle down as before.

=

Once the ∆† trickles down, there are two possibilities for what is directly beneath each

+†: either the same scenario will recur with a ∆ connected to one or both outputs,

which can only happen finitely many times, or two nonzero scalings will be below the

+†. A scaling by any unit in k, i.e. c 6= 0, can move through a coaddition by inserting

c−1c on the top branch and applying equation (15)†:

66

c

=

c

c−1

.

This allows one of the outputs of the coaddition to connect directly to a + cluster.

∗ If both branches go to different + clusters, Frobenius equations (21)–(22)

slide the +† down the + cluster on one side until it gets to the end of that cluster.

c
=

(21)
(22)

c

The only morphisms added to the FinVectk block that are not from FinVectk were

the coaddition and the cozero. Since these reduce to an identity morphism string by

equation (1)†, the FinVectk block is truly a FinVectk block again.

∗ If both branches go to the same + cluster, equation (3) and the Frobenius

equation (21) take both branches to the same addition.

c =
(3)
(21)

c

Depending on whether the remaining scaling is s1, either equation (25) reduces the

coaddition and the given addition to an identity string or equation (D8) applies. In

the former case we are done, and in the latter case equations (D7) and (10)† remove

the !† introduced by applying equation (D8).

67

=
(D7) =

(D7)
=

(10)†

• ∪ ◦ S and S ◦ ∩

Composing with a cup below S is equivalent to composing with cap above T , since ∩ = ∪†.

Using equation (D10)†, this cap can be replaced by s−1, coaddition, and zero. By the

arguments above, s−1, +†, and 0 can each be absorbed into the FinVectk block.

=
(D10)† −1

= = =

The compositions with zero and s−1 expand the FinVectk block, thus have no effect on

whether the diagram can be written in prestandard form.

• ! ◦ S

When composing !† above T , two possibilities arise, depending on whether there is a layer

of ∆s in the FinVectk block. If there is such a layer, equation (30) combines the !† with a

∆, making a cap on top of T . As we have just seen, this can be rewritten in prestandard

form.

= =
(30)

If no layer of ∆s exists, equations (31)† and (18)† pass the codeletion through a nonzero

scaling. Then equations (D7) and (10)† can be used to remove !†, as we have already

seen. This leaves only the basic morphisms of FinVectk within the FinVectk block.

68

c =
(31)†

c−1 =
(18)†

If the scaling is s0, equation (14) converts s0 to 0◦!, allowing equation (28) to remove

the !†, with the same conclusion.

0 =
(14)

=
(28)

• s0 ◦ S

Composing with s0 below S is equivalent to composing with codeletion, followed by

tensoring with zero. Codeletion is the !◦S case, and zero can be written in a prestandard

form, so this reduces to tensoring two diagrams that are in prestandard form.

0 =
(14)

Finally, we need to show the prestandard forms can be rewritten in standard form. We need

to show what elementary row operations look like in terms of string diagrams. We also need

to show for an arbitrary prestandard string diagram S with FinVectk block T that if T is

replaced with T ′, the diagram where an elementary row operation has been performed on

T , the resulting diagram S′ can be built from S using equations (1)–(31).

Because the ith output of a FinVectk diagram is a linear combinations of the

inputs, with the coefficients coming from the ith row of its matrix, rows of the matrix cor-

respond to outputs of the FinVectk block. Because of this, the row operation subdiagrams

in S′ will have 0†s immediately beneath them. Showing S′ can be built from S reduces to

showing composition of row operations with 0†s builds the same number of 0†s.

69

• Add a multiple c of one row to another row:

If we want to add a multiple of the β row to the α row, we need a map (yα, yβ) 7→

(yα + cyβ, yβ). By the naturality of the braiding in a symmetric monoidal category, we

can ignore any intermediate outputs:

c

yα yβ

yα + cyβ yβ
.

When two cozeros are composed on the bottom of this diagram, the result is two cozeros:

c =
(D10)

c

−1

=
(11)

−c =
(D6)

−c

=
(16)

.

• Swap rows:

If we want to swap the β row with the α row, we need a map (yα, yβ) 7→ (yβ, yα), which

is the braiding of two outputs. Again, intermediate outputs may be ignored:

yα

yα

yβ

yβ .

When two cozeros are composed at the bottom of this diagram, the cut strings untwist

by the naturality of the braiding:

70

= =

.

• Multiply a row by c 6= 0:

The third row operation is multiplying an arbitrary row by a unit, but since k is a field,

that means any c 6= 0. This is just the scaling map on one of the outputs:

c

yα

cyα .

Because c is a unit, c−1 ∈ k, so sc can be replaced by the adjoint of scaling by c−1.

c =
(31)†

c−1 =
(16)†

Given the PROP FinRelk, it is natural to consider the free PROP SigFlowk, which

is defined by the same generators, but has no equations. The morphisms in this PROP

are signal-flow diagrams3. The general considerations of Chapter 2 give a functor from

SigFlowk to any other PROP that has the same generators, which ‘imposes the equations’

of the target PROP. In particular, we get a PROP morphism � : SigFlowk → FinRelk. In

the state-space context, control theorists are only interested in a certain subcollection of

signal-flow diagrams, which correspond to the state-space equations:

ẋ = Ax+Bu

y = Cx+Du,

3Because a free PROP must still respect the equations of the symmetry, our signal-flow diagrams are
isomorphism classes of string diagrams.

71

where A, B, C and D are linear maps; and u, y, and x are input, output, and state vectors,

respectively. We formalize this correspondence in Chapter 5. Intuitively, SigFlow is ‘too

big’ and FinRel is ‘too small’, so we consider two ways to get a Goldilocks PROP: Stateful

and ContFlow.

The PROP ContFlow is the most coarse subPROP of SigFlow whose morphisms

include the subcollection of signal-flow diagrams that correspond to the state-space equa-

tions. We show ContFlow does not have any morphisms outside of this subcollection.

While, roughly speaking, ContFlow is a way to ‘shrink’ SigFlow, Stateful is a way to

‘grow’ FinRel. These two approaches are explored in further detail in the following two

chapters.

3.3 An example

θ

m

`

M

x

y

F

Figure 3.1: Schematic diagram of an inverted pendulum.

A famous example in control theory is the ‘inverted pendulum’: an upside-down

pendulum on a cart [14]. The pendulum naturally tends to fall over, but we can stabilize

it by setting up a feedback loop where we observe its position and move the cart back and

72

forth in a suitable way based on this observation. Without introducing this feedback loop,

let us see how signal-flow diagrams can be used to describe the pendulum and the cart. We

shall see that the diagram for a system made of parts is built from the diagrams for the

parts, not merely by composing and tensoring, but also with the help of duplication and

coduplication, which give additional ways to set variables equal to one another.

Suppose the cart has mass M and can only move back and forth in one direction,

so its position is described by a function x(t). If it is acted on by a total force Fnet(t) then

Newton’s second law says

Fnet(t) = Mẍ(t).

We can thus write a signal-flow diagram with the force as input and the cart’s position as

output:

x

∫ ẋ

∫ ẍ

1
M

Fnet

.

The inverted pendulum is a rod of length ` with a mass m at its end, mounted on

the cart and only able to swing back and forth in one direction, parallel to the cart’s move-

ment. If its angle from vertical, θ(t), is small, then its equation of motion is approximately

linear:

`θ̈(t) = gθ(t)− ẍ(t),

73

where g is the gravitational constant. We can turn this equation into a signal-flow diagram

with ẍ as input and θ as output:

−1
`

∫
g
` ∫

ẍ

θ .

Note that this already includes a kind of feedback loop, since the pendulum’s angle affects

the force on the pendulum.

Finally, there is an equation describing the total force on the cart:

Fnet(t) = F (t)−mgθ(t),

where F (t) is an externally applied force and −mgθ(t) is the force due to the pendulum. It

will be useful to express this as follows:

74

−mg

Fnet θ

F

.

Here we are treating θ as an output rather than an input, with the help of a cap.

The three signal-flow diagrams above describe the following linear relations:

x =

∫ ∫
1

M
Fnet (3.1)

θ =

∫ ∫ (
g

`
θ − 1

`
ẍ

)
(3.2)

Fnet +mgθ = F , (3.3)

where we treat (3.1) as a linear relation with Fnet as input and x as output, (3.2) as a linear

relation with ẍ as input and θ as output, and (3.3) as a linear relation with F as input and

(Fnet, θ) as output.

To understand how the external force affects the position of the cart and the angle

of the pendulum, we wish to combine all three diagrams to form a signal-flow diagram that

has the external force F as input and the pair (x, θ) as output. This is not just a simple

matter of composing and tensoring the three diagrams. We can take Fnet, which is an

output of (3.3), and use it as an input for (3.1). But we also need to duplicate ẍ, which

appears as an intermediate variable in (3.1) since ẍ = 1
MFnet, and use it as an input for

(3.2). Finally, we need to take the variable θ, which appears as an output of both (3.2)

and (3.3), and identify the two copies of this variable using coduplication. To emphasize

the relational nature of the component, we shall write coduplication in terms of duplication

75

and a cup, as follows:

=

.

The result is this signal-flow diagram:

−mg

1
M

F

∫

∫

x

−1
`

∫
g
` ∫

θ .

This is not the signal-flow diagram for the inverted pendulum that one sees in

76

Friedland’s textbook on control theory [14]. We leave it as an exercise to the reader to

rewrite the above diagram using the rules given in this paper, obtaining Friedland’s diagram:

F

1
M

−1
M`

∫
∫

x

∫
∫−mg

M

(M+m)g
M`

θ .

As a start, one can use Theorem 15 to prove that it is indeed possible to do this rewriting.

To do this, simply check that both signal-flow diagrams define the same linear relation. The

proof of the theorem gives a method to actually do the rewriting—but not necessarily the

fastest method.

77

3.4 Related work

We conclude this chapter with some remarks aimed at setting it in context. This

chapter is heavily based on [3], so we would like to focus on comparisons with other papers

published around the same time. On April 30th, 2014, after much of [3] was written,

Sobociński told Baez about some closely related papers that he wrote with Bonchi and

Zanasi [6, 7]. These provide interesting characterizations of symmetric monoidal categories

equivalent to FinVectk and FinRelk. Later, while [3] was being refereed, Wadsley and Woods

[35] generalized the presentation of FinVectk to the case where k is any commutative rig.

We discuss Wadsley and Woods’ work first, since doing so makes the exposition simpler.

What we have called FinVectk here, Wadsley and Woods looked at from a slightly

different perspective, getting an isomorphic PROP Mat(k), where a morphism f : m →

n is an n × m matrix with entries in k, composition of morphisms is given by matrix

multiplication, and the tensor product of morphisms is the direct sum of matrices. Wadsley

and Woods gave an elegant description of the algebras of Mat(k). Suppose P is a PROP

and Q is a strict symmetric monoidal category. Then the category of algebras of P in Q is

the category of strict symmetric monoidal functors F : P → Q and natural transformations

between these. If for every choice of Q the category of algebras of P in Q is equivalent to the

category of algebraic structures of some kind in Q, we say P is the PROP for structures of

that kind.

In this language, Wadsley and Woods proved that Mat(k) is the PROP for ‘bi-

commutative bimonoids over k’. To understand this, first note that for any bicommutative

bimonoid A in Q, the bimonoid endomorphisms of A can be added and composed, giving

a rig End(A). A bicommutative bimonoid over k in Q is one equipped with a rig homo-

morphism ΦA : k → End(A). Bicommutative bimonoids over k form a category where a

morphism f : A → B is a bimonoid homomorphism compatible with this extra structure,

78

meaning that for each c ∈ k the square

A

B

A

B

ΦA(c)

ΦB(c)

f f

commutes. Wadsley and Woods proved that this category is equivalent to the category of

algebras of Mat(k) in Q.

This result amounts to a succinct restatement of Theorem 13, though technically

the result is a bit different, and the style of proof much more so. The fact that an algebra

of Mat(k) is a bicommutative bimonoid is equivalent to our equations (1)–(10). The fact

that ΦA(c) is a bimonoid homomorphism for all c ∈ k is equivalent to equations (15)–(18),

and the fact that Φ is a rig homomorphism is equivalent to equations (11)–(14).

Even better, Wadsley and Woods showed that Mat(k) is the PROP for bicommu-

tative bimonoids over k whenever k is a commutative rig. Subtraction and division are not

required to define the PROP Mat(k), nor are they relevant to the definition of bicommu-

tative bimonoids over k. Working with commutative rigs is not just generalization for the

sake of generalization: it clarifies some interesting facts.

