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ABSTRACT OF THE DISSERTATION

Extended TQFT’s and Quantum Gravity

by

Jeffrey Colin Morton

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2007

Dr. John Baez, Chairperson

This thesis gives a definition of an extended topological quantum field theory

(TQFT) as a weak 2-functor Z : nCob2→2Vect, by analogy with the descrip-

tion of a TQFT as a functor Z : nCob→Vect. We also show how to obtain such

a theory from any finite group G. This theory is related to a topological gauge

theory, the Dijkgraaf-Witten model. To give this definition rigorously, we first

define a bicategory of cobordisms between cobordisms. We also give some explicit

description of a higher-categorical version of Vect, denoted 2Vect, a bicategory

of 2-vector spaces. Along the way, we prove several results showing how to con-

struct 2-vector spaces of Vect-valued presheaves on certain kinds of groupoids. In

particular, we use the case when these are groupoids whose objects are connec-

tions, and whose morphisms are gauge transformations, on the manifolds on which

the extended TQFT is to be defined. On cobordisms between these manifolds,

we show how a construction of “pullback and pushforward” of presheaves gives

both the morphisms and 2-morphisms in 2Vect for the extended TQFT, and that

these satisfy the axioms for a weak 2-functor. Finally, we discuss the motivation

for this research in terms of Quantum Gravity. If the results can be extended
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from a finite group G to a Lie group, then for some choices of G this theory will

recover an existing theory of Euclidean quantum gravity in 3 dimensions. We

suggest extensions of these ideas which may be useful to further this connection

and apply it in higher dimensions.
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Chapter 1

Introduction

In this thesis, I will describe a connection between the ideas of extended topo-

logical quantum field theory and topological gauge theory. This is motivated by

consideration of a possible application to quantum gravity, and in particular in 3

dimensions–a situation which is simpler than the more realistic 4D case but has

many of the essential features. Here, we consider this example as related to one

interesting case of a general formulation of “Extended” TQFT’s. This is described

in terms of higher category theory.

The idea that category theory could play a role in clarifying problems in quan-

tum gravity seems to have been first expressed by Louis Crane [24], who coined

the term “categorification” . Categorification is a process of replacing set-based

concepts by category-based concepts. Categories are structures which have not

only elements (called objects), but also arrows, or morphisms between objects as

logically primitive concepts. In many examples of categories, the morphisms are
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Chapter 1. Introduction

functions or relations between the objects, though this is not always the case.

Categorification therefore is the reverse of a process of decategorification which

involves discarding the structure encoded in morphisms. A standard example is

the semiring of natural numbers N, which can be seen as a decategorification of

the category of finite sets with set functions as arrows, since each natural number

can be thought of as an isomorphism class of finite sets. The sum and product

on N correspond to the categorical operations of coproduct (disjoint union) and

product (cartesian product), which have purely arrow-based descriptions. For

some further background on the concept of categorification, see work by Crane

and Yetter [26], or Baez and Dolan [9].

So what we study here are categorified TQFT’s. The program of applying

categorical notions to field theories was apparently first described by Dan Freed

[37], where these are called “higher algebraic” structures. What we will show here

is that this broader framework allows us to make a link not just to the vacuum

version of this 3D quantum gravity, but to a form in which spacetime contains

matter. To do this, we use the fact that concepts of a topological quantum

field theory can be described in the language of category theory. Specifically,

that a TQFT is a functor from a category of cobordisms—which is topological

in character— into the category of Hilbert spaces. To “categorify” this means to

construct an analogous theory in the language of higher categories—in particular,

2



Chapter 1. Introduction

2-categories. One of the obstacles to doing this is that one needs to have a suitable

2-category analogous to the category of cobordisms.

A cobordism between manifolds S and S ′ is a manifold with boundary M such

that ∂M is the disjoint union of S and S ′, which we think of as an arrow M :

S → S ′. One can define composition of cobordisms, by gluing along components

of the boundary, leading to the definition of a category nCob of n-dimensional

cobordisms between (n− 1)-dimensional manifolds.

Figure 1.1: A Cobordism With Corners

In Figure 1.1 we see a 3-manifold with corners which illustrates these points

and provides some motivating intuition. This can be seen a cobordism from the

3



Chapter 1. Introduction

pair of annuli at the top to the two-punctured disc at the bottom. These in turn

can be thought of, respectively, as cobordisms from one pair of circles to another,

and from one circle to two circles. The large cobordism has other boundary com-

ponents: the outside boundary is itself a cobordism from two circles to one circle;

the inside boundary (in dotted lines) is a cobordism from one pair of circles to

another pair. We could “compose” this with another such cobordism with corners

by gluing along any of the four boundary components: top or bottom, inside or

outside. This involves attaching another such cobordism having a corresponding

boundary component diffeomorphic to any of these. By “corresponding” is meant

that to glue along two boundary components, one must be the source, and one the

target, in the same direction—horizontal or vertical. These components are mani-

folds with boundary, and “gluing” is accomplished by specifying a diffeomorphism

between them, which fixes the boundary.

We want to define an “extended TQFT”, which assigns categorified algebraic

data to the manifolds, cobordisms, and cobordisms with corners in this setting.

One necessary preliminary for the example we are interested in is a description

of topological quantum field theories in the usual sense. This is reviewed in

Chapter 2, beginning in Section 2.1. Atiyah’s axiomatic description of TQFTs

[2], reviewed in Section 2.2), can be interpreted as defining TQFT’s as functors

from a category of cobordisms into Vect. A TQFT assigns a space of states to

4



Chapter 1. Introduction

each manifold, and a linear transformation between states to cobordisms. This is

a functor from the category nCob, which has (n − 1)-dimensional manifolds its

objects and n-dimensional cobordisms as its morphisms.

Section 2.3 discusses a construction due to Fukuma, Hosono, and Kawai [43]

for constructing a TQFT explicitly in dimension n = 2 starting from any finite

group G. The FHK construction is an example of how a quantum theory inti-

mately involves a relation between smooth geometric structures, and discretized

geometric structures. Specifically, this topological theory can be thought of as

coming from structures built on manifolds and cobordisms via a triangulation—a

decomposition of the manifold into simplices. It turns out that there is a close

connection between the ideas of a theory having “no local degrees of freedom” in

the discrete and continuum setting. In the continuum setting, this means that the

theory is topological—the vector spaces and linear operators it assigns depending

only on the isomorphism class of the manifold or cobordism. In the discrete setting

of a triangulated manifold, it means that the theory is triangulation independent

An important feature of this TQFT is that it assigns to a closed, connected

1-manifold (i.e. a circle) just some element of the centre of the group algebra of G,

which we denoted Z(C[G]). A standard interpretation of such a space in quantum

theory would hold that this is a quantization of a classical space of states. The

classical space would then simply be Z(C[G]), so that quantum states are (com-
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Chapter 1. Introduction

plex) linear combinations of classical states. An assignment of a group element

to a circle, or loop, can be interpreted as a connection on the circle. Then C[G]

consists of complex-valued linear combinations (“superpositions”) of such connec-

tions. The centre, Z(C[G]), consists of such superpositions which commute with

any element of G (and hence of C[G]). These are thus invariant under conjuga-

tion by any element of G. Such a conjugation is a “gauge transformation” of a

connection - so these elements are gauge invariant superpositions of connections.

These interpretations turn out to be useful when we aim to produce extended

TQFT’s. This notion was described by Ruth Lawrence [61], and denotes are theo-

ries similar to TQFT’s, for which the theory is defined not on cobordisms, but on

manifolds with corners. One setting where this arises is if we consider the possi-

bility of manifolds with boundary connected by a cobordism. In particular, we are

interested in the case where S : X → Y and S ′ : X ′ → Y ′ are already themselves

cobordisms. These cobordisms between cobordisms, then, are manifolds with cor-

ners. Here we shall present a formalism for describing the ways such cobordisms

can be glued together. Louis Crane has written a number of papers on this issue,

including one with David Yetter [27] which gives a bicategory of such cobordisms.

We want to define a structure nCob2, whose objects are (n−2)-manifolds, whose

morphisms are (n−1)-cobordisms, and whose 2-morphisms are n-cobordisms with

corners. Just as a TQFT assigns a space of states to a manifold and a linear map to

6



Chapter 1. Introduction

a cobordisms, an extended TQFT will assign some such algebraic data to (n−2)-

manifolds, (n − 1)-manifolds with boundary, and n-dimensional manifolds with

corners. This data should have an interpretation similar to that for a TQFT.

To clarify how to do this, we need to consider more carefully what kind of

structure nCob2 must be. So we consider some background on higher category

theory. This field of study is still developing, but has been effectively introduced

by Leinster [64] and by Cheng and Lauda [23]. The essential idea of higher

category theory is However, for our purposes here, we only need to consider higher

categories with morphisms represented by at most 2-dimensional cells. Chapter

3 discusses bicategories and double categories, which we will generalize later, and

briefly describes some standard examples of these from homotopy theory.

Whereas a category has objects and morphisms between objects, a bicategory

will have an extra layer of structure: objects, morphisms between objects, and

2-morphisms between morphisms:

x

f
!!

g

==
yα

�� (1.1)

The “strict” form of a bicategory is a 2-category, which are reviewed by Kelly

and Street [53], but we are really interested in the weak forms—here, all the

axioms which must be satisfied by a category hold only “up to” certain higher-

dimensional morphisms. That is, what had been equations are replaced by speci-
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Chapter 1. Introduction

fied 2-isomorphisms, which then must themselves satisfy certain coherence condi-

tions. Such coherence conditions have been a persistent theme of category theory

since its inception by MacLane and Eilenberg (see, for instance, [66]), and are

important features of higher categorical structures.

Double categories, introduced by Ehresmann [32] [33], may be seen as “inter-

nal” categories in Cat. That is, a double category is a structure with a category

of objects and a category of morphisms. Less abstractly, it has objects, horizontal

and vertical morphisms which can be represented diagrammatically as edges, and

squares. These can be composed in geometrically obvious ways to give diagrams

analogous to those in ordinary category theory. Our example of cobordisms with

corners appears to be an example of a double category: the objects are the mani-

folds, the morphisms are the cobordisms, and the 2-cells are the cobordisms with

corners. In fact, as we shall see, this is too strict for our needs.

We note here that relations between TQFT’s and extended TQFT’s, and

higher categories, are several. The categorical features of standard TQFT’s are de-

scribed in some detail by Bruce Bartlett [15]. Crane and Yetter [27] describe the al-

gebraic structure of TQFT’s and extended TQFT’s, showing how certain algebraic

and higher-algebraic structures appear from the definition of a TQFT. Examples

include the well known equivalence between 2D TQFT’s and Frobenius algebras;

connections between 3D TQFT’s and either suitable braided monoidal categories,

8



Chapter 1. Introduction

or Hopf algebras; and the appearance of “Hopf categories” in 4D TQFT’s. These

illustrate the move to higher-categorical structures in higher-dimensional field the-

ories. Baez and Dolan [8] summarize the connection between TQFT’s and higher

category theory, in the form of the Extended TQFT Hypothesis, suggesting that

all extended TQFT’s can be viewed as representations of a certain kind of “free

n-category”.

The kind of n-category we are interested in here is a common generalization

of a double category and a bicategory. Double categories are too strict to be

really natural for our purpose, however—composition in a double category must

be strictly associative, and in order to achieve this, one only considers equivalence

classes of cobordisms, not cobordisms themselves, as morphisms. So we consider a

weakening of this structure, in the sense that axioms for a double category giving

equations (such as associativity) will be true only up to specified 2-morphisms.

This allows us to take morphisms to actually be cobordisms themselves, and the

diffeomorphisms between them as 2-morphisms. This is analogous to the way in

which the idea of a bicategory is a weakening of the idea of a category.

Bicategories, however, are not really what we want either, since we want to

describe systems with changing boundary conditions, and the most natural way to

do this is by allowing both initial and final states, and these changing conditions,

as part of the boundary. We call the structure which accomplishes this a Verity

9



Chapter 1. Introduction

double bicategory, referring to Dominic Verity, who introduced them and called

them simply double bicategories. On the other hand, we show in Theorem 1 that

Verity double bicategories satisfying certain conditions give rise to bicategories. In

fact nCob2 is an example of this. The structure we use to describe such composi-

tions is the one we call a Verity double bicategory. These we describe in Chapter 4.

In these examples, the composition laws of double categories are weakened. That

is, the associativity of composition, and unit laws, of the horizontal and vertical

categories apply only up to specified higher morphisms.

In Section 4.2 we prove that a Verity double bicategory satisfying certain

conditions gives a bicategory. To finish Section 4, we describe a general class of

examples of Verity double bicategories, analogous to the result that Span(C) is a

bicategory. A “span” is a diagram of the form A←C→B, in which one object

C has maps into two other objects A and B. Given two spans A←C→B and

A←C ′→B, a span map is a morphism f : C→C ′ such that the diagram:

C ′

~~}}
}}

}}
}

  A
AA

AA
AA

A C

f

OO

//oo B

(1.2)

commutes. A cospan is defined in the same way, but with the arrows reversed.

It is a classical result of Bénabou [16] that for any category C which has all

limits, there is a bicategory Span(C) whose objects are objects of C, whose mor-

phisms are spans in C, and whose 2-morphisms are span maps. The composition

10



Chapter 1. Introduction

of morphisms is by pullback - a universal construction. In Section 4.3, a simi-

lar concept in 2 dimensions is introduced, namely “double spans” and “double

cospans”. These give a broad class of examples of Verity double bicategories, and

in particular, we can use them to derive the fact that there is a double bicategory

of cobordisms with corners.

In Appendix A we return to prove some lemmas which were needed in the proof

of Theorem 3. These extent some results about bicategories and double categories,

namely that a double category can be seen as an internal category in Cat, and that

spans in a category C with pullbacks constitute the morphisms of a bicategory,

Span(C). We show a way to describe double bicategories, internal bicategories

in Bicat, and that Verity double bicategories are simply examples of these which

satisfy certain special conditions. We also show that double spans most naturally

form an example of a double bicategory, but that they can be reduced by taking

isomorphism classes in order to obtain a Verity double bicategory.

We describe more specifically the geometric framework for cobordisms with

corners in Chapter 5. Gerd Laures [60] discusses the general theory of cobordisms

of manifolds with corners. In the terminology used there, introduced by Jänich

[48], what we primarily discuss in this work are 〈2〉-manifolds: in particular, the

codimension of the manifold is 2. That is, the manifold M (whose dimension is

dim(M) = n) will have a boundary ∂M , which will in turn be composed of faces

11



Chapter 1. Introduction

which are manifolds with boundary, of dimension (n−1). However, the boundaries

of these faces will be closed manifolds: they are manifolds of dimension (n − 2).

This separates into faces. For us, the faces decompose into components, which

are the source and the target in both horizontal and vertical directions. The

corners, faces of codimension 2, are the source and target of these. We call the

resulting structure nCob2, and in Section 5.3 we prove the main result about

nCob2, Theorem 3, that this indeed forms a Verity double bicategory.

In Chapter 6 we turn to the next essential element of an extended TQFT,

the 2-category 2Vect of 2-vector spaces. This is the categorified equivalent of

the category Vect of vector spaces. There are several alternative notions of what

2Vect should be—this is a common feature of categorification, since the same

structure may have arisen by discarding structure in more than one way. The

view adopted here is that a 2-vector space is a certain kind of C-linear additive

category. The properties of being C-linear and additive give equivalents of the

linear structure of a vector space at both the object and morphism levels. C-

linearity means that the set of morphisms are complex vector spaces. We should

remark that these properties mean that 2-vector spaces are closely related to

abelian categories (introduced by Freyd [42], and studied extensively as the general

setting for homological algebra) have a structure on objects which is similar to

addition for vectors. In particular, we are interested in the equivalent of “finite

12



Chapter 1. Introduction

dimensional” vector spaces, so 2-vector spaces also need to be finitely semi-simple,

so every object is a finite sum of simple ones.

Section 6.1 describes Kapranov-Voevodsky (KV) 2-vector spaces—the kind

described above. Each of these is equivalent to the category Vectn for some n—

a higher analog of complex vector spaces, which are all equivalent to some Cn.

In fact, categories with both C-linearity and additiveness naturally have a kind

of “scalar” multiplication by vector spaces. So in the categorified setting, the

category Vect itself plays the role of C for complex vector spaces. So Yetter’s

[88] alternative definition of a 2-vector space as a Vect-module turns out to be

equivalent to a KV vector space in the case where it is finitely semisimple.

We describe the morphisms between KV 2-vector spaces—2-linear maps. A

2-linear map T : Vectn→Vectm can be represented as matrices of vector spaces:

















T1,1 . . . T1,n

...
...

Tl,1 . . . Tl,k

































V1

...

Vk

















(1.3)

which act on 2-vectors by matrix multiplication, using the tensor product ⊗ in

the role of multiplication, and the direct sum ⊕ in the role of addition. All 2-

morphisms between two such 2-linear maps can be represented as matrices of

linear transformations which act componentwise.
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We also show that the concept of an adjoint functor can be described in terms

of matrix representations of 2-linear maps in much the same way that the descrip-

tion of the adjoint of a linear map relates to its matrix representation. So the two

notions of “adjoint” turn out to be closely connected in 2-vector spaces.

A special example of a 2-vector spaces—a group 2-algebra—is described. This

turns out to be the starting point to describe what 2-vector space a 3-dimensional

extended TQFT assigns to a circle.

This example leads to discussion, in Section 6.2, of how to build 2-vector spaces

from groupoids. We introduce the concept of “Vect-presheaves” on X. These are

just functors from Xop to Vect (or, since X ∼= Xop for a groupoid, just from X to

Vect). The totality of these functors forms a category, which we call [X,Vect],

whose objects are functors from X to Vect, and whose morphisms are natural

transformations between functors. One important result, Lemma 5, says that for

any finite groupoid X (or one which is “essentially” finite, in a precise sense) the

category [X,Vect] is a KV 2-vector space.

Studying these Vect-presheaves on groupoids is of interest, partly because it

opens up the possibility of a categorified version of quantizing a system by taking

L2 of its classical configuration space. This is a Hilbert space of complex-valued

functions on that space—so considering a 2-vector space of V -valued functions is

a categorified analog.

14
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On the other hand, Set-valued presheaves on certain kinds of categories are

generic examples of toposes, about which much is known (see, for example, John-

stone [49], [50]). Some results about these can be shown for Vect-valued presheaves

also, although there are significant differences resulting from the fact that Vect

is an additive category.

One of the theorems for Vect-valued presheaves which resembles one for Set

is that functors between groupoids give rise to “pullback” and “pushforward” 2-

linear maps between these 2-vector spaces of presheaves. Given a functor f :

X→Y, we get the “pullback” f ∗ : [Y,Vect]→[X,Vect], and the “pushforward”

f∗ : [X,Vect]→[Y,Vect]. The pullback is straightforward: a functor on Y

becomes a functor on X by composition with f . But the pushforward depends

on the structure of Vect: as described in Definition 13, given a presheaf V ∈

[X,Vect], the pushforward f∗V gives a presheaf in [Y,Vect] which gives, at any

object in Y, the colimit of a certain diagram. This depends critically on the

ability to take finite colimits in Vect.

Both the pullback and pushforward maps carry presheaves on one groupoid

to presheaves on another. For a given f , the two 2-linear maps f ∗ and f∗ form

an ambidextrous adjunction. That is, f∗ is both a left and a right adjoint to f ,

meaning that for any presheaves V ∈ [X,Vect] and W ∈ [Y,Vect], we have both

hom(V, f ∗W ) ∼= hom(f∗V,W ) and hom(f ∗W,V ) ∼= hom(W, f∗V ). We then say

15
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that they are adjoint 2-linear maps—this is an example of the connection between

adjointness of functors and adjointness of linear maps.

This pair of adjoint maps, the pullback and pushforward, turns out to be essen-

tial to the constructions used to develop the extended TQFT’s we are interested

in. The reason is related to the fact that we described the cobordisms on which

they are defined in terms of cospans, as we will see shortly.

In Section 6.3, we fill out some of the details of what a 2-Hilbert space should

be, including a definition of the inner product, and an extension to infinite di-

mension. Not all of this will be used for our main theorem, but it is helpful to

put the rest in perspective, and will be referred to in Chapter 8 when we discuss

proposed extensions of our main results to quantum gravity.

In Chapter 7 we discuss how to construct an extended TQFT based on a

double bicategory of cobordisms with corners, by means of the interpretation of

a TQFT in terms of a connection on the manifolds involved. This is related to

the Dijkgraaf-Witten model, a topological gauge theory. Our aim is to give a

construction of an extended TQFT ZG as a weak 2-functor, starting from any

finite gauge group G (in a way which suggests how to extend the theory to an

infinite gauge group).

Section 7.1 describes how to get a KV 2-vectorspace from a manifold. Given

a manifold B, one first takes the fundamental groupoid Π1(B), whose objects are

16
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the points in B and whose morphisms are homotopy classes of paths in B. Then

a connection on the cobordism (or one of the manifolds on the boundary) is a

functor A : Π1(B)→G where the gauge group G is thought of as a category (in

fact a groupoid) with one object.

These connections are naturally organized into a functor category hom(Pi1(B), G),

or just [Π1(B), G] for short. This category is a groupoid, and since manifolds have

finitely generated fundamental groups. The gauge transformations are natural

transformations between the functors into G. This functor category now plays

the role of the “configuration space” of the theory.

We then want to quantize this configuration space [Π1(B), G]. In ordinary

quantum mechanics, quantization might involve taking an L2 space of (certain)

functions from a configuration space into C. In the categorified setting, we take

the category functors into Vect—what we have called Vect-presheaves—and get

a 2-vector space. We will be considering only the case G is finite, and as remarked,

Π1(B) finitely generated. So then [Π1(B), G] is an essentially finite groupoid, and

ZG(B) =
[

[Π1(B), G],Vect
]

will be a KV 2-vector space.

17
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Then the question becomes one of how to find 2-linear maps from cobordisms.

But a cobordism S : B→B′ can be interpreted as a special cospan

S

B

i
??�������

B′

i′
``@@@@@@@@

(1.4)

with two inclusion maps. Since the operation [Π1(−), G] is a contravariant functor,

applying it results in a span of the resulting groupoids, where the inclusions are

replaced with restriction maps:

[Π1(S), G]
p

wwooooooooooo

p′ ''OOOOOOOOOOO

[Π1(B), G] [Π1(B
′), G]

(1.5)

This is a span where we have a groupoid of all “histories” in the middle,

and of “configurations” at the ends, with projection maps from the histories to

the configurations. These are source and target maps, when we think of this as

a cobordism in nCob. This groupoid represents configurations of some system

whose individual states are flat G-bundles. Thinking of spaces in terms of their

path groupoids forces us to categorify the gauge group. The DW model accords

with this if we think of G as a one-object groupoid (though one might generalize

to a 2-group, for example, as discussed by Martins and Porter [70]) and get a

different theory.
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After taking Vect-presheaves, we have a cospan (because the functor [−,Vect]

is contravariant again), which looks like:

[

[Π1(S), G],Vect
]

[

[Π1(B), G],Vect
]

p∗

55jjjjjjjjjjjjjjj
[

[Π1(B
′), G],Vect

]

(p′)∗
iiTTTTTTTTTTTTTTT

(1.6)

where the most evident choices for 2-linear maps between these KV 2-vector spaces

are the pullbacks along the restriction maps. The functor
[

[Π1(−), G],Vect
]

which gives 2-vector spaces for manifolds, and indeed topological spaces (as long

as the fundamental group is finitely generated). We want to use it to yield some

2-functor ZG : nCob2→2Vect. Objects in nCob2 are objects in C, but we

then would like to get a 2-linear map from a cobordism. However, is given as a

cospan, so we have two pullback maps in the above diagram, both of which have

the adjoints discussed above. Since S is a cobordism with source B and target

B′, we can replace (p′)∗ with its adjoint, (p′)∗, to get a 2-linear map:

(p′)∗ ◦ (p)∗ : ZG(B)→ZG(B′) (1.7)

This will be ZG(S). We can describe this as a “pull-push” process. It consitsts of

two stages. The first stage is a “pull”, which gives a Vect-presheaf p∗F on con-

nections on the cobordism S from F on the manifold B. This is done by assigning

to each connection A on S the vector space assigned by F to the restriction of A

to B (and acts on gauge transformations in a compatible way). The second stage
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is a “push”, which gives a Vect-presheaf on B′ from this p∗F on the groupoid

of connections on S. This assigns to each connection A′ on B′ a vector space

(p′)∗ ◦ p
∗(F ), which is a colimit over all the connections on S which restrict to A′.

The colimit should be thought of as a direct sum over the equivalence classes of

such components. The terms of the sum are, not the vector spaces assigned by

p∗F , but quotients of these which arise from the fact that some connections may

have nontrivial automorphisms.

The “pull-push” process is related to the idea of a “sum over histories”. Recall

that we can think of the 2-vector space of Vect-presheaves ZG(B) as a categorified

equivalent of the Hilbert space L2(X) we get when quantizing a classical system

with configuration space X. So what is a component in the matrix representa-

tion of the 2-linear transformation ZG(S)? It is indexed by configurations (i.e.

connections) on the initial and final spaces. The vector space can be interpreted

as a categorified “amplitude” to get from the initial configuration to the final

configuration.

A similar procedure, discussed in Section 7.3, is used to get a 2-morphism

from a cobordism between cobordisms. That is, given a cobordism with corners,
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M : S1→S2, between two cobordisms S1, S2 : B→B′, we have :

S1

i
��

B

i1
>>~~~~~~~~

i2   @
@@

@@
@@

@ M B′

i′
1

``AAAAAAAA

i′
2~~}}

}}
}}

}}

S2

i′

OO

(1.8)

To construct a natural transformation ZG(M) : ZG(S1)→ZG(S2), a very similar

process of “pull-push” The difference is that instead of pulling and pushing Vect-

presheaves—that is, 2-vectors—one is pulling and pushing vectors. These vectors

can be interpreted as C-valued functions on a basis of the vector spaces which

form the components of the 2-linear maps ZG(S1) or ZG(S2). Such a basis con-

sists of equivalence classes of connections on S1 and S2 respectively. This basis,

again, consists of configurations (connections) on S1 or S2 respectively. Choosing

particular components (that is, fixing equivalence classes connections A and A′

on B and B′), one then builds a linear transformation

ZG(M)[A],[A′] : ZG(S1)[A],[A′]→ZG(S2)[A],[A′] (1.9)

by a “pull-push”. The “pull” phase of this process simply pulls C-valued functors

along the restriction map taking connections on M to connections on S1. The

“push” phase here, as at the previous level, assigns to a connection A2 on S2 a

sum over all connections on M restricting to A2. And again, the sum is not just

of these components, but of a “quotient” which arises from the automorphism
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group of each such connection on M . This is related to the concept of “groupoid

cardinality”, and this is discussed in Section 7.3.

So we have described a construction of an assignment ZG which gives a KV 2-

vector space for any manifold, a 2-linear map for any cobordism of manifolds, and

a natural transformation of 2-linear maps for any cobordism between cobordisms.

The main theorem of the thesis, the focus of Section 7.4, is that this ZG indeed

forms a weak 2-functor from nCob2 to 2Vect. Along the way we will have proved

most of the properties needed, and it remains to verify some technical conditions

about the 2-morphisms which accomplish the weak preservation of composites and

units.

Finally, Chapter 8 describes some of the motivation for this work coming from

quantum gravity, and particularly 3-dimensional quantum gravity. To really apply

these results to that subject, one would need to extend them. Most immediately,

one would need to show that a construction like the one described will still give a

weak 2-functor even when G is not a finite group, but an inifinite Lie group.

To do this would presumably require the use of the infinite-dimensional variant

of KV 2-vector spaces which Crane and Yetter [27] call measurable categories.

This, and some of the categorified equivalent of the structure of Hilbert spaces

is discussed in Section 6.3, and in Section 8.1 we discuss how it might be used

to generalize the results above. In particular, we discuss the fact that we may
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not have infinite colimits available to perform the “push” part of our “pull-push”

construction. This means there would have to be some other way to apply the

idea of a “sum over histories” in the categorified setting. Our proposal is that

this should be the “direct integral” in the Crane-Yetter measurable categories

mentioned above.

Section 8.2, considers the special case when G = SU(2), which is the relevant

gauge group for 3D quantum gravity. The particular case of interest is a 3D

extended TQFT, where manifolds are 1-dimensional, joined by 2D cobordisms,

which are in turn joined by 3D cobordisms with corners. We discuss how to

interpret the theory as quantum gravity coupled to matter. The basic idea is

that the manifolds represent boundaries of regions in space. A circle describes

the boundary left when a point (up to homotopy) is removed from 2-dimensional

space. The 2D cobordisms in our double bicategory can then represent the ambient

space it is removed from. Alternatively the cobordisms can describe the “world-

line” of such a point particle”. The cobordisms of cobordisms then represent the

whole “spacetime”, in a general sense, in which this situation is set.

The cobordism with corners in Figure 1.1 would then be interpreted (reading

top-to-bottom) as depicting a space in which two regions bounded by the outside

circles merge together into a single reason over time. Inside each region at the

beginning there is a single puncture. After the regions merge, the two punctures—
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now in the same region—merge and split apart twice. At the “end” (i.e. the

bottom of the picture), there is a single region containing two punctures. The

physical intuition is that a “puncture”, or equivalently the circular boundary

around it, describes a point particle. The 2-vector space of states which the

extended TQFT assigns to the circle is then the 2-vector space of states for a

particle.

This 2-vector space consists of Vect-presheaves on [Π1(S
1), G]. Example 7

shows for finite groups G that this is generated by a finite set of objects, each of

which corresponds to a pair ([g], ρ), where [g] is a conjugacy class in G, and ρ is

a linear representation of G. There is an obstacle to an analogous fact in infinite

dimensional 2-vector space, since these may not have a basis of simple objects.

This fact is precisely analogous to the fact that an infinite dimensional Hilbert

space need not have a countable basis, since it follows from the fact that not every

object will be finitely generated from some set of simple objects - and we do not

have infinite sums available in Vect. However, even in an infinite dimensional

2-vector space, it does make sense to speak of simple objects, and we expect these

to be of the form described.

So then for G = SU(2), we then have the simple Vect-presheaves classified by

a conjugacy class in SU(2), which is just an “angle” in [0, 4π), and a representation

of SU(2), which are classified by integer “spins”. These are precisely the same
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data which label particles in 3D quantum gravity - the “angle” is a mass, which

has a maximum value in 3D gravity, since mass causes a “conical defect” in the

geometry of space, which has a maximum possible angle. The “spin” is related to

angular momentum.

So this theory allows us to describe a space filled with world-lines of “particles”

labelled by (bounded) mass and spin. This is exactly the setup of the Ponzano-

Regge model of 3D quantum gravity. Our expectation is that this model can be

recovered from an extended TQFT based on SU(2). This is related to a program,

on which more details can be found in a paper of Lee Smolin [78], which seeks to

study 3D quantum gravity by means of its relation to a 3D TQFT associated to

SU(2) Chern-Simons theory.

Finally, in Section 8.3, we briefly suggest a possilble direction to look for links

between the theory given here, and spin-foam models for BF theory, based on a

categorification of the FHK state sum approach to defining an ordinary TQFT.

We also suggest two more directions in which one might generalize the theory

described in this thesis in the same style as the passage from finite groups to

infinite Lie groups. Two others are to pass from groups to categorical groups, and

to pass from groups to quantum groups.

We can think of a group as a kind of category with one object and all mor-

phisms invertible. A categorical group will have a group of objects and a group
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of morphisms, satisfying certain conditions. Replacing our gauge group G with a

categorical group gives a theory based not on connections, but on 2-connections.

There is extensive work on this topic, but a good overview is the discussion by

Baez and Schreiber [12] (see also the definition of 2-bundles by Bartels [14]). The

extension of the Dijkgraaf-Witten model to categorical groups is discussed in a

somewhat different framework by Martins and Porter [70]. An extension of these

ideas to quantum groups is less well studied, but the hope is to recover the connec-

tion between q-deformed SU(2) and the Turaev-Viro model, just as using SU(2)

as gauge group recovers the Ponzano-Regge model, for quantum gravity.

In all these directions, and possibly more, the expression of an extended TQFT

in functorial terms seems to provide a window on a variety of potentially useful

applications and generalizations.
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Prerequisites
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Chapter 2

Topological Quantum Field
Theories

2.1 The Category nCob

In this section, we review the structure of the symmetric monoidal category

2Cob which we generalize in this thesis. Cobordism theory goes back to the work

of René Thom [82], who showed that it is closely related to homotopy theory.

In particular, Thom showed that cobordism groups, whose elements are cobor-

dism classes of certain spaces, can be computed as homotopy groups in a certain

complex. However, this goes beyond what we wish to examine here: a good in-

troductory discussion suitable for our needs is found, e.g. in Hirsch [47]. There

is substantial research on many questions in, and applications of, cobordism the-

ory: a brief survey of some has been given by Michael Atiyah [3]. Some further

examples related to our motivation here include Khovanov homology [55] (also
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discussed in [13] and [52]), and Turaev’s recent work on cobordism of knots on

surfaces [84].

Two manifolds S1, S2 are cobordant if there is a compact manifold with bound-

ary, M , such that ∂M is isomorphic to the disjoint union of S1 and S2. This M

is called a cobordism between S1 and S2. We note that there is some similarity

between this concept and that of homotopy of paths, except that such homotopies

are understood as embedded in an ambient space. We will return to this in Sec-

tion 3.5. Our aim here is to describe a generalization of categories of cobordisms.

To begin with, we recall some of the structure of nCob, and particularly 2Cob,

to recall why this is of interest.

Definition 1 2Cob is the category with:

• Objects: one-dimensional compact oriented manifolds

• Morphisms: diffeomorphism classes of two-dimensional compact oriented

cobordisms between such manifolds.

That is, the objects are collections of circles, and the morphisms are (diffeo-

morphism classes of) manifolds with boundary, whose boundaries are broken into

two parts, which we consider their source and target. We think of the cobordism

as “joining” two manifolds, rather as a relation joins two sets, in the category of

sets and relations (this analogy will be made more precise when we discuss spans
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and cospans). More generally, nCob is the category whose objects are (compact,

oriented) (n−1)-dimensional manifolds, and whose morphisms are diffeomorphism

classes of compact oriented n-dimensional cobordisms.

