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Abstract

This thesis is an exploration of some places where ideas in computer science and physics share
a common mathematical structure. The first part of the thesis deals with partition functions in
physics and algorithmic information theory. In physics, partition functions are used to encode
information about statistical systems in thermal equilibrium; in algorithmic information theory,
they are used to encode information about the probability that a Turing machine will halt given
a random program. We derive analogues of Maxwell’s relations in the algorithmic setting and
consider thermodynamic cycles such as the Carnot cycle or Stoddard cycle. We also show that
given a program and a probability P, we can effectively compute a time after which the probability
that the program will eventually halt is less than P. This idea of a time cutoff is reminiscent of a
high-energy cutoff in renormalization.

The second part of the thesis reviews symmetric monoidal closed categories and bicategories. We
begin with an expository chapter on symmetric monoidal closed categories and demonstrate how
they form a broad generalization of the Curry-Howard isomorphism, including string diagrams
in physics, cobordisms in topology, multiplicative intuitionistic linear logic, and the simply-typed
lambda calculus in computer science. We then go up one dimension and present the complete
definition of a special kind of symmetric monoidal closed bicategory called a compact closed bi-
category. We emphasize the combinatorial aspects and prove that given a 2-category T with finite
products and weak pullbacks, the bicategory Span,(7) of objects of T, spans, and isomorphism
classes of maps of spans is compact closed. As a corollary, certain bicategories of “resistor net-
works” are compact closed.
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Introduction

There is a nice analogy between the set of possible arrangements of gas particles in a piston and
the set of halting programs written in a given programming language. In Chapter 1.1, we talk about
“observables” in each case: just as we can ask for the volume of the convex hull of the particles,
their total kinetic energy, or how many particles there are, we can ask for the length of a program,
its runtime, or the amount of memory it uses. We associate thermodynamic conjugate variables
to each observable: just as pressure is conjugate to volume, we can talk about the “algorithmic
pressure” that is conjugate to the size of the program. We single out one observable property of a
program to play the role of internal energy and then define the entropy of a distribution on programs
and analogues of Maxwell’s equations. Finally, by considering loops in the pressure/volume space,
we describe an “algorithmic heat engine”.

Algorithmic entropy is a special case of the entropy as studied in statistical mechanics. A Gibbs
ensemble is a probability measure that maximizes the entropy subject to constraints on the average
values of some observables. In most work on algorithmic entropy, the relevant observable is the
length of a program; however, the full structure of thermodynamics only appears when we consider
multiple observables. We focus on the log of the runtime E, the length V, and the output N. The

Gibbs ensemble is of the form
l e—,BE(x)—yV(x)—(SN(x)

P:Z

for certain 3, y, 9, where

7 = N g PEQ-YV0)-oNw
is called the ‘partition function’ of the ensemble and X is the domain of some universal Turing
machine U. The partition function reduces to the halting probability for U when 8 = 6 = 0 and
v =1In2.

We derive an algorithmic analogue of the basic thermodynamic relation

dE =TdS — PdV + dN,

where S is the entropy, T = 1/8, P = y/B, and u = —¢/f are algorithmic versions of temperature,
pressure, and chemical potential, respectively. Starting from this relation, we derive analogues of
Maxwell’s equations and consider thermodynamic cycles like the Carnot cycle or Stoddard cycle.

The halting probability of a universal Turing machine is uncomputable. However, in Chapter 1.2,
we show that we can effectively bound the probability that a particular program halts. Consider an
N-bit program p that runs for a long time without stopping—say, 2°" steps. There is a program
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not much longer than N bits that will run p and, if it ever halts, will output the number of steps
t required for p to halt. This is a short program of length N + ¢ that produces a large number ¢
whose length is greater than 2N, so t must be nonrandom. The density of nonrandom numbers
near ¢ goes to zero as t goes to infinity, so the density of times at which the program might halt
also goes to zero. By choosing a computably enumerable distribution on natural numbers, we turn
densities into probabilities: given an N-bit program p and a natural number k, we show that we
can effectively compute a critical time #, such that the probability that p halts after running at least
fo steps is less than 27%. Manin [146] referenced the published version of this chapter and showed
that this critical time is formally equivalent to a high-energy cutoff when renormalizing quantum
field theory.