For example, the commutative rig of natural numbers gives a PROP Mat(N). This

is equivalent to the symmetric monoidal category where morphisms are isomorphism classes

of spans of finite sets, with disjoint union as the tensor product. Lack [22, Ex. 5.4] had al-

ready shown that this is the PROP for bicommutative bimonoids. But this also follows from

the result of Wadsley and Woods, since every bicommutative bimonoid A is automatically

equipped with a unique rig homomorphism ΦA : N→ End(A).

Similarly, the commutative rig of booleans B = {F, T}, with ‘or’ as addition and

‘and’ as multiplication, gives a PROP Mat(B). This is equivalent to the symmetric monoidal

79

category where morphisms are relations between finite sets, with disjoint union as the

tensor product. Mimram [26, Thm. 16] had already shown this is the PROP for special

bicommutative bimonoids, meaning those where comultiplication followed by multiplication

is the identity:

=

.

But again, this follows from the general result of Wadsley and Woods.

Finally, taking the commutative ring of integers Z, Wadsley and Woods showed

that Mat(Z) is the PROP for bicommutative Hopf monoids. The key here is that scaling by

−1 obeys the axioms for an antipode, namely:

−1 = = −1

.

More generally, whenever k is a commutative ring, the presence of −1 ∈ k guarantees that

a bimonoid over k is automatically a Hopf monoid over k. So, when k is a commutative

ring, Wadsley and Woods’ result implies that Mat(k) is the PROP for Hopf monoids over

k.

Earlier, Bonchi, Sobociński and Zanasi gave an elegant and very different proof

that Mat(R) is the PROP for Hopf monoids over R when R is a principal ideal domain

[6, Prop. 3.7]. The advantage of their argument is that they build up the PROP for Hopf

monoids over R from smaller pieces, using some ideas developed by Lack [22].

These authors also proved that FinRelk is a pushout in the category PROP of

PROPs and PROP morphisms:

80

Mat(R) + Mat(R)op

Cospan(Mat(R))

Span(Mat(R))

FinRelk .

This pushout square requires a bit of explanation. Here R is any principal ideal

domain whose field of fractions is k. For example, we could take R = k, though Bonchi,

Sobociński and Zanasi are more interested in the example where R = R[s] and k = R(s). A

morphism in Span(Mat(R)) is an isomorphism class of spans in Mat(R). There is a covariant

functor

Mat(R) → Span(Mat(R))

m
f→ n 7→ m

1← m
f→ n

and also a contravariant functor

Mat(R) → Span(Mat(R))

m
f→ n 7→ n

f← m
1→ m.

Putting these together we get the functor from Mat(R) + Mat(R)op to Span(Mat(R)) that

gives the top edge of the square. Similarly, a morphism in Cospan(Mat(R)) is an isomor-

phism class of cospans in Mat(R), and we have both a covariant functor

Mat(R) → Cospan(Mat(R))

m
f→ n 7→ m

f→ n
1← n

and a contravariant functor

Mat(R) → Cospan(Mat(R))

m
f→ n 7→ n

1→ n
f← m.

Putting these together we get the functor from Mat(R) + Mat(R)op to Cospan(Mat(R)) that

gives the left edge of the square.

Bonchi, Sobociński and Zanasi analyze this pushout square in detail, giving explicit

presentations for each of the PROPs involved, all based on their presentation of Mat(R). The

81

upshot is a presentation of FinRelk which is very similar to our presentation of FinRelk.

Their methods allow them to avoid many, though not all, of the lengthy arguments that

involve putting morphisms in standard form.

82

Chapter 4

The PROP Stateful

4.1 Constructing categories of state

In the late 1950s and early 1960s, Kalman worked on the state-space approach to

control theory: In 1960 [18] he introduced the concepts of controllability and observability

into control theory, showing in 1963 [19] how these concepts can be used to decompose an

arbitrary linear control system into four parts. He showed in the time-invariant case, these

four parts are actual subsystems. Earlier work in control theory had focused on transfer

functions, defined as the ratio of a transform (typically the Laplace transform) of the output

of a system by the transform of the input of the system. Kalman showed transfer functions

only capture the part of the system that is both controllable and observable: uncontrollable

parts of the system do not depend on the input, and unobservable parts of the system do

not affect the output.

The morphisms of FinVectk and FinRelk are completely determined by how the

input relates to the output, so while they are reasonable models for the frequency analysis

approach and its transfer functions, they are unsatisfactory as models for the state-space

approach. Our goal here is to define new categories based on FinVectk and FinRelk to

83

address the shortcomings of these PROPs in the state-space context for linear time-invariant

systems.

Kalman’s concepts of controllability and observability apply to systems of differ-

ential equations of the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),

where u(t) is the input vector, y(t) is the output vector, and x(t) is the state vector. Written

as a signal-flow diagram, such a system looks like

A

B

∫

C

D

After taking Laplace transforms, we may also write the output y in terms of the input u

simply as

y = (D + C(sI −A)−1B)u.

Here the term Du gives the ‘direct’ dependence of output on input, while the other term,

C(sI −A)−1B)u, gives its ‘indirect’ dependence, mediated by the state x. We can visualize

this split into direct and indirect terms as a noncommuting square

84

V1

S T

V2
D

B

(sI −A)−1

C

,

where D goes directly from the vector space V1 containing the input to the space V2 contain-

ing the output, while the other arrows compose to give the ‘indirect’ map C(sI − A)−1B.

More abstractly, we can write such a square simply as

V1

S T

V2
d

b

a

c

,

Squares of this form serve as the morphisms in the PROPs we consider now.

4.2 The Box construction

In pursuit of this goal, we define a new construction that, for a suitable symmetric

monoidal category C, forms a new symmetric monoidal category �C. The full details of

how this works can be found in Appendix B. For this section we will focus on the particular

case of the PROP �(FinVectk).

Definition 16 The category �(FinVectk) has

• the same objects as FinVectk (i.e. vector spaces kn),

• morphisms that are equivalence classes of

V1 V1 ⊕ V1 V1 ⊕ S V1 ⊕ T V2 ⊕ V2 V2
∆ idV1 ⊕ b idV1 ⊕ a d⊕ c m

,

abbreviated (d, c, a, b),

85

• composition given by

(d′, c′, a′, b′) ◦ (d, c, a, b) =

d′d, [d′c c′],

 a 0

a′b′ca a′

 ,
 b

b′d

 .

The morphisms of �(FinVectk) can be depicted as non-commuting squares:

V1

S T

V2
d

b

a

c

,

which explains the Box in the name of the category. Two squares, (d, c, a, b) and (d′, c′, a′, b′)

are in the same equivalence class if there are isomorphisms α : S → S′ and ω : T → T ′ in

FinVectk such that the following diagram in FinVectk commutes:

V1

S T

V2

S′ T ′
b′

b

a

α

c

ω

a′ c′

.

Since �(FinVectk) has the same objects as FinVectk, it is clear that �(FinVectk) is a

skeletal category.

We refer to the objects S and T as the prestate space and state space, respectively.

The formula for composition of morphisms in �(FinVectk) can be understood as coming

from the diagram:

86

V1

S1 T1

V2 V3

S2 T2

S1 ⊕ S2 T1 ⊕ T2

c c′

π1 π2

d

b

d′

b′

a

ι1
a′

ι2

a⊕ a′

.

The b and c sides in the composite come from the pentagons on the left and right, respec-

tively. That is, b comes from summing the paths from V1 to S1 ⊕ S2, and c comes from

summing the paths from T1 ⊕ T2 to V3. Similarly, the a side in the composite comes from

the paths from S1 ⊕ S2 to T1 ⊕ T2, which includes the direct path a ⊕ a′ (taking S1 to T1

and S2 to T2) and a looped path that goes through a ⊕ a′ twice (taking S1 to T2). The d

side in the composite comes from the most direct path from V1 to V3.

Theorem 17 The category �(FinVectk) is a monoidal category with direct sum of vector

spaces as the monoidal product on objects of �(FinVectk), and (d, c, a, b) ⊕ (d′, c′, a′, b′) =

(d⊕ d′, c⊕ c′, a⊕ a′, b⊕ b′) as the monoidal product on morphisms.

Proof. To show �(FinVectk) is a category, we need to show the composition is

well-defined and associative, and the unit laws hold. To show �(FinVectk) is a monoidal

category, we also need to show the associators and unitors exist and satisfy the pentagon and

triangle equations. We start by showing composition in �(FinVectk) is well-defined. Given

two composable morphisms, f : V1 → V2 and g : V2 → V3 with representatives (d1, c1, a1, b1)

and (d′1, c
′
1, a
′
1, b
′
1) for f and (d2, c2, a2, b2) and (d′2, c

′
2, a
′
2, b
′
2) for g, we have the following

commutative diagrams:

87

V1

S1 T1

V2

S′1 T ′1

b′1

b1

a1

α1

c1

ω1

a′1
c′1

and

V2

S2 T2

V3

S′2 T ′2

b′2

b2

a2

α2

c2

ω2

a′2
c′2

.

We leave it as an exercise to the reader to show α12 = α1 ⊕ α2 : S1 ⊕ S2 → S′1 ⊕ S′2 and

ω12 = ω1⊕ω2 : T1⊕T2 → T ′1⊕T ′2 are the isomorphisms required to make the corresponding

diagram for g ◦ f commute.

It is easy to verify that

V

0 0

V
1V

is a left and right identity morphism in �(FinVectk). The associators and unitors can be

formed by the same trick, but these (along with the pentagon and triangle equations) are

trivial since FinVectk is a strict monoidal category. It is also easy to see the monoidal

product on morphisms is compatible with composition, so it remains to show composition

in �(FinVectk) is associative.

Aside from the source and target objects, morphisms in �(FinVectk) have six

pieces of data: the prestate space, the state space, and four linear maps, d, c, a, and b.

88

To check associativity in �(FinVectk), we need to ensure both groupings of f3 ◦ f2 ◦ f1 of

composable morphisms in �(FinVectk) give the same results for all six of these pieces of

data. The prestate space and the state space will be the same, thanks to the associativity of

the monoidal product in FinVectk. Denoting the compositions (dj , cj , aj , bj) ◦ (di, ci, ai, bi)

as (dij , cij , aij , bij), we get (d3, c3, a3, b3) ◦ (d12, c12, a12, b12) = (d12,3, c12,3, a12,3, b12,3):

V1 V3 V4

S1 ⊕ S2 T1 ⊕ T2 S3 T3

=

V1 V4

(S1 ⊕ S2)⊕ S3 (T1 ⊕ T2)⊕ T3

d12

b12

d3

b3

a12 a3

c12 c3

d12,3

b12,3

a12,3

c12,3

and (d23, c23, a23, b23) ◦ (d1, c1, a1, b1) = (d1,23, c1,23, a1,23, b1,23):

X1 X2 X4

S1 T1 S2 ⊕ S3 T2 ⊕ T3

=

X1 X4

S1 ⊕ (S2 ⊕ S3) T1 ⊕ (T2 ⊕ T3)

d1

b1

d23

b23

a1 a23

c1 c23

d1,23

b1,23

a1,23

c1,23

.

For the linear map data, d, c, a, and b, the associativity of �(FinVectk) requires

d12,3 = d1,23, c12,3 = c1,23, a12,3 = a1,23, and b12,3 = b1,23. It is clear that the associativity

requirement for d is met because composition of linear maps is associative in FinVectk —

d1,23 = d1(d2d3) = (d1d2)d3 = d12,3. We see the associativity requirement for a is met

because aij =

 ai 0

ajbjciai aj

 , which means

a12,3 =

 a12 0

a3b3c12a12 a3

 =

 a1

a2b2c1a1

0

a2

 0

0

[a3b3d2c1a1 + a3b3c2a2b2c1a1 a3b3c2a2] a3

 ,

since c12 = [d2c1 c2]. A similar calculation gives the same matrix, grouped slightly differ-

89

ently, for a1,23,

a1,23 =

a1 0 0 a2b2c1a1

a3b3d2c1a1 + a3b3c2a2b2c1a1

 a2

a3b3c2a2

0

a3

 .

The proofs that c and b meet their respective associativity requirements are similar

to each other, transposed. We present the argument for c and leave the argument for b to

the reader. Since cij = [djci cj], we have

c12,3 = [d3c12 c3]

= [d3[d2c1 c2] c3]

= [[d3d2c1 d3c2] c3]

= [d3d2c1 [d3c2 c3]]

= [d23c1 c23] = c1,23.

So we see composition of morphisms in �(FinVectk) is associative.