It has been known for some time that 2Cob can be seen as the free symmetric

monoidal category on a commutative Frobenius object. (This is shown in the

good development by Joachim Kock [56].) This is a categorical formulation of the

fact, shown by Abrams [1], that 2Cob is generated from four generators, called

the unit, counit, multiplication, comultiplication, subject to some relations.

The generating cobordisms are the following: taking the empty set to the circle

(the unit); taking two circles to one circle (the multiplication); adjoints of each of

these (counit and comultiplication respectively).

Figure 2.1: Generators of 2Cob

The “commutative Frobenius object” here is the circle, equipped with these

morphisms, as illustrated in Figure 2.1. The relations which these are subject to

include associativity, coassociativity, and relations for the unit and counit. The

most interesting is the Frobenius relation, illustrated in Figure 2.2.
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Figure 2.2: The Frobenius Relation

Diffeomorphism classes of cobordisms automatically satisfy these relations,

since they identify composites of cobordisms which are, in fact, diffeomorphic.

Moreover, as a monoidal category, 2Cob must have a tensor product oper-

ation. For objects, this is just the disjoint union: given objects m,n ∈ 2Cob,

consisting of collections of m and n circles respectively, the object m ⊗ n is the

disjoint union of m and n: a collection of m + n circles. The tensor product of

two cobordisms C1 : m1→n1 and C2 : m2→n2 is likewise the disjoint union of

the two cobordisms, giving C1 ⊗C2 : m1 ⊗m2→n1 ⊗ n2.

This monoidal operation has a symmetry, so in particular 2Cob also includes

the switch cobordism, exchanging the order of two circles by two cylinders (this

gives the symmetry for the monoidal operation). These are required to exist by the

assumption that 2Cob is a free symmetric monoidal category. They are illustrated

in Figure 2.3 (along with the identity, which is, of course, also required).

Two proofs can be given for the fact than 2Cob is generated by these cobor-

disms. Each proof relies on some special conditions satisfied by 2D cobordisms.
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Figure 2.3: Morphisms Required for 2Cob to be a Symmetric Monoidal
Category

The first is that 2-dimensional manifolds with boundary can be completely clas-

sified up to diffeomorphism class by genus and number of punctures. The second

is that we can use the results of Morse theory to decompose any such surface,

equipped with a smooth Morse function into [0, 1], into a composite of pieces, in

the sense of composition of morphisms in 2Cob. In each piece, there is just one

“topology change” (a value in [0, 1] where the preimage changes topology). We

will return to this point when we discuss the question of how to present nCob2

in terms of generators.

So far, we have described the presentation of 2Cob in terms of generators

and relations, but not yet how the composition operation for morphisms works.

The main idea is that we compose cobordisms by identifying their boundaries.

However, since the morphisms in 2Cob are diffeomorphism classes of manifolds

with boundary, some extra considerations are needed to ensure that the composite

is equipped with a differentiable structure.

In particular, the collaring theorem means that any manifold with boundary,

M can be equipped with a “collar”: an injection φ : ∂M × [0, 1]→M such that
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φ(x, 0) = x, ∀x ∈ ∂M . The idea is that, while we can compose topological cobor-

disms along their boundaries, we should compose smooth cobordisms M1 and M2

along collars. This ensures that every point—including points on the boundary

of Mi—will have a neighborhood with a smooth coordinate chart. Section 5.1

describes this in detail for a more general setting.

The category 2Cob is particularly interesting in the study of topological quan-

tum field theories (TQFT’s), as formalized by Michael Atiyah [2]. Atiyah’s ax-

iomatic formulation of a TQFT amounts to saying that it is a symmetric monoidal

functor F : 2Cob→Vect. The presentation of 2Cob means that this immedi-

ately defines an algebraic structure with a unit, counit, multiplication, comultipli-

cation, and identity, which satisfy the same relations as the corresponding cobor-

disms. This, together with the fact that F preserves the symmetric monoidal

structure of 2Cob means that this structure satisfies the axioms of a commuta-

tive Frobenius algebra. A similar presentation has not been found for nCob for

general n.

One may wish to describe an “extended topological quantum field theory” in

the same format. These are topological field theories which are defined not just

on manifolds with boundary, but also on manifolds with corners. This idea is

described by Ruth Lawrence in [61]. In particular, what we are interested in here

is that, instead of using a category of cobordisms between manifolds, we would
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want to use some structure of cobordisms between cobordisms between manifolds,

which we tentatively call nCob2. However, to do this, we must use a structure

with more elaborate than a mere category.

Later, we will describe such a structure—a Verity double bicategory, and show

how the putative nCob2 is an example, and indeed a special case of a wider class

of examples.

2.2 TQFT’s as Functors

Atiyah’s formulation of the axioms for a TQFT can be summarized as follows:

Definition 2 A Topological Quantum Field Theory is a (symmetric) monoidal

functor

Z : 2Cob→Vect (2.1)

where 2Cob is as described in Section 2.1, and Vect is the category whose objects

are vector spaces and whose arrows are linear transformations.

We note that Vect is naturally made into a monoidal category with the tensor

product ⊗, where V1 ⊗ V2 is generated by objects of the form v1 ⊗ v2, modulo

relations imposing bilinearity. Moreover, 2Cob is a monoidal category as well,

whose monoidal product on objects and morphisms is just the disjoint union of

manifolds and cobordisms, respectively.
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In fact, a quantum field theory should give a Hilbert space of states. However,

Hilb, the category of Hilbert spaces and bounded linear maps, is a subcategory

of Vect, so the above is still true.

What, however, does this definition mean?

A TQFT should give a Hilbert space of states for any manifold representing

“space”, and a map from one space of states to another for any cobordism repre-

senting “spacetime” connecting two space slices. Figure 2.4 shows an example in

the case where space is 1-dimensional and spacetime is 2-dimensional:

1Z(S )

2Z(S )

Z(M)

S1

S2

M

Figure 2.4: Effect of a TQFT

The TQFT should have the following properties:

• The Hilbert space assigned to a disjoint union of spaces S1 ∐ S2 will be the

tensor product of the spaces assigned to each, Z(S1)⊗Z(S2), and therefore

also Z(∅) = C (a basic feature of quantum theories)
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• The linear maps assigned to cobordisms respect “composition” of space-

times, so M1 followed by M2 is assigned the map Z(M2) ◦ Z(M1), where

“followed by” means the ending space of M1 is the beginning space of M2.

As remarked in Section 2.1, 2Cob is a free symmetric monoidal category on

a Frobenius object. In Vect, such an object is called a Frobenius algebra: in fact,

a 2D TQFT Z is equivalent to a choice of Frobenius algebra, namely the image

of the circle uvder Z.

In general higher dimensions, no equally straightforward description of an n-

dimensional TQFT is known. To provide one would require a presentation of

nCob in terms of generators and relations (for both objects and morphisms).

Lauda and Pfeiffer [59] do provide such a presentation a similar, though more

complicated, characterization of 2-dimensional open-closed TQFT’s. In these, we

do not assume that the manifolds representing spaces have no boundary. Lauda’s

doctoral thesis [58] develops this further.
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2.3 The Fukuma-Hosono-Kawai Construction and

Connections

Frobenius algebras are semisimple algebras A (direct sums of simple algebras).

These are characterized by having a nondegenerate linear pairing:

g : A⊗ A→C (2.2)

If A is a matrix algebra, then such a g is given by the Killing form, or trace:

g(a, b) = tr(LaLb). The nondegeneracy of this pairing means that it gives an

isomorphism between A and A∗.

Each algebra A of this kind gives a TQFT whose effects can be described in an

explicit and combinatorial way. This is the construction of Fukuma, Honoso, and

Kawai [43]. We will be particularly interested in the case where the semisimple

algebra A is the group algebra C[G] for some finite group G.

Now we want to see how to get a TQFT Z : 2Cob→Vect from any such

algebra A, keeping in mind the example A = C[G]. To do this, we first construct a

map Ẑ : ∆2Cob→Vect, where ∆2Cob is the category of triangulated manifolds

and cobordisms, then show it is independent of the choice of triangulation.

To begin with, given a triangulated cobordism M from S1 to S2, (so M , S1

and S2 are all triangulated), label the dual graph with copies of A.
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1Z(S )^

2Z(S )^

Z(M)^

Figure 2.5: The Fukuma-Honoso-Kawai Construction

So each edge of a triangle (hence of the dual graph) is labelled by A and each

face of a triangle (hence each vertex of the dual graph) by an operator m.

AA

A A*A*

A*

and

Figure 2.6: Multiplication Operators Assigned to Triangles

In the case where the semisimple algebra is C[G], we can write choices of

vector in a basis consisting of group elements. So labellings of the dual edges

can be described in terms of a basis where the dual edges are labelled with group

elements.
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2.4 Pachner Moves in 2D

How does Ẑ, acting on ∆2Cob, give a TQFT acting on 2Cob? First, notice

that it depends only on the topology of M , and the triangulation on the boundary,

not in the interior.

This is because Alexander’s Theorem says that to pass between any two

triangulations of the same compact 2-manifold, it is enough to repeatedly apply

the two Pachner moves—the 2-2 move and the 1-3 move (and their inverses):

and

Figure 2.7: Pachner Moves

This will prove that the linear map we construct is independent of the tri-

angulation chosen. In particular, the 2-2 move does not affect the outcome of

composition, on applying Ẑ, since it passes from

V ⊗ V ⊗ V
1⊗m
−→V ⊗ V

m
−→V (2.3)

to

V ⊗ V ⊗ V
m⊗1
−→V ⊗ V

m
−→V (2.4)

These are the same by associativity.
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The 1-3 move has no effect precisely when (A, η,m) is semisimple. This comes

from associativity and the “bubble move”:

= =

Figure 2.8: The Bubble Move

We can think of the Pachner moves as coming from tetrahedrons. Given

a triangulation, attach a tetrahedron along one, two, or three triangular faces.

The move consists of replacing the attached faces with the remaning faces of

the tetrahedron. We can think of this as “evolving the triangulation by” that

tetrahedron:

and

Figure 2.9: Pachner Moves as Tetrahedra

Any two triangulations are homologous—can be connected by a series of such

moves since there is no nontrivial third homology of a 2D surface: any change

in triangulation we want will be the boundary of some collection of tetrahedra.
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(A triangulation of a 2-dimensional cobordism is a combination of 0, 1, and 2-

chains—Pachner moves correspond to 3-chains).

Now, we know that a TQFT is determined by its effect on the generators of

2Cob, so we want to know the space of states on S1, which is a generator for

objects. One observation is that the image of the generator S1 × [0, 1] is id, the

identity map on Z(S1).

Consider the following triangulation of S1 × [0, 1]:

A A

A A

A

A

Figure 2.10: Identity or Projection Operator?

Ẑ assigns A to the top and bottom circles, but says that we should have

m ◦B ◦m† = id (2.5)

on Z(S) ⊂ A. This means that Z(S) is a subset of the centre of A.

We know that the identity map in A must come from the cylinder, so define

Z(S1) = Ran(Ẑ(S1 × [0, 1])) (2.6)
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To get a TQFT Z, we restrict Ẑ to Z(S1). This is a projection operator, and

its range is in Z(A). Project the space of states for a triangulated circle onto this

to get the space of states for the circle under Z (note that there is only one way

to do this, independent of which triangulation of the cylinder we use to get the

projection operator).

So it is well-defined to say:

Z(M) = Ẑ(M)|Z(S1) (2.7)

since we always have Ẑ(M)(Z(S1)) = Z(S2). (One can retriangulate M to com-

pose with the projection before and after, without changing the result.)

Then one can show that this Z defines a symmetric monoidal functor from

2Cob to Vect, namely a TQFT.

2.5 TQFT’s and Connections

The FHK construction of a TQFT has a feature which may not at first be

obvious. To the circle, Z assigns a Hilbert space, but in a way that has a canonical

choice of basis. This is Z(S1), the centre of the group algebra C[G], or simplyC[Cent(G)], the vector space spanned by the centre of the group G. So a basis

for the space of states is just the set of ways of assigning to the circle an element

of the group G which happens to be in the centre of G.
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One way to think of this is as a G-connection on the circle - so that the

space of states is a free vector space on the set of G-connections on S1. This

way of thinking of what Z produces is good because it will hold up even when

we consider manifolds B of higher dimension (and codimension). In particular, if

a TQFT gives a space of states from the set of connections on B, given a map

from the circle into B, any connection assigns to this loop a group element, or

holonomy, up to conjugation.

So in order to look at extended TQFT’s as examples of a categorification of

the concet of a TQFT, it is useful to take this point of view relating the TQFT

to connections. We point out, however, that there is a categorified analog of the

FHK construction more or less directly. We expect that this would provide a

“state-sum” point of view on the theory of a connection on a manifold which our

extended TQFT will in fact involve. In fact, this is understood to a considerable

degree, but this point of view is awkward because it involves the categorified

versions of associativity - Stasheff’s associahedra [79]. These play the role of

Pachner moves in higher dimensions. We could proceed with this categorified

version of the construction, when G is a finite group.

It turns out that a natural generalization of the FHK construction gives a

theory equivalent to the (untwisted) Dijkgraaf-Witten model [30]. This is a topo-

logical gauge theory, which crucially involves a (flat) connection on a manifold. We
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will discuss this in more detail in Section 7.1, and explore how an extended TQFT

can be constructed by taking a categorifed version of the (quantized) theory of a

flat connection on manifolds and cobordisms.
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Bicategories and Double
Categories

We will want to give a description of a Verity double bicategory, which is

a weakened version of the concept of a double category, in order to describe

cobordisms with corners. Weakening a concept X in category theory generally

involves creating a new concept in which equations in the original concept are

replaced by isomorphisms. Thus, we say that the old equations hold only “up to”

isomorphism in the weak version of X, and say that when they hold with equality,

we have a “strict X”. Thus, before describing our newly weakened concept, it

makes sense to recall how this process works, and examine the strict form of the

concept we want to weaken. We also want to see what the weakening process

entails. So we begin by reviewing bicategories and double categories.
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3.1 2-Categories

A category E is enriched over a category C (which must have products)

when for x, y ∈ E we have hom(x, y) ∈ C. A special case of this occurs in

“closed” categories, which are enriched over themselves—examples include Set

(since there is a set of maps between any two sets) and Vect (since the linear

operators between two vector spaces form a vector space).

A 2-category is a category enriched over Cat. That is, if C2 is a 2-category,

and x, y ∈ C2), then hom(x, y) ∈ Cat. Thus, there are sets of objects and

morphisms in hom(x, y) itself, satisfying the usual category axioms. We describe

a 2-category as having objects, morphisms between objects, and 2-morphisms

between morphisms. The morphisms of C2 are the objects of the hom-categories,

and the 2-morphisms of C2 are the morphisms of the hom-categories. We depict

these as in Diagram (1.1). There is a composition operation for morphisms in these

hom categories, which we think of as “vertical” composition, denoted ·, between

2-morphisms. Furthermore, for all x, y, z ∈ C2, the composition operation

◦ : hom(x, y)× hom(y, z)→hom(x, z) (3.1)

must be a functor between hom-categories. So in particular this operation applies

to both objects and morphisms in hom categories, and we think of these as “hori-

zontal” composition for both morphisms and 2-morphisms. The requirement that
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this be a functor means that the interchange law holds:

(α ◦ β) · (α′ ◦ β ′) = (α · α′) ◦ (β · β ′) (3.2)

Now, in a 2-category, the associative law holds strictly: that is, for morphisms

f ∈ hom(w, x), g ∈ hom(x, y), and h ∈ hom(y, z), we have the two possible triple-

compositions in hom(w, z) the same, namely f ◦ (g ◦ h) = (f ◦ g) ◦ h. This is

one of the axioms for a category—that is, a category enriched over Set. Since a

2-category is enriched over Cat, however, a weaker version of this rule is possible,

since hom(w, z) is no longer a set in which elements can only be equal or unequal:

it is a category, where it is possible to speak of isomorphic objects. This fact leads

to the notion of bicategories.

3.2 Bicategories

Once we have the concept of a 2-category, we can weaken this concept, giving

the idea of a bicategory. The definition is similar to that for a 2-category, but

we only insist that the usual equations should be natural isomorphisms (satisfying

some equations). That is, the following diagrams should commute up to natural
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isomorphisms:

hom(w, x)× hom(x, y)× hom(y, z)

◦×1
��

1×◦ // hom(w, x)× hom(x, z)

◦

��

hom(w, y)× hom(y, z) ◦
// hom(w, z)

(3.3)

and

hom(x, y)× 1
π1

))SSSSSSSSSSSSSS

id× !
��

hom(x, y)× hom(x, x)
◦ // hom(x, y)

(3.4)

and

1× hom(x, y)
π2

))SSSSSSSSSSSSSS

!× id
��

hom(y, y)× hom(x, y)
◦ // hom(x, y)

(3.5)

That is: given (f, g, h) ∈ hom(w, x) × hom(x, y) × hom(y, z), there should

be an isomorphism af,g,h ∈ hom(w, z) with af,g,h : (f ◦ g) ◦ h→ f ◦ (g ◦ h); and

isomorphisms rf : f ◦ 1x, lf : 1y ◦ f . The equations these satisfy are coherence

laws. MacLane’s Coherence Theorem shows that all such equations follow from

two generating equations: the pentagon identity, and the unitor law:

In a category, the associativity property stated that two composition opera-

tions can be performed in either order and the results should be equal: equality is

the only sensible relation between a pair of morphisms in a category. There is an

analogous statement for the associator 2-morphism: two different ways of com-

posing it should yield the same result (since equality is the only sensible relation
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between a pair of 2-morphisms in a bicategory). This property is the pentagon

identity:

(f ◦ g) ◦ (h ◦ j)

f ◦ (g ◦ (h ◦ j))

f ◦ ((g ◦ h) ◦ j)(f ◦ (g ◦ h)) ◦ j

((f ◦ g) ◦ h) ◦ j

af,g,h◦j

((PPPPPPPPPPPPPP

1f◦ag,h,j

GG������������

af,g◦h,j

//

af,g,h◦1j

��
//

//
//

//
//

//

af◦g,h,j

66nnnnnnnnnnnnnn

(3.6)

Similarly, the unit laws satisfy the property that the following commutes:

(g ◦ 1y) ◦ f
ag,1y,f

//

rg×1f

��

g ◦ (1 ◦ f)

1g×lfwwoooooooooooo

g ◦ f

(3.7)

This last change is the sort of weakening we want to apply to the concept of

a double category. Following the same pattern, we will first describe the strict

notion in Section 3.4, before considering how to weaken it, in Chapter 4. First,

however, we will recall a standard, quite general, example of bicategory, which we

will generalize to give examples of double bicategories in Section 4.3.

3.3 Bicategories of Spans

Jean Bénabou [16] introduced bicategories in a 1967 paper, and one broad

class of examples introduced there comes from the notion of a span.
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Definition 3 (Bénabou) Given any category C, a span (S, π1, π2) between ob-

jects X1, X2 ∈ C is a diagram in C of the form

P1 S
π1oo

π2 // P2 (3.8)

Given two spans (S, s, t) and (S ′, s′, t′) between X1 and X2 between a morphism

of spans is a morphism g : S→S ′ making the following diagram commute:

S
π1

~~||
||

||
|| π2

  B
BB

BB
BB

B

g

��

X1 S ′
π′

1

oo
π′

2

// X2

(3.9)

Composition of spans S from X1 to X2 and S ′ from X2 to X3 is given by a

pullback: that is, an object R with maps f1 and f2 making the following diagram

commute:

R
f1

~~}}
}}

}}
}} f2

!!B
BB

BB
BB

B

S
π1

~~~~
~~

~~
~~ π2

  @
@@

@@
@@

@ S ′

π′

2

~~}}
}}

}}
}} π′

3

  A
AA

AA
AA

A

X1 X2 X3

(3.10)

which is terminal among all such objects. That is, given any other Q with maps

g1 and g2 which make the analogous diagram commute, these maps factor through

a unique map Q→R. R becomes a span from X1 to X3 with the maps π1 ◦ f1 and

π2 ◦ f2.
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The span construction has a dual concept:

Definition 4 A cospan in C is a span in Cop, morphisms of cospans are mor-

phisms of spans in Cop, and composition of cospans is given by pullback in Cop.

That is, by a pushout in C.

One fact about (co)spans which is important for our purposes is that any

category C with limits (colimits, respectively) gives rise to a bicategory of spans

(or cospans). This relies in part on the fact that the pullback is a universal

construction (universal properties of Span(C) are discussed by Dawson, Paré and

Pronk [29]).

Remark 1 [16], ex. 2.6 Given any category C with all limits, there is a bicate-

gory Span(C), whose objects are the objects of C, whose hom-sets of morphisms

Span(C)(X1, X2) consist of all spans between X1 and X2 with composition as de-

fined above, and whose 2-morphisms are morphisms of spans. Span(C) as defined

above forms a bicategory (Cosp(C), of cospans similarly forms a bicategory).

This is a standard result, first shown by Jean Bénabou [16], as one of the first

examples of a bicategory. We briefly describe the proof:

The identity for X is X
id
←X

id
→X, which is easy to check.

The associator arises from the fact that the pullback is a universal construc-

tion. Given morphisms in Span(C) f : X→Y , g : Y →Z, h : Z→W , the
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composites ((f ◦ g) ◦ h) and (f ◦ (g ◦ h)) are pullbacks consisting of objects O1

and O2 with maps into X and W . The universal property of pullbacks gives an

isomorphism between O1 and O2. These isomorphisms satisfy the pentagon iden-

tity since they are unique (in particular, both sides of the pentagon give the same

isomorphism).

It is easy to check that hom(X1, X2) is a category, since it inherits all the usual

properties from C.

3.4 Double Categories

The idea of a double category extends that of a category into two dimensions

in a different way than does the concept of bicategory. A double category consists

of:

• a set O of objects

• horizontal and vertical categories, whose sets of objects are both O

• for any diagram of the form

x
φ
//

f

��

x′

f ′

��
y

φ′

// y′

(3.11)
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a collection of square 2-cells, having horizontal source and target f and f ′,

and vertical source and target φ and φ′

The 2-cells can be composed either horizontally or vertically in the obvious way.

We denote a 2-cell filling the above diagram like this:

x
φ
//

f

��

x′

f ′

��
y

φ′

//

AAAA �$
S

y′

(3.12)

and think of the composition of 2-cells in terms of pasting these squares together

along an edge. The resulting 2-cell fills a square whose boundaries are the corre-

sponding composites of the morphisms along its edges.

Moskaliuk and Vlassov [73] discuss the application of double categories to

mathematical physics, particularly TQFT’s, and dynamical systems with changing

boundary conditions—that is, with inputs and outputs. Kerler and Lyubashenko

[54] describe extended TQFT’s as “double pseudofunctors” between double cat-

egories. This formulation involves, among other things, a double category of

cobordisms with corners—we return to a weakening of this idea in Section 5.3

A double category can be thought of as an internal category in Cat. That is, it

is a model of the theory of categories, denoted Th(Cat), in Cat. This Th(Cat)

consists of a category containing all finite limits, and having two distinguished
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objects called Obj and Mor with morphisms of the form:

Mor
s
++

t
33 Obj (3.13)

and

Obj id // Mor (3.14)

subject to some axioms. In particular, the composition operation is a partially

defined operation on pairs of morphisms. In particular, there is a collection of

composable pairs of morphisms, namely the fibre product Pairs = Mor×Obj Mor,

which is a pullback of the two arrows from Mor to Obj. So Pairs is an equalizer

in the following diagram:

Mor
t

##F
FFFFFF

F

Pairs
i // Mor2

π1

;;wwwwwwwww

π2

##G
GG

GG
GG

GG
Obj

Mor

s
;;xxxxxxxx

(3.15)

(Note that we assume the existence of pullbacks, here - in fact, Th(Cat) is a

finite limits theory.) The composition map ◦ : Pairs→Mor satisfies the usual

properties for composition.

There is also an identity for each object: there is a map Obj
1
→Mor, such that

for any morphism f ∈ Mor, we have 1s(f) and 1t(f) are composable with f , and

the composite is f itself.
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A model of Th(Cat) in Cat is a (limit-preserving) functor

F : Th(Cat)→Cat

This gives a structure having a category Ob of objects and a category Mor of

morphisms, with two functors s (“source”) and t (“target”) satisfying the usual

category axioms. We can describe composition as a pullback construction in this

category, which makes sense since the functor preserves finite limits (including

pullbacks):

F (Mor)
c1

yyrrrrrrrrrr
c2

%%LLLLLLLLLL

�� ��

F (Mor)

s

yyssssssssss
t

%%LLLLLLLLLL
F (Mor)

s

yyrrrrrrrrrr
t

%%LLLLLLLLLL

F (Obj) F (Obj) F (Obj)

(3.16)

A category is a model of the theory Th(Cat) in Set, and we understand this

to mean that when two morphisms f and g have the target of f the same as the

source of g, there is a composite morphism from the source of f to the target

of g. In the case of a double category, we have a model of Th(Cat) in Cat, so

that F (Obj) and F (Mor) are categories and F (s) and F (t) are functors, we have

the same condition for both objects and morphisms, subject to the compatibility

conditions for these two maps which any functor must satisfy.

We thus have sets of objects and morphisms in Ob, which of course must

satisfy the usual axioms. The same is true for Mor. The category axioms for the
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double category are imposed in addition to these properties, for the composition

and identity functors. Functoriality implies compatibility conditions between the

category axioms in the two directions. The result is that we can think of both

the objects in Mor and the morphisms in Ob as acting like morphisms between

the objects in Ob, in a way compatible with the source and target maps. A

double category can be, and often is, thought of as including the morphisms of

two (potentially) different categories on the same collection of objects. These are

the horizontal and vertical morphisms, intuitively capturing the picture:

x
φ
//

f

��

x′

f ′

��
y

φ̂

// y′

(3.17)

Here, the objects in the diagram can be thought of as objects in F (Obj), the

vertical morphisms f and f ′ can be thought of as morphisms in F (Obj) and the

horizontal morphisms φ and φ̂ as objects in F (Mor). (In fact, there is enough

symmetry in the axioms for an internal category in Cat that we can adopt either

convention for distinguishing horizontal and vertical morphisms). However, we

also have morphisms in Mor. We represent these as two-cells, or squares, like the

2-cell S represented in (3.12).

The fact that the composition map ◦ is a functor means that horizontal and

vertical composition of squares commutes.
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3.5 Topological Examples

We can illustrate simple examples of bicategories and double categories in a

topological setting, namely homotopy theory. This was the source of much of the

original motivation for higher-dimensional category theory. Moreover, as we have

already remarked in Section 2.1, there are close connections between cobordism

and homotopy. These examples will turn out to suggest how to describe Verity

double bicategories of cobordisms.

Our first example is one of the original motivations for bicategories.

Example 1 Given a space S in the category Top of topological spaces, we might

wish to define a category Path(S) whose objects are points of X, and whose

morphisms are paths in S. That is, Path(S) has:

• objects: points in S

• morphisms: paths γ : [m,n]→S

Where such a path is thought of as a morphism from γ(m) to γ(n). These are

parametrized paths: so suppose we are given two paths in Path(S), say γ1 :

[m1, n1]→S from a to b and γ2 : [m2, n2]→S from b to c. Then the composite is
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a path γ2 ◦ γ1 : [m1, n1 + n2 −m2]→S, given by:

γ2 ◦ γ1(x) =



















γ1(x) if x ∈ [m1, n1)

γ2(x− n1 +m2) if x ∈ [n1, n1 + n2 −m2]

(3.18)

This gives a well-defined category Path(S), but has the awkward feature that

our morphisms are not paths, but paths equipped with parametrization. So another

standard possibility is to take morphisms from a to b to be paths γ : [0, 1]→S.γ :

[0, 1]→X such that γ(0) = a and γ(1) = b. The obvious composition rule for

γ1 ∈ hom(a, b) and γ2 ∈ hom(b, c) is that

γ2 ◦ γ1(x) =



















γ1(2x) if x ∈ [0, 1
2
)

γ2(2x− 1) if x ∈ [1
2
, 1]

(3.19)

However, this composition rule is not associative, and resolving this involves the

use of a bicategory, either implicitly or explicitly. We get this bicategory Path2(S),

by first defining, for a, b ∈ S, a category hom(a, b) with:

• objects: paths from a to b

• morphisms: homotopies between paths, namely a homotopy from γ1 to γ2 is

H : [0, 1]×[0, 1]→S such that H(x, 0) = γ1(x), H(x, 1) = γ(x), H(0, y) = a,

H(1, y) = b for all (x, y) ∈ [0, 1]× [0, 1].
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Then we have a unit law for the identity morphism (the constant path) at

each point, and an associator for composition. Both of these are homotopies

which reparametrize composite paths.

Finally, we note that, if we define horizontal and vertical composition of ho-

motopies in the same way as above (in each component), then this composition is

again not associative. So to get around this, we say that the bicategory we want

has its hom-categories hom(a, b), where the morphisms are isomorphism classes

of homotopies. The isomorphisms in question will not be homotopies themselves

(to avoid extra complications), but rather smooth maps which fix the boundary

of the homotopy square.

We call the resulting bicategory Path2(S).

A similar construction is possible for a double category.

Example 2 We have seen that a double category it is rather analogous to a bicat-

egory, so we would like to construct one analogous to the bicategory in Example

1. To do this, we construct a model having the following:

• A category Obj of objects is the path category Path(S):

• A category Mor of morphisms: this has the following data:

– objects: paths γ : [m,n] in S
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– morphisms: homotopies H : [p, q] × [m,n] between paths (these have

source and target maps which are just s : H(−,−)→H(−, m) and

t : H(−,−)→H(−, n).

These categories have source and target maps s and t which are functors from

Mor to Obj. The object map for s is just evaluation at 0, and for t it is evalu-

ation at 1. The morphism maps for these functors are s : H(−,−)→H(p,−)

and t : H(−,−)→H(q,−).

We call the result the double category of homotopies, H(S).

We observe here that the double category H(S) is similar to the bicategory

Path2(S) in one sense. Both give a picture in which objects are points in a topo-

logical space, morphisms are 1-dimensional objects (paths), and higher morphisms

involve 2-dimensional objects (homotopies). There are differences, however: the

most obvious is that Path2(S) involves only homotopies with fixed endpoints: its

2D objects are bigons , whereas in H(S) the 2D objects are “squares” (or images

of rectangles under smooth maps).

A more subtle difference, however, is that, in order to make composition strictly

associative in H(S), it was necessary to change how we parametrize the homo-

topies. There are no associators here, and so we make sure composition is strict
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by not rescaling our source object (the product of two intervals) as we did in

Path2(S).

This is rather unsatisfactory, and in fact improving it leads to a general defi-

nition of a double bicategory , which has a large class of examples, namely double

cospans. A special, restricted case of these is the double bicategory of cobordisms

with corners we want.
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Verity Double Bicategories

The term double bicategory seems to have been originally introduced by Do-

minic Verity [86], and the structure it refers to is the one we want to use. There

is some ambiguity here since the term double bicategory appears to describe is an

internal bicategory in Bicat (the category of all bicategories). This is analogous

to the definition of double category. Indeed, it is what we will mean by a double

bicategory, and we discuss these in Section A. Since the two are closely related,

and both will be important for us, we will refer to double bicategories in the sense

of Verity by the term Verity double bicategories, while reserving double bicategory

for the former. For more discussion of the relation between these, see Section A.

We wish to describe a structure which is sufficient to capture the possible com-

positions of cobordisms with corners just as 2Cob does for cobordisms. These

have “horizontal” composition along the manifolds with boundary which form

their source and target. They also have “vertical” composition along the bound-
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aries of those manifolds and of the cobordisms joining them (which, together,

again form cobordisms) . However, to allow the boundaries to vary, we do not

want to consider them as diffeomorphism classes of cobordisms, but simply as

cobordisms. However, composition is then not strictly associative, but only up to

diffeomorphism.

Thus, we want something like a double category, but with weakened axioms,

just as bicategories were defined by weakening those for a category. The concept

of a “weak double category” has been defined (for instance, see Marco Grandis

and Robert Paré [45], and Martins-Ferreira’s [71] discussion of them as “pseudo-

categories”). Thomas Fiore [35] describes these as “Pseudo Double Categories”,

arising by “categorification” of the theory of categories, and describes examples

motivated by conformal field theory. A detailed discussion is found in Richard

Garner’s Ph.D. thesis [44]. In these cases, the weakening only occurs in only one

direction—either horizontal or vertical. That is, the associativity of composition,

and unit laws, in that direction apply only up to certain higher morphisms, called

associators and unitors. In the other direction, the category axioms hold strictly.

In a sense, this is because the weakening uses the squares of the double category

as 2-morphisms: specifically, squares with two sides equal to the identity. Trying

to do this in both directions leads to some difficulties.
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In particular, if we have associators for horizontal morphisms given by squares

of the form:

a
f ;g

//

1a

��

������af,g,h

c h // d

1d

��
a

f
// b

g;h
// d

(4.1)

then unless composition of vertical morphisms is strict, then to make a equation

(for instance, the pentagon equation) involving this square, we would need to use

unit laws (or associators) in the vertical direction to perform this composition.

This would again be a square with identities on two sides, and the problem arises

again. In fact, there is no consistent way to do this. Instead, we need to introduce

a new kind of 2-morphism separate from the squares, as we shall see in Section

4.1. The result is what Dominic Verity has termed a double bicategory [86].

The problem of weakening the concept of a double category so that the unit

and associativity properties hold up to higher-dimensional morphisms can be con-

trasted with a different approach. One might instead try to combine the notions

of bicategory and double category in a different way. This is by “doubling” the

notion of bicategory, in the same way that double categories did with the notion

of category. Just as a double category is an internal category in Cat, the result

would be an internal bicategory in Bicat.

We would like to call this a double bicategory : however, this term has already

been used by Dominic Verity to describe the structure we will mainly be interested
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in. Since the former concept is also important for us in certain lemmas, and is

most naturally called a double bicategory, we will refer to the latter as a Verity

double bicategory. For more discussion of the relation between these, see Section

A.

4.1 Definition of a Verity Double Bicategory

The following definition of a Verity double bicategory is due to Dominic Ver-

ity [86], and is readily seen as a natural weakening of the definition of a double

category. Just as the concept of bicategory weakens that of 2-category by weak-

ening the associative and unit laws, Verity double bicategories will do the same

for double categories. The following definition can be contrasted with that for a

double category in Section 3.4.

Definition 5 (Verity) A Verity double bicategory C is a structure consisting

of the following data:

• a class of objects Obj,

• horizontal and vertical bicategories Hor and Ver having Obj as their

objects
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• for every square of horizontal and vertical morphisms of the form

a h //

v

��

b

v′

��
c h′

// d

(4.2)

a class of squares Squ, with maps sh, th : Squ→Mor(Hor) and sv, tv :

Squ→Mor(Ver), satisfying an equation for each corner, namely:

s(sh) = s(sv) (4.3)

t(sh) = s(tv)

s(th) = t(sv)

t(th) = t(tv)

The squares should have horizontal and vertical composition operations, defining

the vertical composite F ⊗V G

x //

��

x′

��
y //

��

AAAA �$
F

y′

��
z //

AAAA �$
G

z′

= x //

��

x′

��
z //

@@@@ �$
F⊗V G

z′

(4.4)

and horizontal composite F ⊗H G:

x //

��

y

��

// z

��

x′ //

???? �#
F

y′ //

???? �#
G

z′

= x //

��

z

��

x′ //

==== �"
F⊗HG

z′

(4.5)
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The composites have the usual relation to source and target maps, satisfy the

interchange law

(F ⊗V F
′)⊗H (G⊗V G

′) = (F ⊗H G)⊗V (F ′ ⊗H G′) (4.6)

and there is a unit for composition of squares:

x
1x //

f
��

x

f
��

y
1y

//

???? �#
1f

y

(4.7)

(and similarly for vertical composition).

There is a left and right action by the horizontal and vertical 2-morphisms on

Squ, giving F ⋆V α,

x //

��

y

��
ww

x′ //

???? �#
F

y′

+3
α

= x //

��

y

��

x′ //

???? �#
F⋆V α

y′

(4.8)

(and similarly on the left) and F ⋆H α,

x //
��

��

y

��

x′ //

???? �#
F

y′

α
��

= x //

��

y

��

x′ //

???? �#
α⋆HF

y′

(4.9)

The actions also satisfy interchange laws:

(F ⊗H F ′) ⋆H (α⊗V α
′) = (F ⋆H α)⊗h (F ′ ⋆H α′) (4.10)
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(and similarly for the vertical case) and are compatible with composition:

(F ⊗H G) ⋆V α = F ⊗H (G ⋆V α) (4.11)

(and analogously for vertical composition). They also satisfy additional compat-

ibility conditions: the left and right actions of both vertical and horizontal 2-

morphisms satisfy the “associativity” properties,

α ⋆ (S ⋆ β) = (α ⋆ S) ⋆ β (4.12)

for both ⋆H and ⋆V . Moreover, horizontal and vertical actions are independent:

α ⋆H (β ⋆V S) = β ⋆V (α ⋆H S) (4.13)

and similarly for the right action.

Finally, the composition of squares agrees with the associators for composition

by the action in the sense that given three composable squares F , G, and H:

x

��

h◦(g◦f)
//

(h◦g)◦f

��
y

��

x′
h′◦(g′◦f ′)

//

GGGG �'
(F⊗HG)⊗HH

y′

af,g,h

KS

= x
(h◦g)◦f

//

��

y

��

x′
(h′◦g′)◦f

//

h′◦(g′◦f)

BB

GGGG �'
F⊗H(G⊗HH)

y′

af ′,g′,h′

��

(4.14)
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and similarly for vertical composition. Likewise, unitors in the horizontal and

vertical bicategories agree with the identity for composition of squares:

x

g

��

f
//

f

��
y

g′

��

1y

// y

��
g′

��

x′
f ′

//

???? �#
F

y′
1y′

//

???? �#
1g′

y′

lf

KS

= x

g

��

1x //

g

��

f
// y

g′

��

x′
1x′ //

f ′

??

???? �#
1g

x′

???? �#
F

f ′

// y′
rf ′��

(4.15)

and similarly for vertical units.

We will see in Chapter 5 that the higher categories defined this way are well

suited to dealing with cobordisms with corners. In Section A we will consider how

this definition arises as a special case of a broader concept of double bicategory

which we define there. For now, in Section 4.2, we will consider how Verity double

bicategories can give rise to ordinary bicategories.

4.2 Bicategories from Double Bicategories

There are numerous connections between double categories and bicategories (or

their strict form, 2-categories). One is Ehresmann’s double category of quintets,

relating double categories to 2-categories: a double category by taking the squares

to be 2-morphisms between composite pairs of morphisms, such as α : g′◦f→ f ′◦g.
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Furthermore, it is well known that double categories can yield 2-categories in

three different ways. Two obvious cases are when there are only identity horizon-

tal morphisms, or only vertical morphisms, respectively, so that squares simply

collapse into bigons with the two nontrivial sides. Notice that it is also true that

a Verity double bicategory in which Hor is trivial (equivalently, if Ver is trivial)

is again a bicategory. The squares become 2-morphisms in the obvious way, the

action of 2-morphisms on squares then is just composition, and the composition

rules for squares and bigons are the same. The result is clearly a bicategory.

The other, less obvious, case, is when the horizontal and vertical categories

on the objects are the same: this is the case of path-symmetric double categories,

and the recovery of a bicategory was shown by Brown and Spencer [19]. Fiore [35]

shows how their demonstration of this fact is equivalent to one involving folding

structures.

In this case we again can interpret squares as bigons by composing the top and

right edges, and the left and bottom edges. Introducing identity bigons completes

the structure. These new bigons have a natural composition inherited from that

for squares. It turns out that this yields a structure satisfying the definition of

a 2-category. Here, our goal will be to show half of an analogous result, that a

Verity double bicategory similarly gives rise to a bicategory when the horizontal

and vertical bicategories are equal. We will also show that a double bicategory for
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which the horizontal (or vertical) bicategory is trivial can be seen as a bicategory.

The condition that Hor = Ver holds in our general example of double cospans:

both horizontal and vertical bicategories in any 2Cosp(C)0 are just Cosp(C).

Theorem 1 Any Verity double bicategory (Obj,Hor,Ver,Squ,⊗H ,⊗V , ⋆H , ⋆V )

for which Hor = Ver produces a bicategory by taking squares to be 2-cells.

Proof : We begin by defining the data of this bicategory, which we call B. Its

objects and morphisms are the same as those of Hor (equivalently, Ver). We

describe the 2-morphisms by observing that B must contain all those in Hor

(equivalently, Ver), but also some others, which correspond to the squares in

Squ.

In particular, given a square

a
f

//

g

��

b

g′

��
c

f ′

//

AAAA �$
S

d

(4.16)

there should be a 2-morphism

a

g′◦f

&&

f ′◦g

88 dS�� (4.17)

The composition of squares corresponds to either horizontal or vertical compo-

sition of 2-morphisms in B, and the relation between these two is given in terms

of the interchange law in a bicategory:
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Given a composite of squares,

x
f

//

φx

��

y

φy

��

g
// z

φz

��

x′
f ′

//

???? �#
F

y′
g′

//

???? �#
G

z′

(4.18)

there will be a corresponding diagram in B:

x
f

//

φx◦f ′

??
y

φy
//

φz◦g

��

y′
g′

// z′

F��

G��
(4.19)

Using horizontal composition with identity 2-morphisms (“whiskering”), we

can write this as a vertical composition:

x

φz◦g◦f

""

g′◦φy◦f
//

g′◦f ′◦φx

<< z
′

G◦1f��

1g′ ◦F��

(4.20)

So the square F⊗HG corresponds to (1 ◦G)·(F ◦1) for appropriate identities 1.

Similarly, the vertical composite of F ′⊗V G
′ must be the same as (1 ◦F ) · (G ◦ 1).

Thus, every composite of squares, which can all be built from horizontal and

vertical composition, gives a corresponding composite of 2-morphisms in B, which

are generated by those corresponding to squares in Squ, subject to the relations

imposed by the composition rules in a bicategory.

To show the Verity double bicategory gives a bicategory, it now suffices to

show that all such 2-morphisms not already in Hor arise as squares (that is, the

73



Chapter 4. Verity Double Bicategories

structure is closed under composition). So suppose we have any composable pair

of 2-morphisms which arise from squares. If the squares have an edge in common,

then we have the situation depicted above (or possibly the corresponding form

in the vertical direction). In this case, the composite 2-morphism corresponds

exactly to the composite of squares, and the axioms for composition of squares

ensure that all 2-morphisms generated this way are already in our bicategory. In

particular, the unit squares become unit 2-morphisms when composed with left

and right unitors.

Now, if there is no edge in common to two squares, the 2-morphisms in B must

be made composable by composition with identities. In this case, all the identities

can be derived from 2-morphisms in Hor, or from identity squares in Squ (inside

commuting diagrams). Clearly, any identity 2-morphism can be factored this way.

Then, again, the composite 2-morphisms in B will correspond to the composite

of all such squares and 2-morphisms in Squ and Hor.

Finally, the associativity condition (4.14) for the action of 2-morphisms on

squares ensures that composition of squares agrees with that for 2-morphisms, so

there are no extra squares from composites of more than two squares. �

This allows us to think of nCob2 not only as a Verity double bicategory, but

in the more familiar form of a bicategory.
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It is also worth considering here the situation of a double bicategory with hor-

izontal bicategory trivial (i.e. in which all horizontal morphisms and 2-morphisms

are identities). In this case, one can define a 2-morphism from a square with and

bottom edges being identities, whose source is the object whose identity is the cor-

responding edge, and similarly for the target. The composition rules for squares in

the vertical direction, then, are just the same as those for a bicategory. Likewise,

the axioms for action of a 2-morphism on a square reduce to the composition laws

for a bicategory if one replaces the square by a 2-cell.

Next we describe the class of examples we will use to develop a double bicat-

egory of cobordisms with corners.

4.3 Double Cospans

Now we construct a class of examples of double bicategories. These examples

are analogous to the example of bicategories of spans, discussed in Section 3.3.

These span-ish examples of Verity double bicategories are will give the Verity

double bicategory of cobordisms with corners as a special case, which is similar

in flavour to the topological examples of bicategories and double categories in

Section 3.5. However, these will be based on cospans. Cospans in C are the same

as spans in the opposite category, Cop. In Remark 1 we described Bénabou’s
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demonstration that Span(C) is a bicategory for any category C with pullbacks.

Similarly, there is a bicategory of cospans in a category C, with pushouts.

There will be an analogous fact about our example of a double bicategory:

double cospans, described explicitly in Section A. Here, we are interested in a

more restricted structure:

Definition 6 For a category C with finite limits, the Verity double bicategory

2Cosp(C)0, has:

• the objects are objects of C

• the horizontal and vertical bicategories Hor = Ver are both equal to a sub-

bicategory of Cosp(C), which includes only invertible cospan maps

• the squares are isomorphism classes of commuting diagrams of the form:

X

iX
��

ιX
// S

I
��

YιY
oo

iY
��

TX JX

//M TYJY

oo

X ′

i′
Y

OO

ιX′

// S ′

I′

OO

Y ′

iY ′

OO

ιY ′

oo

(4.21)

where two diagrams of the form (4.21) are isomorphic if they differ only in the

middle objects, say M and M ′, and their maps to the edges, and if there is an

isomorphism f : M→M ′ making the combined diagram commute.

76



Chapter 4. Verity Double Bicategories

The action of 2-morphisms α in Hor and Ver on squares is by composition

in diagrams of the form:

S2

π1

~~||
||

||
|| π2

  B
BB

BB
BB

B

X S1
π1oo

π2 //

α

OO

Y

TX

p1

OO

p2

��

M

P1

OO

P2

��

Π1oo
Π2 // TY

p1

OO

p2

��

X ′ S ′
π1oo

π2 // Y ′

(4.22)

(where the resulting square is as in 4.21, with S2 in place of S and α ◦P1 in place

of P1).

Composition (horizontal or vertical) of squares of cospans is, as in 2Cosp(C),

given by composition (by pushout) of the three spans of which the square is com-

posed. The composition operators for diagrams of cospan maps are by the usual

ones in Cosp(C).

Remark 2 Notice that Hor and Ver as defined are indeed bicategories: elimi-

nating all but the invertible 2-morphisms leaves a collection which is closed under

composition by pushouts.

We show more fully that this is a Verity double bicategory in Theorem 2,

but for now we note that the definition of horizontal and vertical composition of

squares is defined on equivalence classes. One must show that this is well defined.
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We will get this result indirectly as a result of Lemmas 6 and 7, but it is instructive

to see directly how this works in Cosp(C).

Lemma 1 The composition of squares in Definition 6 is well-defined.

Proof : Suppose we have two representatives of a square, bounded by horizontal

cospans (S, π1, π2) fromX to Y and (S ′, π1, π2) fromX ′ to Y ′, and vertical cospans

(TX , p1, p2) from X to X ′ and (TY , p1, p2) from Y to Y ′. The middle objects M1

and M2 as in the diagram (4.21). If we also have a composable diagram—one

which coincides along an edge (morphism in Hor or Ver) with the first—then we

need to know that the pushouts are also isomorphic (that is, represent the same

composite square).

In the horizontal and vertical composition of these squares, the maps from the

middle object M of the new square to the middle objects of the new sides (given

by composition of cospans) arise from the universal property of the pushouts on

the sides being composed (and the induced maps from M to the corners, via the

maps in the cospans on the other sides). Since the middle objects are defined only

up to isomorphism class, so is the pushout: so the composition is well defined,

since the result is again a square of the form (4.21). �

We use this, together with Lemmas 6 and 7, (proved in Section A) to show

the following:
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Theorem 2 If C is a category with finite colimits, then 2Cosp(C)0 is a Verity

double bicategory.

Proof : In the construction of 2Cosp(C)0, we take isomorphism classes of double

cospans as the squares. We also restrict to invertible cospan maps in the horizontal

and vertical bicategories.

That is, take 2-isomorphism classes of morphisms in Mor in the double bicat-

egory, where the 2-isomorphisms are invertible cospan maps, in both horizontal

and vertical directions. We are then effectively discarding all morphisms and 2-

morphisms in 2Mor, and the 2-morphisms in Mor except for the invertible ones.

In particular, there may be “squares” of the form (4.21) in 2Cosp(C) with non-

invertible maps joining their middle objects M , but we have ignored these, and

also ignore non-invertible cospan maps in the bicategories on the edges. Thus, we

consider no diagrams of the form (A.2) except for invertible ones, in which case

the middle objects (say, M and M ′) are representatives of the same isomorphism

class. Similar reasoning applies to the 2-morphisms in 2Mor.

The resulting structure we get from discarding these will again be a double

bicategory. In particular, the new Mor and 2Mor will be bicategories, since they

are, respectively, just a category and a set made into a discrete bicategory by

adding identity morphisms or 2-morphisms as needed. On the other hand, for

the composition, source and target maps to be weak 2-functors amounts to saying
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that the structures built from the objects, morphisms, and 2-cells respectively

are again bicategories, since the composition, source, and target maps satisfy the

usual axioms. But the same argument applies to those built from the morphisms

and 2-cells as within Mor and 2Mor. So we have a double bicategory.

Next we show that the horizontal and vertical action conditions (Definition 27

of section A.3) hold in 2Cosp(C). A square in 2Cosp(C) is a diagram of the form

(4.21), and a 2-cell is a map of cospans. Given a square M1 and 2-cell α with

compatible source and targets as in the action conditions, we have a diagram of

the form shown in (4.22). Here, M1 is the square diagram at the bottom, whose

top row is the cospan containing S1. The 2-cell α is the cospan map including the

arrow α : S1→S2. There is a unique square built using the same objects as M1

except using the cospan containing S2 as the top row. The map to S2 from M is

then α ◦ P1.

To satisfy the action condition, we want this square M2, which is the candidate

for M1 ⋆V α, to be unique. But suppose there were another M ′
2 with a map to S2.

Since we are in 2Cosp(C)0, α must be invertible, which would give a map from M ′
2

to S1. We then find that M ′
2 and M2 are representatives of the same isomorphism

class, so in fact this is the same square. That is, there is a unique morphism

in 2Mor taking M1 to M2 (a diagram of the form A.3, oriented vertically) with
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invertible cospan maps in the middle and bottom rows. This is the unique filler

for the pillow diagram required by definition 27.

The argument that 2Cosp(C)0 satisfies the action compatibility condition is

similar.

So 2Cosp(C)0 is a double bicategory in which, there there is at most one unique

morphism in Mor, and at most unique morphisms and 2-morphisms in 2Mor, for

any specified source and target, and the horizontal and vertical action conditions

hold. So 2Cosp(C)0 can be interpreted as a Verity double bicategory (Lemma 7).

�

Remark 3 We observe here that the compatibility condition (4.14) relating the

associator in the horizontal and vertical bicategories to composition for squares

can be seen from the fact that the associators are maps which come from the

universal property of pushouts. This is by the parallel argument to that we gave

for spans in Section 3.3. The same argument applies to the middle objects of

the squares, and gives associator isomorphisms for that composition. Since these

become the identity when we reduce to isomorphism classes, we get a commuting

pillow as in (4.14). A similar argument shows the compatibility condition for the

unitor, (4.15).

Note that the analogous theorem beginning with a category C with finite limits

and using spans is equivalent to this case, by taking Cop.
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In Section 5.2 we use a similar argument to obtain a Verity double bicategory of

cobordisms with corners. First, however, we must see how these are defined. This

is the task of Chapter 5. In Appendix A.2 we show that Cosp(C) is a Verity double

bicategory. For now, we will examine how cobordisms form a special topological

example of this sort of Verity double bicategory.
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Cobordisms With Corners

Our motivation here for studying Verity double bicategories is to provide the

right formal structure for our special example of higher categories of cobordisms.

The objects in these categories are manifolds of some dimension, say k. In this

case, the morphisms are (k+1)-dimensional cobordisms between these manifolds:

that is, manifolds with boundary, such that the boundary decomposes into two

components, with one component as the source, and one as the target. The 2-cells

are equivalence classes (k+2)-dimensional cobordisms between (k+1)-dimensional

cobordisms: these can be seen as manifolds with corners, where the corners are

the k-dimensional objects. Specifically, with these as with the cobordisms in our

definition of nCob, only the highest-dimensional level consists of isomorphism

classes. This means that composition of the horizontal and vertical cobordisms

will need to be weak, which is why we use Verity double bicategories as defined

in Definition 5.
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Observe that we could continue building a ladder in which, at each level, the

j + 1-cells are cobordisms between the j-cells, which are cobordisms between the

(j − 1)-cells. The two levels we consider here are enough to give a Verity double

bicategory of n-dimensional cobordisms with corners, where we think of the top

dimension (k+2 in the above) as n. We will see that these can be construed using

the double cospan construction of Section 4.3.

5.1 Collars on Manifolds with Corners

Here we will use a modified form of our construction from Section 4.3 of a Ver-

ity double bicategory 2Cosp(C) in order to show an example of a Verity double

bicategory of cobordisms with corners, starting with C the category of smooth

manifolds. To begin with, we recall that a smooth manifold with corners is a topo-

logical manifold with boundary, together with a certain kind of C∞ structure. In

particular, we need a maximal compatible set of coordinate charts φ : Ω→[0,∞)n

(where φ1, φ2 are compatible if φ2 ◦ φ
−1
1 is a diffeomorphism). The fact that the

maps are into the positive sector of Rn distinguishes a manifold with corners from

a manifold.

Jänich [48] introduces the notion of 〈n〉-manifold, reviewed by Laures [60].

This is build on a manifold with faces:
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Definition 7 A face of a manifold with corners is the closure of some con-

nected component of the set of points with just one zero component in any co-

ordinate chart. An 〈n〉-manifold is a manifold with faces together with an n-tuple

(∂0M, . . . , ∂n−1M) of faces of M , such that

• ∂0M ∪ . . . ∂n−1M = ∂M

• ∂iM ∩ ∂jM is a face of ∂iM and ∂jM

The case we will be interested in here is the case of 〈2〉-manifolds. In this

notation, a 〈0〉-manifold is just a manifold without boundary, a 〈1〉-manifold is

a manifold with boundary, and a 〈2〉-manifold is a manifold with corners whose

boundary decomposes into two components (of codimension 1), whose intersec-

tions form the corners (of codimension 2). We can think of ∂0M and ∂1M as the

“horizontal” and “vertical” part of the boundary of M .

Example 3 Let M be the solid 3-dimensional illustrated in Figure 5.1. The

boundary decomposes into 2-dimensional manifolds with boundary. Denote by

∂0M the boundary component consisting of the top and bottom surfaces, and

∂1M be the remaining boundary component (a topological annulus).

In this case, ∂0M is the disjoint union of the manifolds with corners S (two

annuli) and S ′ (topologically a three punctured sphere); ∂1M is the disjoint union

85



Chapter 5. Cobordisms With Corners

of two components, TX (which is topologically a three-punctured sphere) and TY

(topologically a four-punctured torus).

Then we have ∂0M∪∂1M = ∂M . Also, ∂0M∩∂1M is a 1-dimensional manifold