It is well-known that Wick rotation turns equations describing thermal systems into equations
describing quantum systems. By replacing the energy scale kT in a classical partition function
by the imaginary energy i#i/t, we get a quantum partition function. Consider a large collection of
harmonic oscillators at temperature 7. The relative probability of finding any given oscillator with
energy E is exp(—E/kgT), where kp is Boltzmann’s constant. The average value of an observable

Q is, up to a normalizing constant,
Z Qe EiltkaT)
J

Now consider a single quantum harmonic oscillator in a superposition of basis states, evolving for
a time ¢ under a Hamiltonian H. The relative phase change of the basis state with energy E is
exp(—Eit/h), where 7 is Planck’s constant. The probability amplitude that a uniform superposition
of states [) = 3 ;1j) evolves to an arbitrary superposition |Q) = ., Q/|j) is, up to a normalizing
constant,

(Qle™ ™ /|y
= D Qi)

J
_ —Ejit/h
- 0
J

Feynman’s path integral formulation of quantum mechanics considers a sum over paths y rather
than a sum over states, each weighted by a phase e~ ®/% where S (y) is the classical action of the
path. When we move from quantum mechanics to quantum field theory, the partition function sums
over diagrams rather than paths. Feynman diagrams form a category: there is a trivial diagram for
any set of particles where they do not interact at all, and we can compose any two diagrams where
the output particles of one diagram match the input particles of the next. This category is equipped
with certain structure that also appears in programming languages, linear logic, and topology.

The shared structure is called a “symmetric monoidal closed category”; the contribution of Chapter
IL.1 of this thesis is an exposition of existing work on symmetric monoidal closed categories and
the extension of the appropriate version of the Curry-Howard isomorphism to Feynman diagrams
and Hilbert spaces.

A category consists of a collection of “objects” and, for each pair (x, y) of objects, a set of “mor-
phisms” from x to y. Morphisms are composable if the target of one matches the source of the next;
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every object has an identity morphism from the object to itself; and composition is associative and
unital. Feynman diagrams form a category in which objects are particle types and morphisms are
graphs of interactions between them. We interpret Feynman diagrams in the category of Hilbert
spaces and linear transformations; that is, we associate to each particle a Hilbert space of states
and to each diagram a linear transformation that tells how those states change over time. In com-
puter science, we have a category of data types with typed functions between them; in the Haskell
community, this category is called “Hask”. In linear logic, we have categories whose objects are
propositions and whose morphisms are constructive proofs. In topology, we have categories whose
objects are manifolds of a certain dimension and whose morphisms are cobordisms.

A “monoidal” category lets us pair up objects and morphisms. We can juxtapose Feynman dia-
grams to get a new diagram and take the tensor product of Hilbert spaces to get a new Hilbert
space. Programming languages usually provide some way of combining data types into a new one;
Python and Scala, for instance, have “tuple” type constructors. In linear logic, the assertion that
both the propositions P and Q hold is itself a proposition. In topology, the disjoint union of two
manifolds is a manifold. A “braided” monoidal category lets us move objects past each other using
an isomorphism called the “braiding”. A “symmetric” monoidal category is one in which braiding
twice is the identity.

A symmetric monoidal “closed” category has a notion of a “function type” or “implication” or
“time reversal”. Given two Haskell data types P and Q, the data type P -> Q describes typed
functions between them. In linear logic, given two propositions P and Q, the assertion that P
implies Q is a proposition. In topology, given any cobordism from a manifold P to a manifold
Q, we can “bend” the input around and make it an output, getting a cobordism from the empty
manifold to Q and the reverse orientation of P.

Similarly, given a Feynman diagram from a set P of particles to a set O, we can “bend” the input
set around and make it an output, getting a diagram from photons to Q and the antiparticles of P:

Given any linear transformation from a Hilbert space P to a Hilbert space Q, we can use the notion
of “gate teleportation” [87] to encode the transformation into a quantum state in P* ® Q. When the



function type can be expressed in terms of a dual object and the tensor product, as with Feynman
diagrams, the category of cobordisms, or Hilbert spaces, we call the category “compact closed”.

Feynman diagrams were designed to represent quantum systems interacting. We assign a Hilbert
space of quantum states to each particle such that the pairing and braiding operations are preserved:
if we assign the space U to one particle and V to another, then we have to assign U®YV to the pair of
particles. We assign a linear transformation to each vertex that tells how the quantum states evolve.
This kind of structure-preserving map is called a “braided monoidal functor”; every monoidal
functor also preserves duals, so the entire structure of a compact closed category is preserved.