These kinds of manipulations of �(FinVectk) make more sense when �(FinVectk)

is understood as a category with an obvious evaluation functor eval : �(FinVectk) →

FinVectk. We can also find a ‘feedthrough’ functor feed: �(FinVectk) → FinVectk and

a functor in the reverse direction Box: FinVectk → �(FinVectk). The map of objects

eval0 : Ob(�(FinVectk))→ Ob(FinVectk) is trivial, feed0 = eval0, and Box0 is its inverse.

The map of morphisms eval1 : Mor(�C) → Mor(C) is given by eval1(d, c, a, b) = d + cab,

feed1 : Mor(�C) → Mor(C) is given by feed1(d, c, a, b) = d, and Box1 : Mor(C) → Mor(�C)

is given by Box1(d) = (d, !, 0, 0). That is,

eval1

V1 V2

S T

d

b

a

c

 = d+ cab, feed1

V1 V2

S T

d

b

a

c

 = d

90

and Box1(d) =

V1 V2

0 0

d

.

Theorem 18 There are functors eval, feed, and Box as defined above which are PROP

morphisms, and

• eval and feed are full, but not faithful,

• Box is faithful, but not full,

• Box does not preserve limits or colimits. In particular, Box has no adjoint.

Proof. It is easy to check that eval, feed, and Box all preserve identity maps.

Preservation of composition is again easy to check for feed and Box, but eval takes a little

more work. On one hand, eval(d, c, a, b) ◦ eval(d′, c′, a′, b′) = (d + cab) ◦ (d′ + c′a′b′) =

dd′ + dc′a′b′ + cabd′ + cabc′a′b′. On the other hand,

eval((d, c, a, b) ◦ (d′, c′, a′, b′)) = eval

dd′, [dc′ c],

 a′ 0

abc′a′ a

 ,
 b′

bd′

= dd′ + [dc′ c]

 a′ 0

abc′a′ a

 b′

bd′

= dd′ + dc′a′b′ + cabc′a′b′ + cabd′.

Addition is commutative, so eval preserves composition.

All three functors act as identities on objects, so it immediately follows they are

essentially surjective. We note that feed◦Box and eval◦Box are both the identity functor on

FinVectk, which implies feed and eval are surjective on all morphisms, hence full. This also

implies Box is injective on morphisms, so Box is faithful. On the other hand, a morphism

in �(FinVectk) between Box0(V1) and Box0(V2) where the prestate space or state space

91

are not isomorphic to the zero object is not the Box1-image of any morphism in FinVectk,

so Box is not full. Similarly, feed and eval cannot be faithful.

The object 0 in FinVectk is both initial and terminal, so to show Box does not

preserve limits or colimits, it suffices to show Box0(0) is neither initial nor terminal. For each

f : S → T in FinVectk, there will be a morphism 0f : Box0(0)→ Box0(0) in �(FinVectk),

given by

0f =

0 0

S T
f

.

Thus Box does not preserve initial or terminal objects, so it cannot preserve limits

or colimits. Because Box does not preserve limits, Box is not a right adjoint, and because

Box does not preserve colimits, Box is not a left adjoint.

V1 ⊕ V2 ⊕ V3

V2 ⊕ V3 ⊕ V1

V2 ⊕ V1 ⊕ V3

(BV1,V2⊕V3 , !, 0, 0)

(BV1,V2 ⊕ Id, !, 0, 0)

(Id⊕BV1,V3 , !, 0, 0)Box

evalV1 ⊕ V2 ⊕ V3

V2 ⊕ V3 ⊕ V1

V2 ⊕ V1 ⊕ V3

BV1,V2⊕V3

BV1,V2 ⊕ Id

Id⊕BV1,V3

Figure 4.1: A hexagon law is preserved by eval and Box. Since FinVectk and �(FinVectk)
are strict monoidal categories, the associators are all identities, so three sides of the hexagon
have been omitted.

It remains to show these functors are symmetric monoidal functors. We already

know FinVectk and �(FinVectk) are strict monoidal categories, so the associators and

unitors are all identity morphisms. It is easy to check the symmetry isomorphisms in

�(FinVectk) are the Box1-images of the symmetry isomorphisms in FinVectk. Since

(d, !, 0, 0) ◦ (d′, !, 0, 0) = (d ◦ d′, !, 0, 0) in �(FinVectk), any coherence law in FinVectk is

preserved by Box. Similarly, feed1(d, !, 0, 0) = eval1(d, !, 0, 0) = d, so eval and feed will also

preserve the coherence laws in �(FinVectk) that come from FinVectk. See Figure 4.1 for

an example of a coherence law preserved by these three functors.

92

Thus we see all three functors are identity on objects symmetric monoidal functors

between PROPs, hence PROP morphisms.

An alternate way to depict morphisms in �(FinVectk) is through string diagrams.

The morphism (d, c, a, b) is depicted:

da

c

b

.

This form will make it easier to see the connection between the state equations and the

PROP Statefulk, which we introduce in the next section.

4.3 The PROP Stateful

Recall the state equations, Equation 1.1 and Equation 1.2, and the associated

convention that dim(u) = m, dim(x) = n, and dim(y) = p. Note that the Laplace transform

of these equations give the following:

Xs− x(0) = AX +BU

Y = CX +DU,

where U,X, and Y are the Laplace transforms of u, x, and y, respectively. Under the

assumption that the initial state vector is zero, these equations can be expressed as a

morphism in FinRelk(s) with the following signal-flow diagram:

93

U

BA

I
s D

C

Y

Xs

X

,

where the subdiagrams A,B,C, and D are the standard forms for their respective linear

maps in the state equations, and I is the identity on kn. Note that each instance of

addition (resp. duplication) in the diagram represents zero or more copies of the morphism,

in parallel. This diagram can always be rewritten in a form without cups or caps using the

reduction:

A

I
s

(sI −A)−1

=

.

Since A has no dependence on s in the time-independent case, sI − A will have an inverse

in FinVectk(s)
1. Similarly, given a = (sI − A)−1, we can find A = sI − a−1, so a and A

1More generally, as long as the Laplace transform of A has no positive powers of s, sI − A can be
guaranteed invertible. Even in the case where A depends on time, its Laplace transform will only ever

94

both provide the same information.

Note that we have the right form for a morphism in �(FinVectk(s)), where a =

(sI−A)−1, b = B, c = C, d = D, but not all morphisms in �(FinVectk(s)) arise this way, e.g.

(s, !, 0, 0). This motivates the definition of Statefulk as the subPROP of �(FinVectk(s)))

where the morphisms are of this form.

Definition 19 The category Statefulk is the subPROP of �(FinVectk(s)) with

• the same objects as FinVectk(s)

• morphisms of the form (D,C, (sI −A)−1, B) for some A,B,C,D ∈ FinVectk.

Proposition 20 The category Statefulk is actually a PROP.

Proof. For this definition of Statefulk to make sense, composition in Statefulk must be

closed: (D,C, (sI − A)−1, B) ◦ (D′, C ′, (sI ′ − A′)−1, B′) = (D′′, C ′′, (sI ′′ − A′′)−1, B′′) for

some A′′, B′′, C ′′, D′′ ∈ FinVectk. We leave it to the reader to verify

A′′ =

 A 0

B′C A′

 ,
where I ′′ = I ⊕ I ′. Closure for the other three sides is immediate.

In Appendix B the Box construction is extended to allow, among other possi-

bilities, FinVectk to replace FinVectk. While �(FinVectk) is no longer strict, it is still

symmetric monoidal. Thus we can define Statefulk as a symmetric monoidal subcategory

of �(FinVectk(s)) similarly to how Statefulk is defined here. Indeed, Statefulk is the

skeletalization of Statefulk.

contain positive powers of s if a distribution like d
dt
δ(t) appears in A.

95

4.4 Controllability and observability

Controllability and observability were introduced based on a physical interpreta-

tion of the solutions to Equations 1.1 and 1.2. The results in this section have long been

well-known in the control theory literature [18, 19]. When the matrices A(t) and B(t) are

continuous in t, the general solution to Equation 1.1 has the form

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ,

where Φ(t, τ) is a fundamental matrix of solutions satisfying Φ(t, t) = I for all t. A system

is controllable if for each state x and time t0 there is an input function u(t) such that

the state can be set to the equilibrium state in a finite amount of time. That is, there is

a function u(t) such that x(t1) = 0 for some t1 > t0. An equivalent characterization of

controllability involves a symmetric matrix called the Controllability Gramian, Wc(t0, t1).

A system is controllable if and only if

Wc(t0, t1) =

∫ t1

t0

Φ(t0, t)B(t)B>(t)Φ>(t0, t)dt

is positive definite for some t1 > t0. In the case of linear time-invariant systems, this

criterion is simplified to finding the row rank of the block matrix Mc = [B,AB, . . . , An−1B].

This controllability matrix Mc is an n ×mn matrix, and a linear time-invariant system is

controllable when

rank(Mc) = n.

While controllability of a system ignores the system’s output, observability of a

system ignores the system’s input, which can be accomplished by setting the input u(t) = 0.

A system is observable if the state x(t0) of the system can be determined at some later

time t1 by setting the input function u(t) to zero and measuring the output function y(t).

Kalman noticed a ‘duality principle’ connecting controllability and observability. If you

1. Reverse the direction of time,

96

2. Swap input and output constraints,

3. Replace Φ with Φ>,

then an observable system is transformed into a controllable system and vice versa. Explic-

itly, this duality transforms Equations 1.1 and 1.2 by making the following replacements:

t− t0 = t0 − t′,

A(t− t0)⇔ A>(t0 − t′),

B(t− t0)⇔ C>(t0 − t′),

C(t− t0)⇔ B>(t0 − t′),

D(t− t0)⇔ D>(t0 − t′).

From this duality, we can see the Observability Gramian will be

Wo(t0, t1) =

∫ t1

t0

Φ>(t, t1)C>(t)C(t)Φ(t, t1)dt,

which says a system is observable when Wo(t0, t1) is positive definite for some t1 > t0.

We also see the observability matrix for a linear time-invariant system will be Mo =

[C,CA, . . . , CAn−1]>. This observability matrix Mo is an np × n matrix, and a linear

time-invariant system is determined to be observable using the column rank:

rank(Mo) = n.

If we view Mc as a linear transformation Rmn → Rn, a controllable system has

rank(Mc) = n, which means Mc is an epimorphism for a controllable system. Similarly,

when Mo : Rn → Rnp is viewed as a linear transformation, the system is observable exactly

when Mo is a monomorphism.

Diagrammatically, this can be expressed as saying that a stateful morphism (D,C, (sI−

A)−1, B) is controllable if:

97

B B B

A A

A

. . . A

B

A

n− 1

is an epimorphism in FinVectk, and it is observable if:

C C C

A A

A

. . . A

C

A

n− 1

is a monomorphism in FinVectk.

Sobociński noted [32] there are purely diagrammatic tests for determining whether

a linear relation is an epimorphism and whether it is a monomorphism. Given a linear map

F : V → W , it is a monomorphism if F †F = 1V and an epimorphism if FF † = 1W .

This extends to linear relations. Diagrammatically, given a linear relation F , depicted for

convenience as

F

,

F is a monomorphism if

98

F

F

=

,

and F is an epimorphism if

F

F
=

.

Combining these results, we can say a stateful morphism (D,C, (sI − A)−1, B) is

controllable when

B B B

A A

A

. . . A

B

A

B B B

A A

A

. . . A

B

A

n− 1

n− 1

=

,

and observable when

99

C C C

A A

A

. . . A

C

A

C C C

A A

A

. . . A

C

A

n− 1

n− 1

=

.

While the controllability and observability criteria deal with linear maps (mor-

phisms in FinVectk), the detour through Statefulk is still necessary. The linear maps A,

B, and C are defined in terms of stateful morphisms: a linear map in FinVectk(s) has no

way of ‘knowing’ what A, B, and C are. At best, a state space of minimum dimension

can be determined. Through the rose-tinted glasses of FinVectk(s) alone, every morphism

appears to be both controllable and observable!

100

Chapter 5

The PROP ContFlow

In this chapter we will define the PROP ContFlowk of ‘good’ signal-flow diagrams

over a field k. Roughly speaking, a ‘good’ signal-flow diagram is one for which we can

describe controllability and observability via stateful morphisms, using the results from

Section 4.4. A sufficient condition on signal-flow diagrams for controllability and observ-

ability to make sense, then, is for the signal-flow diagram to be a morphism in ContFlowk.