without boundary, which is a face of both ∂0M and ∂1M (in fact, the shared

boundary). In particular, it is the disjoint union X ∪ Y ∪X ′ ∪ Y ′.

We have described a Verity double bicategory of double cospans in a category

with all pushouts. We could then form such a system of cobordisms with corners

in a category obtained by co-completing Man, so that all pushouts exist. The

problem with this is that the pushout of two cobordisms M1 and M2 over a

submanifold S included in both by maps S
i1→M1 and S

i2→M2 may not be a

cobordism. If the submanifolds are not on the boundaries, certainly the result

may not even be a manifold: for instance, two line segments with a common point

in the interior. So to get a Verity double bicategory in which the morphisms are

smooth manifolds with boundary, certainly we can only consider the case where

we compose two cobordisms by a pushout along shared submanifolds S which are

components of the boundary of both M1 and M2.

However, even if the common submanifold is at the boundary, there is no

guarantee that the result of the pushout will be a smooth manifold. In partic-

ular, for a point x ∈ S, there will be a neighborhood U of x which restricts to

U1 ⊂ M1 and U2 ⊂ M2 with smooth maps φi : Ui→[0,∞)n with φi(x) on the
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boundary of [0,∞)n with exactly one coordinate equal to 0. One can easily com-

bine these to give a homeomorphism φ : U→Rn, but this will not necessarily be

a diffeomorphism along the boundary S.

To solve this problem, we use the collaring theorem: For any smooth manifold

with boundary M , ∂M has a collar : an embedding f : ∂M × [0,∞)→M , with

(x, 0) 7→ x for x ∈ ∂M . This is a well-known result (for a proof, see e.g. [47],

sec. 4.6). It is an easy corollary of this usual form that we can choose to use the

interval [0, 1] in place of [0,∞) here.

Gerd Laures ([60], Lemma 2.1.6) describes a generalization of this theorem to

〈n〉-manifolds, so that for any 〈n〉-manifold M , there is an n-dimensional cubical

diagram (〈n〉-diagram) of embeddings of cornered neighborhoods of the faces.

It is then standard that one can compose two smooth cobordisms with corners,

equipped with such smooth collars, by gluing along S. The composite is then the

topological pushout of the two inclusions. Along the collars of S in M1 and M2,

charts φi : Ui→[0,∞)n are equivalent to charts into Rn−1 × [0,∞), and since the
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the composite has a smooth structure defined up to a diffeomorphism1 which is

the identity along S.

5.2 Cobordisms with Corners

Suppose we take the category Man whose objects are smooth manifolds with

corners and whose morphisms are smooth maps. Naively, would would like to use

the cospan construction from Section 4.3, we obtain a Verity double bicategory

2Cosp(Man). While this approach will work with the category Top, however, it

will not work with Man since this does not have all colimits. In particular, given

two smooth manifolds with boundary, we can glue them along their boundaries

in non-smooth ways, so to ensure that the pushout exists in Man we need to

specify a smoothness condition. This requires using collars on the boundaries and

corners.

For each n, we define a Verity double bicategory within Man, which we will

call nCob2:

Definition 8 The Verity double bicategory nCob2 is given by the following data:

1Note that the precise smooth structure on this cobordism depends on the collar which is
chosen, but that there is always such a choice, and the resulting composites are all equivalent up
to diffeomorphism. That is, they are equivalent up to a 2-morphism in the bicategory. So strictly
speaking, the composition map is not a functor but an anafunctor. It is common to disregard
this issue, since one can always define a functor from an anafunctor by using the axiom of choice.
This is somewhat unsatisfactory, since it does not generalize to the case where our categories
are over a base in which the axiom of choice does not hold, but this is not a problem in our
example. This issue is discussed further by Makkai [69].
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• The objects of nCob2 are of the form P = P̂ × I2 where P̂ may be any

(n− 2) manifolds without boundary and I = [0, 1].

• The horizontal and vertical bicategories of nCob2 have

– objects: as above

– morphisms: cospans P1
i1→S

i2←P2 where S = Ŝ × I and Ŝ may be any

of those cospans of (n−1)-dimensional manifolds-with-boundary which

are cobordisms with collars such that the P̂i×I are objects, the maps are

injections into S, a manifold with boundary, such that i1(P1)∪ i2(P2) =

∂S × I, i1(P1) ∩ i2(P2) = ∅,

– 2-morphisms: cospan maps which are diffeomorphisms of the form f ×

id : T × [0, 1]→T ′ × [0, 1] where T and T ′ have a common boundary,

and f is a diffeomorphismT→ T ′ compatible with the source and target

maps—i.e. fixing the collar.

where the source of a cobordism S consists of the collection of components

of ∂S× I for which the image of (x, 0) lies on the boundary for x ∈ ∂S, and

the target has the image of (x, 1) on the boundary

• squares: diffeomorphism classes of n-dimensional manifolds M with cor-

ners satisfying the properties of M in the diagram of equation (4.21), where

isomorphisms are diffeomorphisms preserving the boundary
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• the action of the diffeomorphisms on the “squares” (classes of manifolds M)

is given by composition of diffeomorphisms of the boundary cobordisms with

the injection maps of the boundary M

The source and target objects of any cobordism are the collars, embedded in the

cobordism in such a way that the source object P = P̂ × I2 is embedded in the

cobordism S = Ŝ × I by a map which is the identity on I taking the first interval

in the object to the interval for a horizontal morphism, and the second to the

interval for a vertical morphism. The same condition distinguishing source and

target applies as above.

Composition of squares works as in 2Cosp(C)0.

We will see that nCob2 is a Verity double bicategory in Section 5.3, but for

now it suffices to note that since it is composed of double cospans, we can hope

to define composition to be just that in the Verity double bicategory2Cosp(C)0

where C is the category of manifolds with corners. The proof that this is a Verity

double bicategory will entail showing that nCob2 is closed under this composition.

Lemma 2 Composing horizontal morphisms in nCob2 this way produces another

horizontal morphism in nCob2. Similarly, composition of vertical morphisms

produces a vertical morphism, and composition of squares produces another square.
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Proof : The horizontal and vertical morphisms are products of the interval I

with 〈1〉-manifolds, whose boundary is ∂0S), equipped with collars. Suppose we

are given two such cobordisms S1 and S2, and an identification of the source of

S2 with the target of S1 (say this is P = P̂ × I). Then the composite S2 ◦ S1 is

topologically the pushout of S1 and S2 over P . Now, P is smoothly embedded in

S1 and S2, and any point in the pushout will be in the interior of either S1 or S2

since for any point on P̂ each end of the interval I occurs as the boundary of only

one of the two cobordisms. So the result is smooth. Thus, 2Cob is closed under

such composition of morphisms.

The same argument holds for squares, since it holds for any representative of

the equivalence class of some manifold with corners, M , and the differentiable

structure will be the same, since we consider equivalence up to diffeomorphisms

which preserve the collar exactly. �

This establishes that composition in nCob2 is well defined, and composites

are again cobordisms in nCob2. We show that it is a Verity double bicategory in

Section 5.3.

Example 4 We can represent a typical manifestation of the diagram (4.21) as in

Figure 5.1.
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Figure 5.1: A Square in nCob2 (Thickened Lines Denote Collars)

Consider how this picture is related to (4.21). In the figure, we have n = 3, so

the objects are (compact, oriented) 1-dimensional manifolds, thickened by taking a

product with I2. X (top, solid lines) and Y (top, dotted lines) are both isomorphic

to (S1 ∪ S1) × I2, while X ′ and Y ′ (bottom, solid and dotted respectively) are

both isomorphic to S1 × I2.

The horizontal morphisms are (thickened) cobordisms S, and S ′, which are

a pair of thickened annuli and a two-holed disk, respectively, with the evident

injection maps from the objects X, Y,X ′, Y ′. The vertical morphisms are the

thickened cobordisms TX and TY . In this example, TX happens to be of the same
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form as S ′ (a two-holed disk), and has inclusion maps from X and X ′, the two

components of its boundary, as the “source” and “target” maps. TY is homotopy

equivalent to a four-punctured torus, where the four punctures are the components

of its boundary: two circles in Y and two in Y ′, which again have the obvious

inclusion maps. Reading from top to bottom, we can describe TY as the story

of two (thick) circles which join into one circle, then split apart, then rejoin, and

finally split apart again.

Finally, the “square” in this picture is the manifold with corners, M , whose

boundary has four components, S, S ′, TX , andTY , and which has corners precisely

along the boundaries of these manifolds. These boundaries’ components are di-

vided between the objects X, Y,X ′, Y ′. The embeddings of these thickened man-

ifolds and cobordisms gives a specific way to equip M with collars.

Given any of the horizontal or vertical morphisms (thickened cobordisms S, S ′,

TX and TY ), a 2-morphism would be a diffeomorphism to some other cobordism

equipped with maps from the same boundary components (objects), which fixes

the collar on that cobordism (the embedded object). Such a diffeomorphism is

necessarily a homeomorphism, so topologically the picture will be similar after

the action of such a 2-morphism, but we would consider two such cobordisms as

separate morphisms in Hor or Ver.
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Remark 4 We note the resemblance between this example and Path(S)2 and

H(S) defined previously. In those cases, we are considering manifolds embedded

in a topological space S, and only a low-dimensional special case (the square

[0, 1] × [0, 1] is a manifold with corners). Instead of homotopies, which make

sense only for embedded spaces, nCob2 has diffeomorphisms. However, in both

cases, we consider the squares to be isomorphism classes of a certain kind of

top-dimensional object (homotopies or cobordisms). This eliminates the need to

define morphisms or cells in our category of dimension higher than 2. We may

omit this restriction if we move to the more general setting of a double bicategory,

as described in Section A.

We conclude this section by illustrating composition in both directions in

nCob2, and in particular illustrating the interchange law (4.6) for cobordisms

with corners. Figure 5.2 shows four cobordisms with corners, arranged to show

three examples of horizontal composition and three of vertical composition. The

vertical composites, denoted by ⊗V , can be seen as “gluing” the vertically stacked

cobordisms along the boundary between them, which is the bottom face of the

cobordisms on top, and the top face of those on bottom. The horizontal compos-

ites, denoted by ⊗H , are somewhat less obvious. In the figure, they can be seen

as “gluing” the right-hand cobordism along a common face. In each case, the

94



Chapter 5. Cobordisms With Corners

common face is the “inside” face of the left-hand cobordism, and the “outside”

face of the right-hand one.

5.3 A Bicategory Of Cobordisms With Corners

Now we want to show that cobordisms of cobordisms form a Verity double

bicategory under the composition operations we have described. We have shown

in Theorem 2 that there is a Verity double bicategory denoted 2Cosp(C)0 for any

category C with finite colimits. We want to show that the reduction from the full

2Cosp(C)0 to just the particular cospans in nCob2 leaves this fact intact.

The argument that double cospans form a Verity double bicategory can be

slightly modified to show the same about cobordisms with corners, which are

closely related. We note that there are two differences. First, the category of

manifolds with corners does not have all finite colimits, or indeed all pushouts.

Second, we are not dealing with all double cospans of manifolds with corners, so

nCob2 is not 2Cosp(C)0 for any C. In fact, the second difference is what allows

us to deal with the first.

Theorem 3 nCob2 is a Verity double bicategory.

Proof : First, recall that objects in nCob2 are manifolds with corners of the form

P = P̂ × I2 for some manifold P̂ , and notice that both horizontal and vertical
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morphisms are cospans. In general, if we have two cospans in the category of

manifolds with corners sharing a common object, we cannot take a pushout and

get a manifold with corners. However, we are only considering a subcollection of

all possible cospans of smooth manifolds with corners, all all those we consider

have pushouts which are again smooth manifolds with corners (Lemma 2).

In particular, since composition of squares is as in 2Cosp(C)0, before taking

diffeomorphism classes of manifolds M in nCob2, we would again get a double

bicategory made from cobordisms with corners, together with the embeddings

used in its cospans, and collar-fixing diffeomorphisms. This is shown by arguments

identical to those used in the proof of Lemma 6.

When we reduce to diffeomorphism classes of these manifolds, then just as in

the proof of nTheorem 2, we can cut down this double bicategory to a structure,

and the result will satisfy the horizontal and vertical action conditions, giving a

Verity double bicategory, since it satisfies the conditions of Lemma 7.

So in fact, by the same arguments as in these other cases, nCob2 is a Verity

double bicategory. �

By the argument of Section 4.2, this means that we can also think of nCob2

as a bicategory, which we will do for the purposes of constructing an Extended

TQFT as a weak 2-functor. To do this, we next describe, in Chapter 6 some

versions of a bicategory of 2-vector spaces, and in particular 2-Hilbert spaces.
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Figure 5.2: Compositions in nCob2 Satisfy the Interchange Law
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2-Vector Spaces

6.1 Kapranov-Voevodsky 2-Vector Spaces

We want to find a way of describing an extended TQFT—one acting on mani-

folds with corners. We would like to find something analogous to Atiyah’s charac-

terization of a TQFT as a functor between a category of cobordisms and a category

of vector spaces. We have now established that there is a bicategory nCob2 of

in which we can interpret objects as manifolds, morphisms as cobordisms, and 2-

morphisms as cobordisms between cobordisms (which are diffeomorphism classes

of manifolds with corners). The next constituent we need is a bicategory to take

the place of the category of vector spaces. There are several notions of a bicate-

gory of “2-vector spaces” available, and each gives rise to a notion of an extended

TQFT as a 2-functor into this bicategory.
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There are two major philosophies of how to categorify the concept “vector

space”. A Baez-Crans (BC) 2-vector space is a category object in Vect—that

is, a category having a vector space of objects and of morphisms, where source,

target, composition, etc. are linear maps. This is a useful concept for some

purposes—it was developed to give a categorification of Lie algebras. The reader

may refer to the paper of Baez and Crans [6] for more details. However, a BC

2-vector space turns out to be equivalent to a 2-term chain complex and, this is

not the concept of 2-vector space which concerns us here.

The other, and prior, approach is to define a 2-vector space as a category

having operations such as a monoidal structure analogous to the addition on a

vector space. In particular, We will restrict our attention to complex 2-vector

spaces, though the generalization to an arbitrary base field K is straghtforward.

This ambiguity about the correct notion of “2-vector space” is typical of the

problem of categorificiation. Since the categorified setting has more layers of

structure, there is a choice of level to which the structure in the concept of a

vector space should be lifted. Thus in the BC 2-vector spaces, we have literal

vector addition and scalar multiplication within the objects and morphisms. In

KV 2-vector spaces and their cousins, we only have this for morphisms, and for

objects there is a categorified analog of these operations, as wel shall see.
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Indeed, there are different sensible generalizations of vector space even within

this second philosophy, however. Josep Elgueta [34] shows several different types

of “generalized” 2-vector spaces, and relationships among them. In particular,

while KV 2-vector spaces can be thought of as having a set of basis elements, a

generalized 2-vector space may have a general category of basis elements. The free

generalized 2-vector space on a category is denoted Vect[C]. Then KV 2-vector

spaces arise when C is a discrete category with only identity morphisms. This is

essentially a set S of objects. Thus it should not be surprising that KV 2-vector

spaces have a structure analogous to free vector spaces generated by some finite

set - which are isomorphic to Ck.

All such concepts of 2-vector space are C-linear additive categories with some

properties, so we begin by explaining this. To begin with, we have additivity for

categories, the equivalent of linear structure in a vector space. This is related to

biproducts, which are both categorical products and coproducts, in compatible

ways. The motivating example for us is the direct sum operation in Vect. Such

an operation plays the role in a 2-vector space which vector addition plays in a

vector space. To be precise:

Definition 9 A biproduct for a category C is an operation giving, for any ob-

jects x and y in V an object x ⊕ y equipped with morphisms ιx, ιy from x and y

respectively into x⊕y; and morphisms πx, πy from x⊕y into x and y respectively,
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which satisfy the biproduct relations:

πx ◦ ιx = idx and πy ◦ ιy = idy (6.1)

and similarly for y, and

ιx ◦ πx + ιy ◦ πy = idx⊕y (6.2)

Whenever biproducts exist, they are always both products and coproducts.

Definition 10 A C-linear additive category is a category V with biproduct

⊕, and such that that for any x, y ∈ V, hom(x, y) is a vector space over C, and

composition is a bilinear map. A C-linear functor between C-linear categories is

one where morphism maps are C-linear.

The standard example of this approach is the Kapranov-Voevodsky (KV) def-

inition of a 2-vector space [51], which is the form we shall use (at least when

the situation is finite-dimensional). To motivate the KV definition, consider the

idea that, in categorifying, one should replace the base field C with a monoidal

category. Specifically, it turns out, with Vect, the category of finite dimensional

complex vector spaces. This leads to the following replacements for concepts in

elementary linear algebra:

• Vectors = k-tuples of scalars 7→ 2-vectors = k-tuples of vector spaces

• Addition 7→ Direct Sum
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• Multiplication 7→ Tensor Product

So just as Ck is the standard example of a complex vector space, Vectk will

be the standard example of a 2-vector space. However, the axiomatic definition

allows for other possibilities:

Definition 11 A Kapranov–Voevodsky 2-vector space is a C-linear addi-

tive category in which every object can be written as a finite biproduct of simple

objects (i.e. objects x where hom(x, x) ∼= C). A 2-linear map between 2-vector

spaces is a C-linear functor which preserves biproducts.

Remark 5 It is a standard fact that preserving biproducts and preserving exact

sequences are equivalent in this setting: in a KV 2-vector space, every object

is equivalent to a direct sum of simple objects, so every exact sequence splits.

The above definition of a 2-linear map is sometimes given in the equivalent form

requiring that the functor preserve exact sequences. Indeed, since every object is

a finite biproduct of simple objects, a 2-vector space is an abelian category. For

more on these, see Freyd [42].

Now, it is worth mentioning that Yetter shows [88] (in his Proposition 13),

that the original definition of Kapranov and Voevodsky gives an equivalent result

to a definition of a 2-vector space V as a finitely semi-simple Vect-module. A

Vect-module V is finitely semi-simple if there is a finite set S ⊂ Ob(V) of simple
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objects, such that every objects of V is a finite product of objects in S. The

advantage of this definition is simply that it is a straightforward categorification

of the usual definition of a vector space as a C-module.

The reader is referred to Yetter’s paper (Definition 2) for a precise version of

the definition of a Vect-module, but remark that to be a Vect-module requires

that V has an “action” of Vect on it. That is, there is a functor

⊙ : Vect×V→V (6.3)

which satisfies the usual module axioms only up to two isomorphisms, similar to

the associator and unitor, which satisfy some further coherence conditions. We

will see the meaning this action when we consider a standard example, where this

is literally a tensor product.

Example 5 The standard example [51] of a KV 2-vector space highlights the

analogy with the familar vector space Ck. The 2-vector space Vectk is a category

whose objects are k-tuples of vector spaces, maps are k-tuples of linear maps. The

additive structure of the 2-vector space Vectk comes from applying the direct sum

in Vect componentwise.
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Note that there is an equivalent of scalar multiplication, using the tensor prod-

uct:

V ⊗

















V1

...

Vk

















=

















V ⊗ V1

...

V ⊗ Vk

















(6.4)

and
















V1

...

Vk

















⊕

















W1

...

Wk

















=

















V1 ⊕W1

...

Vk ⊕Wk

















(6.5)

As the correspondence with linear algebra would suggest, 2-linear maps T :

Vectk→Vectl amount to k × l matrices of vector spaces, acting by matrix mul-

tiplication using the direct sum and tensor product instead of operations in C:
















T1,1 . . . T1,k

...
...

Tl,1 . . . Tl,k

































V1

...

Vk

















=

















⊕k
i=1 T1,i ⊗ Vi

...

⊕k
i=1 Tl,i ⊗ Vi

















(6.6)

The natural transformations between these are matrices of linear transforma-

tions:

α =

















α1,1 . . . α1,k

...
...

αl,1 . . . αl,k

















:

















T1,1 . . . T1,k

...
...

Tl,1 . . . Tl,k

















−→

















T ′
1,1 . . . T ′

1,k

...
...

T ′
l,1 . . . T ′

l,k

















(6.7)

where each αi,j : Ti,j→T ′
i,j is a linear map in the usual sense.
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These natural transformations give 2-morphisms between 2-linear maps, so

that Vectk is a bicategory with these as 2-cells:

Vectk

F
((

G

66Vectlα

��
(6.8)

In our example above, the finite set of simple objects of which every object is

a sum is the set of 2-vectors of the form
































0

...C

...

0

































(6.9)

which have the zero vector space in all components except one (which can be

arbitrary). These are like categorified “standard basis vectors”, so we call them

standard basis 2-vectors . Clearly every object of Vectk is a finite biproduct

of these objects, and each is simple (its vector space of endomorphisms is 1-

dimensional).

The most immediately useful fact about KV 2-vector spaces is the following

well known characterization:

Theorem 4 Every KV 2-vector space is equivalent as a category to Vectk for

some k ∈ N.
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Proof : Suppose K is a KV 2-vector space with a basis of simple objects X1 . . .Xk.

Then we construct an equivalence E : K→Vectk as follows:

E should be an additive functor with E(Xi) = Vi, where Vi is the k-tuple of

vector spaces having the zero vector space in every position except the ith, which

has a copy of C. But any object X, is a sum
⊕

iX
ni

i , so by linearity (i.e. the

fact that E preserves biproducts) X will be sent to the sum of the same number

of copies of the Vi, which is just a k-tuple of vector spaces whose ith component isCni. So every object in K is sent to an k-tuple of vector spaces. By C-linearity,

and the fact that hom-vector spaces of simple objects are one-dimensional, this

determines the images of all morphisms.

But then the weak inverse of E is easy to construct, since sending Vi to Xi

gives an inverse at the level of objects, by the same linearity argument as above.

At the level of morphisms, the same argument holds again. �

This is a higher analog of the fact that every finite dimensional complex vector

space is isomorphic to Ck for some k ∈ N. So, indeed, the characterization

of 2-vector spaces in our example above is generic: every KV 2-vector space is

equivalent to one of the form given. Moreover, our picture of 2-linear maps is also

generic, as shown by this argument, analogous to the linear algebra argument for

representation of linear maps by matrices:
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Lemma 3 Any 2-linear map T : Vectn→Vectm is naturally isomorphic to a

map of the form (6.6).

Proof : Any 2-linear map T is aC-linear additive functor between 2-vector spaces.

Since any object in a 2-vector space can be represented as a biproduct of simple

objects—and morphisms likewise—such a functor is completely determined by its

effect on the basis of simple objects and morphisms between them.

But then note that since the automorphism group of a simple object is by

definition just all (complex) multiples of the identity morphism, there is no choice

about where to send any such morphism. So a functor is complely determined

by the images of the basis objects, namely the 2-vectors Vi = (0, . . . ,C, . . . , 0) ∈

Vectn, where Vi has only the ith entry non-zero.

On the other hand, for any i, T (Vi) is a direct sum of some simple objects in

Vectm, which is just some 2-vector, namely a k-tuple of vector spaces. Then the

fact that the functor is additive means that it has exactly the form given. �

And finally, the analogous fact holds for natural transformations between 2-

linear maps:

Lemma 4 Any natural transformation α : T→ T ′ from a 2-linear map T :

Vectn→Vectm to a 2-linear map T ′ : Vectn→Vectm, both in the form (6.6) is

of the form (6.7).
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Proof : By Lemma 3, the 2-linear maps T and T ′ can be represented as matrices

of vector spaces, which act on an object in Vectn as in (6.6). A natural transfor-

mation α between these should assign, to every object X ∈ Vectn, a morphism

αX : T (X)→T ′(X) in Vectm, such that the usual naturality square commutes

for every morphism f : X→Y in Vectn.

Suppose X is the n-tuple (X1, . . . , Xn), where the Xi are finite dimensional

vector spaces. Then

T (X) = (⊕n
k=1V1,k ⊗Xk, . . . ,⊕

n
k=1Vm,k ⊗Xk) (6.10)

where the Vi,j are the components of T , and similarly

T ′(X) = (⊕n
k=1V

′
1,k ⊗Xk, . . . ,⊕

n
k=1V

′
m,k ⊗Xk) (6.11)

where the V ′
i,j are the components of T ′.

Then a morphism αX : T (X)→T ′(X) consists of an m-tuple of linear maps:

αj : ⊕n
k=1Vj,k ⊗Xk→⊕

n
k=1V

′
j,k ⊗Xk (6.12)

but by the universal property of the biproduct, this is the same as having an

(n×m)-indexed set of maps

αjk : Vj,k ⊗Xk→⊕
n
r=1V

′
j,r ⊗Xr (6.13)

and by the dual universal property, this is the same as having (n×n×m)-indexed

maps

αjkr : Vj,k ⊗Xk→V ′
j,r ⊗Xr (6.14)
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However, we must have the naturality condition for every morphism f : X→X ′:

T (X)

αX

��

T (f)
// T (X ′)

αX′

��

T ′(X)
T ′(f)

// T ′(X ′)

(6.15)

Note that each of the arrows in this diagram is a morphism in Vectm, which are

linear maps in each component—so in fact we have a separate naturality square

for each component.

Also, since T and T ′ act on X and X ′ by tensoring with fixed vector spaces

as in (6.10), one has T (f)i = ⊕ifi ⊗ 1Vij
, having no effect on the Vij. We want to

show that the components of α affect only the Vij .

Additivity of all the functors involved implies that the assignment α of maps to

objects in Vectn is additive. So consider the case when X is one of the standard

basis 2-vectors, having C in one position (say, the kth), and the zero vector space in

every other position. Then, restricting to the naturality square in the kth position,

the above condition amounts to having m maps (indexed by j):

αj,k : Vj,k→V ′
j,k (6.16)

So by linearity, a natural transformation is determined by an n × m matrix of

maps as in (6.7). �

The fact that 2-linear maps between 2-vector spaces are functors between

categories recalls the analogy between linear algebra and category theory in the
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concept of an adjoint. If V and W are inner product spaces, the adjoint of a

linear map F : V → V is a map F † for which 〈Fx, y〉 =
〈

x, F †y
〉

for all x ∈ V1

and y ∈ V2. A (right) adjoint of a functor F : C→D is a functor G : D→C for

which homD(Fx, y) ∼= homC(x,Gy) (and then F is a left adjoint of G).

In the situation of a KV 2-vector space, the categorified analog of the adjoint

of a linear map is indeed an adjoint functor. (Note that since a KV 2-vector space

has a specified basis of simple objects, it makes sense to compare it to an inner

product space.) Moreover, the adjoint of a functor has a matrix representation

which is much like the matrix representation of the adjoint of a linear map. We

summarize this as follows:

Theorem 5 Given any 2-linear map F : V →W , there is a 2-linear map G :

W →V which is both a left and right adjoint to F , and G is unique up to natural

isomorphism.

Proof : By Theorem 4, we have V ≃ Vectn and W ≃ Vectm for some n and m.

By composition with these equivalences, we can restrict to this case. But then we

have by Lemma 3 that F is naturally isomorphic to some 2-linear map given by
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matrix multiplication by some matrix of vector spaces [Fi,j]:

















F1,1 . . . F1,n

...
...

Fm,1 . . . Fm,n

















(6.17)

We claim that a (two-sided) adjoint functor F † is given by the “dual transpose

matrix” of vector spaces [Fi,j]
†:

















F †
1,1 . . . F †

1,m

...
...

F †
n,1 . . . F †

n,m

















(6.18)

where F †
i,j is the vector space dual (Fj,i)

∗ (note the transposition of the matrix).

We note that this prescription is symmetric, since [T ]†† = [T ], so if G is always

left adjoint of F , then F is also a left-adjoint of G, hence G a right adjoint of F .

So if this prescription gives a left adjoint, it gives a two-sided adjoint. Next we

check that it does.

Suppose x = (Xi) ∈ Vectn is the 2-vector with vector space Xi in the ith

component, and y = (Yj) ∈ Vectm has vector space Yj in the jth component.

Then Fx ∈ Vectm has jth component ⊕n
k=1Vk,j⊗Xk. Now, a map in Vectm from

Fx to y consists of a linear map in each component, so it is an m-tuple of maps:

fj : ⊕n
k=1Vk,j ⊗Xk→Yj (6.19)
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for j = 1 . . .m. But since the direct sum (biproduct) is a categorical product, this

is the same as an m× n matrix of maps:

fkj : Vk,j ⊗Xk→Yj (6.20)

for k = 1 . . . n and j = 1 . . .m, and hom(Fx, y) is the vector space of all such

maps.

By the same argument, a map in Vectn from x to Gy consists of an n × m

matrix of maps:

gjk :: Xk→V ∗
j,k ⊗ Yj

∼= hom(Vj,k, Yj) (6.21)

for k = 1 . . . n and j = 1 . . .m, and hom(x,Gy) is the vector space of all such

maps.

But then we have a natural isomorphism hom(Fx, y) ∼= hom(x,Gy) by the

duality of hom and ⊗, so in fact G is a right adjoint for F , and by the above

argument, also a left adjoint.

Moreover, no other nonisomorphic matrix defines a 2-linear map with these

properties, and since any functor is naturally isomorphic to some matrix, this is

the sole G which works. �

We conclude this section by giving an example of a 2-vector space which we

shall return to again later. It is motivated by the attempt to generalize the FHK

construction of a TQFT from a group, as described in Section 2.3. During the
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construction of the vector space assigned to a circle, one makes use of the group

algebra of a finite group G—the set of complex linear combinations of group

elements. There is a categorified analog:

Example 6 As an example of a KV 2-vector space, consider the group 2-algebra

on a finite group G, defined by analogy with the group algebra:

The group algebra C[G] consists of the set of elements formed as formal linear

combinations elements of G:

b =
∑

g∈G

bg · g (6.22)

where all but finitely many bg are zero. We can think of these as complex functions

on G. The algebra multiplication on C[G] is given by the multiplication in G:

b ⋆ b′ =
∑

g,g′∈G

(bgb
′
g′) · gg

′ (6.23)

This does not correspond to the multiplication of functions on G, but to convolu-

tion:

(b ⋆ b′)g =
∑

h·h′=g

bhb
′
h′ (6.24)

Similarly, the group 2-algebra A = Vect[G] is the category of G-graded vector

spaces. That is, direct sums of vector spaces associated to elements of G:

V =
⊕

g∈G

Vg (6.25)
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where Vg ∈ Vect is a vector space. This is a G-graded vector space. We can

take direct sums of these pointwise, so that (V ⊕ V ′)g = Vg ⊕ V
′
g ), and there is a

“scalar” product with elements of Vect given by (W ⊗ V )g = W ⊗ Vg. There is

also a group 2-algebra product of G-graded vector spaces, involving a convolution

on G:

(V ⋆ V ′)h =
⊕

g·g′=h

Vg ⊗ V
′
g′ (6.26)

The category of G-graded vector spaces is clearly a KV 2-vector space, since

it is equivalent to Vectk where k = |G|. However, it has the additional structure

of a 2-algebra because of the group operation on the finite set G.

The analogy between group algebras and group 2-algebras highlights one mo-

tivation for thinking of 2-vector spaces. This is the fact that, in quantum me-

chanics, one often “quantizes” a classical system by taking the Hilbert space ofC-valued functions on its phase space. Similarly, one approach to finding a higher-

categorical version of a quantum field theory is to take Vect-valued functions. We

have noted in Section 2.3 that, given a finite group, the Fukuma-Hosono-Kawai

construction gives 2D TQFT, whose Hilbert space of states on a circle is just C[G].

For this reason, we expect that Example 6 should be relevant to categorifying this

theory. However, it is not quite sufficient, as we discuss in Section 6.2.
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6.2 KV 2-Vector Spaces and Finite Groupoids

The group 2-algebra of Example 6 shows that we can get a 2-vector space as

a category of functions from some finite set S into Vect, and this may have extra

structure if S does. However, this is somewhat unnatural, since Vect is a category

and S a mere set. It seems more natural to consider functor categories into Vect

from some category C. These are the generalized 2-vector spaces described by

Elgueta [34]. Then the above way of looking at a KV 2-vector space can be reduced

to the situation when C is a discrete category with a finite set of elements.

However, there are interesting cases where C is not of this form, and the result

is still a KV vector space. A relevant class of examples, as we shall show, come

from special kinds of groupoids.

Definition 12 An essentially finite groupoid is one which is equivalent to a

finite groupoid. A finitely generated groupoid is one with a finite set of ob-

jects, and all of whose morphisms are generated under composition by a finite

set of morphisms. An essentially finitely generated groupoid is one which is

equivalent to a finitely generated one.

We first show that finite groupoids are among the special categories C we want

to consider:
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Lemma 5 If X is an essentially finite groupoid, the functor category [X,Vect]

is a KV 2-vector space.

Proof : To begin with, we note that Vect is trivially a KV 2-vector space. In

particular, it is a C-linear additive category, which we use to give [X,Vect] the

same structure.

Define a biproduct ⊕ on [X,Vect] as follows. Given two functors F1, F2 :

X→Vect, define for both objects and morphisms,

(F1 ⊕ F2)(x) = F1(x)⊕ F2(x) (6.27)

where we are using both the direct sum of vector spaces, and the fact that linear

maps between vector spaces inherit a direct sum. The projections and injections

are defined pointwise. Since the biproduct axioms (6.1) and (6.2) hold pointwise,

this is indeed a biproduct.

Now X is equivalent to a skeleton of itself, X, which contains a single object

in each isomorphism class. Since X is essentially finite, this is also a finite set of

objects, and each object has a finite set of endomorphisms. Since these are all

invertible, X is in fact equivalent to a finite coproduct of finite groups, thought

of as single-object categories.

But then a functor F : X→Vect is just a direct sum of functors from these

groups. A functor from a group G (as a one-object category) to Vect is just a
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finite dimensional representation of G. Now, Schur’s Lemma states that the only

intertwining operators from an irreducible representation to itself are multiples of

the identity. That is, it ensures that all such representations are simple objects.

On the other hand, every representation is a finite direct sum of irreducible ones.

So in particular, the finite dimensional representations of a finite group form a

KV 2-vector space. A direct sum of such categories is again a KV 2-vector space,

and so [X,Vect] is one.

But [X,Vect] is equivalent to this, so it is a KV 2-vector space. �

We notice that we are speaking here of groupoids, and any groupoid X is

equivalent to its opposite category Xop, by an equivalence that leaves objects

intact and replaces each morphism by its inverse. So there is no real difference

between [X,Vect], the category of Vect-valued functors from X, and [Xop,Vect],

the category of Vect-valued presheaves (henceforth simply “Vect-presheaves”) on

X, where we emphasize that unlike ordinary presheaves, these are functors into

Vect, rather than Set. So we have shown that Vect-presheaves on a groupoid X

form a KV 2-vector space. We will work with these examples from now on.

Since many results about presheaves are well known, we will find it convenient

to use this terminology for objects of [X,Vect] for the sake of compatibility, and

to highlight the connection to these results. We will ignore the distinction in the

sequel, but remind readers here that our uses of the term “presheaf” are valid only
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because we are working with groupoids. The importance of Set-valued presheaves

to topos theory, and the richness of existing results for these, is one reason to keep

this relationship in mind.

Now we want to show a result analogous to a standard result for presheaves

(see, e.g. MacLane and Moerdijk [67], Theorem 1.9.2). This is that functors

between underlying groupoids induce 2-linear maps between the 2-vector spaces

of Vect-presheaves on them.

Theorem 6 If X and Y are essentially finite groupoids, a functor f : X→Y

gives two 2-linear maps between KV 2-vector spaces:

f ∗ : [Y,Vect]→[X,Vect] (6.28)