We can consider such functors from other compact closed categories into the category Hilb of
Hilbert spaces and linear transformations. For example, we can think of manifolds as modeling
empty curved space, and cobordisms as modeling spacetime. A braided monoidal functor from the
category of manifolds and cobordisms to Hilb assigns a Hilbert space of quantum states to space
and a linear transformation to spacetime, giving a toy model of quantum gravity. This toy model
does not include matter; it only talks about topological changes in space over time, so the model is
called a “topological quantum field theory”.

The structure of a compact closed category can be generalized to “bicategories”, where in addition
to morphisms between objects we have 2-morphisms between morphisms. In Chapter I1.2, we lay
out the complete definition of a compact closed bicategory (the parts of which have not appeared
together in a single place before) and then prove that various useful bicategories are compact
closed. We take special note of bicategories of “spans”.

In particular, given a category T with pullbacks, we can define a bicategory Span(7’) whose

e objects are those of T,

e morphisms from A to B are “spans” consisting of an “apex” object C and an ordered pair of
morphisms (f : C - A,g : C — B) from T, and

e 2-morphisms are morphisms from C to C” such that the obvious diagram commutes.

If T is the category of finite sets, then we can think of the subset of C consisting of those elements
¢ such that f(c¢) = a and g(c) = b as being a “matrix element” at row a and column b. If we
simply count these subsets, we get a matrix of natural numbers, and the pullback corresponds to
matrix multiplication. By using categories T other than the category of finite sets, we get a vast
generalization of linear algebra. We conclude Chapter I1.2 with a proof that when we take the
monoidal tricategory of spans described by Hoffnung [99] and mod out by 3-isomorphisms, we get
a compact closed bicategory.

Compact closed bicategories are interesting to us because they open up at least three areas for
future research. First, Lawvere showed that we can think of categories with products as a kind
of programming language. As programmers, we can write a Java interface that describes the
operations on a monoid (identity element and multiplication) and write tests to check the relations
(associativity and unit laws). This interface, together with the tests, is a presentation of a category
with products, called “the Lawvere theory for monoids”. Every implementation of the interface
describes a functor from the Lawvere theory for monoids into the category Set and vice versa. The
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tao of categorification suggests there should be a “higher Lawvere theory of symmetric monoidal
closed categories”; the fact that the currying adjunction between tensor and the internal hom is an
isomorphism of profunctors means that this higher theory ought to be a compact closed bicategory
and take models in Prof.

Second, Lambek and Scott showed that simply-typed lambda calculus forms a cartesian closed
category, but only if we ignore the process of computation. This is only possible because lambda
calculus is confluent: it does not matter in what order the rewrite rules are applied. Concurrent
calculi like Milner’s pi calculus are not confluent; once we can express contention for resources—
like a deposit to and a withdrawal from the same bank account—it matters a great deal in which
order the rewrites occur. This suggests that we need to explicitly account for rewrites using 2-
morphisms in a bicategorical setting. The higher theory of a symmetric monoidal closed category
above provides many of the pieces we need for the pi calculus: the unit object can be the zero
process, the tensor product can be concurrency, and the internal hom should be involved in putting
a process under a prefix. The 2-morphisms for adjunctions in this bicategory drawn as string
diagrams look amazingly like synchronization on a name.

Finally, this bicategorical approach should also fit better with physics: rewrites are processes that
occur over time like particle interactions do. Extended topological quantum field theories should be
functors between compact closed bicategories, so it is not unreasonable to expect a nice quantum
interpretation of some kind of linear pi calculus.
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Chapter 1

Algorithmic thermodynamics

The first mathematical structure we will examine that appears in both computer science and physics
is the partition function. Partition functions encode how likely it is to find a system in a given state.
From the partition function, we can compute the “entropy”, the number of bits required to pick
out the particular state the system is in. In statistical mechanics, the bits describe the positions
and momenta of a collection of particles; in algorithmic information theory, the bits describe a
program.