A more formal description of what constitutes a ‘good’ signal-flow diagram involves the

commutative square in Figure 5.1. The limitations of Statefulk force limitations on the

SigFlowk,s

ContFlowk

FinRelk(s)

Statefulk
♦

j i ◦ eval

�

Figure 5.1: This square in PROP commutes.

kinds of signal-flow diagrams that can be considered ‘good’ here. The simplest signal-flow

diagrams that fail to be ‘good’ are the generators ∪ and ∩. Indeed, control theorists never

101

write these explicitly, and only implicitly use them as parts of larger signal-flow diagrams.

In order to formalize this discussion, we consider SigFlowk, the free PROP of all

signal-flow diagrams over a field k, which we informally referred to at the end of Section 3.2.

Recall, the signal-flow diagrams that generate this PROP are denoted

c

,

where c ∈ k is arbitrary. There is an obvious ‘black-box’ functor � : SigFlowk → FinRelk

which is also a PROP morphism, thanks to the machinery of Chapter 2.

More generally, suppose S is any subset of k. Then we can define SigFlowS to be

the free PROP on the above generators, where c is restricted to be an element of S. This is

a subPROP of SigFlowk, so we can restrict the black-box functor � : SigFlowk → FinRelk

and obtain a PROP morphism, which by abuse of notation we call � : SigFlowS → FinRelk

and let the context indicate which � is intended. Note that when S generates k as a field,

the black-box functor from SigFlowS is full. This abuse will be used primarily for k ∪ {1
s}

as a subset of k(s), with SigFlowk∪{ 1
s
} abbreviated as SigFlowk,s. We call SigFlowk,s the

PROP of signal-flow diagrams with integrators. Integrators are treated separately from the

other scalings here because integration plays a special role in control theory. Compared to

SigFlowk, SigFlowk,s is a free PROP that has one extra generator to indicate integration:

∫
.

In Theorem 18 we found some PROP morphisms from Statefulk to FinVectk(s),

namely eval and feed. By composing eval with the inclusion map i : FinVectk(s) → FinRelk(s),

we get a PROP morphism i ◦ eval : Statefulk → FinRelk(s) that will be instrumental in

determining which signal-flow diagrams are ‘good’. Ultimately we will find a PROP mor-

102

phism ♦ : ContFlowk → Statefulk and a commutative square in the category PROP shown

in Figure 5.1. The desire to find the PROP ContFlowk that makes this square commute

leads us directly to the definition of ContFlowk, stated in Definition 31.

5.1 Finding ContFlowk

Since we wish to define ContFlowk as a PROP of signal-flow diagrams with a

certain property, we first define PROPs of signal-flow diagrams and then narrow down to

those with that property.

Definition 21 The PROP SigFlowk is the free PROP on the generators of FinRelk. That

is, SigFlowk = F(ΣFinRelk), where

ΣFinRelk = {σ+ : 2→ 1, σ0 : 0→ 1, σ∆ : 1→ 2, σ! : 1→ 0, σ∪ : 2→ 0, σ∩ : 0→ 2}

∪ {σsc : 1→ 1 : c ∈ k},

so that the F-images of these formal symbols are the generators listed in Lemma 14:

c

,

where c ∈ k is arbitrary.

For any subset S of the field k, we also have the following definition.

Definition 22 The PROP SigFlowS is the free PROP on the generators of FinRelk, with

the scaling morphisms sc restricted to c ∈ S. That is, SigFlowS = F(ΣFinRelS), where

ΣFinRelS = {σ+ : 2→ 1, σ0 : 0→ 1, σ∆ : 1→ 2, σ! : 1→ 0, σ∪ : 2→ 0, σ∩ : 0→ 2}

∪ {σsc : 1→ 1 : c ∈ S},

103

so that the F-images of these formal symbols are the generators listed in Definition 21 above,

but now with c ∈ S.

Since SigFlowk = FΣFinRelk , there is an obvious PROP morphism � : SigFlowk →

FinRelk, namely the coequalizer of FEFinRelk ⇒ FΣFinRelk . Following Lawvere’s ideas on

functorial semantics [24], we can treat the PROP SigFlowk as providing ‘syntax’ and the

PROP FinRelk as providing ‘semantics’. In other words, morphisms in SigFlowk are a

notation—signal-flow diagrams—while morphisms in FinRelk are what this notation stands

for, namely linear relations between inputs and outputs, which we arrive at by imposing

the equations of FinRelk on signal-flow diagrams. Understood in this light, the black-box

functor � : SigFlowk → FinRelk assigns to each signal-flow diagram its meaning: the linear

relation it stands for.

Because controllability and observability involve extending k to k(s), we will be

concerned with the PROPs FinRelk(s) and SigFlowk,s, where SigFlowk,s is the free PROP

F(ΣFinRelk,s), and ΣFinRelk,s = ΣFinRelk ∪ {σ∫ : 1 → 1}. We take the F-image of σ∫ to be

a scaling by 1
s in the field extension k(s). Then k ∪ 1

s is a subset of k(s), and we identify

SigFlowk,s with SigFlowk∪ 1
s
. Since k(s) is generated as a field by k ∪ 1

s , the restriction of

� : SigFlowk(s) → FinRelk(s) to � : SigFlowk, s → FinRelk(s) is still full. A factor of 1
s

comes from the Laplace transform of
∫ t

0 f(τ)dτ , so a ‘scale by 1
s ’ morphism will be referred

to as an ‘integrator’.

In order to extend the controllability and observability results in Statefulk to

SigFlowk,s, we need to find a subPROP P of SigFlowk,s that maps to Statefulk such that

there are arrows making this diagram commute:

SigFlowk,s

P Statefulk FinVectk(s)

FinRelk(s)

eval

j i

� ,

104

where the evaluation map eval : Statefulk → FinVectk(s) mentioned in Theorem 18 sends

any stateful morphism to the linear map it describes. Because P will be the PROP of

signal-flow diagrams one might expect a control theorist to draw, we will name this PROP

ContFlowk. Our goal, then, is to find this subPROP ContFlowk of SigFlowk,s and a PROP

morphism ♦ : ContFlowk → Statefulk such that

SigFlowk,s

ContFlowk

FinRelk(s)

Statefulk
♦

j i ◦ eval

�

commutes.

This commutative square is not a pullback square, so ContFlowk and ♦ cannot

be simply defined by a pullback. A pullback square here would not give us a subPROP of

SigFlowk,s, since i ◦ eval is not a monomorphism in PROP. To define ContFlowk, we first

need four processes that can be applied to any signal-flow diagram f : m→ p in SigFlowk,s.

In Chapter 4 we saw that signal-flow diagrams of the following form play a fundamental

role in the state-space approach:

A B

∫

C D

.

105

When applied to a signal-flow diagram of this form, our four processes pick out the linear

relations A, B, C, and D — at least when they are linear maps. When all four of these

linear relations are linear maps, we decree that f is a morphism in ContFlowk and these

linear maps form the Statefulk morphism ♦(f).

In what follows, we describe each of these four processes in generality and illustrate

how they work for signal-flow diagrams of the above form. We choose the designations of

m, n and p for the number of input wires, integrators, and output wires, respectively, on f

in order to be consistent with the convention established in Section 4.3.

Definition 23 The linear relation A(f) : kn 9 kn is obtained from the signal-flow diagram

f by replacing the n wires leaving the integrators in !p ◦ f ◦ 0m with inputs and the n wires

entering the integrators with outputs, then black-boxing the resulting signal-flow diagram.

Example 24

A B

∫

C D

7→

A B

C D

Definition 25 The linear relation B(f) : km 9 kn is obtained from f by replacing the n

wires entering the integrators in !p ◦ f with outputs and replacing the n wires leaving the

integrators with 0n, then black-boxing.

106

Example 26

A B

∫

C D

7→

A B

C D

Definition 27 The linear relation C(f) : kn 9 kp is obtained from f dually, by replacing

the n wires leaving the integrators in f ◦ 0m with inputs and replacing the n wires entering

the integrators with !n, then black-boxing.

Example 28

A B

∫

C D

7→

A B

C D

107

Definition 29 The linear relation D(f) : km 9 kp is obtained by replacing each integrator

with scaling by zero, then black-boxing.

Example 30

A B

∫

C D

7→

D

B

0

A

C

.

Note, in addition to its connection to the state equations, the signal-flow diagram used

for the examples is idealized to give a visual intuition of what the process does, with the

design to suggest A(f) = A, B(f) = B, C(f) = C, and D(f) = D. As we shall see,

this will be the case when A(f), B(f), C(f), and D(f) are all linear maps, deepening

the connection between these processes and Statefulk, and hinting toward what makes a

signal-flow diagram ‘good’.

Definition 31 The category ContFlowk is a subPROP of SigFlowk,s: a morphism f : m→

p in ContFlowk is a morphism f : m→ p in SigFlowk,s such that the linear relations A(f),

B(f), C(f), and D(f) defined above are all linear maps.

It is easy to see that all identity signal-flow diagrams are in ContFlowk. It is also

clear that ContFlowk is closed under direct sum. It is not as obvious that all composites of

signal-flow diagrams in ContFlowk are also in ContFlowk, but we show this in the proof of

108

Theorem 36, so ContFlowk is indeed a PROP.

While this definition does not make it clear that the morphisms of ContFlowk

are closed under composition, it has some advantages over other definitions that appear

reasonable, such as one that only insists ‘there is a morphism g : m→ p in Statefulk with

i(eval(g)) = �(f)’. While closure under composition is then immediate, this alternative

definition does not guarantee the uniqueness of the morphism g. We can impose some

extra conditions, for example requiring the number of integrators in f to be equal to the

dimension of the state space of g, but even this fails to make g unique. For example, these

morphisms in Statefulk are different:

k k

k k

[1]

[0]

[1
s−1]

[1] 6=

k k

k k

[1]

[1]

[1
s−1]

[0] ,

since the former is observable and the latter is not observable1. However, both have state

spaces of dimension 1, and both evaluate to the identity relation, 1. As we can see from

this example, we need to be intelligent in how we translate ContFlowk signal-flow diagrams

to Statefulk morphisms if we want to have reasonable notions of controllability and ob-

servability. This will include knowing the number of integrators used, which explains why

the category of signal-flow diagrams from which we get ContFlowk needs to be SigFlowk,s

rather than SigFlowk(s). This is reflected in the processes A(f), B(f), C(f), and D(f),

since they cannot be defined on SigFlowk(s).

While there is no reason a priori to expect a signal-flow diagram to be in such

a convenient form as used in the examples above, the processes defined are unaffected by

rewrites using the equations of FinRelk, where the integrators are left to be free. We there-

fore also consider the PROP StFlowk = P(ΣFinRelk,s, EFinRelk) and its associated ‘black-box’

1These two stateful morphisms can also be distinguished based on controllabilty: the former is not
controllable, while the latter is controllable

109

functor � : SigFlowk,s → StFlowk.

Lemma 32 If two signal-flow diagrams f1 and f2 are in SigFlowk,s and �f1 = �f2, then

A(f1) = A(f2), B(f1) = B(f2), C(f1) = C(f2), and D(f1) = D(f2).

That is, rewrites from FinRelk (the ones that treat 1
s as a free generator) have no effect on

A(f), B(f), C(f), and D(f).

Proof. We take advantage of the compositionality of signal-flow diagrams: a

rewrite of f ∈ SigFlowk,s using one of equations (1)–(31) can be localized to a subdiagram

of f that has no integrators in it. Doing a rewrite on such a subdiagram and then composing

!p ◦ f or f ◦ 0m yields the same signal-flow diagram as first composing, then doing the same

rewrite on that subdiagram. Likewise, rewrites of such subdiagrams and the changes to

the integrators that occur in processes A(f), . . . , D(f) can be done in either order with the

result of the same signal-flow diagram either way. Thus these rewrites ‘commute’ with the

compositions and integrator replacements involved in these processes. Since black-boxing

coequalizes signal-flow diagrams that differ in a rewrite from FinRelk, a rewrite of f using

one of equations (1)–(31) will have no effect on A(f), . . . , D(f).

Since any rewrite of f from FinRelk is a series of rewrites using equations (1)–

(31), no rewrite of f from FinRelk has an effect on A(f), . . . , D(f).

Up to this point we have focused on breaking up signal-flow diagrams into four sub-

diagrams via the PROP StFlowk. The following lemma shows that, in terms of StFlowk,

there are actually ten subdiagrams than need to be considered in a fully general signal-

flow diagram. The processes A(f), . . . , D(f) are each affected by several of these subdia-

grams. Our next goal is to show that for a signal-flow diagram in ContFlowk, six of these

subdiagrams will be trivial, leaving only one non-trivial subdiagram each that can affect

A(f), . . . , D(f).