called “pullback along f” and

f∗ : [X,Vect]→[Y,Vect] (6.29)

called “pushforward along f”. Furthermore, f∗ is the (two-sided) adjoint to f ∗.

Proof : First we define, for any functor F : Y→Vect,

f ∗(F ) = F ◦ f (6.30)

which is a functor from X to Vect. This is just the pullback of F along f .

To show that this is a 2-linear map (that is, a biproduct-preserving, C-linear

functor), we first note that it is trivially C-linear since a linear combination of
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maps in some hom-category in [Y,Vect] is taken by f ∗ to the corresponding linear

combination in the hom-category in [X,Vect], where maps are now between vector

spaces thought of over x ∈ X.

To check that the functor f ∗ : [Y,Vect]→[X,Vect] preserves biproducts,

note that for any x ∈ X we have that f ∗(F1 ⊕ F2)(x) = (F1 ⊕ F2)(f(x)) =

F1(f(x))⊕ F2(f(x)) = (f ∗F1 ⊕ f
∗F2)(x).

So indeed there is a 2-linear map f ∗. But then by Theorem 5, there is a

two-sided adjoint of f ∗, denoted f∗. �

Remark 6 The argument in this proof for the existence of the adjoint to f ∗ uses

Theorem 5. While no such theorem exists for Set-valued presheaves, there is a

corresponding theorem defining a “pushforward” of presheaves of sets. In fact,

the only major difference between what we have shown for Vect-presheaves and

the standard results for Set-presheaves is that the left and right adjoint are the

same. This means that the “pushforward” map is an ambidextrous adjunction for

the pullback (for much more on the relation between ambidextrous adjunctions

and TQFTs, see Lauda [57]).

It seems useful, then, to have another approach to the “pushforward” map than

the matrix-dependent view of Theorem 5. Fortunately, there is a more instrinsic

way to describe the 2-linear map f∗, the adjoint of f ∗, and we know this must be

the same as the one given in matrix form.
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Definition 13 For a given y ∈ Y, define the diagramDy whose objects are objects

x ∈ X equipped with maps f(x)→ y in Y, and whose morphisms are morphisms

a : x→x′ whose images make the triangles

f(x)

��

f(a)
// f(x′)

{{vvvvvvvvv

y

(6.31)

in Y commute. Given a Vect-presheaf G on X, define f∗(G)(y) = colimG(Dy)—

a colimit in Vect.

The pushforward of a morphism b : y→ y′ in Y, f∗(G)(b) : f∗(G)(y)→ f∗(G)(y′)

is left to the reader.

This definition of the pushforward involved the diagramD, which is the comma

category of objects x ∈ X equipped with maps from f(x) to y. This is the

appropriate categorical equivalent of a preimage—rather than requiring f(x) = y,

one accepts that they may be isomorphic, in different ways. So this is a categorified

equivalent of taking a sum over a preimage. It needs to be confirmed directly that

it really is the adjoint.

Theorem 7 This f∗ is a 2-linear map, and a two-sided adjoint for f ∗.

Proof : The given f∗ certainly defines a Vect-presheaf f∗G on Y, and the oper-

ation of taking colimits is functorial and preserves biproducts, so f∗ is a 2-linear

map.
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Consider the effect of f∗ on a 2-vector G : X→Vect by describing f∗G :

Y→Vect. If F : Y→Vect is as above, there should be a canonical isomor-

phism between [G, f ∗(F )] (a hom-set in [X,Vect]) and [p∗(G), F ] (a hom-set in

[Y,Vect]).

The hom-set [G, f ∗(F )] is found by first taking the pullback of F along f . This

gives a presheaf on X, namely F (f(−)). The hom-set is then the set of natural

transformations α : G→ f ∗F . Each such α, given an object x in X, picks a linear

map αx : F (f(x))→G(x) (subject to the naturality condition).

For an object y in Y, pulling back F onto X gives the vector space F (y) at

each object x with f(x) = y. This is the presheaf f ∗F . So an element of [f ∗F,G]

is an assignment, to every x ∈ X, a linear map f ∗F = F (y)→G(x).

To get the equivalence required for adjointness, given a linear map h : f∗G(y)→F (y),

one should get a collection of maps hx : G(x)→F (y) for each object x in D

(which commute with all arrows in D). But f∗(G)(x) was defined to be a col-

imit, hence there is a unique compatible map ix from each G(x) into it, so take

hx = h ◦ ix : G(x)→F (y). This gives a map from [p∗(G), F ] to [G, f ∗(F )]. To

see that this is an equivalence, note that the colimit is a universal object with

the specified maps. So given the collection of hx, one gets the map h from the

universal property.
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So f∗ is a left adjoint to f ∗. By Theorem 5, it is therefore also a right-adjoint.

�

Remark 7 For future reference, we will describe the pair of adjoint functors, f ∗

and f∗ in even more detail, since this is used in the construction of our extended

TQFT in Chapter 7. Since we will want to make use of the simplifying fact

that any groupoid is equivalent to a skeletal groupoid, it is particularly helpful to

consider this case.

A skeletal groupoid has exactly one object in each isomorphism class, so it is

equivalent to a disjoint union of one-object groupoids - which can be interpreted

as groups. Since X and Y are essentially finite, these are finite groups. So a

Vect-presheaf on X is a functors which assigns a vector space Vx to each object

x ∈ X, and a linear map V →V for each morphism (i.e. group element). This is

just a representation of the finite group Aut(x) on Vectx.

If X and Y are skeletal, then f : X→Y on objects is just a set map, taking

objects in X to objects in Y. For morphisms, f gives, for each object x ∈ X, a

homomorphism from the group hom(x, x) to the group hom(f(x), f(x)).

So the pullback f ∗ is fairly straightforward: given F : Y→Vect, the pullback

f ∗F = F ◦ f : X→Vect assigns to each x ∈ X the vector space F (f(x)), and

gives a representation of Aut(x) on this vector space where g : x→x acts by f(g).
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This is the pullback representation. In the special case where f gives an inclusion

of groups, this is usually called the “restricted representation”.

The adjoint process to the restriction of representations is generally called

finding the induced representation (see, e.g. Burrows [20] for a classical discussion

of this when f is an inclusion). We will use the same term for the general case

when f is just a homomorphism, and slightly generalize the usual description.

The pushforward f∗, recall, assigns each object the vector spaces which is the

colimit of its essential preimage. For any presheaf V , this is determined by the

colimit for each component of that essential preimage. In particular, in the simple

case where X and Y are discrete (i.e. have only identity isomorphisms, so they

can be thought of as sets, and the essential preimage is just the usual preimage

for sets), for each y ∈ Y,

f∗F (y) ∈ Y =
⊕

g:f(x)→ y

F (x) (6.32)

So we just get the biproduct of all vector spaces over the preimage.

In any component, which can be seen as a group H , the colimit is again a

direct sum over the components of the essential preimage, but each component of

the essential preimage amounts to the induced representiation of F (x) under the

homomorphism given by f . So the colimit is a direct sum of such representations.

To see what this does, consider the case where X and Y are just single groups,

so we have a group homomorphism f : G→H , and we have a representation of
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G on V . Now such a representation is the same as a representation of the group

algebra C[G] on V - i.e. it makes V into a C[G]-module. Furthermore, f induces

an algebra homomorphism f : C[G]→C[H ].

To get a C[H ]-module from V (i.e. in order to produce a representation of

H , the pushforward of V ), we first allow C[H ] to act freely on V . Then, to be

the pushforward - that is, the colimit of the diagram Dy described above - we

must take the quotient under the relation that all morphisms coming from G act

on V by letting f(g) have the same action as g. Taking the quotient, we get

f∗V = C[H ]⊗C[G] V .

Then for general groupoids, we have a direct sum of such components:

f∗F (y) ∈ Y =
⊕

g:f(x)→ y

C[Hy]⊗C[Gx] V (6.33)

where Hy = Aut(y) and Gx = Aut(x).

Remark 8 To describe an adjunctions, we should describe its unit and counit.

To begin with, we give a description of the “pull-push”:

f∗ ◦ f
∗ : [Y,Vect]→[Y,Vect] (6.34)

The unit

η : 1[Y,Vect] =⇒ f∗ ◦ f
∗ (6.35)
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is a natural transformation which, for each V ∈ [Y,Vect] gives a morphism. This

is itself a natural transformation between functors:

∆y : V (y)→ f∗ ◦ f
∗V (y) (6.36)

This takes V (y) into the colimit described above by a diagonal map. If there is

no special symmetry (the discrete case) and the colimit is just the direct sum

V ⊕ · · ·⊕ V , this map is obvious. If not, there is a canonical map into the colimit

(a quotient space) which factors through the direct sum with the diagonal map.

This is because the map from V (y) to the pullback on any bject in its essential

preimage in X is evidently the identity, and then one uses the injection into the

colimit.

Now consider the other, “push-pull” side of the (two-sided) adjunction, f ∗◦f∗.

Here, we first push a presheaf V ′ from X to Y, then pull back up to X, has a

similar effect on the vector spaces.

Here we start with a presheaf V ′ on X. The ”push-pull” along f just takes

every vector space on an object and replaces it by a colimit over the diagram

consisting of all objects with the same image in Y, and morphisms agreeing with

these maps: colimDf(x). This is because this is the result of pushing V ′ along f

at f(x), which is then pulled back to x.

Then the unit

η : 1[X,Vect] =⇒ f ∗ ◦ f∗ (6.37)
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is a natural transformation giving, for any presheaf V ′, a morphism (i.e. natural

transformation of functors):

ιx : V ′(x)→ colimDf(x) (6.38)

This is just the canonical map into the colimit.

Now, in Section 6.3 we discuss a generalization of 2-vector spaces based on

the fields of measurable Hilbert spaces discussed by Crane and Yetter [28]. This

generalization has much in common with KV 2-vector spaces, but corresponds to

infinite dimensional Hilbert spaces in the way that they correspond to the finite

dimensional case.

6.3 2-Hilbert Spaces

The KV 2-vector spaces we have discussed so far are a categorified analog of

finite dimensional vector spaces. However, there are situations in which this is

insufficient, and analogs of infinite dimensional vector spaces are needed. More-

over, and perhaps more important, we have not yet discussed the equivalent of an

inner product on 2-vector spaces.

In fact, both of these issues are closely related to applications to quantum

mechanics. A standard way to describe a quantum mechanical system, starting

with the corresponding classical system, involves L2 spaces, which in general will
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be infinite dimensional, and possess an inner product. The relationship is that

the Hilbert space of states of the quantum system is L2(X), where X is the phase

space of a classical system. A possible motivation for trying to find a higher analog

for Hilbert spaces is to reproduce this framework for quantizing a classical theory

in the categorified setting.

The form of an inner product on a KV 2-vector space is not difficult to infer

from the intuition that categorification corresponds to replacing sums and prod-

ucts in vector spaces by ⊕ and ⊗ in 2-vector spaces, together with the fact that

a KV 2-vector space has a specified basis. However, we will put off describing it

until we have discussed infinite dimensional 2-vector spaces, since we can put the

expression in a more general form.

One approach to infinite-dimensional 2-vector spaces is developed by Crane

and Yetter [28], who develop a 2-category called Meas. This is a 2-category of

categories, functors, and natural transformations, but in particular, the objects

are all of the form Meas(X) for some measurable space X. This object can be

interpreted as infinite-dimensional 2-vector spaces associated to X, analagous to

the Hilbert space L2(X). A simplified form of the definition is as follows:

Definition 14 Suppose (X,M) is a measurable space, so that X is a set andM

is a sigma-algebra of measurable subsets of X. Then Meas(X) is a category with:
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• Objects: measurable fields of Hilbert spaces on (X,M): i.e. X-indexed fam-

ilies of Hilbert spaces Hx such that the preimage of any H ∈ Hilb is mea-

surable.

• Morphisms: measurable fields of bounded linear maps between Hilbert spaces.

That is, an X-indexed family

fx : Hx→Kx

so that ||f ||, the operator norm of f , is measurable. The field f is bounded

if ||fx|| is bounded.

Remark 9 The original definition given by Crane and Yetter is somewhat differ-

ent, in the way it specifies how to identify when a function selecting vx ∈ Hx∀x ∈

X is measurable. This somewhat simplified definition should suffice for our later

discussion, since we return to these ideas only briefly in Chapter 8.

The construction of fields of Hilbert spaces is due to Jacques Dixmier [31],

although he described them, not as categories, but merely as Hilbert spaces with

a particular decomposition in terms of the measurable spaceX. As with L2 spaces,

to get what we will call a 2-Hilbert space, we need to have a standard measure on

X. This is used to define a direct integral of Hilbert spaces:

H =

∫ ⊕

X

Hxdµ(x) (6.39)
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As a vector space, this is the direct sum of all Hx. The measure enters when we

define its inner product:

〈φ|ψ〉 =

∫

X

〈φx|ψx〉dµ(x) (6.40)

We will use this notation to define 2-linear maps of 2-Hilbert spaces.

The 2-vector space Meas(X) is the category of all measurable fields of Hilbert

spaces on X. Then we have the 2-category of all such categories:

Definition 15 The 2-category Meas is the collection of all categories Meas(X),

with functors between them, and natural transformations between functors.

Crane and Yetter describe how functors between such categories arise from:

• a measurable field of Hilbert spaces K(x,y) on X × Y

• a Y -family µy of measures on X

Given these things, there is a functor ΦK,µy
: Meas(X)→Meas(Y) any field Hx

on X:

ΦK,µy
(H)y =

∫ ⊕

X

Hx ⊗K(x,y)dµy(x) (6.41)

This is a generalization of the 2-linear maps between Kapranov-Voevodsky

2-vector spaces: summing over an index set in matrix multiplication is a special

case of integrating over X, when X is a finite set with counting measure (and all
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the vector spaces Cn which appear as components in a 2-vector or 2-linear map

are equipped with the standard inner product). Indeed, these functors generalize

the matrices (6.6). Yetter conjectures that all functors between categories like

Meas(X) are of this form.

The 2-maps are ways to get from one functor to another. In this case, given

ΦK,µy
and ΦK′,νy

, if there is such a 2-map, it will be given by:

• A measurable field of bounded linear operators

α(x,y) : K(x,y)→K
′
(x,y) (6.42)

• A Y -indexed family
{(

dν
dµ

)

y

}

s.t.y ∈ Y , the Radon-Nikodym derivatives of νy

w.r.t. µy (or, equivalently, )

Once again, the KV 2-vector space situation is a special case as above.

Now, just as integration is used to define the inner product on L2(X), the

direct integral gives a categorified equivalent of an inner product of fields of Hilbert

spaces:

〈H|H′〉 =

∫ ⊕

X

H∗
x ⊗H

′
xdµ(x) (6.43)

So in particular, the inner product is given by linearity, and the fact that, for

φi ∈ H and φ′
i ∈ H

′:

〈φ∗
1 ⊗ φ

′
1|φ

∗
2 ⊗ φ

′
2〉 =

∫

X

〈φ∗
1|φ

∗
2〉 · 〈φ

′
1|φ

′
2〉dµ(x) (6.44)
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where φ∗ is the dual of φ, namely 〈φ|−〉.

We will mostly consider the finite-dimensional (Kapranov-Voevodsky) 2-vector

spaces, which remain better understood than these infinite dimensional 2-Hilbert

spaces in the style of Crane and Yetter. However, we return to these ideas to

justify some of the physical motivation for this thesis in Chapter 8.
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Extended TQFT’s and Quantum

Gravity
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Chapter 7

Extended TQFTs as 2-Functors

We began in our preliminary section by discussing Atiyah’s description of an

n-dimensional TQFT as a functor

Z : nCob→Hilb (7.1)

The development since that point has been aimed at setting up what we need

to give a parallel description of an extended TQFT in terms of 2-functors. This

concept extends the definition of a TQFT to more general manifolds with corners,

and is due to Ruth Lawrence.

One of the values of TQFT’s has been as a method for finding invariants of

manifolds, and in particular, for 3-manifolds (potentially with boundary). This is

closely connected to the subject of knot theory, since knots are studied by their

complement in some 3-manifold. One way to think of the invariants which appear

this way is as ways of cutting up the manifold into pieces, assigning algebraic data

to the pieces, and then recombining it. The possibility of recombining the pieces
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unambiguously to form the invariant for the whole manifold is precisely what we

want to express as some form of functoriality.

By now we have considered two examples of the process of categorification.

The first involved passing from nCob, a category of manifolds and cobordisms

between them, to nCob2, a (double) bicategory in which we allowed cobordisms

between cobordisms. The second case was the passage from Vect, the category

of vector spaces and linear maps, to 2Vect with 2-vector spaces, 2-linear maps,

and natural transformations.

In the first case we saw that in both nCob and nCob2, each level of structure

involves entities of one higher dimension than the previous level. So in nCob2,

the objects (manifolds) have codimension one higher in the total spaces repre-

sented by the (isomorphism class of) cobordisms, than is the case in nCob. One

sometimes says that categorification allows us to “go up a dimension”, or rather

codimension. This theme appears in what is probably the prototypical example

of higher categories (and indeed categories of any kind), namely homotopy theory.

where we consider homotopies between spaces, homotopies between homotopies,

and so forth.

We want to use this to develop the following definition:

Definition 16 An extended TQFT is a weak 2-functor

Z : nCob2→2Hilb (7.2)
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So in particular, such a Z assigns:

• To an (n−2)-manifold, a 2-Hilbert space (i.e. a C-linear additive category)

• To an (n− 1)-manifold, a 2-linear map between 2-Hilbert spaces (an exactC-linear functor)

• To an n-manifold, a 2-natural transformation between 2-linear maps

Where all this data satisfies the conditions for a weak 2-functor (e.g. it preserves

composition and units up to coherent isomorphism, and so forth). To take this as

a definition seems reasonable enough, but we then need to show how particular

examples of extended TQFT’s satisfy this definition.

7.1 ZG on Manifolds: The Dijkgraaf-Witten Model

Here we want to consider explicit construction of some extended TQFT’s based

on a finite group G. We saw in Section 2.3 that the Fukuma-Hosono-Kawai

construction gave a way to define a regular 2D TQFT for any finite group. In

that case, space of states for a circle which is just the centre of the group algebraC[G]. In particular, this means that the space of states has a basis consisting of

elements of the group G. Each state therefore consists of some linear combination

of group elements. Extending this to higher dimensions is somewhat nonobvious,
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but turns out to be related to the Dijkgraaf-Witten (DW) model [30]. This can

also be described as a topological gauge theory.

The DW model describes a flat connection on a manifold B (we use B rather

thanM here for consistency with our previous notation). Being flat, the nontrivial

information about a connection is that which depends only on the topology of B.

In particular, all the information available about the connection comes in the

form of holonomies of the connection around loops. The holonomy is an element

of the gauge group G, which is the “symmetry group” of some field. The element

assigned to a loop gives the element of G by which the field would be transformed

if it is “parallel transported” around that loop. We then define:

Definition 17 A flat G-bundle on a connected, pointed manifold B is a homo-

morphism

A : π1B→G (7.3)

We denote the set of all such functions as A0(B).

This definition is different from the usual concept of a “G-bundle” equipped with

a flat connection in terms of fibre bundles, but the two concepts are equivalent,

as established by Thurston [83].

Generally, a flat G-bundle on B takes loops in B into elements G. For any loop

γ in B, it assigns an element A(γ) ∈ G. This is the holonomy around the loop
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γ. The G-connection is flat if the holonomy assigned to a loop is invariant under

homotopy. In particular, any contractible loop must have trivial holonomy. On the

other hand, nontrivial elements of the fundamental group of M may correspond

to nontrivial elements of G. These are thought of as describing the “parallel

transport” of some object, on which G acts as a symmetry group, around the

loop. The usual picture in gauge theory has this object being the fibre of some

bundle, such as a vector space, so that G is a Lie group such as SO(3). However,

the same picture applies when G is finite.

However, instead of the set of flat bundles here, we want to categorify this

usual picture, to extend TQFT’s to give a functor into 2Vect. So there must

be a category to take the place of A0, which has morphisms as well as objects.

Fortunately, the structure of gauge theory which we have not captured in the

definition of A0 does precisely this.

The principle here is that the fundamental group is too restrictive, and we

should instead use the fundamental groupoid of B, and describe connections as

functors.

Definition 18 The fundamental groupoid Π1(B) of a space B is a groupoid

with points of B as its objects, and whose morphisms from x to y are just all

homotopy classes paths in B starting at x and ending at y.
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The operation of taking Π1 of a space can be thought of as a form of cate-

gorifying: instead of spaces considered as sets of points (with some topology), we

now think of them as categories, whose set of objects is just the original space.

In fact, these categories are groupoids, since we consider paths only up to homo-

topy, so every morphism is invertible. Moreover, a loop can be thought of as an

automorphism of the chosen base point in B, so the fundamental group π1(B) is

just the group of automorphisms of a single object in Π1(B).

Then, following the principle that a connection gives a group element in G for

each such loop, we can generalize this to the whole of Π1(B):

Definition 19 A flat connection is a functor

A : Π1(B)→G (7.4)

where G is thought of as a one-object groupoid (hence every b ∈ B is sent to the

unique object). A gauge transformation α : A→A′ from one connection to

another is a natural transformation of functors: it assigns to each point x ∈ B a

group element in such a way that for each path γ : x→ y the naturality square

⋆
A(γ)

//

α(x)
��

⋆

α(y)
��

⋆
A′(γ)

// ⋆

(7.5)

commutes.
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Remark 10 Using the notation that [C1, C2] is the category whose objects are

functors from C1 to C2 and whose morphisms are natural transformations, then

we can say that flat connections and natural transformations form the objects and

morphisms of the category

[Π1(B), G] (7.6)

Physicaly, a gauge transformation can be thought of as a change, at each point

in B, of the way of measuring the internal degrees of freedom of the object which

is transformed by G. In gauge theory, two connections which are related by a

gauge transformation are usually considered to describe physically indistinguish-

able states - the differences they detect are due only to the system of measurement

used.

We stop here to note that this definition is somewhat different from the usual

notion of a smooth connection on a bundle—indeed, we have not used any con-

cept of smoothness. To make all these connections into smooth connections on a

definite bundle would be impossible. What we have described would have to be a

sum over all possible bundles. However, for discrete G, we can ignore this issue.

So then the “configuration space” for an (n−2)-dimensional manifold B in our

extended TQFT will be a category whose objects are flat G-connections on B and

whose morphisms (all invertible) are gauge transformations between connections.
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Remark 11 If γ : x→ x in Π1(B) is a loop, and A and A′ are two connections

related by a gauge transformation α, we have A′(γ) = α(x)−1A(γ)α(x) - that is,

the holonomies assigned by the two connections around the loop are conjugate.

So physically distinct holonomies correspond to conjugacy classes in G.

In particular, in the case of 1-dimensional manifolds, if B is just a circle, then

the space of states of the field in the DW model has a basis consisting just of

elements in the centre of G. (We remark here that this is the same as the TQFT

for the FHK construction, which we have obtained now in a different way.)

But indeed, any category, and in particular the groupoid Π1(B), is equivalent

to its skeleton. If B is connected, all points are related by paths, so Π1(B) ∼=

π1(B): the fundamental group, as a single-object category, is equivalent to the

path category. However, the gauge transformations for connections measured from

a fixed base point are determined by a single group element at the base point,

which acts on holonomies around any loop by conjugation.

The groupoid [Π1(B), G], the configuration space for our theory, is the “moduli

stack” of connections weakly modulo gauge transformations. This is a categorified

equivalent of the usual physical configuration space, which consists of the set of

equivalence classes of flat connetions modulo gauge transformations. Instead of

imposing equations between connections related by gauge transformations, how-
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ever, we simply add isomorphisms connecting these objects. This is the “weak

quotient” of the space of connections by the action of a group.

Finally, using this, we can define a 2-vector space associated to any manifold:

Definition 20 For any compact manifold B, and finite group G, define ZG(B)

to be the functor category
[

[Π1(B), G],Vect
]

.

as we verify in the following theorem.

Theorem 8 For any compact manifold B, and finite group G, the functor cate-

gory ZG(B) =
[

[Π1(B), G],Vect
]

is a Kapranov-Voevodsky 2-vector space.

Proof : First, note that for any space B,

Π1(B) ≡
n

∐

i=1

(π1(Bi)) (7.7)

where the sum is taken over all path components of B. That is, objects in Π1(B)

are by definition isomorphic if and only if they are in the same path component.

But this groupoid is equivalent to a skeletal version which has just one object

for each isomorphism class—that is, one object for each path component. The

automorphisms for the object corresponding to path component Bi are then just

the equivalence classes of paths from any chosen point to itself—namely, π1(Bi).

Moreover, if B is a compact manifold, so is each component Bi, which is

also connected. But the fundamental group for a compact, connected manifold is

141



Chapter 7. Extended TQFTs as 2-Functors

finitely generated. So in particular, each π1(Bi) is finitely generated, and there

are a finite number of components. So Π1(B) is an essentially finitely generated

groupoid.

But if Π1(B) is essentially finitely generated, then since G is a finite group,

[Π1(B), G] is an essentially finite groupoid. This is because each functor’s object

map is determined by the images of the generators, and there are finitely many

such assignments. Similarly, Π1(B) is equivalent to a skeleton of itself, and a

natural transformation in this case is just given by a group element in G for each

component of B, so there are finitely many of these. By Lemma 5 this means that

[

[Π1(B), G],Vect
]

is a KV 2-vector space. �

So we have a KV 2-vector space for each manifold, which is defined as Vect-

valued functors, on the groupoid [Π1(B), G]. As remarked earlier, we will describe

these as Vect-presheaves, since [Π1(B), G] is isomorphic to [Π1(B), G]op.

Example 7 Consider the circle S1.

The 2-vector space assigned to the cricle by our TQFT ZG is the Hilbert space

of of flat connections modulo gauge transformations, on the circle:

[

[Π1(S
1), G],Vect

]

(7.8)

Now, [Π1(S
1), G] looks like the group G equipped with the adjoint action on itself,

in the following sense. The fundamental group of the circle is Z, and Π1(S
1) is
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thus equivalent to Z as a one-object category. Then taking maps into G, we note

that each functor takes the unique object of Z to the unique object of G, and thus

is determined entirely by the image of 1 ∈ Z. This will be some morphism g ∈ G

(i.e. an element of the group G), so we simply denote the corresponding functor

by g.

A natural transformation between two functors g and g′ assigns to the single

object in Z a morphism h ∈ G—that is, it is again a group element. This must

satisfy the naturality condition that g′h = hg, or simply g′ = hgh−1. So there is a

natural transformation between functors for each conjugacy relation of this kind.

So [Π1(S
1), G] is equivalent to a groupoid whose objects correspond to elements

of the group G, and whose morphisms are conjugacy relations between elements

(which are clearly all invertible). This is also known as G weakly modulo G, or

G//G. Another equivalent category is the skeleton of this, whose set of objects is

the set of conjugacy classes of G. Each such object has a group of automorphisms

Stab(g), the stabilizer of any element in it.

Finally, the 2-vector space corresponding to the circle is the category of func-

tors fromG//G into Vect. This gives a vector space for each object (element ofG).

It also assigns an isomorphism in Vect for each isomorphism in G//G: the functors

must be equivariant under conjugation by any h ∈ G. So the adjoint action of G

on itself is already built into this 2-vector space, and an object of Z(Vect[G]) is
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functor F : G→Vect, which comes equipped with natural isomorphisms

Rg : F→ gFg−1 (7.9)

such that

RgRh = Rgh (7.10)

Where gFg−1 is a functor whose image vector space at a point h under F becomes

the image of the point ghg−1.

So we have G-equivariant functors as the objects of the 2-vector space, and

all G-equivariant natural transformations between them as the morphisms.

As a 2-vector space, this category of G-equivariant functors can be described in

terms of its irreducible objects—since every other functor is isomorphic to a direct

sum of these. Any equivariant functor will have the same value on every element

of each conjugacy class in G, but an irreducible one will only assign nonzero to

elements of ONE conjugacy class.

Moreover, since the action of G by conjugation gives linear isomorphisms be-

tween the vector spaces over elements of [Π1(S
1), G], and since [Π1(S

1), G] is

equivalent to its skeleton, we can think of this functor as specifying as a con-

jugacy classes, and single vector space V assigned to it, together with a linear

representation of G on V .
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So the objects of ZS1 can be seen as consisting of pairs: a conjugacy class in

G, and a representation of G.

This example of the circle returns to a previous remark about Example 6,

the “group 2-algebra” Vect[G], the generalization of the group algebra C[G]. As

seen in Section 2.3, a TQFT based on the finite group G assigns Z(C[G]) to the

circle. So one expects a categorified version to assign something like the centre of

Vect[G] to a circle. What was not obvious in Example 6 was exactly what this

is.

Irreducible elements of Z(C[G]) are indeed specified by conjugacy classes of

G, but as we see here, a difference appears because we think of functions on G

not precisely as a group, but as a groupoid of connections. Since the objects are

the elements of G, and the morphisms are conjugations (as distinct from the view

of a group as a one-object category), we get something new. The new ingredient

is the representation of G. We return to this fact for infinite G in Chapter 8.

Example 8 Consider the torus T 2 = S1 × S1. We want to find

ZG(T 2) =
[

[Π1(T
2), G],Vect

]

(7.11)

This will be equivalent to the category we get if we replace the fundamental

groupoid Π1(T
2) by the equivalent skeletal groupoid. This is just the fundamental

group of T 2, which is isomorphic to Z2. So we simplify here by using this version.
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The category [Π1(T
2), G] has, as objects, functors from Π1(T

2) to G (both seen

as a categories with one object), and morphisms which consist of natural trans-

formations. A functor F ∈ [Z2, G] is then equivalent to a group homomorphism

from Z2 to G. Since Z2 is the free abelian group on the two generators (1, 0) and

(0, 1), the functor F is determined by the images of these two generators. The

only restriction on F is that since Z2 is abelian, the images g1 = F (1, 0) and

g2 = F (0, 1) must commute.

So the objects of [Π1(T
2), G] are indexed by commuting pairs of elements

(g1, g2) ∈ G
2.

A natural transformation g : F→F ′ assigns to the single object ⋆ of Z2 a

morphism in G—that is, a group element h. This must satisfy the naturality

condition that this commutes for every a ∈ Z2:

⋆

h
��

F (a)
// ⋆

h
��

⋆
F ′(a)

// ⋆

(7.12)

Equivalently, since h is invertible, we can write this in the form hF (a)h−1 = F ′(a)

for all a. This will be true for all a in Z2 as long as it is true for (1, 0) and (0, 1).

In other words, functors F and F ′ represented by (g1, g2) ∈ G
2 and (g′1, g

′
2) ∈

G2, the natural transformations α : F→F ′ correspond to group elements h ∈ G

which act in both components at once, so (h−1g1h, h
−1g2h) = (g′1, g

′
2).
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So we have that the groupoid [Π1(T
2), G] is equivalent to A//G, where A =

{(g1, g2) ∈ G
2 : g1g2 = g2g1}, and the action of G on A comes from the action on

G2 as above.

So the 2-vector space ZG(T 2) is just the category of Vect-presheaves on A,

equivariant under the given action of G. This assigns a vector space to each

connection (g1, g2) on T 2, and an isomorphism of these vector spaces for each

gauge transformation h : (g1, g2) 7→ (h−1g1h, h
−1g2h). Equivalently (taking a

skeleton of this), we could say it gives a vector space for each equivalence class

[(g1, g2)] ∈ G
2 under simultaneous conjugation, and a representation of G on this

vector space.

Both of these examples conform to a general pattern, which should be clear

by now:

Theorem 9 The KV 2-vector space ZG(B) for any connected manifold B is equiv-

alent to Vectn, where n is

∑

[A]∈A/G

|{irreps ofAut(A)}| (7.13)

where the sum is over equivalence classes of connections on B, and Aut(A) ⊂ G

is the subgroup of G which leaves A fixed.

Proof : The groupoid [Π1(B), G] is equivalent to its skeleton S. This has as

objects the gauge equivalence classes of connections on B, and on each object, a
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group of morphisms isomorphic to the group of gauge transformations fixing a rep-

resentative (i.e. the automorphism group of any object in the original [Π1(B), G]).

Now we want to consider [S,Vect], which is equivalent to
[

[Π1(B), G],Vect
]

. We

know [S,Vect] is a KV vector space, hence equivalent to some Vectn, where n is

the number of nonisomorphic simple objects. So consider what these are.

A functor F : S→Vect assigns a vector space to each equivalence class of

connections (i.e. each object), but also a representation of the group of automor-

phisms of that object. This is Aut(A). Note that two functors giving inequivalent

representations cannot have a natural isomorphism between them. On the other

hand, any representation of Aut(A) is a direct sum of irreducible representations.

So a simple objects in
[

[Π1(B), G],Vect
]

amount to a choice of [A], and an irre-

ducible representation of Aut(A). The theorem follows immediately. �

The next thing to consider is how ZG will act on cobordisms.

7.2 ZG on Cobordisms: 2-Linear Maps

We have described a construction which builds an extended TQFT from a

finite group G. This takes a manifold M—possibly with boundary or corners—

and produces a 2-vector space of states on it. This involved a 2-step construction:
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first one finds [Π1(M), G], the moduli stack of flat connections; then one takes

[

[Π1(M), G],Vect
]

, which is the 2-vector space having [Π1(M), G] as basis.

This begins to describe the extended TQFT Z : nCob2→ 2Vect that we are

interested in. However, Z is to be a 2-functor, and so far we have only described

what it does to objects of Top. This tells us its effect on objects in nCob2, and

goes some way to describing its effect on morphisms, but recall that a morphism in

nCob2 can be seen as a cospan in Top. A cobordism (“space”) from a boundary

B to a boundary B′ is the cospan given by inclusion maps:

S

B

ι
??�������

B′

ι′
``@@@@@@@@

(7.14)

Our construction amounts to a sequence of functorial operations, which there-

fore give a corresponding sequence of spans (or cospans) in three different cat-

gories. Next we will consider each of these steps in turn, remarking on the co- or

contravariance of the operation at each step.

The first step is the operation of taking the fundamental groupoid. This is

somewhat more elaborate than the fundamental group of a (pointed) space, but

it is closely related. Since any inclusion of spaces gives an inclusion of points, and
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also of paths, we again have a cospan:

Π1(S)

Π1(B)

ι
::uuuuuuuuu

Π1(B
′)

ι′
ddJJJJJJJJJ

(7.15)

(Where we are abusing notation somewhat by using the same notation for the

inclusion maps of spaces and path groupoids.)

In the next step, we apply a contravariant functor, [−, G]. Recall that we are

thinking of the group G as the category with one object ⋆ and the elements of G

as morphisms. Taking functors into G is contravariant, since if we have a functor

F : X→Y , then any from Y into G becomes a map from X into G by pullback

along F (i.e. ψ 7→ ψ ◦ F = F ∗ψ). That is, we get a functor F ∗ : [Y,G]→[X,G].

So at this stage of the construction we have a span:

[Π1(S), G]

π
wwooooooooooo

π′

''OOOOOOOOOOO

[Π1(B), G] [Π1(B
′), G]

(7.16)

For convenience here we have made the convention that the pullback maps along

the inclusions are denoted ι∗ = π and ι′∗ = π′.
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Finally, to this span, we apply another functor, namely [−,Vect]. This is

contravariant for the same reason as [−, G], and thus we again have a cospan:

[

[Π1(S), G],Vect
]

[

[Π1(B), G],Vect
]

π∗

55jjjjjjjjjjjjjjj
[

[Π1(B
′), G],Vect

]

π′∗

iiTTTTTTTTTTTTTTT

(7.17)

We now recall that the pullbacks π∗ and π′∗ have adjoints: this is a direct

consequence of Theorem 6. This reveals how to transport a Vect-presheaf on

[Π1(B), G] along this cospan. In fact, it gives two 2-linear maps, which are ad-

joint. Having written the cobordism as a morphism from B to B′, we find a

corresponding 2-linear map, though we observe that the adjoint is equally well

defined. We first do a pullback along π, giving a Vect-presheaf on S. Then we

use the adjoint map π′
∗. So we have the following:

Definition 21 For any cobordism S : B→B′ between compact manifolds, and

finite group G, define ZG(S) to be the 2-linear map:

(π′)∗ ◦ π
∗ : ZG(B) −→ ZG(B′) (7.18)

Here we have used the notation of Definition 20. Note that again by Theorem

6, both of these functors are 2-linear maps, so the composite π′
∗ ◦ π

∗ is also a

2-linear map. It remains to show that ZG preserves horizontal composition of

functors weakly—that is, up to a natural isomorphism.
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Remark 12 We can think of the pullback-pushforward construction as giving—

in the language of quantum field theory—a “sum over histories” for evolving a

2-vector built from the space of connections. Each 2-vector in
[

[Π1(B), G],Vect
]

picks out a vector space for each G-connection on B. The 2-linear map we have

described tells us how to evolve this 2-vector along a cobordism (i.e. a change

of spatial topology). First we consider the pullback to
[

[Π1(S), G],Vect
]

, which

gives us a 2-vector consisting of all assignments of vector spaces to connections

on S which restrict to the chosen one on B. Each of these could be considered

a “history” of the 2-vector along the cobordism. We then “push forward” this

assignment to B′, which involves a colimit. This is more general than a sum,

though so one could describe this as a “colimit of histories”. It takes into account

the symmetries between individual “histories” (i.e. connections on the cobordism,

which are related by gauge transformations).

It still needs to be seen that this operation is compatible with composition of

cobordisms. Now, a composite of two cobordisms is a special case of a composite of

cospans. This is a composition in a bicategory cobordisms—either the horizontal

or vertical bicategory in the Verity double bicategory defined in Chapter 5. It is
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given by a pushout as described in Definition 4:

S ′ ◦ S

S

iS

<<xxxxxxxxx
S ′

iS′

ccFFFFFFFFF

B1

i1

>>~~~~~~~~
B2

i2

bbEEEEEEEEE i′
1

<<xxxxxxxxx
B3

i′
2

``AAAAAAAA

(7.19)

When we take the groupoid of connections, however, the corresponding dia-

gram of spans between groupoids of connections weakly mod gauge transforma-

tions contains a weak pullback square. This is since the objects are now groupoids,

it makes sense to speak of two connections being gauge equivalent, whereas the

manifolds in cobordisms are sets, where elements can only be equal or unequal.

So for connections on S and S ′, it is possible for the restrictions to the same set B2

to be isomorphic, rather than merely equal. Thus, we should consider this larger

groupoid, the weak pullback, whose objects come with a specified isomorphism

between the two restrictions:

[Π1(S
′ ◦ S), G]

PS

vvnnnnnnnnnnnn
pS′

((QQQQQQQQQQQQ
p1◦PS

��

p′
2
◦PS′

��

[Π1(S), G]

p1
wwooooooooooo

p2
((QQQQQQQQQQQQ

α
∼

+3 [Π1(S
′), G]

p′
1vvmmmmmmmmmmmm

p′
2 ''OOOOOOOOOOO

[Π1(B1), G] [Π1(B2), G] [Π1(B3), G]

(7.20)

153



Chapter 7. Extended TQFTs as 2-Functors

That this is a weak pullback square of functors between groupoids means that

this diagram commutes up to the natural isomorphism α : p2 ◦ PS −→ p′1 ◦ PS′.

In the case of groupoids, a weak pullback can be seen as an example of a comma

category (the concept, though not the name, introduced by Lawvere in his doctoral

thesis [62]). We briefly discuss this next before stating the theorem regarding

composition.

Remark 13 In general, suppose we have a diagram of categories A
F
→C

G
←B.

Then an object in the comma category (F ↓ G) consists of a triple (a, f, b), where

a ∈ A and b ∈ B are objects, and f : F (a)→G(b) is a morphism in C. A

morphism in (F ↓ G) consists of a pair of morphisms (h, k) ∈ A×B making the

square

F (a1)
f1 //

F (h)
��

G(b2)

G(k)
��

F (a2) f2

// G(b2)

(7.21)

commute. Note that in a weak pullback, the morphisms f would be required to

be an isomorphism, but when we are talking about a weak pullback of groupoids,

these conditions are the same.
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The comma category has projection functors which complete the (weak) pull-

back square for the two projections:

(F ↓ G)
PA

{{vvvvv
vvvv PB

##H
HHHH

HHHH

A

F
$$I

IIIIIIIII
α
∼

+3 B

G
zzuuuuuuuuuu

C

(7.22)

such that (F ↓ G) is a universal object (in Cat) with maps into A and B making

the resulting square commute up to a natural isomorphism α. This satisfies the

universal condition that, given any other category D with maps to A and B,

there’s an equivalence between [D,C] and the comma category (P ∗
A, P

∗
B) (where

PS∗ and PT∗ are the functors from D to B which factor through PS and PT

respectivery). This equivalence arises in a natural way. This is the weak form of

the universal property of a pullback.

So suppose we restrict to the case of a weak pullback of groupoids. This is

equivalent to the situation where A, B and C are skeletal - that is, each is just

a disjoint union of groups. Then the set of objects of (F ↓ G) is a disjoint union

over all the morphisms of C (which are all of the form g : x→x for some object

x) of all the pairs of objects a ∈ A and b ∈ B with g : F (a)→G(b). In particular,

since we assume C is skeletal, this means F (a) = G(b), though there will be an
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instance of this pair in (F ↓ G) for each g in the group of morphisms on this

object F (a) = G(b).

So as the set of objects in (F ↓ G) we have a disjoint union of products of

sets—for each c ∈ C, we get | hom(c, c)| copies of F−1(c) × G−1(c). The set of

morphisms is just the collection of commuting squares as in (7.21) above.

Note that if we choose a particular c and g : c→ c, and choose objects a, b with

F (a) = c, G(b) = c, and if H = Aut(a), K = Aut(b) and M = Aut(c), then the

group of automorphisms of (a, g, b) ∈ (F ↓ G) is isomorphic to the fibre product

H ×M K. In particular, it is a subgroup of the product group H ×K consisting

of only those pairs (h, k) with F (h)g = gG(k), or just F (h) = gG(k)g−1. We can

call it H ×M K, keeping in mind that this fibre product depends on g. Clearly,

the group of automorphisms of two isomorphic objects in (F ↓ G) are isomorphic

groups.

In our example, the connections on S and S ′ need only restrict to gauge-

equivalent connections on B2—since two such connections can be “pasted” to-

gether using a gauge transformation. Moreover, we note that since all categories

involved in our example are groupoids, we have the extra feature that every mor-

phism mentioned must be invertible. This is what makes this a weak pullback

rather than a lax pullback, where α is only a natural transformation.
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We are interested in the weak pullback square in the middle of (7.20), since

the two 2-linear maps being compared differ only by arrows in this square. The

square as given is a weak pullback, with the natural isomorphism α “horizontally”

across the square. When considering a corresponding square of categories of Vect-

presheaves, the arrows are reversed. So, including the adjoints of p∗2 and p∗S′,

namely (p2)∗ and (pS′)∗, we have the square:

[

[Π1(S
′ ◦ S), G],Vect

]

(pS′)∗

**UUUUUUUUUUUUUUUU

[

[Π1(S), G],Vect
]

(pS)∗
44jjjjjjjjjjjjjjjj

(p2)∗

**TTTTTTTTTTTTTTTT
[

[Π1(S
′), G],Vect

]

(pS′)∗

jjUUUUUUUUUUUUUUUU

[

[Π1(B2), G],Vect
]

(p′
1
)∗

44iiiiiiiiiiiiiiii(p2)∗

jjTTTTTTTTTTTTTTTT

(7.23)

Note that there are two squares here—one by taking only the “pull” morphisms

(−)∗ from the indicated adjunctions, and the other by taking only the “push”

morphisms (−)∗. The first is just the square of pullbacks along morphisms from

the weak pullback square of connection groupoids. Comparing these is the core

of the following theorem, which gives one of the necessary properties for ZG to be

a weak 2-functor.

Theorem 10 The process ZG weakly preserves composition. In particular, there

is a natural isomorphism

βS′,S : ZG(S ′ ◦ S)→ZG(S ′) ◦ ZG(S) (7.24)
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Proof : The process ZG acts by on S ′◦S by taking the spans of groupoids in 7.20,

and giving 2-linear maps:

(p′2 ◦ PS′)∗ ◦ (p1 ◦ PS)∗ (7.25)

On the other hand, ZG(S ′) ◦ ZG(S) is found in the same diagram to be

(p′2)∗ ◦ (p′1)
∗ ◦ (p2)∗ ◦ (p1)

∗ (7.26)

So we want to show there is a natural isomorphism:

βS′,S : (p′2 ◦ PS′)∗ ◦ (p1 ◦ PS)∗→(p′2)∗ ◦ (p′1)
∗ ◦ (p2)∗ ◦ (p1)

∗ (7.27)

It suffices to show that there is an isomorphism between the upper and lower

halves of the square in the middle:

γ : (PS′)∗ ◦ (PS)∗→(p′1)
∗ ◦ (p2)∗ (7.28)

since then βS′,S is obtained by tensoring with identities.

Now, as we saw when discussing comma squares, the objects of the weak

pullback [Π1(S
′ ◦ S), G] consist of pairs of connections, A ∈ [Π1(S), G], and A′ ∈

[Π1(S
′), G], together with a morphism in B2, g : p2(A)→ p′1(A

′). The morphisms

from (A1, g1, A
′
1) to (A2, g2, A

′
2) in the weak pullback are pairs of morphisms,

(h, k) ∈ [Π1(S), G]× [Π1(S
′), G], making the square

p2(A1)
g1 //

p2(h)
��

p′1(A
′
2)

p′1(k)
��

p2(A2) g2

// p′1(A
′
2)

(7.29)
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commute.

We may assume that the groupoids we begin with are skeletal—so the objects

consist of gauge equivalence classes of connections. Then recall from Remark

13 that in this weak pullback the set of objects in [Π1(S
′ ◦ S), G] is a disjoint

union of products of sets - for each c ∈ [Π1(B2), G], we get | hom(c, c)| copies of

p2
−1(c)× p′−1

1 (c).

So first taking a Vect-presheaf F on [Π1(S), G], we get that (PS)∗F is a Vect-

presheaf on [Π1(S
′ ◦ S), G]. Now over any fixed object (connection) A, we have a

set of objects in [Π1(S
′ ◦ S), G] which restrict to it: there is one for each choice

(g, A′) which is compatible with A in the sense that (A, g, A′) is an object in the

weak pullback - that is, g : p2(A)→ p′1(A
′). Each object of this form is assigned

the vector space F (A) by (PS)∗F .

Further, there are isomorphisms between such objects, namely pairs (h, k)

as above. There are thus no isomorphisms except between objects (A, g1, A
′)

and (A, g2, A
′) for some fixed A and A′. For any such fixed A and A′, objects

corresponding to g1 and g2 are isomorphic if

g2p2(h) = p′1(k)g1 (7.30)

. Denote the isomorphism class of any g by [g].

Then if GA is the group of automorphisms of any gauge equivalence class of

connections A, and for notational convenience M is here the group of automor-
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phisms of p2(A) in [Π1(B2), G] (note that this M depends on A, which we are

considering fixed for now), we get:

(PS′)∗ ◦ (PS)∗F (A′) =
⊕

A

(

⊕

[g]:p2(A)→ p′1(A
′)

C[GA′]⊗C[GA×M GA′ ] F (A)
)

(7.31)

since GA×M GA′ is the automorphism group of the object in [Π1(S
′ ◦ S), G] which

restricts to A and A′ by gluing along g. The outside direct sum here is written

over all connections A on S, but note that the only ones which contribute any

factor are those for which g : p2(A)→ p′1(A
′) for some g. The inside direct sum

is over all isomorphism classes of elements g for which this occurs: in the colimit,

vector spaces over objects with isomorphisms between them are identified.

Note that in the direct sum over [g], there is a tensor product term for each

class [g] : p2(A)→ p′1(A
′). By the definition of the tensor product over an algebra,

we can pass elements of C[GA ×M GA′] through the tensor product. These are

generated by pairs (h, k) ∈ GA ×GA′ where the images of h and k are conjugate

by g so that p2(h)g = gp′1(k). These are just automorphisms of g: so this says we

are considering objects only up to these isomorphisms.

This is the result of the “pull-push” side of the square applied to F . Now

consider the “push-pull” side: (p′1)
∗ ◦ (p2)∗.
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First, pushing down to B2, we get, on any connection A′′ on B2 (whose auto-

morphism group is M):

(p2)∗F (A′′) =
⊕

p2(A)=A′′

C[M ]⊗C[GA] F (A) (7.32)

Then, pulling this back up to S ′, we get (with M again the symmetry group

of p2(A)) that:

(p′1)
∗ ◦ (p2)∗F (A′) =

⊕

g:p2(A)→ p′1(A′)

(C[M ]⊗C[GA] F (A)
)

(7.33)

Now we define a natural isomorphism

γS,S′ : (PS′)∗ ◦ (PS)∗→(p′1)
∗ ◦ (p2)∗ (7.34)

as follows. For each A′, this must be an isomorphism between the above vector

spaces. The first step is to observe that there is a 1-1 correspondence between the

terms of the first direct sums, and then secondly to note that the corresponding

terms are isomorphic.

Since the outside direct sums are over all connections A on S for which p2(A) =

p′1(A
′), it suffices to get an isomorphism between each term. That is, between

⊕

[g]:p2(A)→ p′1(A
′)

C[GA′]⊗C[GA×MGA′ ] F (A) (7.35)

and C[M ]⊗C[GA] F (A) (7.36)
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In order to define this isomorphism, first note that both of these vector spaces

are in factC[GA′ ]-modules. An element ofGA′ acts on (7.35) in each component by

the standard group algebra multiplication, giving an action ofC[GA′] by extending

linearly. An element g ∈ GA′ acts on (7.36) by the action of p′1(g) on C[M ]. Two

g ∈ [g] have the same action on this tensor product, since they differ precisely by

(h, k) ∈ GA ×GA′ , so that g2p2(h) = p′1(k)g1.

Also, we notice that, in (7.35), for each g ∈ M , the corresponding term of

the form C[GA′] ⊗C[GA×MGA′ ] F (A) is generated by elements of the form k ⊗ v,

for k ∈ C[GA′]. and v ∈ F (A). These are subject to the relations that, for any

(h, k1) ∈ C[GA]×C[GA′ ] such that p2(h) = g−1p′1(k1)g:

kk1 ⊗ v = k(h, k1)⊗ v = k ⊗ (h, k1)v = k ⊗ hv (7.37)

since elements of C[GA] × C[GA′] act on F (A) and C[GA′ ] by their projections

into the first and second components respectively.

Now, we define the map γA,A′. First, for any element of the form k ⊗ v ∈C[GA′]⊗C[GA×M GA′ ] F (A) in the g component of the direct sum (7.35):

γA,A′(k ⊗ v) = p′1(k)g
−1 ⊗ v (7.38)

which we claim is in C[M ] ⊗C[GA] F (A). This map extends linearly to the whole

space.
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To check this is well-defined, suppose we have two representatives k1⊗ v1 and

k2 ⊗ v2 of the class k ⊗ v. So these differ by an element of C[GA ×M GA′], say

(h, k), so that

k1 = k2k (7.39)

, and

hv1 = v2 (7.40)

where

p2(h) = gp′1(k)g
−1 (7.41)

But then

γA,A′(k1 ⊗ v1) = p′1(k1)g
−1 ⊗ v1 (7.42)

= p′1(k2k)g
−1 ⊗ v1

= p′1(k2)g
−1gp′1(k)g

−1 ⊗ v1

= p′1(k2)g
−1p2(h)⊗ v1

= p′1(k2)g
−1 ⊗ hv1

while on the other hand,

γA,A′(k2 ⊗ v2) = p′1(k2)g
−1 ⊗ v2 (7.43)

= p′1(k2)g
−1 ⊗ hv1
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But these are representatives of the same class in C[M ]⊗C[GA] F (A), so γ is well

defined on generators, and thus extends linearly to give a well-defined function on

the whole space.

Now, to see that γ is invertible, note that given an elementm⊗v ∈ C[M ]⊗C[GA]

F (A) (where we are fixing A, since both 2-vectors decompose into components

corresponding to connections A), we can define

γ−1(m⊗ v) = 1⊗ v ∈
⊕

[g]:p2(A)→ p′1(A′)

C[GA′]⊗C[GA×MGA′ ] F (A) (7.44)

in the component coming from the isomorphism class of g = m−1 (we will denote

this by (1⊗ v)m−1 to make this explicit, and in general an element in the class of

g will be denoted with subscript g whenever we need to refer to g).

Now we check that this is well-defined. Given m1⊗v1 and m2⊗v2 representing

the same element m⊗ v of C[M ]⊗C[GA] F (A), we must have h1 ∈ GA with

m1p2(h1) = m2 (7.45)

and

h1v2 = v1 (7.46)

But then applying γ−1, we get:

γ−1(m1 ⊗ v1) = (1⊗ v1)m−1

1

= (1⊗ h1v2)m−1

1

(7.47)

and

γ−1(m2 ⊗ v2) = (1⊗ v2)m−1

2

= (1⊗ v2)p2(h1)−1m−1

1

(7.48)
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but these are in the same component, since g ∼ g′ when g′p′1(k) = p2(h)g for

some h ∈ GA and k ∈ GA′ . But then, taking k = 1 and h = h−1
1 , we get that

m−1
1 ∼ m−1

2 , and hence the component of γ(m⊗ v) is well defined.

But then, consider m⊗ v = γ((k⊗ v)g) = p′1(k)g
−1⊗ v. Applying γ−1 we get:

γ−1 ◦ γ(k ⊗ v)g = (1⊗ v)gp′1(k)−1 (7.49)

so we hope that these determine the same element. But in fact, notice that the

morphism in the weak pullback which gives that g−1 and p′1(k)g
−1 are isomorphic

is just labelled by (h, k) = (1, k), which indeed takes k to 1 and leaves v intact.

So these are the corresponding elements under this isomorphism.

So γ is invertible, hence an isomorphism. Thus we define

βS,S′ = 1⊗ γ ⊗ 1 (7.50)

This is the isomorphism we wanted. �

Remark 14 The weak pullback square gave a natural isomorphism:

α∗ : P ∗
S′ ◦ (p′1)

∗→P ∗
S ◦ p

∗
2 (7.51)

Given a connection on a composite of cobordisms S ′ ◦ S, α gives the gauge trans-

formation of the restriction, on their common boundary B2, needed so the gluing

of connections on S and S ′ is compatible.
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We proved that the other square—the “mate” under the adjunctions, also has

a natural isomorphism (“vertically” across the square), namely that there exists:

βS,S′ : (PS′)∗ ◦ (PS)∗→(p′1)
∗ ◦ (p2)∗ (7.52)

In fact, these are related by the units for both pairs of adjoint functors:

ηS′ : 1ZG(S′◦S)→(PS′)∗ ◦ (PS′)∗ (7.53)

and

η2 : 1ZG(S)→(p2)∗ ◦ (p2)
∗ (7.54)

So the desired “vertical” natural transformation across the square 7.23 is de-

termined by the condition that it complete the following square of natural trans-

formations to make it commute:

(PS′)∗ ◦ (PS)∗
1⊗η2 +3

βS,S′

��
�
�
�

�
�
�

(PS′)∗ ◦ (PS)∗ ◦ p∗2 ◦ (p2)∗

1⊗(α∗)−1⊗1
��

(p′1)
∗ ◦ (p2)∗

1⊗ηS′ +3 (PS′)∗ ◦ (PS′)∗ ◦ (p′1)
∗ ◦ (p2)∗

(7.55)

The crucial element of this is the fact that the (weak) pullback square for the

groupoids of connections in the middle of the composition diagram gives rise to

a square of Vect-presheaf categories. To get this we used that the adjunction

between the pullback and pushforward along the π maps had unit and counit 2-

morphisms which turn a natural transformation vertically across the first square

to one horizontally across the second. Note, however, that we do not expect
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this to be invertible. When it is, the square is said to satisfy the Beck-Chevalley

(BC) condition. This is discussed by Bénabou and Streicher [17], MacLane and

Moerdijk [67], and by Dawson, Paré and Pronk [29].

Remark 15 It is useful to consider a description of the two functors between

which we have found this natural isomorphism βS,S′—namely, the two 2-linear

maps across the central square in (7.20). See Remark 7 for the general case. In

this situation, these behave as follows:

First, the “push-pull”: given a functor f : [Π1(S), G]→Vect (i.e. in ZG(S)),

in the first stage, push forward to a functor in ZG(B2). This gives, for each

connection C on B2, a vector space which is the colimit of a diagram of the vector

spaces f(Ci) for all connections Ci on S which restrict to C on B2. In the second

stage, pull back to [Π1(S
′), G]: for each connection C ′ on S ′, find the connection C

it restricts to on B2, and assign C ′ the vector space obtained for C above. Namely,

the colimit of the diagram of vector spaces f(Ci) for connections Ci which also

restrict to C.

Next, the “pull-push” given a functor f [Π1(S), G]→Vect, in the first stage,

pull back to a functor on [Π1(ST ), G]. This gives, at each connection C on S ′ ◦S,

a vector space which is just f(C|S), the one assigned to the connection given by C

restricted to S. At the second stage, push this forward to a functor in [Π1(S
′), G].

This gives, at each connection C ′ on S ′, the colimit of a diagram whose objects
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are all the f(Ci|S) obtained in the first stage, for any Ci which restricts to C ′ on

T .

In both cases there is a colimit over a diagram including all possible connections

on S which match some specified one on S ′. This “matching” can occur either by

inclusion in a bigger entity (the composite being the minimal cobordism S ′ ◦ S

containing both S and S ′). Or it can occur just by matching along the shared

boundary B2. However, since the composition of S and S ′ is weak, the groupoid

of connections on S ′ ◦S only needs to have inclusions of the groupoids [Π1(S
′), G]

and [Π1(S), G] which agree on B2 up to gauge equivalence. This gauge equivalence

is part of the specification of an object in the weak pullback of the groupoids of

connections.

Remark 16 We can describe more explicitly the effect of β. Suppose we have

a composite of cobordisms, S ′ ◦ S. ,By Lemma 3, we have that the functors

(PS′)∗ ◦ (PS)∗ and (p′1)
∗ ◦ (p2)∗ can be written in the form of a matrix of vector

spaces as in (6.6). The matrix components for each 2-linear map are given by

colimits of diagrams of vector spaces in groupoids of connections on S ′ matching

a specified one on S.

However, the criterion for “matching” is different: when we push first, then

pull, the connections must match exactly on B2; when pulling first, then pushing,

the connections must both be restrictions of one on S ′ ◦ S, but are only required
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to match up to gauge equivalence α on B2. The isomorphism βA,A′ is just the

isomorphism between the colimits which induced by the permutation of vector

spaces associated to these gauge transformations.

Recall that the source, ZG(S ′ ◦ S), is given by a matrix indexed by gauge

equivalence classes of connections [A1] on B1 and [A3] on B3. The entries are

isomorphic to Cn where n is the number of classes of connections on S2 ◦ S1

restricting to representatives of [A1] and [A3].

On the other hand, this can be seen (by the isomorphisms β) as a matrix

product of ZG(S ′) with ZG(S), which has components given by a direct sum over

equivalence classes [A2] of connections on B2:

[ZG(S2) ◦ ZG(S1)][A1],[A3]

βS,S′

→
⊕

[A2]

[ZG(S)][A1],[A2] ⊗ [ZG(S)][A2],[A3] (7.56)

Recall that [ZG(S)][A1],[A2]
∼= Cm, where m is the number of gauge equivalence

classes of connections on S which restrict to [A1] and [A2]. Similarly [ZG(S ′)][A2],[A3]
∼=Cm′

, where m′ is the number of classes of connections on S ′ which restrict to [A2]

and A3. Indeed, the components are just the vector spaces whose bases are these

equivalence classes.

The isomorphism β identifies the composite, whose components count connec-

tions on S ′ ◦ S, with this product. This consists of identification maps in each

component. A component indexed by [A1] and [A3] comes from the groupoid of

all connections on S ′ ◦ S which restrict to [A1] and [A3] on B1 and B3. Each such
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connection restricts to connections on S ′ and S by the maps πS′ and πS. These

in turn restrict by π2 and π′
2 to B2 to gauge-equivalent (by α) connections - and

those restricting to different [A2] are in different components of [Π1(S
′ ◦ S), G].

Over each [A2], the we have the product groupoid of the groupoids of all connec-

tions on S and S ′ restricting to this [A2] (and to [A1] and [A3] respectively). So

the groupoid of such connections on S ′ ◦ S is isomorphic to a fibred product over

ZG(B2).

Then the ([A1], [A3]) component of ZG(S ′ ◦ S) is a vector space whose basis

is the set of components of this groupoid, and β is an isomorphism which takes

which takes the vector spaces over this to those in (7.56).

Example 9 Consider the “pair of pants” cobordism (the “multiplication” cobor-

dism from the generators of 2Cob): This can be seen as a morphism S : B→B′

Figure 7.1: The “Pair of Pants”

in 2Cob, where B = S1 ∪ S1 and B′ = S1. The 2-linear map corresponding to
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it can be found by the above procedure. To begin with, recall the 2-vector space

on S1 found in Example 7. It is equivalent to [G//G,Vect], the 2-vector space of

Vect-presheaves on G which are equivariant under conjugation by elements of G.

The groupoid of connections on S1 ∪ S1 can be found using the fact that

the path groupoid is just Π1(S
1) ∪ Π1(S

1), a disjoint union of two copies of the

groupoid Π1(S
1) ∼= Z. Notice that this is different from the group Z2, since a

group is a one-object groupoid, whereas here we have a two-object groupoid, each

object having a group of morphisms isomorphic to Z. A functor from this into

G amounts to two choices g, g′ ∈ G, but a gauge transformation amounts to a

conjugation by some h ∈ G at each of the two objects (one chosen base points in

each component), so:

[Π1(S
1 ∪ S1), G] ∼= (G×G)//(G×G) (7.57)

∼= (G//G)2

where G × G acts on itself by conjugation componentwise. This just says that

a connection on the space consisting of two circles is the same as a choice of

connection on each one separately. This is illustrated in Figure 7.2, where we

show the pants as a disc with two holes, and label a connection on S with its

restrictions to the boundary. The connection on S has holonomies g and g′ around

the two holes. On S1 ∪ S1, this restricts to a connection with holonomies g and
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g′ respectively, and on S1 to the product (since the circle around the outside S1

is homotopic to the composite of the two loops).

Figure 7.2: Connection for Pants

On the other hand, the manifold with boundary, S, is homeomorphic to a two-

punctured disc, whose path groupoid has a skeleton with one-object, and group

of morphisms π1(S) = F (γ1, γ2), the free group on two generators. Functors from

this into G amount to homomorphisms (g, g′) : F (γ1, γ2)→G. That is, a choice

of two elements of G (the images of the generators). A gauge transformation

amounts to conjugation at the single object (a chosen base point in S—indicated

in Figure 7.2 as a dot on the loop). So we have the span of connection groupoids:

[Π1(S), G] ∼= (G×G)//G (7.58)
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where G acts on G × G by conjugation in both components at once. Then the

span (7.16):

(G×G)//G
p1

wwppppppppppp
p2

&&LLLLLLLLLL

(G//G)2 G//G

(7.59)

Both projections are restrictions of a connection on S to the corresponding con-

nection on the components of the boundary. It is easily seen that p1 leaves objects

intact and takes the morphism corresponding to conjugation by h to that corre-

sponding to conjugation by (h, h). The projection p2 maps object (g, g′) to gg′,

and the morphism for conjugation by h to, again, conjugation by h.

The gauge-equivalent connections on S have holonomies of the form (hgh−1, hg′h−1)

for any h ∈ G, and those for S1 are compatible, since they have holonomies of the

form hgg′h−1 for h ∈ G. Those for S1∪S1 can be any connection with holonomies

(hgh−1, h′g′(h′)−1) for any choices of (h, h′) ∈ G2, so that connections which are

gauge equivalent on S1 ∪S1 may be restrictions of inequivalent connections on S.

Finally, suppose we have a functor f : [Π1(S
1 ∪ S1), G]→Vect, and transport

it to (p2)∗ ◦ p
∗
1(f) : [Π1(S

1), G]→Vect. To see what this does, note that since

ZG(S1 ∪S1 that any such f can be written as a sum of irreducible functors (since

ZG(S1 ∪ S1) is a KV 2-vector space). So we can consider one of these, say f ,

which assigns a copy of C to each connection in some gauge-equivalence class, say

([g], [g′]), and 0 to all others. This f assigns an isomorphism, compatibly, to each
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gauge transformation (i.e. pair of elements (h, h′)). Such an isomorphism amounts

to multiplication by a complex number—so we get a representation ρ : G×G→C.

Now pull f back to p∗1(f) : [Π1(S), G]→Vect, a functor f(p1(A)). This as-

signs a copy of C to any connection on S which restricts to any representative

of ([g], [g′])—note that these are not all equivalent. To any gauge transformation

given by conjugation by h, it assigns the isomorphism ρ(h, h). So we get the rep-

resentation ρ ◦∆ : G→C for each equivalence class (where ∆ : G→G×G is the

diagonal map).

Then push p∗1(f) forward to (p2)∗◦p
∗
1(f) : [Π1(S

1), G]→Vect. To each connec-

tion on S1 (represented by g1 ∈ G) the colimit over the diagram of all connections

restricting to g1. That is, over all (g, g′) such that gg′ = g1. So then we get a copy

of C for each pairs of representatives of [g] and [g′] which give g1 as a product:

note that there may be more than one such, which are not gauge equivalent in

[Π1(S), G]. The diagram of all these amounts (by taking its skeleton) to just a

disjoint union of gauge-equivalence classes in [Π1(S), G].

For each class (since all copies of C over it are equipped with compatible

isomorphisms) we just get one copy of C. The group G thought of as the group of

gauge transformations acts on each copy of C. If it acts nontrivially, then in the

colimit, at least two points in that C will be identified (since the isomorphisms
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given by the G-action must agree with the maps into the colimit). If this happens,

that copy of C collapses to zero.

So finally we have that

(π2)∗ ◦ π
∗
1(g1) ∼=

⊕

(g,g′)∈([g],[g′])|gg′=g1

C[Aut(g1)]⊗C[Aut(g,g′)] C (7.60)

where the direct sum is over all non-equivalent (g, g′) representing ([g], [g′]) and

satisfying gg′ = g1, and the action of G on each component is as we have described.

On morphisms, we get the direct sum of the isomorphisms between these copies

of C.

We can describe this as a categorified “convolution of class functions” on G.

This is related to Example 6, the group 2-algebra on a group. Note that this is

almost the 2-vector space of Vect-presheaves on the groupoid of connections on

S1 - except that here only “equivariant” functors, where there are isomorphisms

between spaces over conjugate elements of G, are considered. For such functors,

the “pants” morphism amounts to multiplication in the group 2-algebra.

An important special case of a higher cobordism for our extended TQFT is the

one where the objects in nCob2 are empty manifolds ∅. Then cobordisms between

these are themselves manifolds without boundary, and cobordisms between these

have boundary, but no nontrivial corners. So we have just a cobordism from one

manifold to another. It is reasonable to expect that in this case, the extended
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TQFT based on a group G should give results equivalent to those obtained from

a TQFT based on the same group, suitably reinterpreted.

Example 10 Consider a manifold S, thought of as a cobordism S : ∅→∅. We

expect that finding our ZG(S) for such a cobordism should be like finding the

vector space assigned to the manifold S by an ordinary TQFT.

To see this, first note that Π1(∅) = ∅, the empty category, and since this is the

initial category, there is a single functor from it to G, hence [Π1(∅), G] = 1, the

category with one object and one morphism. Thus, Z(∅) ∼= Vect

Now, since every connection on S “restricts” to the unique trivial connection

on ∅, the 2-linear map takes Vect to Vect, and can be represented as a 1 × 1

matrix of vector spaces. In other words, the operators both involve tensoring with

a single vector space.

Too see which vector spaces this is, begin with a 2-vector in Z(∅) ∼= Vect. This

amounts to a choice of a vector space, say V ∈ Vect. Pulling back to S, we simply

get the functor assigning a copy of V to every object of the groupoid [Π1(S), G].

Isomorphisms from V to V must be assigned to every arrow in this groupoid. But

there is a unique isomorphism is [Π1(∅), G], namely the identity—so the pullback

to S must assign the identity to every arrow.

So in fact, taking the pushforward gives a colimit of a diagram which has a

single copy of V for each isomorphism class in [Π1(S), G], which decomposes as a
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direct sum of these classes. This is since the colimit for just one class is just V , and

for the whole groupoid is the direct sum of one copy of V from each isomorphism

class.

So we have that:

(π2)∗ ◦ π
∗
1(−) ∼= (−⊗Ck) (7.61)

Where k = |[Π1(S), G]| is the number of connected components of [Π1(S), G].

If we reinterpret this as assigning Ck to S, thought of as a manifold, this does

indeed recover the usual formula obtained from a TQFT. The TQFT based on

the finite group G will assign to a manifold the Hilbert space of complex-valued

functions on the space of connections (strictly) modulo gauge transformations.

This is equivalent to what we have just found.

The final element of our weak 2-functor is its effect on 2-morphisms, so this is

the subject of the next section.

7.3 ZG on Cobordisms of Cobordisms

Now we consider the situation of a cobordism between cobordisms. We want

to describe our extended TQFT as a weak 2-functor, so we want a bicategory

derived from our double bicategory nCob2. By Theorem 1, this is possible, but

we need to see just what a 2-morphism in this corresponding bicategory looks like.
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Recall that the source and target morphisms of the corresponding 2-morphism are

those obtained by composing horizontal and vertical morphisms which form the

edges of the square.

Given a square in nCob2, we have a diagram of the form (4.21). When we

turn this into a 2-cell, the source morphism will be a cospan in the category of

manifolds with corners. It is found by taking the following pushout:

TY ◦ S

S

ιS
<<xxxxxxxxx

TY

ιTY

ccGGGGGGGGG

X

ιX
??��������

Y

ιY

ccFFFFFFFFFF

ιY
;;vvvvvvvvv

Y ′

ιY ′

``BBBBBBBB

(7.62)

The pushout square is the central square here, where we get the object TY ◦ S

equipped with injections ιS and ιTY
which make the square commute, and which is

universal in the sense that any other object with injections from S and TY factors

through TY ◦ S. So in particular, the maps into M can be factorized as the maps

into TY ◦S and the canonical injection ι : TY ◦S→M . A similar argument applies

to the target morphism, so the situation we are interested in can be represented
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as a cospan of cospans in the following way:

Π1(M)

Π1(S1)

ι
99ttttttttt

Π1(S2)

ι′
eeJJJJJJJJJ

Π1(X)

ι2 44iiiiiiiiiiiiiiiiiii

ι1

OO

Π1(Y
′)

ι′
2

OOι′
1

jjUUUUUUUUUUUUUUUUUUU

(7.63)

with S1 = TY ◦ S and S2 = S ′ ◦ T ′
X .

Given this situation, which is a 2-morphism for the bicategory of cobordisms,

we want to get a 2-morphism in the bicategory 2Vect. That is to say, a natural

transformation αM between a pair of 2-linear maps. The 2-linear maps in question

are those we get by the construction (7.17). So in particular,

[Π1(M), G]

π
wwooooooooooo

π′

''OOOOOOOOOOOO

[Π1(S1), G]

π1

��

π′

1

++WWWWWWWWWWWWWWWWWWWWWWW [Π1(S2), G]
π2

ssggggggggggggggggggggggg

π′

2

��

[Π1(X), G] [Π1(Y
′), G]

(7.64)

And finally, quantizing these configuration groupoids by taking functors into

Vect:
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[

[Π1(M), G],Vect
]

[

[Π1(S), G],Vect
]

π∗

55jjjjjjjjjjjjjjj
[

[Π1(S
′), G],Vect

]

π′∗

iiTTTTTTTTTTTTTTT

[

[Π1(X), G],Vect
]

π∗

1

OO π′∗

1 22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
[

[Π1(Y
′), G],Vect

]

π∗

2llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
π′∗

2

OO

(7.65)

Now, recall that each of the pullback maps appearing here has an adjoint, so we

have functors F1 = (π′
1)∗◦π

∗
1 and F2 = (π′

2)∗◦π
∗
2 from Z(X) =

[

[Π1(X), G],Vect
]

to Z(Y ′) =
[

[Π1(Y
′), G],Vect

]

. A natural transformation will take an object

f ∈ ZG(X) and give a morphism ZG(M)(f) : F1(f)→F2(f) in Z(Y ′) satisfying

the usual naturality condition. Now, an object in ZG(X), namely a 2-vector,

is a Vect-presheaf on the groupoid of G-connections on X weakly mod gauge

transformations.

The hoped-for morphism ZG(M)(f) in Z(Y ′) is just a natural transformation

between two such functors g, g′ : [Π1(Y
′), G]→Vect. That is, it assigns, for

each connection A ∈ [Π1(Y ), G], a linear map between the two vector spaces:

(ZG(M)(f))(A) : g(A)→ g′(A). We want to get ZG(M) from the cobordism with

corners, M . This we define by means of a “pull-push” process, similar to the one

used to define the 2-linear maps in the first place.

However, as remarked in Section 6.2, any natural transformation between a

pair of 2-linear maps between KV 2-vector spaces can be represented as a matrix
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of linear operators, as in (6.7). The matrix in question is indexed by gauge

equivalence classes of connections on X and on Y . Writing Z(S) in the matrix

form means that given a pair ([A], [A′]) of such classes, there is a vector space

Z(S)[A],[A′]. Recall that we found these vector spaces by the “pull-push” process

for presheaves along inclusion maps.

A natural transformation between such functors is a matrix of linear maps, so

we will have

ZG(M)[A],[A′] : ZG(S)[A],[A′]→ZG(S ′)[A],[A′] (7.66)

But now we can use the fact that the top level of the tower of spans of groupoids

in (7.65) is of the same form as that for cobordisms between manifolds given in

(7.17). The component linear maps arise by applying a similar “pull-push” process

to that used in Section 7.2 to define ZG on cobordisms.

Since there are canonical bases [A] ∈ A0(S) and [A′] ∈ A0(S
′) for the vector

spaces Z(S) ∼= Ck and Z(S ′) ∼= Ck′

, so we can represent T as a k×k′ matrix. We

then need to describe the effect of T on a vector in Ck. Such a vector amounts

to an assignment of a scalar to each gauge equivalence class of connections in

[Π1(S), G]. In particular, to find the component T[A′],[A] indexed by the class [A′]

of connections on S ′, and the class [A] on S, take the vector corresponding to the

function equal to 1 on [A] and 0 elsewhere.
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The linear map T acts by the “pull-push” operation. The first stage—pullback

gives a function on [Π1(M), G] which is 1 on any gauge-equivalence class of con-

nections [B] on M restricting to [A] on S. Pushing this forward involves taking

a sum over all classes of connection restricting to [A′] on S ′. Clearly, the only

nonzero contributions are from those connections which restrict to [A] on S. The

action of T extends linearly to all of V , so it is represented by a k × k′ matrix

whose entries are indexed by classes of connections.

So indeed, all discussion of the construction of the natural transformation will

parallel the construction of the 2-linear maps, but at a lower categorical level, since

we get a matrix of scalars rather than vector spaces—this time in each component

([A], [A′]). The resulting linear map (and its matrix representation) can then be

“lifted” to a natural transformation between 2-linear maps.

A more tricky question is what contribution to expect from those which do

restrict to [A]. Naively, one might expect to simply take a sum of the function

values (all equal to 1 at the moment) over all such connections. Since this ignores

the morphisms in [Π1(M), G], one might perhaps imagine the sum should be over

only equivalence classes of connections. However, one should suspect that this is

also incorrect, since when we found a pushforward for Vect-presheaves, we took

not a direct sum over equivalence classes, but a colimit.

182



Chapter 7. Extended TQFTs as 2-Functors

In fact, the correct prescription involves the groupoid cardinality of the groupoid

of those connections which contribute to the sum. This concept is described by

Baez and Dolan [10], and related to Leinster’s [63] concept of the Euler char-

acteristic of a category. For a more in-depth discussion of groupoid cardinality,

and also of its role (closely related to the role it plays here) in a simple model

in quantum mechanics, see the author’s paper [72] on the categorified harmonic

oscillator.

The cardinality of a groupoid G is:

|G| =
∑

[x]∈G

1

|Aut(x)|
(7.67)

the sum is over isomorphism classes in G. This quantity is invariant under equiv-

alence of categories, and should be the pushforward of the constant function 1.

So we define:

Definition 22 Given cobordism between cobordisms, M : S→S ′, for S, S ′ :

B→B′, then

ZG(M) : ZG(S)→ZG(S ′) (7.68)

is a natural transformation given by a matrix of linear operators:

ZG(M)j,k : ZG(S)j,k→ZG(S ′)j,k (7.69)
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where the vector space ZG(S)j,k is the (j, k) component of the matrix for the 2-