Algorithmic entropy can be seen as a special case of entropy as studied in statistical mechanics.
This viewpoint allows us to apply many techniques developed for use in thermodynamics to the
subject of algorithmic information theory. In particular, suppose we fix a universal prefix-free
Turing machine and let X be the set of programs that halt for this machine. Then we can regard
X as a set of ‘microstates’, and treat any function on X as an ‘observable’. For any collection
of observables, we can study the Gibbs ensemble that maximizes entropy subject to constraints
on expected values of these observables. We illustrate this by taking the log runtime, length, and
output of a program as observables analogous to the energy E, volume V and number of molecules
N in a container of gas. The conjugate variables of these observables allow us to define quantities
which we call the ‘algorithmic temperature’ T, ‘algorithmic pressure’ P and ‘algorithmic potential’
U, since they are analogous to the temperature, pressure and chemical potential. We derive an
analogue of the fundamental thermodynamic relation dE = TdS — PdV + udN, and use it to study
thermodynamic cycles analogous to those for heat engines. We also investigate the values of T, P
and u for which the partition function converges. At some points on the boundary of this domain
of convergence, the partition function becomes uncomputable. Indeed, at these points the partition
function itself has nontrivial algorithmic entropy.

1.1 Introduction

Many authors [34, 56, 78, 129, 141, 183, 194, 196] have discussed the analogy between algorithmic
entropy and entropy as defined in statistical mechanics: that is, the entropy of a probability measure
p on a set X. It is perhaps insufficiently appreciated that algorithmic entropy can be seen as a
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special case of the entropy as defined in statistical mechanics. We describe how to do this in
Section 1.3.

This allows all the basic techniques of thermodynamics to be imported to algorithmic information
theory. The key idea is to take X to be some version of ‘the set of all programs that eventually
halt and output a natural number’, and let p be a Gibbs ensemble on X. A Gibbs ensemble is
a probability measure that maximizes entropy subject to constraints on the mean values of some
observables — that is, real-valued functions on X.

In most traditional work on algorithmic entropy, the relevant observable is the length of the pro-
gram. However, much of the interesting structure of thermodynamics only becomes visible when
we consider several observables. When X is the set of programs that halt and output a natural
number, some other important observables include the output of the program and logarithm of
its runtime. So, in Section 1.4 we illustrate how ideas from thermodynamics can be applied to
algorithmic information theory using these three observables.

To do this, we consider a Gibbs ensemble of programs which maximizes entropy subject to con-
straints on:

e FE, the expected value of the logarithm of the program’s runtime (which we treat as analogous
to the energy of a container of gas),

e V. the expected value of the length of the program (analogous to the volume of the container),
and

e N, the expected value of the program’s output (analogous to the number of molecules in the
gas).

This measure is of the form

l e—,BE(x)—yV(x)—(SN(x)
Z

for certain numbers S, y, 6, where the normalizing factor

p:

7 = Z ¢ BE@-yV()-8N ()
xeX

is called the ‘partition function’ of the ensemble. The partition function reduces to Chaitin’s num-
ber Q when 8 =0,y =1n2 and 6 = 0. This number is uncomputable [56]. However, we show that
the partition function Z is computable when 8 > 0,y > 1n2, and 6 > 0.

We derive an algorithmic analogue of the basic thermodynamic relation
dE =TdS — PdV + udN.
Here:
e § is the entropy of the Gibbs ensemble,
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e T = 1/B is the ‘algorithmic temperature’ (analogous to the temperature of a container of
gas). Roughly speaking, this counts how many times you must double the runtime in order
to double the number of programs in the ensemble while holding their mean length and
output fixed.

e P = /B is the ‘algorithmic pressure’ (analogous to pressure). This measures the tradeoft
between runtime and length. Roughly speaking, it counts how much you need to decrease
the mean length to increase the mean log runtime by a specified amount, while holding the
number of programs in the ensemble and their mean output fixed.

e 1 = —0/B1s the ‘algorithmic potential’ (analogous to chemical potential). Roughly speaking,
this counts how much the mean log runtime increases when you increase the mean output
while holding the number of programs in the ensemble and their mean length fixed.

Starting from this relation, we derive analogues of Maxwell’s relations and consider thermody-
namic cycles such as the Carnot cycle or Stoddard cycle. For this we must introduce concepts of
‘algorithmic heat’ and ‘algorithmic work’.

N\

T
/ ML
d AR
K

—

i
S S
Sl dh Ny
Y oot liresdiiecsesy W
1/
]

Y

SN

$
$
SRS

%

N
N

SRR RTINS N

NN
W,

Charles Babbage described a computer powered by a steam engine; we describe a heat engine pow-
ered by programs! We admit that the significance of this line of thinking remains a bit mysterious.
However, we hope it points the way toward a further synthesis of algorithmic information theory
and thermodynamics. We call this hoped-for synthesis ‘algorithmic thermodynamics’.