Lemma 33 Any morphism in StFlowk can be rewritten in the following form:

110

∫

0

1

2

3

4

5

6

7

8

9

,

where the numbered boxes are linear relations in FinRelk.

We will refer to this form as StFlowk-normal form.

Conjecture 34 We can further take boxes 1, 4†, 6, and 8 to be linear maps.

This conjecture is not necessary to our argument, but it would simplify future work extend-

ing our results if it is true.

We see there are two more ways to connect integrators, inputs, and outputs in

StFlowk that are not accounted for by A, B, C, and D (boxes 3 and 5), along with four

self-connections (boxes 0, 2, 7, and 9). The input of an integrator can connect to an output

(box 3), and an input can connect to the output of an integrator (box 5). When either of

111

these kinds of connection occurs non-trivially in the signal-flow diagram f , A(f) and D(f)

will not be linear maps, so these kinds of connection are trivial in any signal-flow diagram in

ContFlowk. When any of the self-connections is non-trivial, either A(f) or D(f) will not be

a linear map, so self-connections are also trivial for any signal-flow diagram in ContFlowk.

Precisely what is meant by ‘trivial’ here is formalized in Lemma 35. Note: the status of

B(f) and C(f) as linear maps is also affected by these extra connections.

Proof of Lemma 33. Since integrators are free in StFlowk, their placement in

a diagram is important, relative to how their inputs and outputs connect to other parts of

the diagram. Considering all the ways inputs, outputs, integrator inputs, and integrator

outputs can connect, the diagram in Lemma 33 has all such possible connections in it. The

only question, then, is whether there are other ways to join the connections that cannot be

rewritten in this form. The joints here are all series of parallel ∆ morphisms and series of

parallel + morphisms,

and

.

If a joint has a +† in it, the input string to the +† can be replaced with a ∆/! pair, as in

equation (4).

=

At this point, equation (D5)† can be applied as often as necessary to allow the +†s to

assimilate into one or more of the boxes. Similarly, a joint with a ∆† in it can be transformed

to a joint with only + morphisms in it.

112

The next lemma shows when f is a signal-flow diagram in ContFlowk, �f can be

written in the form

A

B

∫

C

D

.

This means when f ∈ ContFlowk, f can be transformed into the form of the signal-flow di-

agram used to demonstrate the processes A(f), . . . , D(f) without affecting A(f), . . . , D(f).

Lemma 35 If A(f), . . . , D(f) are all linear maps, the corresponding boxes in the StFlowk-

normal form are these maps, and the other boxes are trivial. That is, box 0 is !m, box 1 is

B(f), box 2 is 0n, box 3 is 0p ◦ (0†)n, box 4 is A(f)†, box 5 is (!†)n ◦ !m, box 6 is D(f), box

7 is (!†)n, box 8 is C(f), and box 9 is 0p.

Proof. Applying process D to the StFlowk-normal form, boxes 2, 4, and 7 become

disconnected from the inputs and outputs. The portion of the diagram that remains can

be rewritten in the form below, noted as diagram for D.

Similarly, the diagram for A is the result of applying process A to the StFlowk-

normal form and rewriting. The application of process A disconnects boxes 0, 6, and 9 from

the inputs and outputs. The diagram for A is of the same form as the diagram for D, so

we can apply the same arguments to corresponding linear relations.

113

1

8

0

3

5

6

9

8

1

7

3†

5†

4†

2

Diagram for D Diagram for A

Assuming A(f) and D(f) to be linear maps, we first argue that the linear relations

in boxes 0 and 7 must be trivial. Since the argument is the same for both, we focus on box

0.

Box 0 is a linear relation, which means it can be written in the standard form for

linear relations that was demonstrated in Chapter 3. Box 0 also has no output, so it is a

composite of a linear map T0 and (0†)j for some j ∈ N. If j = 0, T0 has no outputs, meaning

box 0 is !m. If j > 0, one of the inputs of box 0 is a linear combination of the other inputs

of box 0. Since the input to the diagram for D is duplicated to give the input to box 0, one

of the inputs of D(f) is a linear combination of the other inputs of D(f). This means D(f)

is not a linear map, a contradiction. Thus the linear relation in box 0 is !m, and the linear

relation in box 7 must similarly be !n.

0 = T0

.

114

The argument for boxes 2 and 9 is ∗-dual to the argument for boxes 0 and 7.

The ∗-dual of the standard form for linear relations is an alternate standard form for linear

relations, so each step of the above argument has a valid ∗-dual step. This means the linear

relations in boxes 2 and 9 must be 0n and 0p, respectively.

Box 5 must have its inputs and outputs disconnected from each other, or else

there is a non-trivial linear combination of the inputs of D(f) that is equal to zero. This

contradicts the assumption that D(f) is a linear map.

5 =
5a

5b

.

Now the linear relation in box 5a is !m for the same reason as box 0, and the linear relation

in box (5b)† is !n for the same reason as box 7. Thus the linear relation in box 5 must be

(!†)n ◦ !m.

Dually, the linear relation in box 3 must be 0p ◦ (0†)n.

If we can show boxes 1 and 8 are linear maps, that will force the linear relation

in box 6 to be the only contribution to D(f) and the †-dual of the linear relation in box 4

to be the only contribution to A(f), making box 6 a linear map and box 4† a linear map.

With boxes 1, 4†, 6, and 8 all linear maps and all other boxes trivial, the linear maps B(f)

and C(f) must be boxes 1 and 8, respectively.

Assume, by way of contradiction, that box 1 is not a linear map. It is a linear

relation, so one or both of the following must happen: some input to box 1 is a linear

combination of the other inputs to box 1 or some input to box 1∗ is a linear combination of

the other inputs to box 1∗. The latter possibility is equivalent to some output of box 1 can

take on multiple values given a fixed input to box 1. Since the inputs to D(f) are duplicated

to form the inputs to box 1, any linear dependence of the inputs to box 1 will translate into

115

linear dependence of the same inputs to D(f). This contradicts the assumption that D(f)

is a linear map.

Similarly, any linear dependence of the inputs to box 1∗ will translate into linear

dependence of the inputs to A(f)∗. Since A(f) is assumed to be a linear map, it follows

that A(f)∗ must also be a linear map, specifically the transpose map. Thus we have our

contradiction for the latter case. This means the linear relation in box 1 must be a linear

map. Swapping the roles of A(f) and D(f), we see the same must be true of box 8.

Aside from their not conforming to ContFlowk, there is a good control theory

reason for why boxes 3 and 5 should be trivial. According to control theory folklore, a

control system with differentiators in it will not be causal: the present state depends on

future states and inputs. If this were not enough, if box 3 or box 5 is allowed to be non-

trivial in ContFlowk, the PROP morphism analogous to ♦ in the next theorem no longer

makes the commutative square commute.

Theorem 36 There is a functor from ContFlowk to Statefulk given by

♦ : ContFlowk → Statefulk

f 7→ (D(f), C(f), (sI −A(f))−1, B(f)).

This functor is a PROP morphism that makes the following diagram in PROP commute:

SigFlowk,s

ContFlowk

FinRelk(s)

Statefulk
♦

j i ◦ eval

� .

This functor is the means by which we translate the controllability and observ-

ability results from Statefulk to ContFlowk.

Proof. To show ♦ is a functor, we need to check identities map to identities,

and ♦(f ◦ f ′) = ♦(f) ◦ ♦(f ′). The former is immediate, so we will focus on the latter.

116

To show ♦ is also a PROP morphism, we further need the distinguished object to map

to the distinguished object, and ♦(f ⊕ f ′) = ♦(f) ⊕ ♦(f ′). These additional criteria are

straightforward to check, so we leave it to the reader to check them. To show the diagram

in PROP commutes, we need for an arbitrary signal-flow diagram f ∈ ContFlowk to satisfy

�f = D(f) + C(f)(sI −A(f))−1B(f).

• �f = D(f) + C(f)(sI −A(f))−1B(f).

By Lemma 35, any signal-flow diagram f ∈ ContFlowk can be rewritten using the

equations of FinRelk into the form

A B

∫

C D

,

and this rewriting has no effect on A(f), . . . , D(f). Since the equations of FinRelk

are a subset of the equations of FinRelk(s), the PROP morphism � factors through �.

This means the rewriting will also have no effect on �f , which imposes the equations

of FinRelk(s) onto f . By imposing all of the equations of FinRelk(s) on this diagram,

we get �f = D+C(sI−A)−1B. By applying the processes A, . . . ,D to this diagram,

we see that A(f) = A, B(f) = B, C(f) = C, and D(f) = D.

• ♦(f ◦ f ′) = ♦(f) ◦ ♦(f ′).

117

Suppose f and f ′ are signal-flow diagrams in ContFlowk which are composable in

SigFlowk,s, with ♦(f) = (D,C, (sI −A)−1, B) and ♦(f ′) = (D′, C ′, (sI ′ −A′)−1, B′).

In Chapter 4 we saw how to compose two stateful morphisms, ♦(f)◦♦(f ′), so we need

to check that we get the same composite from ♦(f ◦ f ′) = (D′′, C ′′, (sI ′′ − A′′), B′′).

This would mean A′′, . . . , D′′ are all linear maps, finally justifying the assertion above

that composition is closed in ContFlowk. In matrix form, that means we need to

verify:

D′′ = DD′ C ′′ =

[
D′C C ′

]

B′′ =

 B

B′D

 A′′ =

 A 0

B′C A′

 .
We will be performing several surgeries on the signal-flow diagram f ◦f ′, so let’s take a

good look at the ‘patient’. By Lemma 35, we need only consider a signal-flow diagram

of the form:

118

A B

∫

C D

A′ B′

∫

C ′ D′

.

Since the D(f) part of the process is functorial, D′′ = D(f ◦f ′) = D(f)◦D(f ′) = DD′.

The B(f) and C(f) parts are dual to each other, so we show only the argument for

B′′ and leave C ′′ as an easy exercise.

To find B′′ = B(f ◦f ′), we replace the n+n′ wires entering the integrators in !p ◦f ◦f ′

with outputs and replace the n+n′ wires leaving the integrators with 0n+n′ . Since the

0s always meet linear maps, they destroy everything in their paths until they reach a

+, at which point equation (1) gives an identity wire. This gets rid of A, A′, C, C ′,

and all the +s. Similarly, each ! will always meet linear maps, destroying everything

in their paths until they reach a ∆, at which point equation (4) gives an identity wire.

This gets rid of D′ and would get rid of C ′ if it were not already gone. From these

considerations, we get the following results on our ‘patient’:

119

A B

C D

A′ B′

C ′ D′

=

B

D

B′

.

That is, B′′ =

 B

B′D

, which is exactly what is required. As noted above, the

argument for C ′′ is just a dual version of this one, reflected about the x-axis and with

colors swapped.

To find A′′ = A(f◦f ′), we replace the n+n′ wires leaving the integrators in !p◦f◦f ′◦0m′

with inputs and the n + n′ wires entering the integrators with outputs. As with the

0s in B′′, the 0s here always meet linear maps, so they destroy everything in their

paths until they reach a +, and likewise for the !s until they reach a ∆. This time the

zeros get rid of B and D, while the deletions get rid of C ′ and D′. From there some

zig-zags can be straightened out, and finally commutativity allows A′ and B′ to be

swapped. Graphically, this proceeds as follows:

120

A B

C D

A′ B′

C ′ D′

=

A

C

B′A′

=
A

C

B′
A′

.

This final diagram for A′′, written in block matrix form is

 A 0

B′C A′

.

This is exactly what was required.

5.2 Duality properties of ContFlowk

Recall that SigFlowk has two different dagger structures, † and ∗. As noted in

Section 4.4, controllability and observability are dual concepts, with the duality relating to

transposition. Since −∗ is also a duality related to transposition, this suggests a connection

between the controllable/observable duality and the −∗ duality.

Proposition 37 ContFlowk is a dagger-category in only one of the two ways that SigFlowk,s

is. Specifically, the −∗ dual of a morphism f in ContFlowk is again a morphism in

121

ContFlowk such that

A(f∗) = A(f)∗ B(f∗) = C(f)∗

D(f∗) = D(f)∗ C(f∗) = B(f)∗.

Proof. That the −∗ duality behaves as described is an immediate consequence of �(f∗) =

�(f)∗. Thus we have

A

B

∫

C

D
A∗

C∗

∫

B∗

D∗
∗

.

To show ContFlowk does not have the −† duality, it suffices to give a counterex-

ample. Let f be any signal-flow diagram such that D(f) = 0: k → k. For example take f

to be the signal-flow diagram:

.