linear map Z(S). This is indexed by choices (j, k), where j identifies an equiva-

lence class [A] of connections on B.

The linear map ZG(M)j,k = T is described by the matrix:

T[A],[A′] = |(j × j′)−1(A,A′)| (7.70)

the groupoid cardinality of the essential preimage of (A,A′), where A is a connec-

tion on S and A′ a connection on S ′.

(That is, of the groupoid of all connections on M simultaneously restricting to a

connection gauge equivalent to A on S and A′ on S ′.)

Since this is a matrix of linear transformations between the correct vector

spaces, it defines a natural transformation. This is the last element of the extended

TQFT ZG which needs to be defined—Theorem 13 will show that its behaviour

on manifolds, cobordisms, and cobordisms between cobordisms satisfy the axioms

of a weak 2-functor. Two parts of this we prove here separately. The first is

strict preservation of vertical composition; the second is preservation of horizontal

composition as strictly as possible (i.e. up to the isomorphisms β which make

comparison possible - as we will see).

Theorem 11 The assignment ZG(M) to cobordisms with corners given by (7.70)

preserves vertical composition strictly: ZG(M ′M) = ZG(M ′) ◦ ZG(M).
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Proof : Vertical composition is just component-wise composition of linear opera-

tors. So it suffices to show that given any component, composition is preserved.

That is, given a vertical composite of two cobordisms between cobordisms:

B

S1

��S2 //

S3

BBB
′

M��

M ′

��

(7.71)

we get matrices Z(S1)(j,k), Z(S2)(j,k), and Z(S3)j,k, of vector spaces indexed by

connections-and-representations on B and B′ as in Definition 22.

For the following, fix a component—i.e. a gauge equivalence class of connec-

tions [A] on B and representation of Aut([A]), and similarly for B′.

Then we have two linear operators. The first is

ZG(M)j,k = T : Z(S1)(j,k)→Z(S2)(j,k) (7.72)

and is given as a matrix, indexed by equivalence classes of connections [A1] on S1

and [A2] on S2, as follows. The component T[A1],[A2] is the groupoid cardinality of

the groupoid of all connections onM which are gauge equivalent to ones restricting

to both A1 and A2—that is, the essential preimage of (A1, A2). Denote this by

| ̂(A1, A2)|.

The second operator

ZG(M ′)j,k = T ′ : Z(S2)(j,k)→Z(S3)(j,k) (7.73)
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is likewise a matrix, indexed by equivalence classes of connections [A2] on S2 and

[A3] on S3, where T ′
[A2],[A3]

= | ̂(A2, A3)|, the groupoid cardinality of the essential

preimage of (A2, A3) (a groupoid of connections on M ′).

The product of these is then just given by matrix multplication, so that

(T ′T )[A1],[A3] =
∑

[A2]

| ̂(A1, A2)| × | ̂(A2, A3)| (7.74)

That is, to get the component of the image of a delta functon on [A1] in the

connection [A2], one takes a sum over equivalence classes of connections [A2] on

B2. The sum is of of the products of the groupoid cardinalities of connections on

M and M ′ restricting to this [A2].

We need to show this is the same as the linear operator obtained from the

same (j, k) component for the 2-morphism ZG(M ′M). But we know that

ZG(M ′M)(j,k) = R : Z(S1)(j,k)→Z(S3)(j,k) (7.75)

has component

| ̂(A1, A3)| (7.76)

the groupoid cardinality of the essential preimage of (A1, A3), which is a groupoid

of connections on M ′M . So we really just need the fact that groupoid cardinalities

behaves well with respect to sum and product.

In particular, ̂(A1, A3) is a groupoid of connections on M ′M , but each of these

has a restriction to S2, and if two connections on M ′M have gauge-inequivalent
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restrictions to S2, they must be gauge inequivalent. So ̂(A1, A3) is a direct sum

over the possible gauge-equivalence classes of restrictions [A2] to S2. Since the

groupoid cardinality of a direct sum of groupoids is the sum of their cardinalities,

we thus have

| ̂(A1, A2)| =
∑

[A2]

| ̂(A1, A2, A3)| (7.77)

where ̂(A1, A2, A3) is the groupoid of connections on M ′M which restrict to all

the Ai simultaneously.

However, we claim this is just the cartesian product of groupoids. This is

since M ′M is an equivalence class of manifolds with corners, where a standard

representative for M ′M is a representative for M ′ and for M , identified at the

images of the common inclusions of S2. By a generalization of the Meyer-Vietoris

theorem (see, for instance, Brown [18]) we have Π1(M
′M) likewise is a disjoint

union of Π1(M
′) and Π1(M), modulo the equivalence of the images of Π1(S2).

But then, taking functors into G, we have [Π1(M
′M), G] is a subgroupoid of the

product [Π1(M
′), G]× [Π1(M), G], containing only the objects (connections) such

that the connections in the two components agree on S2. Since we have fixed a

particular connection A2 on S2, we just get the cartesian product of groupoids of

connections on M ′ and M respectively which restrict to A2.
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Now, since the groupoid cardinality of a cartesian product of groupoids is the

product of their groupoid cardinalities, we have

R[A1],[A3] = (T ′T )[A1],[A3] (7.78)

so ZG preserves vertical composition of 2-morphisms strictly. �

A similar result holds for vertical composition.

Theorem 12 The assignment ZG(M) to cobordisms with corners given by (7.70)

preserves horizontal composition strictly, up to the isomorphism weakly preserving

composition of the source and target morphisms:

ZG(B)

ZG(S′
1◦S1)

%%

ZG(S′
2◦S2)

99

ZG(S1)
++

ZG(S′
1)

33
ZG(B′)

ZG(S2)
++

ZG(S′
2)

33
ZG(B′′)M�� M ′

��

βS1,S′
1��

β−1

S2,S′
2��

= ZG(B)

ZG(S′
1◦S1)

''

ZG(S′
2◦S2)

77
ZG(B′′)ZG(M ′⊗HM)

��

(7.79)

Proof : The horizontal composition involves “matrix multiplication” at the level

of composition of 2-linear maps. Given a horizontal composite

B

S1

��

S2

AAB
′

S′
1

��

S′
2

@@B
′′M

��

M ′

��

(7.80)

the functor ZG assigns 2-linear maps to the cobordisms S1, S2, S
′
1, and S ′

2, and

natural transformations to M and M ′. Then the horizontal composite is a natural
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transformation

ZG(M ′ ⊗H M) : ZG(S ′
1) ◦ ZG(S1)→ZG(S ′

2) ◦ ZG(S2) (7.81)

As discussed in Remark 16, the isomorphisms β allow comparison of the hor-

izontal composite of natural transformations ZG(M ′) ⊗ ZG(M) with the natural

transformation ZG(M ′ ⊗H M). The presence of the β isomorphisms only allows

us to disregard the distinction between ZG(S2 ◦ S1) and ZG(S2) ◦ ZG(S1) (and

likewise for the S ′).

So first consider ZG(M ′) ⊗ ZG(M), the horizontal composite of the natural

transformations in 2Vect corresponding to the cobordisms with corners. Each of

these natural transformations can be represented as a matrix of linear maps:

ZG(M)[A1],[A2] : V[A1],[A2]→W[A1],[A2] (7.82)

where the V ’s are the coefficients of ZG(S1) and W ’s are those of ZG(S2). The

coefficients of ZG(M ′) are similarly

ZG(M ′)[A2],[A3] : V ′
[A2],[A3]→W ′

[A2],[A3] (7.83)

Then the horizontal product ZG(M ′) ⊗ ZG(M) will be given by the matrix of

linear maps:

⊕

[A2]

(

ZG(M)[A1],[A2]⊗ZG(M ′)[A2],[A3]

)

:
⊕

[A2]

(

V[A1],[A2]⊗V
′
[A2],[A3]

)

→
⊕

[A2]

(

W[A1],[A2]⊗W
′
[A2],[A3]

)

(7.84)
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The ([A1], [A3]) component of this product is a linear map given as a block

matrix, with one block for each gauge equivalence class of connections [A2] on

B2, and whose blocks consist of the tensor product of the matrices from the

components of ZG(M) and ZG(M ′). So suppose these are, respectively, n × m

and n′ × m′ dimensional matrices. Then the result is an (n × n′) × (m × m′)

matrix, where the ((i, i′), (j, j′)) component is the product of the (i, j) component

of ZG(M) and the (i′, j′) component of ZG(M ′).

Recall that these indexes mark connections on the cobordisms: the (i, j) com-

ponent of ZG(M) is the groupoid cardinality of the groupoid of connections on M

which match the ith on S1 and the jth on S2; and the (i′, j′) component of ZG(M ′)

is the groupoid cardinality of the groupoid of connections on M ′ which match the

i′th on S ′
1 and the j′th on S ′

2. But this is the groupoid cardinality of the product

groupoid whose objects are just these pairs, since groupoid cardinality respects

products.

Next consider ZG(M ′⊗HM), the natural transformation in 2Vect correspond-

ing to the horizontal composite of the cobordisms with corners. Again, this can be

represented as a matrix of linear maps indexed by pairs ([A1], [A3]) just as above:

ZG(M ′ ⊗H M)[A1],[A3] : U[A1],[A3]→X[A1],[A3] (7.85)

where the U have a basis of equivalence classes connections on S ′
1 ◦ S1, and the

X on S ′
2 ◦ S2, which restrict to [A1] and [A3].
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But on the other hand, using the β isomorphisms to identify the source and

targets allows us to compare this directly to the other side.

But the groupoid of connections on S ′
1 ◦ S1 has the restriction maps pS and

pS′ to give connections on S and S ′. Moreover, the connections obtained this way

agree up to gauge equivalence on B2 (since composition of cobordisms is given

by a weak pushout). The gauge equivalence up to which these agree is given by

the natural isomorphism α from the weak pullback of connection groupoids. So

the components U[A1],[A3] decompose as a direct sum over [A2] on B2 of pairs of

connections, one on S1, and one on S ′
1, each of which restricts to [A2] and either

[A1] or [A3]. Similarly for the vector spaces X[A1],[A3].

Now, the groupoid of all connections on M ′ ⊗H M is a fibred product over

[Π1(B2), G], since each such connection restricts to just one gauge equivalence

class on B2. Then for each such [A2], the groupoid of connections decomposes

as a product over choices of restrictions to the S on each side. So it is just a

product of the groupoids of connections on M ′ and M , separately, which restrict

[A2]. Restrictions to S ′
1 ◦ S1 and S ′

2 ◦ S2 each give separate restrictions to the

two halves. Then the cardinality of this groupoid in any component (i.e. with any

particular restrictions to source and target) is just the product of the groupoid

cardinalities for the corresponding restrictions on M ′ and M ′.
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But this is exactly what we found for ZG(M ′)⊗ ZG(M). So the two sides are

equal as required. �

Again, a special instance of an extended TQFT is when it “restricts” to a

TQFT.

Example 11 Returning to the example of cobordisms between empty manifolds,

suppose we have two such cobordisms S and S ′, and a cobordism with (trivial!)

corners M : S→S ′. In fact, the effect should be similar to that of evaluating a

TQFT on M thought of as a cobordism between manifolds, in a precisely analo-

gous way that ZG(S) can be thought of as a TQFT giving a vector space for the

manifold S.

In particular, we have, by the argument in Example 10, that:

Z(S) ∼= (−⊗Ck) (7.86)

and

Z(S ′) ∼= (−⊗Ck′

) (7.87)

where k and k′ are the number of isomorphism classes of connections on S and

S ′ respectively. If we think of these as being vector spaces Ck and Ck′

assigned

by a TQFT, then a cobordism should assign a linear map T : Ck→Ck′

. Indeed,

such a linear map will give rise to a natural transformation from Z(S) to Z(S ′) by
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giving, for any objects V ∈ Vect on the left side of the diagram, the map 1V ⊗ T

on the right side. Moreover, all such natural transformations arise this way.

Now, the diagram from (7.65) gives rise to a 2-morphism in Cat:

Vect

(π2)∗◦π∗

1

  

(π′

2
)∗◦(π′

1
)∗

>>VectZ(M)

��

(7.88)

Here, Z(M) arises from the 2-linear map

π′
∗ ◦ π

∗ :
[

[Π1(S), G],Vect
]

→
[

[Π1(S
′), G],Vect

]

(7.89)

as described in Definition 22.

Having now described the effect of the extended TQFT at each level - man-

ifolds, cobordisms, and cobordisms with corners—it remains to check that these

really define a 2-functor of the right kind. This is the task of Section 7.4.

7.4 Main Theorem

Now let us recap the discussion so far. For each finite group G, we want to

get a weak 2-functor from the bicategory associated to the double bicategory of

cobordisms with corners into 2-vector spaces, ZG : nCob2→ 2Vect. This has

three aspects, for which we then must verify some properties.
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To a compact (n− 2)-manifold, ZG assigns a 2-vector space. This consists of

Vect-presheaves on the groupoid of G-connections on B weakly modulo gauge

transformations.

To a cobordism between (n−2)-manifolds, S : B→B′ in nCob2, ZG assigns a

span of the groupoids of G-connections, as in (7.16). Then a Vect-presheaf F on

[Π1(B), G] can be transported along the span by first pulling back onto [Π1(S), G]

along the restriction π of connections on S to connections on B. We then push

forward this pullback π∗F along the restriction π′ of [Π1(S), G] to [Π1(B
′), G] to

give a Vect-presheaf π′
∗ ◦ π

∗F on [Π1(B
′), G].

To a cobordism between cobordisms, ZG assigns a natural transformation in

a similar fashion. Given two functors corresponding to cobordisms, as above, if

there is a cobordism between them, it defines a way to push forward a vector in

any of the component vector spaces of the functor, written as a matrix. This is

done by pulling back the function on the basis defined by the vector, and then

pushing forward using a weight given by the groupoid cardinality.

This construction is to give a weak 2-functor. This must be equipped with nat-

ural isomorphisms βS,S′ : ZG(S ′ ◦ S)→ZG(S ′) ◦ ZG(S) giving weak preservation

of composition, as described in Theorem 10. It also must have a natural transfor-

mation UB : 1ZG(B)→̃ZG(1B) giving weak preservation of units. Note that for any

(n− 2)-manifold B, the idenity 1B is a cobordism I ×B, which has the manifold
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B embedded as {(0, b)|b ∈ B} and {(0, b)|b ∈ B} (and this cobordism is exactly

the collar on both source and target). Then we note that there is an equivalence

of categories between [Π1(B), G] and [Π1(1B), G] since B and 1B have the same

homotopy type. So ZG(1B), which uses a “pull-push” through the groupoid of

connections on I ×B, is equivalent to the identity on 1ZG(B).

Definition 23 Given a finite group G, the extended TQFT ZG is a 2-functor

defined as follows:

• For a closed compact manifold B, the weak 2-functor assigns a 2-vector

space:

ZG(B) =
[

[Π1(B), G],Vect
]

(7.90)

• For a cobordism between manifolds:

B
i
→S

i′
←B′ (7.91)

the weak 2-functor assigns a 2-linear map:

ZG(S) = (p′)∗ ◦ p
∗ (7.92)

where p and p′ are the associated projections for the underlying groupoids of

connections weakly modulo gauge transformations.
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• For a cobordism with corners between two cobordisms with the same source

and target:

S1

i
��

B

i1
>>~~~~~~~~

i2   @
@@

@@
@@

@ M B′

i′
1

``AAAAAAAA

i′
2~~}}

}}
}}

}}

S2

i′

OO

(7.93)

the weak 2-functor assigns a natural transformation α, whose components

(in the matrix representation) are as in (7.70).

The 2-functor ZG also includes the following:

• For each composable pair of cobordisms S : B1→B2 and S ′ : B2→B3, a

natural isomorphism

β : ZG(S ′ ◦ S)→ZG(S ′)→ZG(S) (7.94)

, as described in Theorem 10.

• For each object B ∈ nCob2, the natural transformation

UB : 1ZG(B)→̃ZG(1B) (7.95)

is the natural transformation induced by the equivalence between [Π1(B), G]

and [Π1(1B), G].

Then we have the following:
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Theorem 13 For any finite group G, there is a weak 2-functor ZG : nCob2→2Vect

given by the construction in Definition 23.

Proof : First, we note that by the result of Theorem 8, we know that ZG assigns

a 2-vector space to each object of nCob2.

If S : B→B′ is a cobordism between compact manifolds—i.e. a morphism in

nCob2, the map ZG(S) defined in Definition 21 is a linear functor by the result of

Theorem 6, since it is a composite of two linear maps. This respects composition,

as shown in Theorem 10.

Next we need to check that our ZG satisfies the properties of a weak 2-functor:

that the isomorphisms from the weak preservation of composition and units satisfy

the requisite coherence conditions; and that ZG strictly preserves horizontal and

vertical composition of natural transformations.

The coherence conditions for the compositor morphisms

βS,T : ZG(T ) ◦ ZG(S)→ZG(T ◦ S) (7.96)
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and the associator say that these must make the following diagram commute for

all composable triples of cobordisms (S1, S2, S3):

ZG(S3) ◦ ZG(S2) ◦ ZG(S1)

ZG(S3 ◦ S2) ◦ ZG(S1)

ZG((S3 ◦ S2) ◦ S1)ZG(S3 ◦ (S2 ◦ S1))

ZG(S3) ◦ ZG(S2 ◦ S1)

1⊗β2,1

66nnnnnnnnnnnnnn

β3,2⊗1
hhPPPPPPPPPPPPPP

β3,21

OO

β32,1

OO

ZG(α3,2,1)
//

(7.97)

We implicitly assume here a trivial associator for the 2-linear maps in the

expression ZG(S3) ◦ ZG(S2) ◦ ZG(S1). This is because each 2-linear map is just a

composite of functors, so this composition is associative. But note that we can

similarly assume, without loss of generality, that the associator α for composition

of cobordisms is trivial. The composite S2 ◦ S1 is a pushout of two spans of

manifolds with boundary:

S2 ◦ S1

S1

I1

;;wwwwwwwww
S2

I2

ccGGGGGGGGG

B1

i1

>>}}}}}}}}
B2

i2

ccGGGGGGGGG i′
1

;;wwwwwwwww
B3

i′
2

``AAAAAAAA

(7.98)

This pushout is only defined up to diffeomorphism, but one candidate is S1

∐

S2/ ∼,

where i1(x) ∼ i2(x) for any x ∈ B2. Any other condidate is diffeomorphic to this

one. But then, the associator

α3,2,1 : ZG(S3 ◦ (S2 ◦ S1))→ZG((S3 ◦ S2) ◦ S1) (7.99)
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is just the identity. (Choosing different candidates for the pushouts involved would

give a non-identity associator).

So it suffices to show that, with this identification,

(1⊗ β2,1) ◦ β3,21 = (β3,2 ⊗ 1) = ◦β32, 1 (7.100)

This is verified by a computation we leave to the reader.

In general, the coherence conditions for the “unit” isomorphism

UB : 1ZG(B)→̃ZG(1B) (7.101)

which weakly preserves identities say that it must make the following commute

for any cobordism S : B→B′:

ZG(S)

ZG(S) ◦ ZG(1B)

1⊗UB

OO

ZG(S ◦ 1B)

ZG(rS)
hhQQQQQQQQQQQQQ

βS,1Boo

(7.102)

where rB is the right unitor for B. There is also the symmetric condition for the

left unitor.

We notice that, as with ZG(1B), ZG(rB) is equivalent to the identity since we

can think of the unitor rS : S ◦ 1B→S as a mapping cylinder diffeomorphic to

I × S. Since S ◦ 1B and S are diffeomorphic, these are embedded as the ends of

the cylinder.
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So the condition amounts to the fact that βS,1B
: ZG(S ◦ 1B)→ZG(S) ◦

ZG(1B) = ZG(S) is equivalent to the identity in such a way that (7.102) com-

mutes. We again leave this to the reader. �

This weak 2-functor is our extended TQFT.
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Chapter 8

Prospects for Quantum Gravity

The title of this thesis is “Extended TQFT’s and Quantum Gravity”, but so

far we have said much about the former and nearly nothing about the latter.

Yet, despite the intrinsic interest extneded TQFT’s in themselves, the prospect of

applying these results, or very similar ones, to quantum gravity has been one of

the major motivations behind this work. The prospects for doing this are good,

at least in a low-dimensional toy model. In (2+1) dimensions (two dimensions of

space, and one of time), or 3 dimensions (with no time dimension), Einsteinian

gravity is a topological theory, whereas in higher dimensions it is not.

So more specifically, the immediate result of extending our results here will

be not, in general, quantum gravity, but a topological gauge theory called BF

theory. The connection to gravity is that this is the same as Einsteinian gravity

in 3 dimensions, and in 4-dimensions it is a limit of Einsteinian gravity as G→ 0

(where G is Newton’s constant). This is a limitation of our approach, but quantum
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gravity is a large and mostly open field (see for instance Rovelli’s survey [77] of

some of the work to date); so finding a clear framework for certain, fairly simple,

cases is a useful project.

In this final chapter, we sketch what kind of extension is needed, and the

implications of this work for quantum gravity in the case. This chapter is not

intended to be mathematically rigorous. Its role is to describe in an impressionistic

way some of the mathematical and physical context for this work, as well as to

suggest the directions for its future development.

8.1 Extension to Lie Groups

The first thing to consider is the possibility of extending the analysis we have

made for extended TQFT’s corresponding to finite groups. In particular, we are

interested in an analog of the preceding when G is a Lie group. In particular,

there is a special case of interest, which is when G = SU(2), and n = 3: that is,

considering ZSU(2) : 3Cob2→ 2Vect. We will describe here how such a theory, if

it is possible to construct it, would be related to a well-studied theory of quantum

gravity in three dimensions: the Ponzano-Regge model.

The theorems so far apply only when G is a finite group. However, we have

seen in Section 6.3 that there is a notion of an infinite-dimensional 2-vector space
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2L2X for a measure space (X,µ), consisting of maps from X into Vect. This

is an infinite dimensional analog of the functor category [X,Vect] which was

used in constructing an extended TQFT from a finite group (though we must

restrict to only “measurable” functors). In particular, it should still make sense

to define a 2-vector space
[

[Π1(B), G],Vect
]

for a manifold B. This involves

both a generalization and a specialization from the Crane-Yetter 2-vector space

Meas(X), since in that case X was a measurable space, wheareas in the case of

a Lie group it comes equipped with a standard measure (Haar measure), but we

also consider its path groupoid, rather than merely the set. So one would need to

extend the theory of categories of measurable fields of Hilbert spaces to a theory

of categories of measurable functors into Vect from such a measurable groupoid.

Now, the construction used for a finite group used several facts we showed

for finite groupoids. For example, Theorem 6 established that the 2-linear map

given by pushforward is the adjoint of that given by pullback. However, we only

showed this for finite groupoids. In general, if G is not finite, [Π1(B), G] is not an

essentially finite groupoid. So this and other theorems would need to be extended

to the case of Lie groups. In particular, since 2-vector spaces need not contain

arbitrary infinite colimits, the pushfoward we described may not exist. So we need

the infiinite-dimensional 2-vector spaces in Crane and Yetter’s Meas, as discussed

in Section 6.3.
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So in particular, such an extension should take advantage of the Haar measure

on G to define the pushforward of a functor on a space by direct integration,

rather than by simply taking a general colimit (which need not exist). This and

other such constructions would need to be justified in order to try to imagine

constructing an extended TQFT from a Lie group as we have described with a

finite group. It seems most clear how this would work in the case where G is

compact, since compact Lie groups have finite total Haar measure. If the total

measure of the group were infinite, we would not expect the integrals one would use

in these definitions to converge, and there would be a problem of well-definedness.

Then in cases where the direct integral exists, we would expect, by analogy

with the formula from Definition 21 that the component in some connection A′

on B′ of Z(S) applied to a “state” 2-vector Ψ ∈ Z(B) is:

(Z(S)Ψ)(A) =

∫ ⊕

[Π1(B),G]

(

∫ ⊕

[Π1(S),G]

Ψ(A)dA
)

dA′ (8.1)

Where [Π1(S), G] is the set of connections A on S such that A|B = A′ and A|′B =

A′. Both integrals are “direct integrals” of Hilbert spaces. The outer integral,

over B, uses the principle that Ψ can be represented as a direct integral (though

not a finite linear combination) of simple objects in ZG(B). The direct integral

over connections on S stands in for a general colimit. This assumes that we can

treat the “pushforward” phase of ZG(S) as a direct integral (rather than a direct

sum) of quotient spaces.
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Here we are integrating with respect to a measure on the space of connections.

Since this consists of functors from a finitely generated groupoid into G, the

measure is derived from the Haar measure on G.

Presuming that this is justified, it should be possible to extend the main results

(somewhat modified) from this discussion of extended TQFT’s to the case where

G is any compact Lie group (and possibly any Lie group). The groups of major

interest to quantum gravity are rotation groups of various signatures, and their

double covers (which are used in describing spin connections) . For example,

connections valued in Euclidean rotation groups SO(3) and SO(4), and their

double covers SU(2) and SU(2) × SU(2), are relevant to 3- and 4-dimensional

Euclidean quantum gravity respectively.

More precisely, since what we have discussed are flat connections, this remark

needs to be qualified. Flat SU(2) connections do indeed describe configurations

for 3D quantum gravity, since in that case, gravity is a purely topological theory.

(For more background on 3D quantum gravity, particularly in the case of signature

(2, 1), see work by Steven Carlip [22], [21]).

However, in 4 dimensions, a theory of flat connections does not describe gravity,

but rather a limiting case of Einsteinian gravity as Newton’s constant G→ 0.

The subject of this limit, and in general the deformation of gauge theories, is

considered extensively by Wise [87]. What is true in 4 dimensions is that the
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purely topological theory corresponds to a theory of flat connections on a manifold

known as BF theory. and by Freidel, Krasnov and Puzio [38]). To describe a

theory of gravity would need something more than what is discussed here. In

Section 8.3 we briefly consider some possible approaches to this problem.

8.2 Ponzano-Regge with Matter

If G = SU(2), the objects of A0//G, just as for a finite group, are equivariant

functors from [Π1, SU(2)] to Vect, and can be represented in terms of a basis of

irreducible objects. Assuming that the previous results hold when G is a Lie group,

an irreducible object amounts to a choice of conjugacy class in SU(2) and action

of SU(2) on the associated vector spaces coming from the isomorphism assocated

to conjugation by g. Let us assume that when we replace finite G by the Lie

group SU(2), we retain the classification of Example 7. Then irreducible 2-vector

by pairs ([g], ρ) of a conjugacy class [g] ∈ SU(2)/Ad(SU(2)), and representation

ρ of SU(2) on some vector space V . Now, a conjugacy class in SU(2) amounts

to specifying an angle of rotation in [0, 4π]. This is since this is the double cover

of the 3D rotation group, and all rotations by the same angle are conjugate to

all others by some rotation taking one axis of rotation to the other. This number

in [0, 4π] represents a mass in 3D quantum gravity—which manifests as an angle
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deficit when one traces a path around a massive particle, one finds, geometrically,

that one has rotated by a certain angle proportional to its mass, which has a

maximum total mass allowable of 4π in Euclidean 3D gravity.

On the other hand, a representation of SU(2) is classified by a half-integer,

which is called a spin since these label angular momenta for spinning quantum

particles. This is exactly the other attribute a particle in the 3D Ponzano-Regge

model may have. Mass and spin are the characteristics which determine the effect

of a particle on the connection—that is, its gravitational effect. In the Ponzano-

Regge model, mass and spin label the edges of a graph describing space. In the

case that the mass on an edge is zero, this describes a spin network, as described

first by Penrose [76]. A spin network is a combinatorial representation of the

geometry of space.

Penrose’s original idea was that a quantum theory of gravity should describe

space in intrinsically discrete terms. The description as a graph is intrinsically

discrete. Edges are labelled with spins since these are representations of the

symmetry group related to angular momentum. This was chosen because angular

momentum is already discrete in quantum mechanics, and is plainly related to the

(local) rotational symmetry of space.

Such spin networks are related to the Ponzano-Regge model for 3D quantum

gravity. The interpretation in terms of gravity comes from the observation that
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a conjugacy class in SU(2) is an angle in [0, π], which is a mass m; In the case

m = 0 the isomorphism is just a spin—an irrep of SU(2), labelled by an integer

(or, for physics purposes, a half-integer). For other m, we get a spin when we

reduce to a skeletal version of the 2-vector spaces.

Figure 8.1: Irreducible Object in ZSU(2)(S
1)

The Ponzano-Regge model is a quantum theory which reproduces classical

General Relativity in a suitable limit. Now, in General Relativity, gravity can be

thought of as the theory of a connection on a manifold, which is the Levi-Civita

connection associated to the metric in the usual formalism. So the Ponzano-
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Regge model can be seen as a quantum theory for a connection on space of a

given topology.

We can think of a cobordism with corners, as in Figure 1.1 as having boundaries

indicating the boundary of the world lines of some system. We can think of this as

a Feynman graph for some particles. This interpretation makes the most sense if

our group G is a Lorentz group, so that we think of the underlying manifold with

corners as “spacetime”. However, even if it is only “space”, this cobordism can

be though of as giving a graph, where the circles represent the boundary in 2D

“space” around some system—the “removed” portions of space are the graph. We

can think of the edges as particles—by which we only mean some bit of matter.

A “fundamental” particle is then an irreducible state on it. This corresponds,

as we remarked earlier, to a choice of a pair ([g], ρ) consisting of a conjugacy

class [g] of G and representation ρ of G on some vector space. Conjugacy classes

of rotation or Lorentz groups are “mass shells”, corresponding to the mass of

the particle. Representations of G, at least for SU(2) and similar groups, are

labelled by “spins”. These determine how a particle interacts with gravity. This

is precisely what the Ponzano-Regge model describes: a network of edges labelled

with just this data, and with vertex amplitudes at the intersections.

So our extended TQFT gives “particles”—boundaries in space - labelled by a

representation of a certain group. Our example was derived from a finite group,
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but if G = SU(2) the label is a mass and spin) moving on a background described

by Ponzano-Regge quantum gravity (see work by, for example, Freidel, Livine, and

Louapré [40] [41][39], discussing the Ponzano-Regge model coupled to matter, by

Noui [74], and Noui and Perez [75] on 3D quantum gravity with matter).

Baez, Crans, and Wise [7] describe how conjugacy classes of gauge groups

can be construed as “particle types”: an “elementary” particle corresponds with

an irreducible 2-vector in ZG(B). This associates to a hole—whose boundary is

diffeomorphic to the circle S1—a holonomy in a given conjugacy class [g] of G.

This is physically indistinguishable from any other corresponding to the same

class. But they are distinguishable from particles giving holonomies in some other

conjugacy class. So one says these represent different “types” of particle.

Now, we have said that for a 3D extended TQFT, the 2-vector space of states

for a circle has a basis in which each object is given by a conjugacy class of G

and representation of the stabilizer of that class. Wise [87] describes a way to

interpret such conjugacy classes as particle types in a topological gauge theory.

More generally, in any dimension, given a space with a “puncture” of codimension

2, there can be nontrivial holonomy for a connection around that puncture. In

3D, this is a 1-D puncture, which we think of as the worldline of a point particle.

In the framework discussed in this thesis, we think of the particle as a puncture

in 2D space, surrounded by a 1D manifold, namely a circle. This is the manifold
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B for our extended TQFT. Then the “space” from which the particle is removed

is represented as the cobordism S in our setup, and “spacetime”

Just as a conjugacy class in SU(2), as we have seen, can be interpreted as

a mass in Ponzano-Regge gravity, similarly, for other gauge groups, conjugacy

classes in the group classify “types” of matter particles which may be coupled to

the field. A state for the boundary around such a defect in our extended TQFT

gives These represent possible holonomies, up to gauge equivalence, around such

a defect. These classify the physically distinguishable particles.

The interpretation described here so far is purely kinematical, though in 4D,

where these punctures are “strings” (i.e. the punctures in space are 1-dimensional

manifolds, namely circles, and in “spacetime” are 2-dimensional, namely “world-

sheets”) the dynamics for such matter has been studied by Baez and Perez [11].

In terms of our extended TQFT setting, the dynamics are described by the action

of ZG on cobordisms of cobordisms.

In particular, suppose we have a cobordism with corners M : S→S ′ for cobor-

disms S, S ′ : B→B′, and are given specified “particle types” for the punctures in

the initial and final spaces. This amounts to choosing particular basis 2-vectors

in ZG(B) and ZG(B′).

Then on each space—cobordisms having these punctures as boundary - this

gives a vector space as the component of ZG(S) which corresponds to these basis
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2-vectors, and similarly for ZG(S ′). Then the corresponding component of ZG(M)

is a linear operator between these states. The interpretation is that these com-

ponents describe the spaces of states for a field coupled to matter of the specified

type, and the linear operator which gives its time evolution. This is found, as we

saw in (7.70), is given by a certain “sum over histories”, where each history is a

connection on the “spacetime” M . The topology of the punctures in M can be

thought of as a Feynman graph for interactions of the matter which is the source

of the field.

One should carefully note that to take this interpretation in terms of “his-

tories” and “spacetime” literally requires a noncompact gauge group G such as

Loretz groups SO(2, 1), SO(3, 1), or their double covers SL(2,R) and SL(2,C)

respectively. We expect that it would be more difficult to make these concepts

precise for noncompact gauge groups.

8.3 Further Prospects

The relationship between the extended TQFT’s discussed here and BF the-

ory leads one to ask about the relations between this approach and other ways

of looking at BF theory which have already been studied. One of these which

is particularly relevant involves so-called spin foam models. A self-contained de-
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scription of such models for BF theory and quantum gravity by Baez [4]. Spin

foam models are a generalization of the spin networks of Penrose [76].

A spin network is a network in the sense of a graph—a collection of nodes, con-

nected by edges. In a spin network, the edges are labelled by spins—representations

of SU(2), which are labelled by half-integers. The vertices by intertwining operators—

that is, morphisms in the category of representations of SU(2) taking some tensor

product of irreducible representations to some other such tensor product. These

are taken to be a representation of a “combinatorial spacetime” in which the nodes

represent events, and the edges give information about distance between events.

In particular, the attitude is that this is the only information about distances

within this combinatorial model of spacetime.

The idea behind spin foam models is to view spin networks as describing

configurations for the geometry of space. Then a spin foam is a morphism between

spin networks. In fact, it is a structure which contains spin networks as start and

end states in much the same way that an n-dimensional cobordism has (n −

1)-manifolds as source and targets. A spin foam is a complex vertices, edges,

and faces, with group representations labelling faces, and intertwining operators

labelling edges. So, in particular, a generic codimension-1 cross-section of a spin

foam
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The expected link to the present work is a generalization of the FHK con-

struction described in Section 2.3. In that case, one develops a TQFT by using

triangulations of the manifolds and cobordisms on which the TQFT is to define

Hilbert spaces and linear maps. We saw, as illustrated in Figure 2.5, that there

is a network dual to this triangulation. To the edges in this network one assigns

copies of a certain algebra, namely Z(C[G]), and to the nodes one assigns a mul-

tiplication operator. As described in Section 2.4, the coherence laws satisfied by

these operators are described by tetrahedrons. These are the Pachner moves in

2-D: attaching a tetrahedron to a triangulation along one, two, or three triangu-

lar faces gives a move by replacing the attached faces with the remaning faces of

the tetrahedron. The way of assigning an operator to a vertex of the dual to a

triangulation must have the property that it is invariant under such moves.

We have categorified this picture in order to increase the codimension of the

theory - that is, the difference in dimension between the basic manifolds and

the highest-dimensional cobordisms. So there should be a categorified equivalent

of the FHK construction, in which we begin with triangulated manifolds and

cobordisms. In categorifying, we replace the equations given by the Pachner moves

with 2-morphisms. Each move gives a 2-morphism between a pair of morphisms

in 2Vect, corresponding to a tetrahedron thought of as a cobordism connecting
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two parts of its boundary. Any cobordism can be built of such units, attached

together in some triangulation:

and

Figure 8.2: Tetrahedra Assigned 2-Morphisms

These obey coherence laws (equations) given by the 2-3 and 1-4 Pachner moves:

=

=

Figure 8.3: Coherence Rules as Pachner Moves

As in 2D, where the algebra assigned by the FHK construction to edges is

Z(C[G]), the categorified version should assigne Z(Vect[G]), which corresponds

to our assignment to a circle of equivariant Vect-presheaves on G. Assigning

these to edges reproduces the Ponzano-Regge model when G = SU(2), since the

irreducible objects in this category are, as we have seen, precisely labelled by mass

and spin. Analogous results hold for other G, giving different field theories. But
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notice that this is different from the way we recovered the Ponzano-Regge model

above: now we are assigning this data to edges of a triangulation, not a boundary

of a “worldline”. The relations between these two pictures are close, but more

than we can go into in detail here.

However, it is enough to observe that there is a close relation between the ex-

tended TQFT we have developed and state-sum (i.e. spin-network and spin-foam)

models for BF theory, and 3D quantum gravity. So one avenue for further explo-