1.2 Related Work

Li and Vitanyi use the term ‘algorithmic thermodynamics’ for describing physical states using
a universal prefix-free Turing machine U. They look at the smallest program p that outputs a
description x of a particular microstate to some accuracy, and define the physical entropy to be

Sa(x) = (kIn2)(K(x) + H,),

where K(x) = |p| and H, embodies the uncertainty in the actual state given x. They summarize
their own work and subsequent work by others in chapter eight of their book [142]. Whereas they
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consider x = U(p) to be a microstate, we consider p to be the microstate and x the value of the
observable U. Then their observables O(x) become observables of the form O(U(p)) in our model.

Tadaki [195] generalized Chaitin’s number Q to a function QP and showed that the value of this
function is compressible by a factor of exactly D when D is computable. Calude and Stay [52]
pointed out that this generalization was formally equivalent to the partition function of a statistical
mechanical system where temperature played the role of the compressibility factor, and studied
various observables of such a system. Tadaki [196] then explicitly constructed a system with that
partition function: given a total length E and number of programs N, the entropy of the system is
the log of the number of E-bit strings in dom(U)". The temperature is
1 AE

T ASly

In a follow-up paper [197], Tadaki showed that various other quantities like the free energy shared
the same compressibility properties as QP. In this thesis, we consider multiple variables, which is
necessary for thermodynamic cycles, chemical reactions, and so forth.

Manin and Marcolli [147] derived similar results in a broader context and studied phase transi-
tions in those systems. Manin [145, 146] also outlined an ambitious program to treat the infinite
runtimes one finds in undecidable problems as singularities to be removed through the process of
renormalization. In a manner reminiscent of hunting for the proper definition of the “one-element
field” F,,, he collected ideas from many different places and considered how they all touch on this
central theme. While he mentioned a runtime cutoff as being analogous to an energy cutoff, the
renormalizations he presented are uncomputable. In this thesis, we take the log of the runtime as
being analogous to the energy; the randomness described by Chaitin and Tadaki then arises as the
infinite-temperature limit.

1.3 Algorithmic Entropy

To see algorithmic entropy as a special case of the entropy of a probability measure, it is useful
to follow Solomonoff [183] and take a Bayesian viewpoint. In Bayesian probability theory, we
always start with a probability measure called a ‘prior’, which describes our assumptions about the
situation at hand before we make any further observations. As we learn more, we may update this
prior. This approach suggests that we should define the entropy of a probability measure relative
to another probability measure — the prior.

A probability measure p on a finite set X is simply a function p: X — [0, 1] whose values sum to
1, and its entropy is defined as follows:

S(p) == p(x)Inp(x).
xeX

But we can also define the entropy of p relative to another probability measure ¢:

S == ) p)In’ &

xeX
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This relative entropy has been extensively studied and goes by various other names, including
‘Kullback—Leibler divergence’ [130] and ‘information gain’ [165].

The term ‘information gain’ is nicely descriptive. Suppose we initially assume the outcome of
an experiment is distributed according to the probability measure g. Suppose we then repeatedly
do the experiment and discover its outcome is distributed according to the measure p. Then the
information gained is S (p, q).

Why? We can see this in terms of coding. Suppose X is a finite set of signals which are randomly
emitted by some source. Suppose we wish to encode these signals as efficiently as possible in the
form of bit strings. Suppose the source emits the signal x with probability p(x), but we erroneously
believe it is emitted with probability g(x). Then S (p, ¢)/ In2 is the expected extra message-length
per signal that is required if we use a code that is optimal for the measure ¢ instead of a code that
is optimal for the true measure, p.

The ordinary entropy S (p) is, up to a constant, just the relative entropy in the special case where
the prior assigns an equal probability to each outcome. In other words:

S(p) = S(p,q0) +S(qo)

when g is the so-called ‘uninformative prior’, with go(x) = 1/|X] for all x € X.

We can also define relative entropy when the set X is countably infinite. As before, a probability
measure on X is a function p: X — [0, 1] whose values sum to 1. And as before, if p and g are
two probability measures on X, the entropy of p relative to ¢ is defined by

Sy ==Y poy m 2. (1.1

~ q(x)

But now the role of the prior becomes more clear, because there is no probability measure that
assigns the same value to each outcome!

In what follows we will take X to be — roughly speaking — the set of all programs that eventually
halt and output a natural number. As we shall see, while this set is countably infinite, there are still
some natural probability measures on it, which we may take as priors.