We see D(f †) is the scaling by 0−1. While this is a linear relation, it is clearly not a linear

map.

Our signal-flow diagrams have all been time-independent, so the time reversal part

in Kalman’s duality is trivial for our diagrams. Note also that the −∗ duality is exactly

122

transposition when applied to linear maps, so we can rewrite the equations in Proposition 37:

A(f∗) = (A(f))> B(f∗) = (C(f))>

D(f∗) = (D(f))> C(f∗) = (B(f))>.

At the level of state-space equations, this is exactly the time-independent version of Kalman’s

duality! We predict the −∗ duality can be rigorously extended to time-dependent signal-

flow diagrams in such a way that it exactly matches Kalman’s duality. In the present work

we have taken advantage of time-independence in the definition of Statefulk, restricting

the appearance of Laplace transform variable s to the (sI−A)−1 part. The time-dependent

case will require a new approach to Statefulk, hence a new approach to ContFlowk.

123

Chapter 6

Conclusions

While the story of control theory placed into the context of category theory is

far from complete, we have advanced the plot. First, in Chapter 3 we found a symmetric

monoidal category that describes the relation between the inputs and outputs of signal-flow

diagrams and described it in terms of generating morphisms and a set of equations between

morphisms. The strict version of this gave us FinRelk. Bonchi, Sobociński and Zanasi [6, 7]

independently studied an equivalent symmetric monoidal category around the same time

and with the same generator-and-equations perspective, but from a very different approach

and with a slightly different set of generators. On our way to FinRelk, we considered

FinVectk, which is the strict symmetric monoidal category we would get if signal-flow

diagrams had no feedback. Wadsley and Woods [35] considered Mat(k), which is equivalent

to our FinVectk when k is a field, but only insisted that k be a rig. There are also

many mysterious and interesting connections between FinRelk and symmetric monoidal

categories used in quantum mechanics [1, 5, 10, 11, 12, 9, 20, 21, 27, 28, 34], exposing

similarities and subtle differences between vector spaces, Hilbert spaces, and cobordisms.

Nevertheless, FinRelk(s) is helpless to describe certain important control theory concepts

such as controllability and observability.

124

To get a handle on these two concepts, we went back in Chapter 4 to the state-

space equations, Equations 1.1 and 1.2 upon which these concepts are founded. By encoding

these equations in signal-flow diagrams, we found the category Statefulk, where the four

matrices in the state-space equations taken en masse correspond to stateful morphisms.

While for simplicity’s sake we only considered the linear time-independent case where the

four matrices are constant in time, Statefulk can easily be extended to the time-varying

case by adding a very mild condition on the matrices. Controllability and observability only

depend on the matrices in the state-space equations in either case, so knowing a stateful

morphism provides enough information to determine controllability and observability. The

analysis simplifies greatly in the linear time-independent case, where they can be determined

in terms of epimorphisms and monomorphisms.

In Chapter 5 we pushed the idea of controllability and observability a little fur-

ther. Stateful morphisms can only be determined if we already know what the matrices in

the state-space equations are, which leaves the issue of finding these matrices. Given an

arbitrary signal-flow diagram, the values of these matrices may not be obvious, or worse,

linear relations may be involved, not just linear maps. For this reason we limited the

scope of signal-flow diagrams to form a new category ContFlowk, where only the signal-flow

diagrams that can be converted to stateful morphisms are considered. These signal-flow

diagrams coincide with the ones most typically drawn by control theorists. By converting a

signal-flow diagram in ContFlowk to a stateful morphism, we can determine controllability

and observability for that signal-flow diagram.

While controllability and observability are important, there are many other con-

cepts that are important to control theorists, such as stability (which itself comes in sev-

eral guises) and pole placement. On the other hand, there are several opportunities for

the current work to be extended to allow control theorists to draw more general signal-

flow diagrams. Our Statefulk PROP, which finally allowed us to describe controllability

125

and observability in the category theory context, should be extendable using the results

of Appendix B, allowing a larger collection of signal-flow diagrams to be considered for

controllability and observability.

Once we have extended Statefulk in this way, we can also extend ContFlowk.

We have seen in Chapter 5 how the state-space equations 1.1 and 1.2 can be used to form

the PROP ContFlowk. One of the features of ContFlowk is the deterministic nature of its

morphisms: the current state and input uniquely determine the future state and output. We

may not be able to induce the system to enter a given state if the system is not controllable,

and we may not be able to determine the state of the system if it is not observable, so the

state of a system can act as a ‘hidden variable’. However, in some circumstances it may

be useful to eschew determinism. We can do this by generalizing the state-space equations

to state-space relations in a way that does not sacrifice much of the convenience of dealing

with linear maps.

To get a flavor of this, we will still insist B, C and D are linear maps, only allowing

A to be replaced with a linear relation. In Appendix B we see that we can generalize a bit

more than this, but the full generality at this point would only serve to weigh down the

exposition, obscuring what we wish to point out: a direction for extending ContFlowR. The

state-space relations will then appear as:

ẋ(t) ∈ A(t)x(t) +B(t)u(t) (6.1)

y(t) = C(t)x(t) +D(t)u(t). (6.2)

Given two such systems: ẋ1 ∈ A1x1 + B1u1, y1 = C1x1 + D1u1 and ẋ2 ∈ A2x2 + B2y1,

y2 = C2x2+D2y1; they can compose by writing all the relations and eliminating the common

126

y1. Thus:

ẋ1 ∈ A1x1 +B1u1

ẋ2 ∈ A2x2 +B2(C1x1 +D1u1)

y2 = C2x2 +D2(C1x1 +D1u1).

Since each B, C and D is a linear map, compositions of these linear relations still distribute

over addition, so the composite system can be written

ẋ1 ∈ A1x1 +B1u1

ẋ2 ∈ (B2C1)x1 +A2x2 + (B2D1)u1

y2 = (D2C1)x1 + C2x2 + (D2D1)u1.

It is easy to show this is equivalent to ẋ1

ẋ2

 ∈ A3

 x1

x2

+

 B1

B2D1

u1

y2 =

[
D2C1 C2

] x1

x2

+ (D2D1)u1,

for some linear relation A3. The fact that we get a system of state-space relations again

indicates that we should be able to form a PROP CtrlFlowk from the state-space relations

in much the way that we formed ContFlowk from the state-space equations.

A difficulty in dealing with CtrlFlowk arises when trying to determine the linear re-

lations A(f), B(f), C(f), and D(f) associated with the signal-flow diagram f ∈ CtrlFlowk.

The processes defined for finding linear maps from a signal-flow diagram f ∈ ContFlowk

are not appropriate here. When A(f) is a linear relation that is not a linear map, these

processes will give one or both of B(f) and C(f) as linear relations that are not linear maps.

If Conjecture 34 is true, it may be possible to use the StFlowk-normal form of a signal-flow

127

diagram to find the linear relations A(f), B(f), C(f), and D(f). This approach, if it works,

would be more satisfying than the current ad hoc approach to finding these when they are

linear maps.

Another direction for research, taken up by Baez, Coya and Rebro [2], is connecting

this work with the work of Baez and Fong [4] on passive linear networks. Whereas we have

primarily focused on presenting PROPs in terms of generators and equations, Baez and

Fong use a framework of ‘decorated cospans’. Using this framework, they find a black-box

functor from Circ, the category of open passive linear electric circuits, to LagrRelk(s), the

category of symplectic vector spaces over the field k(s) and Lagrangian relations. These

categories are equivalent to their skeletons, so there is a black-box functor between their

skeletons, � : Circ → LagrRelk(s). Since there is a symmetric monoidal dagger functor

i : LagrRelk(s) → FinRelk(s) that includes LagrRelk(s) in FinRelk(s), composing with the

black-box functor gives the symmetric monoidal dagger functor

i ◦� : Circ→ FinRelk(s).

A key result here is to find a symmetric monoidal dagger functor F : Circ → SigFlowk(s)

such that the black-box functor we defined from SigFlowk(s) to FinRelk(s) makes this

functor diagram commute (up to isomorphism):

SigFlowk(s)

Circ

FinRelk(s)

LagrRelk(s)
�

F i

� .

The main challenge in this endeavor is not in finding the functor F , but in reconciling the

approaches sufficient to prove the square commutes.

128

Bibliography

[1] Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols.
In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science
(LiCS’04), pages 415–425, July 2004. DOI 10.1109/LICS.2004.1319636.

[2] John Baez, Brandon Coya, and Franciscus Rebro. Props in network theory. In prepa-
ration.

[3] John Baez and Jason Erbele. Categories in control. Th. Appl. Cat., 30(24):836–881,
2015. Available at http://www.tac.mta.ca/tac/volumes/30/24/30-24abs.html.

[4] John Baez and Brendan Fong. A compositional framework for passive linear networks.
arXiv preprint, 2015. Available at arXiv:1504.05625.

[5] John Baez and Mike Stay. Physics, topology, logic and computation: a Rosetta Stone.
In Bob Coecke, editor, New Structures for Physics, volume 813 of Lecture Notes in
Physics, pages 95–172. Springer, 2011. Also available at arXiv:0903.0340.

[6] Filippo Bonchi, Pawe l Sobociński, and Fabio Zanasi. A categorical semantics of signal
flow graphs. In Paolo Baldan and Daniele Gorla, editors, CONCUR 2014–Concurrency
Theory, Lecture Notes in Computer Science, pages 435–450. Springer, 2014. DOI
10.1007/978-3-662-44584-6 30.

[7] Filippo Bonchi, Pawe l Sobociński, and Fabio Zanasi. Interacting Hopf algebras. arXiv
preprint, 2014. Available at arXiv:1403.7048.

[8] Francis Borceux. Handbook of Categorical Algebra. 2, volume 51 of Encyclope-
dia of Mathematics and its Applications. Cambridge University Press, 1994. DOI
10.1017/CBO9780511525865.

[9] Aurelio Carboni and Robert F.C. Walters. Cartesian bicategories I. J. Pure Appl. Alg.,
49(1):11–32, 1987.

[10] Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra
and diagrammatics. New J. Phys., 13(4):043016, 2011.

[11] Bob Coecke and Éric Oliver Paquette. Categories for the practising physicist. In Bob
Coecke, editor, New Structures for Physics, volume 813 of Lecture Notes in Physics,

129

http://dx.doi.org/10.1109/LICS.2004.1319636
http://www.tac.mta.ca/tac/volumes/30/24/30-24abs.html
http://arxiv.org/abs/1504.05625
http://arxiv.org/abs/0903.0340
http://dx.doi.org/10.1007/978-3-662-44584-6_30
http://dx.doi.org/10.1007/978-3-662-44584-6_30
http://arxiv.org/abs/1403.7048
http://dx.doi.org/10.1017/CBO9780511525865
http://dx.doi.org/10.1017/CBO9780511525865

pages 173–286. Springer, 2010. DOI 10.1007/978-3-642-12821-9 3. Also available at
arXiv:0905.3010.

[12] Bob Coecke, Dusko Pavlovic, and Jamie Vicary. A new description of orthogonal bases.
Math. Str. Comp. Sci., 23(03):555–567, 2013. Also available at arXiv:0810.0812.

[13] Brendan Fong, Paolo Rapisarda, and Pawe l Sobociński. A categorical approach to open
and interconnected systems. arXiv preprint, 2015. Available at arXiv:1510.05076.

[14] Bernard Friedland. Control System Design: An Introduction to State-Space Methods.
Courier Dover Publications, 2012.

[15] Chris Heunen and Jamie Vicary. Introduction to Categorical Quantum Mechanics.
preprint, 2014.

[16] André Joyal and Ross Street. The geometry of tensor calculus I. Adv. Math., 88(1):55–
113, 1991. DOI 10.1016/0001-8708(91)90003-P.

[17] André Joyal and Ross Street. The geometry of tensor calculus II. Draft available at
http://maths.mq.edu.au/∼street/GTCII.pdf.

[18] Rudolf Emil Kalman. Contributions to the theory of optimal con-
trol. Bol. Soc. Mat. Mexicana, 5(2):102–119, 1960. Available at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.4070.

[19] Rudolf Emil Kalman. Mathematical description of linear dynamical systems.
J.S.I.A.M. Control, Ser. A, 1(2):152–192, 1963. DOI 10.1137/0301010.

[20] Joachim Kock. Frobenius Algebras and 2D Topological Quantum Field Theories, vol-
ume 59 of London Mathematical Society Student Texts. Cambridge University Press,
2004. Short version available at http://mat.uab.es/∼kock/TQFT/FS.pdf.