ration is to see how the framework described here can be extended to incorporate

other theories described by such state sum models.

Our basic result involved the construction of an extended TQFT as a weak

2-functor for any finite group G. In Section 8.1, we discussed the possibility of

extending the construction to the case where G is a Lie group, and in particular,

indicated that this is expected to be more natural when G is a compact Lie group.

Of course, noncompact groups are also of interest - for example, the Lorentz

groups. But there are other directions in which to generalize this. We briefly

consider two possibilities here: categorical groups (also known as 2-groups), and

quantum groups (by which we mean quasitriangular Hopf algebras).

An extension of the Dijkgraaf-Witten theory to categorical groups is described

by Martins and Porter [70]. A categorical group, also known as a 2-group, is a

category object in the category Grp of groups. That is, it is a structure having a
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group of objects and a group of morphisms, satisfying the usual category axioms

expressed in terms of morphisms within Grp. Any group G is an example of a

2-group, where the group of objects is trivial : this is in fact how we have been

thinking of the gauge group G throughout this thesis. But there are many other

examples of 2-groups, including, importantly for us, 2-groups which arise from

semidirect products of groups H ⋊G. In this case, the group of objects is G and

whose group of morphisms is H ⋊ G: the group of automorphisms of any given

object is isomorphic to H . Such a 2-group is called an automorphic 2-group.

The category of 2-groups can be shown to be equivalent to the category of

crossed modules, a concept due to Brown and Spencer [19]. A crossed module

consists of a tuple (G,H, t, α), where G and H are groups, t : H→G is a homo-

morphism, and α : G→Aut(H) is an action of G on H , such that t and α satisfy

some compatibility conditions, which turn out to be equivalent to the category

axioms in the 2-group described above. The Poincare 2-group, introduced by Baez

[5], is an example of an automorphic 2-group. It has been a subject of interest

as a source of a new class of spin foam models, first suggested by Crane and

Sheppeard [25]. Such models are based on the representation theory of 2-groups,

which is 2-categorical in nature, since one must consider representations, inter-

twiners between representations, and 2-intertwiners between intertwiners, which
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form a 2-category. A spin foam model based on a 2-group uses these to label faces,

edges, and vertices respectively.

The most evident relation of 2-groups to the sort of extended TQFT’s we have

been discussing is related to gauge theory. The role of the group G in constructing

the weak 2-functor ZG was through the groupoid of connections on G-bundles on

a space X. This is [Π1(X), G], the category of functors from the fundamental

groupoid of X into G thought of as a category with one object. One might

suppose that the natural extension would be to take G to be a 2-group, with a

group of objects, and take functors from Π1(X) into this.

This could be done, but perhaps a better approach is in the form of higher

gauge theory. Discussion of higher gauge theory can be found in work by Baez

and Schreiber [12] and Bartels [14]. The principle is that one should assign data

from a 2-group to both paths and homotopies of paths, so what one uses is not

Π1(X), but Π2(X), the fundamental 2-groupoid of X. This is a 2-category whose

objects are points in X, morphisms are paths, and 2-morphisms are homotopy

classes of homotopies of paths. It should be clear that this encodes information

not only about the first homotopy group of a space (as does the fundamental

group), but also the second homotopy group. In higher gauge theory one studies,

in this case, flat “2-connections” (or more generally n-connections), which are

seen as 2-functors from Π2(X) to a 2-group. In 3D, we have discussed how an
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extended TQFT based on a Lie group could possibly describe the evolution of

point-particles along worldlines in spacetime. A categorified form of this based on

2-connections could be of interest in 4D, where one could study the behaviour of

“strings” as well as point particles (see, for instance, Baez and Perez [11]).

Having begin by categorifying the standard definition of a TQFT, one could

then hope to continue the process and find an infinite “tower” of theories, each

having one more codimension than the last.

The last possible direction of generalization from our extended TQFT based

on a finite group would involve quantum groups. Whereas moving to 2-groups

involves “categorifying” the concept of a group, moving to quantum groups, as

the name suggests, involves “quantizing”. Neither procedure is, in general, a well

defined operation, but particular examples are understood. In particular, we could

try to generalize from finite groups to “finite quantum groups”, by which we mean

finite-dimensional quasitriangular Hopf algebras.

The idea behind quantum groups is described by Shahn Majid [68] and also

notably by Ross Street [81]. The idea provides a way to speak of deforming

topological groups, although there is no way of smoothly deforming the group

action of a topological group to a family of other such groups. Instead, one works

in a larger category, of “quantum” groups, of which usual groups correspond

to special cases. This is done using Gelfand duality, which relates commutative
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algebra and topological spaces. Specifically, it gives an equivalence saying that

each commutative C⋆-algebra is the algebra C(X) of continuous complex functions

on a compact Hausdorff space X.

Continuous functions f : X→Y give algebra homomorphisms C(f) : C(Y )→C(X),

so that if X is a group as well as a space, the C⋆-algebra C(X) gets a comulti-

plication C(·) : C(X)→C(X) ⊗ C(X), counit C(1) : C(X)→C and involution

C(−1) : C(X)→C(X). Since these come from operations on a group, they, along

with the (pointwise) multiplication, unit, and inverse in C(X), satisfy certain ax-

ioms, and relations. The axioms for a Hopf algebra generalize these. In particular,

they require that the multiplication be associative, but not necessarily commuta-

tive. A quasitriangular, or “braided” Hopf algebra H has a distinguished element

γ, thought of as the image of 1⊗ 1 under a “switch” operation H ⊗H→H ⊗H .

These Hopf algebras are what are called “quantum groups”.

We will not attempt a full explanation of quantum groups here, though see

the above references for full details). For our purposes, the interesting point

is that the Hopf algebras coming from Lie groups G as C(G) can be deformed

to noncommutative and non-cocommutative quantum groups, with a parameter

q which is a unit complex number. Given elements x and y, the deformation

replaces the operations such as multiplication by new ones, given as power series

in q. When q is a complex root of unity, this has particularly good properties.
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In particular, we expected to recover the Ponzano-Regge model of 3D quantum

gravity, based on SU(2), as an extended TQFT. Now, the Turaev-Viro model (see

[85] and [36]) is based on the q-deformed quantum groups SU(2)q, and in some

respects is more convenient than the Ponzano-Regge model. In particular, there

are infinitely many representations of SU(2), but only finitely many of SU(2)q

when q is an nth root of unity (specifically, n − 1 of them). This gives better

convergent properties when summing over representations. In general, spin foam

models involving quantum groups sometimes have such good finiteness properties.

As a first effort to generalize from our situation of an extended TQFT based

on a finite group, we may try to develop an extended TQFT from the correspond-

ing class of quantum groups - namely, finite dimensional quasitriangular Hopf

algebras.

Finally, it should be possible to combine our different directions of general-

ization. For example, Crane and Yetter [27] discuss generally a similar family

of algebraic and higher-algebraic structures which give rise to TQFTs in vari-

ous dimensions. In 4D, the relevant structure is a Hopf category - a categorified

equivalent of a Hopf algebra. Marco Mackaay [65] shows very explicitly how to

construct invariants of 4-manifolds from certain kinds of 2-categories by means of

the sort of state-sum model which we have been discussing. It would be useful to
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study how much of this can be described in the “geometric” style which we have

examined here in the form of groupoids of connections.

All of these directions suggest ways in which our results could be expanded

further by future investigation.
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Appendix A

Internal Bicategories in Bicat

We rely on the notion of a bicategory internal to Bicat in our discussion of

Verity double bicategories in Chapter 4, and thus in the development of the Verity

double bicategory nCob2 in Chapter 5. Here we present a more precise definition

of this concept, and in Lemmas 6 and 7 we use it to show that examples having

properties like those of 2Cosp(C)0 (definition 6) give “double bicategories” in the

sense of Verity. These lemmas were used in the proofs of Theorems 2 and 3.

To begin with, we remark that the theory of bicategories, Th(Bicat) is more

complicated than that for categories. However as with Th(Cat), it will be a

category with objects Obj, Mor and 2Mor, and having all equalizers and pull-

backs. To our knowledge, a model of Th(Bicat) in Bicat has not been explicitly

described as such before. We could treat Obj as a horizontal bicategory, and the

objects of Obj, Mor and 2Mor as forming a vertical bicategory, but we note

that diagrammatic representation of, for instance, 2-morphisms in 2Mor would
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require a 4-dimensional diagram element. The comparison can be seen by con-

trasting tables A.1 and A.2.

The axioms satisfied by such a structure are rather more unwieldy than either

a bicategory or a double category, but they provide some order to the axioms for

a Verity double bicategory, as shown in Definition 5. We note that, although that

definition is fairly elaborate, it is simpler than would be a similarly elementary

description of a double bicategory.

In particular, where there are compatibility conditions involving equations

in this definition, such a structure would have only isomorphisms, themselves

satisfying additional coherence laws. In particular, in Verity double bicategories,

the action of 2-morphisms on squares is described by strict equations, rather than

being given by a definite isomorphism.

Similarly, it is possible (see [86] sec. 1.4) to define categories CylH (respec-

tively, CylV) of cylinders whose objects are squares, and maps are pairs of ver-

tical (respectively, horizontal) 2-morphisms joining the vertical (resp. horizontal)

source and targets of pairs of squares which share the other two sides (this is

shown in Table A.2, in Section A.3: the cylinders are “thin” versions of higher

morphisms appearing there). These are plain categories, with strict associativity

and unit laws. These conditions would be weakened in a double bicategory (in

which maps would include not just pairs of 2-morphisms, but also a 3-dimensional

232



Appendix A. Internal Bicategories in Bicat

interior of the cylinder, which is a morphism in 2 Mor, or 2-morphism in Mor, sat-

isfying properties only up to a 4-dimensional 2-morphism in 2 Mor).

We start to see all this by describing how to obtain a double bicategory.

A.1 The Theory of Bicategories

We described in Section 3.4 how a double category may be seen as a category

internal to Cat. To put it another way, it a model of Th(Cat), the theory

of categories, in Cat, which is a limit-preserving functor from Th(Cat) into

Cat. We did not make a special point of the fact, but this is a strict model. A

weak model would satisfy the category axioms such as composition only up to a

2-morphism in Cat, namely up to natural transformation. So, for instance, the

pullback (3.16) would be a weak pullback, so that instead of satisfying t◦c1 = s◦c2,

there would only be a natural transformation relating t◦c1 and s◦c2. Such a weak

model is the most general kind of model available in Cat, but double categories

arise as strict models.

So here we note that we are thinking of Bicat as a mere category, and that

we are speaking of strict internal bicategories. In particular, the most natural

structure for Bicat is that of a tricategory: it has objects which are bicategories,

morphisms which are weak 2-functors between bicategories, 2-morphisms which
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are natural transformations between such weak 2-functors, and 3-morphisms which

are “modifications” of such transformations. Indeed, Bicat is the standard ex-

ample of a tricategory, just as Cat is the standard example of a bicategory. But

we ignore the tricategorical structure for our purposes.

So as with double categories, we only consider strict models of the theory of

bicategories, Th(Bicat) in Bicat. That is, functors from the category Th(Bicat)

into Bicat (seen as a category). Equations in a model are mapped to equations

(not isomorphisms) in Bicat. We call these models double bicategories.

Before we can say explicitly what this means, we must describe Th(Bicat) as

we did for Th(Cat) in Section 3.4.

Definition 24 The theory of bicategories is the category (with finite limits) Th(Bicat)

given by the following data:

• Objects Ob, Mor, 2Mor

• Morphisms s, t : Ob→Mor and s, t : Mor→ 2Mor

• composition maps ◦ : MPairs→Mor and · : BPairs→2Mor, satisfying

the interchange law (3.2), where MPairs = Mor×Ob Mor and BPairs =
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2Mor×Mor 2Mor are equalizers of diagrams of the form:

Mor
t

""E
EEEE

EEE

MPairs
i // Mor2

π1

;;vvvvvvvvv

π2
##H

HH
HH

HH
HH

Ob

Mor

s
<<yyyyyyyy

(A.1)

and similarly for opnameBPairs.

• the associator map a : Triples→2Mor, where Triples = ×Ob Mor×Ob Mor

is the equalizer of a similar diagram for involving Mor3, such that a satisfies

s(a(f, g, h)) = (f ◦ g) ◦ h and t(a(f, g, h)) = f ◦ (g ◦ h)

• unitors l, r : Ob→Mor with s ◦ l = t ◦ l = idOb and s ◦ r = t ◦ r = idOb

This data is subject to the conditions that the associator is subject to the Pentagon

identity, and the unitors obey certain unitor laws.

Remark 17 The Pentagon identity is shown in (3.6) for a model of Th(Bicat)

in Sets), where we can specify elements of Mor, but the formal relations—that

the composites on each side of the diagram are equal—hold in general. These are

built from composable quadruples of morphisms and composition as indicated in

the labels. Similar remarks apply to the unitor laws shown in (3.7).

So we have the following:
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Definition 25 A double bicategory consists of:

• bicategories Obj of objects, Mor of morphisms, 2Mor of 2-morphisms

• source and target maps s, t : Mor→Obj and s, t : 2Mor→Mor

• partially defined composition functors ◦ : Mor2→Mor and · : 2Mor2→2Mor,

satisfying the interchange law (3.2)

• partially defined associator a : Mor3→2Mor with s(a(f, g, h)) = (f◦g)◦h

and t(a(f, g, h)) = f ◦ (g ◦ h)

• partially defined unitors l, r : Obj→Mor with s(l(x)) = t(l(x)) = x and

s(r(x)) = t(r(x)) = x

All the partially defined functors are defined for composable pairs or triples, for

which source and target maps coincide in the obvious ways. The associator should

satisfy the pentagon identity (3.6), and the unitors should satisfy the unitor laws

(3.7).

With this definition in mind, we recall Bénabou’s classic example of a bicate-

gory, that of spans, revieweed in Section 3.3. There is an analogous example here,

namely double spans, or in our case double cospans.
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A.2 The Double Cospan Example

In Section 4.3, we described a Verity double bicategory of “double cospans”,

2Cosp(C)0. This notation is intended to suggest it derives from a larger structure,

2Cosp(C), which is a double bicategory, as we shall show shortly. It is analogous to

the “profunctor-based examples” of pseudo-double categories described by Gran-

dis and Paré [46]. The Verity double bicategory described above is derived from

it. To see these facts, we first define 2Cosp(C) explicitly:

Definition 26 2Cosp(C) is a double bicategory of double cospans in C, con-

sisting of the following:

• the bicategory of objects is Obj = Cosp(C)

• the bicategory of morphisms Mor has: as objects, cospans in C; as mor-

phisms, commuting diagrams of the form 4.21 (in subsequent diagrams we

suppress the labels for clarity)

• as 2-morphisms, cospans of cospan maps, namely commuting diagrams of

the following shape:

•

•

•

•

•

•

•

•

•

• • •
OO
��

OO
��

OO
��

// oo

// oo

// oo

// ooWW//////

����
��
��
��
��
�

WW//////

����
��
��
��
��
�

WW//////

����
��
��
��
��
�

����
�

����
�

����
�

(A.2)
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• the bicategory of 2-morphisms has:

– as objects, cospan maps in C as in (3.9)

– as morphisms, cospan maps of cospans:

• • •

• • •

• • •

•

•

•

// oo

// oo

// oo

OO
��

OO
��

OO
��

OO
��

++WWWWWWWWWWW
wwooo

ooo

++WWWWWWWWWWW
wwooo

ooo

++WWWWWWWWWWW
wwooo

ooo

��?
??

��?
??

��?
??

(A.3)

– as 2-morphisms, cospan maps of cospan maps:

• • •

• • •

• • •

•

•

•

• • •
•
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(A.4)

All composition operations are by pushout; source and target operations are the

same as those for cospans.

Note that we could of course make the dual definition for spans, which may

be more natural (but is not what we need for the cobordism case).
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Remark 18 Just as 2-morphisms in Mor and morphisms in 2Mor can be seen

as diagrams which are “products” of a cospan with a map of cospans, 2-morphisms

in 2Mor are given by diagrams which are “products” of horizontal and vertical

cospan maps. These have, in either direction, four maps of cospans, with objects

joined by maps of cospans. Composition again is by pushout in composable pairs

of diagrams.

The next lemma shows how this is really an example of a double bicategory:

Lemma 6 For any category C with pushouts, 2Cosp(C) forms a double bicate-

gory.

Proof : Mor and 2Mor are bicategories since the composition functors act just

like composition in Cosp(C) in each column, and therefore satisfies the same

axioms.

Since the horizontal and vertical directions are symmetric, we can construct

functors between Obj, Mor, and 2Mor with the properties of a bicategory simply

by using the same constructions that turn each into a bicategory. In particular,

the source and target maps from Mor to Obj and from 2Mor to Mor are the

obvious maps giving the ranges of the projection maps in (4.21). The partially de-

fined (horizontal) composition maps ◦ : Mor2→Mor and ⊗H : 2Mor2→2Mor

are defined by taking pushouts of diagrams in C, which exist for any compos-
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able pairs of diagrams because C has pushouts. They are functorial since they

are independent of composition in the horizontal direction. The associator for

composition of morphisms is given in the pushout construction.

To see that this construction gives a double bicategory, we note that Obj,

Mor, and 2Mor as defined above are indeed bicategories. Obj, because Cosp(C)

is a bicategory. Mor and 2Mor because the morphism and 2-morphism maps

from the composition, associator, and other functors required for an double bicat-

egory give these the structure of bicategories as well.

Moreover, the composition functors satisfy the properties of a bicategory for

just the same reason that composition of cospans (and spans) does, since each of

the three maps involved are given by this construction. Thus, we have a double

bicategory. �

A.3 Decategorification

Our motivation for showing Lemma 6 is to get show that cobordisms with

corners form a special example of a Verity double bicategory of double cospans

in some suitable category C. We have described how to get a double bicategory

of such structures, so to get what we want, we need to show how a Verity double

bicategory can be a special kind of double bicategory. In particular, we need to
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define conditions which allow us to speak of the action of 2-cells upon squares. It is

helpful, in trying to understand what these are, to consider a “lower dimensional”

example of a similar process.

In a double category, thought of as an internal category in Cat, we have data

of four sorts, as shown in Table A.1.

Obj Mor

Objects •x
•

f
// •

Morphisms

•

g

��
•

• //

��

•

��
• //

>>>> �#F

•

Table A.1: Data of a Double Category

That is, a double category DC has categories Obj of objects and Mor of

morphisms. The first column of the table shows the data of Obj: its objects

are the objects of DC; its morphisms are the vertical morphisms. The second

column shows the data of Mor: its objects are the horizontal morphisms of DC;

its morphisms are the squares of DC.

Remark 19 The kind of “decategorification” we will want to do to obtain Verity

double bicategories has an analog in the case of double categories. Namely, there

is a condition we can impose which effectively turns the double category into a

category, where the horizontal and vertical morphisms are composable, and the
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squares can be ignored. The sort of condition involved is similar to the horn-filling

conditions introduced by Ross Street [80] in his first introduction of the idea of

weak ω-categories. In that case, all morphisms correspond to simplicial sets, and

a horn filling condition is one which says that, for a given hollow simplex with just

one face (morphism) missing from the boundary, there will be a morphism to fill

that face, and a “filler” for the inside of the simplex, making the whole commute.

A restricted horn-filling condition demands that this is possible for some class of

candidate simplices.

For a double category, morphisms can be edges or squares, rather than n-

simplices, but we can define the following “filler” condition: given any pair (f, g) of

a horizontal and vertical morphism where the target object of f is the source object

of g, there will be a unique pair (h, ⋆) consisting of a unique horizontal morphism

h and unique invertible square ⋆ making the following diagram commute:

x

h
��
�
�
�

f
// y

g

��
z

1z

//

???? �#
∗

z

(A.5)

and similarly when the source of f is the target of g. Notice that taking f or g to

be the identity in these cases implies F is the identity.

If, furthermore, there are no other interesting squares, then this double cat-

egory can be seen as just a category. In that case, the unique h can just be
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interpreted as the composite of f and g and ⋆ as the process of composition. So

we will use the notation g ◦ f instead of h in this situation.

To see that this defines a composition operation, we need to observe that

composition defined using these fillers agrees with the usual composition in the

horizontal or vertical categories, is associative, etc. For example, given morphisms

as in the diagram:

w
f

// x
f ′

// y

g

��
z

1z

// z
1z

// z

(A.6)

there are two ways to use the unique-filler principle to fill this rectangle. One

way is to first compose the pairs of horizontal morphisms on the top and bottom,

then fill the resulting square. The square we get is unique, and the morphism is

denoted g ◦ (f ′ ◦f). The second way is to first fill the right-hand square, and then

using the unique morphism we call g ◦ f ′, we get another square on the left hand

side, which our principle allows us to fill as well. The square is unique, and the

resulting morphism is called (g ◦f ′)◦f . Composing the two squares obtained this

way must give the square obtained the other way, since both make the diagram

commute, and both are unique. So we have:

w

(g◦f ′)◦f

��
�
�
�

f
// x

g◦f ′

��
�
�
�

f ′

// y

g

��
z

1z

//

>>>> �#
∗

z
1z

//

???? �#
∗

z

= w

g◦(f ′◦f)

��
�
�
�

f ′◦f
// y

g

��
z

1z

//

>>>> �#
∗

z

(A.7)
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So in fact we can “decategorify” a double category satisfying the unique filler

condition, and treat it as if it were a mere category with horizontal and ver-

tical morphisms equivalent. The composition between horizontal and vertical

morphisms is given by the filler: given one of each, we can find a square of the

required kind, by taking the third side to be an identity.

Remark 20 Note that our condition does not give a square for every possible

combination of morphisms which might form its sources and targets. In particular,

there must be an identity morphism—on the bottom in the example shown. If

that identity could be any morphism h, then by choosing f and g to be identities,

this would imply that every morphism must be invertible (at least weakly), since

there must then be an h−1 with h−1 ◦ h isomorphic to the identity. When a filler

square does exist, and we consider DB as a category C, the filler square indicates

there is a commuting square in C: we think of it as the identity between the

composites along the upper right and lower left.

The decategorification of a double bicategory to give a Verity double bicategory

is similar, except that whereas with a double category we were cutting down only

the squares (the lower-right quadrant of Table A.1. We need to do more with a

double bicategory, since there are more sorts of data, but they fall into a similar

arrangement, as shown in Table A.2.
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Obj Mor 2Mor

Objects •x
•

f
// •

•
  

?? •α
��

Morphisms

•

g

��
•

• //

��

•

��
• //

>>>> �#
F

•

•

����|� P1
��

  

?? •

��
•

��

  t _ J

?? •��
�
�
�
�

2-Cells

•

����
•
α

ks

•

����|� P2
����

// •

����

	�
5

• // •

ks ks _ __ _

•

����

''
77 •

����

�
�
��
$
)
.

⇚T

• ''m h d _ Z V Q
77 •

ks

��

ks _ __ _

��
�
�
�
�

Table A.2: The data of a double bicategory

Remark 21 This shows the data of the bicategories Obj, Mor, and 2Mor, each

of which has objects, morphisms, and 2-cells. Note that the morphisms in the

three entries in the lower right hand corner—2-cells in Mor, and morphisms and

2-cells in 2Mor—are not 2-dimensional. The 2-cells in Mor and morphisms in

2Mor are the three-dimensional “filling” inside the illustrated cylinders, which

each have two square faces and two bigonal faces.

The 2-cells in 2Mor should be drawn 4-dimensionally. The picture illustrated

can be thought of as taking both square faces of one cylinder P1 to those of
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another, P2, by means of two other cylinders (S1 and S2, say), in such a way that

P1 and P2 share their bigonal faces. This description works whether we consider

the Pi to be horizontal and the Sj vertical, or vice versa. These describe the

“frame” of this sort of morphism: the “filling” is the 4-dimensional track taking

P1 to P2, or equivalently, S1 to S2 (just as a square in a double category can be

read horizontally or vertically). Not all relevant parts of the diagram have been

labelled here, for clarity.

Next we want to describe a condition similar to the one we gave which made

it possible to think of a double category as a category. In that case, we got a

condition which effectively allowed us to treat any square as an identity, so that

we only had objects and morphisms. Here, we want a condition which lets us

throw away the three entries of table A.2 in the bottom right. This condition,

when satisfied, should allow us to treat a double bicategory as a Verity double

bicategory. It comes in two parts:

Definition 27 We say that a double bicategory satisfies the vertical action

condition if, for any morphism M1 ∈Mor and 2-morphism α ∈ Obj such that

s(M1) = t(α), there is a morphism M2 ∈ Mor and 2-morphism P ∈ Mor such
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that P fills the “pillow diagram”:

x //

��

��
y

��

x′ //

???? �#
M1

y′

α
�� →

P
x //

��

y

��

x′ //

???? �#
M2

y′

(A.8)

where M2 is the back face of this diagram, and the 2-morphism in Obj at the

bottom is the identity.

An double bicategory satisfies the horizontal action condition if for any

morphism M1 ∈Mor and object α in 2Mor with s(M1) = t(α there is a morphism

M2 ∈Mor and morphism P ∈ 2Mor such that P fill the pillow diagram which is

the same as (A.8) turned sideways.

Here, M2 is the square which will eventually be named M1 ⋆V α when we define

an action of 2-cells on squares.

Remark 22 One can easily this condition is analogous to our filler condition

(A.5) in a double category by turning the diagram (A.8) on its side. What the

diagram says is that when we have a square with two bigons—the top one arbitrary

and the bottom one the identity—there is another square M2 (the back face of

a pillow diagram) and a filler 2-morphism P ∈ 2Mor which fills the diagram. If

one imagines turning this diagram on its side and viewing it obliquely, one sees

precisely (A.5), as a dimension has been suppressed. What is a square in (A.5) is

247



Appendix A. Internal Bicategories in Bicat

a cylinder (2-morphism in 2Mor); the roles of both squares and bigons in (A.8)

are played by arrows in (A.5); arrows in (A.8) become pointlike objects in (A.5).

However, to get the compatibility between horizontal and vertical actions, we

need something more than this. In particular, since these involve both horizontal

and vertical cylinders (3-dimensional morphisms in the general sense), the com-

patibility condition must correspond to the 4-dimensional 2-cells in 2Mor, shown

in the lower right corner of Table A.2.

To draw necessary condition is difficult, since the necessary diagram is four-

dimensional, but we can describe it as follows:

Definition 28 We say a double bicategory satisfies the action compatibility

condition if the following holds. Suppose we are given

• a morphism F ∈Mor

• an object α ∈ 2Mor whose target in Mor is a source of F

• a 2-cell β ∈ Obj whose target morphism is a source of F

• an invertible morphism P1 ∈ 2Mor with F as source, and the objects α and

id in 2Mor as source and target

• an invertible 2-cell P2 ∈Mor with F as source, and the 2-cells β and id in

Mor as source and target
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where P1 and P2 have, as targets, morphisms in Mor we call α ⋆ F and β ⋆ F

respectively. Then there is a unique morphism F̂ in Mor and 2-cell T in 2Mor

having all of the above as sources and targets.

Geometrically, we can think of the unique 2-cell in 2Mor as resembling the

structure in the bottom right corner of Table A.2. This can be seen as taking one

horizontal cylinder to another in a way that fixes the (vertical) bigons on its sides,

by means of a translation which acts on the front and back faces with a pair of

vertical cylinders (which share the top and bottom bigonal faces). Alternatively,

it can be seen as taking one vertical cylinder to another, acting on the faces with a

pair of horizontal cylinders. In either case, the cylinders involved in the translation

act on the faces, but the four-dimensional interior, T , acts on the original cylinder

to give another. The simplest interpretation of this condition is that it is precisely

the condition needed to give the compatibility condition (4.13).

Remark 23 Notice that the two conditions given imply the existence of unique

data of three different sorts in our double bicategory. If these are the only data

of these kinds, we can effectively omit them (since it suffices to know information

about their sources and targets. This omission is part of a decategorification of

the same kind we saw for the double category DC.

In particular, we use the above conditions to show the following:
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Lemma 7 Suppose D is a double bicategory which has at most a unique morphism

or 2-morphisms in 2Mor, and at most a unique 2-morphism in Mor, having any

specified sources and targets; and D satisfies the horizontal and vertical action

conditions and the action compatibility condition; then D gives a Verity double

bicategory in the sense of Verity.

Proof : D consists of bicategories (Obj,Mor, 2Mor) together with all required

maps (three kinds of source and target maps, two kinds of identity, three partially-

defined compositions, left and right unitors, and the associator), satisfying the

usual properties. To begin with, we describe how the elements of a Verity double

bicategory V (definition 5) arise from this.

The horizontal bicategory Hor of V is simply Obj. The vertical bicategory

Ver consists of the objects of each of Obj, Mor, and 2Mor, where the required

source, target and composition maps for Ver are just the object maps from those

for D, which are all functors. We next check that this is a bicategory.

The source and target maps for Ver satisfy all the usual rules for a bicategory

since the corresponding functors in D do. Similarly, the composition maps satisfy

(3.3), (3.4) and (3.5) up to natural isomorphisms: they are just object maps

of functors which satisfy corresponding conditions. We next illustrate this for

composition.
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In D, there is an associator 2-natural transformation. That is, a partially de-

fined weak 2-functor α : Mor3 → 2Mor satisfying the pentagon identity (strictly,

since we are considering a strict model of the theory of bicategories). Among the

data for α are the object maps, which give the maps for the associator in Ver.

Since the associator 2-natural transformation satisfies the pentagon identity, so

do these object maps. The other properties are shown similarly, so that Ver is a

bicategory.

Next, we declare that the squares of V are the morphisms of Mor. Their

vertical source and target maps are the morphism maps from the source and

target functors from Mor to Obj. Their horizontal source and target maps are

the internal ones in Mor. These satisfy equations (4.3) because the source and

target maps of D are functors (in our special example of cospans, this amounts

to the fact that (4.21) commutes).

The horizontal composition of squares (4.5) is just the composition of mor-

phisms in Mor. Now, by assumption, Mor is a bicategory with at most unique

2-morphisms having any given source and target. If we declare these are identi-

ties (that is, identify their source and target morphisms), we get that horizontal

composition is exactly associative and has exact identities.

The vertical composition of squares (4.4) is given by the morphism maps for

the partially defined functor ◦ for Mor, and so composition here satisfies the
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axioms for a bicategory. In particular, it has an associator and a unitor: but

these must be morphisms in 2Mor since we take the morphism maps from the

associator and unitor functors (and the theory of bicategories says that these give

2-morphisms). But again, we can declare that there are only identity morphisms

in 2Mor, and this composition is exactly associative.

The interchange rule (4.6) follows again from functoriality of the composition

functors.

The action of the 2-morphisms (bigons) on squares is guaranteed by the hor-

izontal and vertical action conditions. In particular, by composition of in Mor

or 2Mor, we guarantee the existence of the categories of horizontal and vertical

cylinders CylH and CylV, respectively. These come from the 2-morphisms in

Mor or morphisms in 2Mor respectively which those conditions demand must

exist. Taking these to be identities, the cylinders consist of commuting cylindrical

diagrams with two bigons and two squares.

In the case where one bigon is the identity, and the other is any bigon α, the

conditions guarantee the existence of a cylinder, which we have declared to be the

identity. This defines the effect of the action of α on the square whose source is

the target of α. If this square is F , we denote the other square α ⋆H F or α ⋆V F

as appropriate.
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The condition (4.11) guaranteeing independence of the horizontal and vertical

actions follows from the action compatibility condition. For suppose we have a

square F whose horizontal and vertical source arrows are the targets of 2-cells α

and β, and attach to its opposite faces two identity 2-cells. Then the horizontal

and vertical action conditions mean that there will be a square α ⋆H F and a

square β ⋆V F ). Then the action compatibility condition applies (the Pi are the

identities we get from the action condition), and there is a morphism in Mor,

namely a square in V and a 2-cell T ∈ 2Mor. Consider the remaining face, which

the action condition suggests we call α⋆H (β ⋆V F ) or β ⋆V (α⋆H F ), depending on

the order in which we apply them. The compatibility condition says that there is

a unique square which fills this spot so the two must be equal.

Now suppose we have three composable squares—that is, morphisms F , G, and

H in Mor, which are composable along shared source and target objects in Mor.

The associator functor has an object map, giving objects in 2Mor at the “top”

and “bottom” of the squares. It also has a morphism map, giving morphisms

in 2Mor. But by assumption there is only a unique such map between , these

associators must be the unique morphism in 2Mor with source (H ◦ G) ◦ F and

target H ◦ (G ◦ F ). Then by the vertical action condition, we have a filler 2-

morphism in Mor for the action on the composite square by the top associator,

and then, taking the result and composing with the bottom associator, we get
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another filler. This must be the unique map between the two composites—which is

the identity, since they have the same sources and targets. So we get a commuting

cylinder. Composing squares along source and target morphisms in Obj works

the same way by a symmetric argument.

The condition (4.15) is similar—the unitor functor will give the unique mor-

phism in 2Mor, and the action compatibility condition gives the commuting cylin-

der for unitors on the composite of squares.

So from any such double bicategory we get a Verity double bicategory. �

Remark 24 It is interesting to note how these arguments apply to the case when

we are looking at constructions in 2Cosp(C), as will be the case in nCob.

In particular, the interchange rules hold because the middle objects in the

four squares being composed form the vertices of a new square. The pushouts

in the vertical and horizontal direction form the middle objects of vertical and

horizontal cospans over these. The interchange law means that the pushout (in

the horizontal direction) of the objects from the vertical cospans is in the same

isomorphism class as the pushout (in the vertical direction) of the objects from the

horizontal cospans. This is true because of the universal property of the pushout.

The horizontal and vertical 2-morphisms are maps of cospans, and act on the

squares by composition of morphisms in C: given a square M with four maps

Pi and Πi to the edges as in (4.21); and a morphism of cospans on any edge
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(for definiteness, say the top), where the C-morphism in the middle is S
f
→ S̃.

Then the composite f ◦ P1 : M→ S̃ is a source (or target) map to the cospan

X
ι1→ S̃

ι2←Y . The result is again a square. In particular, composition of internal

maps in horizontal and vertical morphism of cospans with the projections in a

square are independent.
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