To make this precise, we recall the concept of a universal prefix-free Turing machine. In what
follows we use string to mean a bit string, that is, a finite, possibly empty, list of 0’s and 1’s. If
x and y are strings, let x||y be the concatenation of x and y. A prefix of a string z is a substring
beginning with the first letter, that is, a string x such that z = x||y for some y. A prefix-free set
of strings is one in which no element is a prefix of any other. The domain dom(M) of a Turing
machine M is the set of strings that cause M to eventually halt. We call the strings in dom(M)
programs. We assume that when the M halts on the program x, it outputs a natural number M(x).
Thus we may think of the machine M as giving a function M : dom(M) — N.

A prefix-free Turing machine is one whose halting programs form a prefix-free set. A prefix-free
machine U is universal if for any prefix-free Turing machine M there exists a constant ¢ such that
for each string x, there exists a string y with

U(y) = M(x) and |y| < |x| + c.
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Let U be a universal prefix-free Turing machine. Then we can define some probability measures
on X = dom(U) as follows. Let
|-]: X > N

be the function assigning to each bit string its length. Then there is for any constant y > In2 a
probability measure p given by
1
x) = —e M,
px) =7
Here the normalization constant Z is chosen to make the numbers p(x) sum to 1:

Z= Z e M,

xeX

It is worth noting that for computable real numbers y > In2, the normalization constant Z is
uncomputable [195]. Indeed, when y = In2, Z is Chaitin’s famous number Q2. We return to this
issue in Section 1.4.5.

Let us assume that each program prints out some natural number as its output. Thus we have a
function
N:X—->N

where N(x) equals i when program x prints out the number i. We may use this function to ‘push
forward’ p to a probability measure g on the set N. Explicitly:

giy="» M.
xeX:N(x)=i

In other words, if i is some natural number, ¢(i) is the probability that a program randomly chosen
according to the measure p will print out this number.

Given any natural number #n, there is a probability measure 6, on N that assigns probability 1 to
this number:

1 ifm=n
On(m) = { 0 otherwise.
We can compute the entropy of §, relative to g:
1 0n(d)
SOnq) = — ) 0,() In—
gN: q(0)
(1.2)
= — ln[ Z e_ﬂxl) +InZ.
xeX: N(x)=n

Since the quantity In Z is independent of the number n, and uncomputable, it makes sense to focus
attention on the other part of the relative entropy:

- ln[ > e—V'X'].

xeX: N(x)=n
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If we take y = In2, this is precisely the algorithmic entropy [57, 141] of the number n. So, up
to the additive constant In Z, we have seen that algorithmic entropy is a special case of relative
entropy.

One way to think about entropy is as a measure of surprise: if you can predict what comes next
— that is, if you have a program that can compute it for you — then you are not surprised. For
example, the first 2000 bits of the binary fraction for 1/3 can be produced with this short Python
program:

print "01" * 1000

But if the number is complicated, if every bit is surprising and unpredictable, then the shortest
program to print the number does not do any computation at all! It just looks something like

print "101000011001010010100101000101111101101101001010"

Levin’s coding theorem [140] says that the difference between the algorithmic entropy of a number
and its Kolmogorov complexity — the length of the shortest program that outputs it — is bounded
by a constant that only depends on the programming language.

So, up to some error bounded by a constant, algorithmic information is information gain. The
algorithmic entropy is the information gained upon learning a number, if our prior assumption was
that this number is the output of a randomly chosen program — randomly chosen according to the
measure p where y = In2.

So, algorithmic entropy is not just analogous to entropy as defined in statistical mechanics: it
is a special case, as long as we take seriously the Bayesian philosophy that entropy should be
understood as relative entropy. This realization opens up the possibility of taking many familiar
concepts from thermodynamics, expressed in the language of statistical mechanics, and finding
their counterparts in the realm of algorithmic information theory.

But to proceed, we must also understand more precisely the role of the measure p. In the next
section, we shall see that this type of measure is already familiar in statistical mechanics: it is a
Gibbs ensemble.