[21] Joachim Kock. Remarks on the origin of the Frobenius equation. Available at
http://mat.uab.es/∼kock/TQFT.html#history.

[22] Stephen Lack. Composing PROPs. Th. Appl. Cat., 13(9):147–163, 2004. Available at
http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html.

[23] Yves Lafont. Towards an algebraic theory of boolean circuits. J.
Pure Appl. Alg., 184(2):257–310, 2003. Also available at http://iml.univ-
mrs.fr/∼lafont/pub/circuits.pdf.

[24] F. William Lawvere. Functorial Semantics of Algebraic Theo-
ries. PhD thesis, Columbia University, 1963. Also available at
http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html.

[25] Saunders Mac Lane. Natural associativity and commutativity. Rice U. Studies,
49(4):28–46, 1963.

130

http://dx.doi.org/10.1007/978-3-642-12821-9_3
http://arxiv.org/abs/0905.3010
http://arxiv.org/abs/0810.0812
http://arxiv.org/abs/1510.05076
http://dx.doi.org/10.1016/0001-8708(91)90003-P
http://maths.mq.edu.au/~street/GTCII.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.4070
http://dx.doi.org/10.1137/0301010
http://mat.uab.es/~kock/TQFT/FS.pdf
http://mat.uab.es/~kock/TQFT.html#history
http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html
http://iml.univ-mrs.fr/~lafont/pub/circuits.pdf
http://iml.univ-mrs.fr/~lafont/pub/circuits.pdf
http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html

[26] Samuel Mimram. Presentation of a game semantics for first-order propositional logic.
arXiv preprint, 2008. Available at arXiv:0805.0845.

[27] Robert Rosebrugh, Nicoletta Sabadini, and Robert F. C. Walters. Generic commuta-
tive separable algebras and cospans of graphs. Th. Appl. Cat., 15(6):164–177, 2005.
Available at http://www.tac.mta.ca/tac/volumes/15/6/15-06abs.html.

[28] Peter Selinger. Dagger compact closed categories and completely positive maps. Elec.
Notes Theor. Comp. Sci., 170:139–163, 2007.

[29] Pawe l Sobociński. Copying, Discarding and The Slogan. Graphical Linear Alge-
bra, May 9, 2015. Available at http://graphicallinearalgebra.net/2015/05/09/copying-
discarding-and-the-slogan.

[30] Pawe l Sobociński. Integer matrices. Graphical Linear Algebra, July 8, 2015. Available
at http://graphicallinearalgebra.net/2015/07/08/integer-matrices.

[31] Pawe l Sobociński. When Adding met Copying... Graphical Linear Algebra, May 12,
2015. Available at http://graphicallinearalgebra.net/2015/05/12/when-adding-met-
copying.

[32] Pawe l Sobociński. Dividing by zero to invert matrices. Graphical Linear Algebra,
June 22, 2016. Available at http://graphicallinearalgebra.net2016/06/22/29-inverting-
matrices-and-dividing-by-zero.

[33] Todd Trimble. Multisorted Lawvere theories. nLab, April 27, 2014. Available as
https://ncatlab.org/toddtrimble/published/multisorted+Lawvere+theories.

[34] Jamie Vicary. Categorical formulations of finite-dimensional quantum algebras. Comm.
Math. Phys., 304(3):765–796, 2011. Also available at arXiv:0805.0432.

[35] Simon Wadsley and Nick Woods. PROPs for linear systems. arXiv preprint, 2015.
Available at arXiv:1505.00048.

[36] Jan C. Willems. Models for dynamics. In U. Kirchgraber and H. O. Walther,
editors, Dynamics Reported, volume 2, pages 171–269. John Wiley & Sons Ltd
and B.G. Teubner, 1989. DOI 10.1007/978-3-322-96657-5 5. Also available at
http://homes.esat.kuleuven.be/∼jwillems/Articles/JournalArticles/1989.1.pdf.

[37] Fabio Zanasi. Interacting Hopf Algebras—the Theory of Linear Systems. PhD
thesis, École Normale Supérieure de Lyon, 2015. Available at https://tel.archives-
ouvertes.fr/tel-01218015/.

131

http://arxiv.org/abs/0805.0845
http://www.tac.mta.ca/tac/volumes/15/6/15-06abs.html
https://graphicallinearalgebra.net/2015/05/09/copying-discarding-and-the-slogan
https://graphicallinearalgebra.net/2015/05/09/copying-discarding-and-the-slogan
https://graphicallinearalgebra.net/2015/07/08/integer-matrices
http://graphicallinearalgebra.net/2015/05/12/when-adding-met-copying
http://graphicallinearalgebra.net/2015/05/12/when-adding-met-copying
https://graphicallinearalgebra.net/2016/06/22/29-inverting-matrices-and-dividing-by-zero
https://graphicallinearalgebra.net/2016/06/22/29-inverting-matrices-and-dividing-by-zero
https://ncatlab.org/toddtrimble/published/multisorted+Lawvere+theories
http://arxiv.org/abs/0805.0432
http://arxiv.org/abs/1505.00048
http://dx.doi.org/10.1007/978-3-322-96657-5_5
http://homes.esat.kuleuven.be/~jwillems/Articles/JournalArticles/1989.1.pdf
https://tel.archives-ouvertes.fr/tel-01218015/
https://tel.archives-ouvertes.fr/tel-01218015/

Appendix A

Proofs of selected derived

equations

In the proof of Theorem 15 we used several equations derived from the equations in

our presentation of FinRelk. While the more straightforward equations were demonstrated

immediately, some of the more useful derived equations are less straightforward and we

demonstrate them here. While these derived equations could simply be appended to our

presentation, the elegance of only using simple structures would be lost. On the other hand,

Heunen and Vicary [15] pointed out only one Frobenius equation (per color) is necessary

instead of two. Several of the equations necessary for the presentation of FinVectk are also

superfluous for the presentation of FinRelk, but it seems more elegant to build from simple

structures than to minimize the number of equations for the sake of minimization.

A.1 (D5)

Derived equations (D5)–(D7) are variations on the bimonoid equations (7)–(9).

Derived equation (D5) can be proved as follows:

132

=
(D3)

−1 =
(7)†

−1 =
∆†

−1

=
(17)

−1 −1 =
(D3)
(D3)

=
(6)

A.2 (D6)–(D7)

Derived equation (D7) can be proved as follows:

=
(3)

=
(D3)

−1

=
(9)†

−1

=

!†

−1

=
(18)

The proof of derived equation (D6) is a vertically flipped and color-swapped ver-

sion of the proof of derived equation (D7) above, but without the scaling by −1. These

two equations are also proved in the Graphical Linear Algebra blog.

A.3 (D8)–(D9)

Derived equation (D8) is simply a statement that x + y and x + cy are linearly

independent whenever c 6= 1. This can be proved diagrammatically as follows:

133

c =
(1) c

=
(21)
(2)

c
=

(29)†

(30)

c−1
=

(12)

c− 1
=

(31)†

(18)†

=
(D7)

Derived equation (D9) is the statement that when c 6= 1, x = cx implies x = 0.

The proof of derived equation (D9) is a vertically flipped and color-swapped version of the

proof of derived equation (D8) above.

A.4 Frobenius equations

In our presentation of FinRelk, two of the Frobenius equations are superfluous. For

each pair of Frobenius equations (21)–(22) and (23)–(24) either equation can be derived

from the other. Furthermore, both equations of a pair can be derived from the ‘outer’

equation. Here we show how to derive equation (22) from equation (21), commutativity

of +, and cocomutativity of +†.

=
(3)

(3)†

=
(21)

=
(3)†

=
(3)

Color swapping this argument gives an argument for deriving equation (24) from

equation (23). One way to arrive at the numbered Frobenius equations from an outer

equation uses counitality and coassociativity. Putting the pieces together for this is left as

an exercise to the reader.

134

A.5 Additional connections

Recall that a special commutative Frobenius monoid is:

(F1)–(F3) a commutative monoid:

= = =

(F4)–(F6) which is also a cocommutative comonoid:

= = =

(F7)–(F8) that satisfies the Frobenius equations:

= =

(F9) and the special equation:

=

.

We have seen one of the bimonoid laws, equation (10), is compatible with the special com-

mutative Frobenius monoid structure without making it trivial. Indeed, we get the extra-

special commutative Frobenius monoid structure when we include this equation. We can

see below that equation (7) is not only compatible with the special commutative Frobenius

monoid structure, it is a derived equation under the assumption of a special commutative

Frobenius monoid structure. As noted by Heunen and Vicary [15], if either of the other two

bimonoid equations ((8)–(9)) hold for a Frobenius monoid, the monoid is trivial, so the

characteristic difference between non-trivial bimonoids and non-trivial Frobenius monoids

135

is the way the unit and counit interact with the comultiplication and multiplication, respec-

tively.

=
(F9)

=
(F2)

=
(F7)

=
(F6)

=
(F7)

=

The last equality is due to the naturality of symmetry.

136

Appendix B

Generalization of the Box

construction

In Section 4.2 we described the Box construction in the particular case of C =

FinVectk. The description does not change much when we allow C to be an arbitrary

category with biproducts. A more substantial generalization is required in order to consider

the case of C = FinRelk. We build up to the PROP �(FinRelk) here, but leave its

exploitation for future work.

Definition 38 Given a category (C,m, 0,∆, !) with biproducts, we take �C to have

• the same objects as C,

• the morphisms in hom(X,Y) as equivalence classes of

X X ⊗X X ⊗ S X ⊗ T Y ⊗ Y Y
∆ idX ⊗ b idX ⊗ a d⊗ c m

,

abbreviated as (d, c, a, b),

137

• composition given by

(d, c, a, b) ◦ (d′, c′, a′, b′) =

d′d, [d′c c′],

 a 0

a′b′ca a′

 ,
 b

b′d

 .

The morphisms in hom(X,Y) are more convenient to work with when depicted as non-

commuting squares, as in

X

S T

Y
d

b

a

c

.

This form for morphisms explains the name �C.

Two squares, (d, c, a, b) and (d, c′, a′, b′) are in the same equivalence class if there

are isomorphisms α : S → S′ and ω : T → T ′ such that the following diagram in C commutes:

X

S T

Y

S′ T ′
b′

b

a

α

c

ω

a′ c′

.

Note that when C is strict, �C will also be strict.

Because C has biproducts, each object in C is a bicommutative bimonoid, and

morphisms in C are all bimonoid homomorphisms. This definition of �C generalizes the

construction we used to form the PROP �(FinVectk) from FinVectk, but it still does not

allow us to define �(FinRelk). For that we need to drop the condition that C itself has

biproducts, but we still require some of the structure that came with having biproducts.

The rough idea is to find a subcategory C′ of C that has all the objects of C such that C′

has biproducts, define �C′, and bootstrap up to �C. Generally, a subcategory ‘having all

138

the objects’ of a given category is not preserved by equivalences of categories, but there is

a good alternative.

Definition 39 An essentially wide subcategory C′ of C is a subcategory of C that ‘essen-

tially’ contains all the objects of C. That is, the inclusion functor from C′ to C is essentially

surjective on objects.

In PROPs and other strict categories, where isomorphic objects are equal, the

notion of an essentially wide subcategory can be replaced with the notion of a wide sub-

category, also referred to as a lluf subcategory. In this case ‘essentially surjective’ in the

above definition is replaced with ‘bijective’. That is, every object in C is also an object in

any wide subcategory of C.

Definition 40 Given a category (C,m, 0,∆, !) with an (essentially) wide subcategory (C′,m, 0,∆, !)

such that C′ has biproducts, we take �C to have

• the same objects as C,

• the morphisms in hom(X,Y) as equivalence classes of

X X ⊗X X ⊗ S X ⊗ T Y ⊗ Y Y
∆ idX ⊗ b idX ⊗ a d⊗ c m

,

abbreviated as (d, c, a, b), such that ∆ ◦ c =

 c

c

 ◦∆, ∆ ◦ d =

 d

d

 ◦∆, b ◦m =

m ◦ [b b], and d ◦m = m ◦ [d d],

• composition given by

(d, c, a, b) ◦ (d′, c′, a′, b′) =

d′d, [d′c c′],

 a 0

a′b′ca a′

 ,
 b

b′d

 .

Again, the morphisms of �C can be depicted as non-commuting squares:

139

X

S T

Y
d

b

a

c

.