1.4 Algorithmic Thermodynamics

Suppose we have a countable set X, finite or infinite, and suppose Ci,...,C,: X — R is some
collection of functions. Then we may seek a probability measure p that maximizes entropy subject
to the constraints that the mean value of each observable C; is a given real number C;:

> p@) Ci(x) = Ci.
xeX

As nicely discussed by Jaynes [106, 107], the solution, if it exists, is the so-called Gibbs ensemble:

1
_ —(51C1(x)+++5,Cp(x))
X) = —¢€
p(x) Z
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for some numbers s; € R depending on the desired mean values C;. Here the normalizing factor Z
is called the partition function:

xeX

In thermodynamics, X represents the set of microstates of some physical system. A probability
measure on X is also known as an ensemble. Each function C;: X — R is called an observable,
and the corresponding quantity s; is called the conjugate variable of that observable. For example,
the conjugate of the energy E is the inverse of temperature 7', in units where Boltzmann’s constant
equals 1. The conjugate of the volume V — of a piston full of gas, for example — is the pressure
P divided by the temperature. And in a gas containing molecules of various types, the conjugate
of the number N; of molecules of the ith type is minus the ‘chemical potential’ y;, again divided by
temperature. For easy reference, we list these observables and their conjugate variables below.

THERMODYNAMICS
Observable | Conjugate Variable
£ 1
energy: —

gy T

1 Vv P
volume: =
T
number: N, _H
T

Now let us return to the case where X = dom(U). Recalling that programs are bit strings, one
important observable for programs is the length:

|-]: X - N.
We have already seen the measure
1
— _ v
plx) = Ze

Now its significance should be clear! This is the probability measure on programs that maximizes
entropy subject to the constraint that the mean length is some constant ¢:

Dp@id =

So, v is the conjugate variable to program length.

There are, however, other important observables that can be defined for programs, and each of
these has a conjugate quantity. To make the analogy to thermodynamics as vivid as possible,
let us arbitrarily choose two more observables and treat them as analogues of energy and the
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number of some type of molecule. Two of the most obvious observables are ‘output’ and ‘runtime’.
Since Levin’s computable complexity measure [139] uses the logarithm of runtime as a kind of
‘cutoff” reminiscent of an energy cutoff in renormalization, we shall arbitrarily choose the log of
the runtime to be analogous to the energy, and denote it as

E: X — [0, )

Following the chart above, we use 1/7 to stand for the variable conjugate to E. We arbitrarily treat
the output of a program as analogous to the number of a certain kind of molecule, and denote it as

N: X —-N.

We use —u/T to stand for the conjugate variable of N. Finally, as already hinted, we denote
program length as
V:X->N

so that in terms of our earlier notation, V(x) = |x|. We use P/T to stand for the variable conjugate
toV.

ALGORITHMS
Observable | Conjugate Variable
log runtime: E !
u : =
8 T
P
length: V —
eng T
u
tput: N -=
outpu T

Before proceeding, we wish to emphasize that the analogies here were chosen somewhat arbi-
trarily. They are merely meant to illustrate the application of thermodynamics to the study of
algorithms. There may or may not be a specific ‘best’ mapping between observables for programs
and observables for a container of gas! Indeed, Tadaki [196] has explored another analogy, where
length rather than log run time is treated as the analogue of energy. There is nothing wrong with
this. However, he did not introduce enough other observables to see the whole structure of ther-
modynamics, as developed in Sections 1.4.1-1.4.2 below.

Having made our choice of observables, we define the partition function by

Z = Z e_%(E(x)JrPV(x)—uN(x)) .
xeX

When this sum converges, we can define a probability measure on X, the Gibbs ensemble, by

1 1
_ == (E(x)+PV(x)—uN(x))
px)==e T .
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Both the partition function and the probability measure are functions of 7, P and . From these we
can compute the mean values of the observables to which these variables are conjugate:

E = ) p(EX
xeX

Vo= D pmVe
xeX

N = D> pHN®
xeX

In certain ranges, the map (7, P, ul - (E, ‘_/;N) will be invertible. This allows us to alternatively
think of Z and p as functions of E,V, and N. In this situation it is typical to abuse language by
omitting the overlines which denote ‘mean value’.