The technical conditions on b, c, and d introduced in this version of �C can be summarized

as b is a monoid homomorphism, c is a comonoid homomorphism, and d is a bimonoid

homomorphism. These will be discussed further at the end of this section, together with a

depiction of the morphisms in �C as string diagrams. The equivalence classes for morphisms

in �C are similar to what they were above. Two squares, (d, c, a, b) and (d, c′, a′, b′) are in

the same equivalence class if there are isomorphisms α : S → S′ and ω : T → T ′ such that

the following diagram in C commutes:

X

S T

Y

S′ T ′
b′

b

a

α

c

ω

a′ c′

.

In what follows, the term �C will refer to this more general version of �C unless otherwise

noted.

We refer to the objects S and T as the prestate and state, respectively. This should

recall their names when these objects were vector spaces. In that case we referred to them

as prestate space and state space, respectively. The formula for composition in �C is easier

to understand as coming from the diagram:

140

X1

S1 T1

X2 X3

S2 T2

S1 ⊗ S2 T1 ⊗ T2

c c′

π1 π2

d

b

d′

b′

a

ι1
a′

ι2

a⊗ a′

.

The b and c sides in the composite come from the pentagons on the left and right, respec-

tively. That is, b comes from the ways to get from X1 to S1 ⊗ S2, and c comes from the

ways T1 ⊗ T2 can get to X3. Similarly, the a side in the composite comes from the ways

S1 ⊗ S2 can get to T1 ⊗ T2, which includes a direct path (from S1 to T1 and from S2 to T2)

and a looped path (from S1 to T2). The d side in the composite comes from the most direct

path from X1 to X3.

Given two composable morphisms, f : X1 → X2 and g : X2 → X3 with represen-

tatives (d1, c1, a1, b1) and (d′1, c
′
1, a
′
1, b
′
1) for f and (d2, c2, a2, b2) and (d′2, c

′
2, a
′
2, b
′
2) for g, we

have the following commuting diagrams:

X1

S1 T1

X2

S′1 T ′1

b′1

b1

a1

α1

c1

ω1

a′1
c′1

and

141

X2

S2 T2

X3

S′2 T ′2

b′2

b2

a2

α2

c2

ω2

a′2
c′2

.

We need isomorphisms α12 : S1 ⊗ S2 → S′1 ⊗ S′2 and ω12 : T1 ⊗ T2 → T ′1 ⊗ T ′2 that make the

corresponding diagram for g ◦ f commute. We leave it as an exercise to the reader to check

that α12 = α1 ⊗ α2 and ω12 = ω1 ⊗ ω2.

For the matrix notation of composition to make sense, there need to be notions

of addition and multiplication. Multiplication is simply composition in C. Addition is a

generalization of equation (12) from Section 3.1, given in Definition 41.

Definition 41 Let (C,m, 0,∆, !) be a category with an (essentially) wide subcategory (C′,m, 0,∆, !)

such that C′ has biproducts, and A,B ∈ Ob(C). For x, y : A → B we define the operation

x+ y := mB ◦ (x⊗ y) ◦∆A

x+ y := x y

.

It is clear that if x, y are endomorphisms of A, x+ y will also be an endomorphism of A.

Theorem 42 �C is a monoidal category with the same monoidal product on objects as C,

and (d, c, a, b)⊗ (d′, c′, a′, b′) = (d⊗ d′, c⊗ c′, a⊗ a′, b⊗ b′).

Proof. To show �C is a category, we need to show associativity and the unit laws hold. To

show �C is a monoidal category, we also need to show the associator and unitors exist and

satisfy the pentagon and triangle equations. It is clear that identity morphisms are formed

when the prestate and state are both the zero object and d is an identity morphism in C:

142

X

0 0

X
1X .

The associator and unitors of �C are formed from those of C using the same trick. It’s easy

to see their pentagon and triangle equations follow directly from those in C. It is also easy

to see the monoidal product on morphisms is compatible with composition. Associativity

of morphisms in �C reduces to associativity of the monoidal product for the prestate and

state, and an associativity requirement on the C morphisms d, c, a, and b.

Denoting the compositions (dj , cj , aj , bj) ◦ (di, ci, ai, bi) as (dij , cij , aij , bij), we get

(d3, c3, a3, b3) ◦ (d12, c12, a12, b12) = (d12,3, c12,3, a12,3, b12,3):

X1 X3 X4

S1 ⊗ S2 T1 ⊗ T2 S3 T3

=

X1 X4

(S1 ⊗ S2)⊗ S3 (T1 ⊗ T2)⊗ T3

d12

b12

d3

b3

a12 a3

c12 c3

d12,3

b12,3

a12,3

c12,3

and (d23, c23, a23, b23) ◦ (d1, c1, a1, b1) = (d1,23, c1,23, a1,23, b1,23):

X1 X2 X4

S1 T1 S2 ⊗ S3 T2 ⊗ T3

=

X1 X4

S1 ⊗ (S2 ⊗ S3) T1 ⊗ (T2 ⊗ T3)

d1

b1

d23

b23

a1 a23

c1 c23

d1,23

b1,23

a1,23

c1,23

.

The associativity requirements for d, c, a, and b require there to be canonical isomorphisms

d12,3
∼= d1,23, c12,3

∼= c1,23, a12,3
∼= a1,23, and b12,3

∼= b1,23. The associativity requirement

for d clearly holds because composition is associative in C — d1,23 = d1(d2d3) ∼= (d1d2)d3 =

d12,3. We see the associativity requirement for a holds because aij =

 ai 0

ajbjciai aj

 ,

143

which means

a12,3 =

 a12 0

a3b3c12a12 a3

 =

 a1

a2b2c1a1

0

a2

 0

0

[a3b3d2c1a1 + a3b3c2a2b2c1a1 a3b3c2a2] a3

 ,

since c12 =

[
d2c1 c2

]
. A similar calculation gives a canonically isomorphic matrix for

a1,23,

a1,23 =

a1 0 0 a2b2c1a1

a3b3d2c1a1 + a3b3c2a2b2c1a1

 a2

a3b3c2a2

0

a3

 .
The proofs of the associativity requirements for c and b are similar to each other,

transposed. We present the argument for c and leave the argument for b to the reader.

Since cij = [djci cj], we have

c12,3 = [d3c12 c3]

= [d3[d2c1 c2] c3]

= [[d3d2c1 d3c2] c3]

∼= [d3d2c1 [d3c2 c3]]

= [d23c1 c23] = c1,23.

So we see composition of morphisms in �C is associative.

The anatomy of �C makes more sense when it is understood as a category with

an obvious evaluation functor eval : �C → C. We can also find a ‘feedthrough’ func-

tor feed: �C → C and functor in the reverse direction Box: C → �C. The maps of

objects eval0 : Ob(�C) → Ob(C) is a bijection, feed0 = eval0, and Box0 is its inverse.

The map of morphisms eval1 : Mor(�C) → Mor(C) is given by eval1(d, c, a, b) = d + cab,

feed1 : Mor(�C) → Mor(C) is given by feed1(d, c, a, b) = d, and Box1 : Mor(C) → Mor(�C)

is given by Box1(d) = (d, !, 0, 0). That is,

144

eval1

X1 X2

S T

d

b

a

c

 = d+ cab, feed1

X1 X2

S T

d

b

a

c

 = d

and Box1(d) =

X1 X2

0 0

d

.

Theorem 43 eval, feed and Box are monoidal functors, and

• eval, feed and Box are essentially surjective

• eval and feed are full, but not faithful

• Box is faithful, but not full

• Box has no adjoint.

• If C is a symmetric monoidal category (resp. a braided monoidal category), eval, feed

and Box are symmetric (resp. braided) monoidal functors. In particular, �C will also

be a symmetric (resp. braided) monoidal category.

Note that since �C is strict whenever C is, this last item means �C is a PROP

whenever C is.

Proof. All three functors are bijective on objects, so it immediately follows they

are essentially surjective. We note that feed◦Box and eval◦Box are both the identity functor

on C, which implies feed and eval are surjective on all morphisms, hence full. This also

implies Box is injective on morphisms, so Box is faithful. On the other hand, a morphism

in �C between Box0(V1) and Box0(V2) where the prestate or state are not isomorphic to

the zero object is not the Box1-image of any morphism in C, so Box is not full. Similarly,

feed and eval cannot be faithful.

145

(V1 ⊗ V2)⊗ V3

V1 ⊗ (V2 ⊗ V3) (V2 ⊗ V3)⊗ V1

V2 ⊗ (V3 ⊗ V1)

V2 ⊗ (V1 ⊗ V3)(V2 ⊗ V1)⊗ V3

(aV1,V2,V3 , !, 0, 0)

(BV1,V2⊗V3 , !, 0, 0)

(aV2,V3,V1 , !, 0, 0)

(BV1,V2 ⊗ Id, !, 0, 0)

(aV2,V1,V3 , !, 0, 0)

(Id⊗BV1,V3 , !, 0, 0)

Figure B.1: A hexagon law inside �C. This diagram commutes in �C when the analo-
gous diagram in C, where the morphisms are the first coordinates of the morphisms here,
commutes.

In Theorem 18 we saw Box has no adjoint, taking advantage of the fact that

FinVectk has an initial object and a terminal object, neither of which is preserved by Box.

In this more general setting, C may not have initial or terminal objects, so it is necessary to

show from the definitions that Box has no adjoint. It is a straightforward exercise sketched

out below, which we leave to the reader to fill in the details.

Suppose R : �C → C, d ∈ homC(A,B), and R(d, c, a, b) = f ∈ homC(A,B). Clearly

Box ◦ R(d, c, a, b) = (f, !, 0, 0). Further suppose a ∈ homC(P, S), so that the prestate of

(d, c, a, b) is P and the state is S. If R is a right adjoint to Box, there would be a natural

transformation η : 1�C ⇒ Box ◦R such that the square

A

A

B

B

(d, c, a, b)

(f, !, 0, 0)

ηA ηB

commutes in �C. Taking P ′ and P ′′ to be the prestates for ηA and ηB, respectively, this

means P ′ ∼= P ′′ ⊕ P . However, P can vary without affecting A or B, while P ′ and P ′′ are

146

determined by A and B. This contradiction means R cannot be a right adjoint to Box.

Similarly Box has no left adjoint, by considering the natural transformation ε : Box ◦ L ⇒

1�C .

It is easy to check that the associator, unitor, and symmetry/braiding isomor-

phisms in �C are the Box1-images of the respective isomorphisms in C. In �C we have

(d, !, 0, 0) ◦ (d′, !, 0, 0) = (d ◦ d′, !, 0, 0), so Box preserves the coherence laws that hold in

C. See Figure B.1 for an example of one of these coherence laws in �C. Thus �C

is a symmetric (resp. braided) monoidal category when C is. It is also easy to see

feed1(d, !, 0, 0) = eval1(d, !, 0, 0) = d, so feed and eval will also preserve all the coherence

laws.

An alternate way to depict morphisms in �C is through string diagrams. The

morphism (d, c, a, b) is depicted:

da

c

b

,

and it is easy to see the monoidal product (d, c, a, b)⊗ (d′, c′, a′, b′) is what it is supposed to

be:

147

da

c

b

d′a′

c′

b′

.

Composition is still tedious with string diagrams, but the reason for the technical conditions

on b, c, and d is illuminated somewhat:

da

c

b

d′a′

c′

b′

=

da

c

b

d′a′

c′

b′

=

d

b′
b

a

c

b′

a′

c′
c

d′

d

d′

=

d

b′
b

a

c

b′

a′

c′
c

d′

d

d′
d′′

b′′

a′′

c′′

.

The first equality is because every object is a bimonoid. The second equality is due to

the technical conditions and topology-preserving moves. The last equality is due to every

148

object being bicommutative. The dashed boxes indicate which portions of the string dia-

gram correspond to the components of the composite morphism: (d′, c′, a′, b′) ◦ (d, c, a, b) =

(d′′, c′′, a′′, b′′).

149

	List of Figures
	Introduction
	Outline
	PROPs, linear relations, and signal-flow diagrams
	State space
	Controllability and observability in signal-flow diagrams
	The `Box' construction

	Generators and equations for PROPs
	Generators and equations description of FinRelk
	Presenting FinVectk
	Presenting FinRelk
	An example
	Related work

	The PROP Stateful
	Constructing categories of state
	The Box construction
	The PROP Stateful
	Controllability and observability

	The PROP ContFlow
	Finding ContFlowk
	Duality properties of ContFlowk

	Conclusions
	Bibliography
	Proofs of selected derived equations
	(D5)
	(D6)–(D7)
	(D8)–(D9)
	Frobenius equations
	Additional connections

	Generalization of the Box construction