1.4.1 Elementary Relations

The entropy S of the Gibbs ensemble is given by

S =- Z p(x) In p(x).

xeX

We may think of this as a function of 7, P and p, or alternatively — as explained above — as func-
tions of the mean values E, V, and N. Then simple calculations, familiar from statistical mechanics
[164], show that

oS 1
—| == 1.3
OElywy T (1.3)
oS P
= == 1.4
oVign T (14)
oS u
— =-=. 1.5
ON|gv T (1.5)
We may summarize all these by writing
1 P u
= —dE + —dV — =dN
ds Td + TdV T
or equivalently
dE =TdS — PdV + udN. (1.6)
Starting from the latter equation we see:
OE
—| =T 1.7
oS V.N ( )
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oFE

el = _p 1.8
OV lsn (1.8)
OE

— = u. 1.9
N s v M (1.9)

With these definitions, we can start to get a feel for what the conjugate variables are measuring.
To build intuition, it is useful to think of the entropy S as roughly the logarithm of the number
of programs whose log runtimes, length and output lie in small ranges £ + AE, V + AV and
N + AN. This is at best approximately true, but in ordinary thermodynamics this approximation is
commonly employed and yields spectacularly good results. That is why in thermodynamics people
often say the entropy is the logarithm of the number of microstates for which the observables E, V
and N lie within a small range of their specified values [164].

If you allow programs to run longer, more of them will halt and give an answer. The algorithmic
temperature, 7, is roughly the number of times you have to double the runtime in order to double
the number of ways to satisfy the constraints on length and output.

The algorithmic pressure, P, measures the tradeoff between runtime and length [51]: if you want
to keep the number of ways to satisfy the constraints constant, then the freedom gained by having
longer runtimes has to be counterbalanced by shortening the programs. This is analogous to the
pressure of gas in a piston: if you want to keep the number of microstates of the gas constant, then
the freedom gained by increasing its energy has to be counterbalanced by decreasing its volume.

Finally, the algorithmic potential describes the relation between log runtime and output: it is a
quantitative measure of the principle that most large outputs must be produced by long programs.

1.4.2 Thermodynamic Cycles

One of the first applications of thermodynamics was to the analysis of heat engines. The underlying
mathematics applies equally well to algorithmic thermodynamics. Suppose C is a loop in (7, P, )
space. Assume we are in a region that can also be coordinatized by the variables E, V, N. Then the
change in algorithmic heat around the loop C is defined to be

AQ:§T&.
C

Suppose the loop C bounds a surface . Then Stokes’ theorem implies that

AnggTdS :dedS.
c b

However, Equation (1.6) implies that
dTdS =d(TdS) =d(dE + PdV — udN) = +dPdV — dudN
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since d*> = 0. So, we have
AQ = f(deV — dudN)
b
or using Stokes’ theorem again

AQ = f(PdV—,udN). (1.10)
c

In ordinary thermodynamics, N is constant for a heat engine using gas in a sealed piston. In this

situation we have
AQ = f PdV.
c

This equation says that the change in heat of the gas equals the work done on the gas — or equiv-
alently, minus the work done by the gas. So, in algorithmic thermodynamics, let us define fc Pdv
to be the algorithmic work done on our ensemble of programs as we carry it around the loop
C. Beware: the algorithmic work has the same units as the observable we choose to play the role
of internal energy. The algorithmic work is only the same as the ‘computational work’, meaning
the amount of computation done by a program as it runs, if we choose to use the runtime as the
analogue of internal energy. We have chosen to use the log runtime instead, so the concepts are
related, but not the same. If we had chosen to use the length of a program to represent the in-
ternal energy, then algorithmic work would be measured in bits and the two concepts would be
completely distinct.

To see an example of a cycle in algorithmic thermodynamics, consider the analogue of the heat
engine patented by Stoddard in 1919 [192]. Here we fix N to a constant value and consider the
following loop in the PV plane:

(P, V1)

(P3,V7)

(P1.V]) 3

(P4 V)

We start with an ensemble with algorithmic pressure P; and mean length V;. We then trace out a
loop built from four parts:

1. Isometric. We increase the pressure from P, to P, while keeping the mean length constant.
No algorithmic work is done on the ensemble of programs during this step.

2. Isentropic. We increase the length from V; to V, while keeping the number of halting pro-
grams constant. High pressure means that we are operating in a range of runtimes where if
we increase the length a little bit, many more programs halt. In order to keep the number
of halting programs constant, we need to shorten the runtime significantly. As we gradually
increase the length and lower the runtime, the pressure drops to P;. The total difference in
log runtime is the algorithmic work done on the ensemble during this step.
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3. Isometric. Now we decrease the pressure from P to P4 while keeping the length constant.
No algorithmic work is done during this step.

4. Isentropic. Finally, we decrease the length from V, back to V| while keeping the number of
halting programs constant. Since we are at low pressure, we need only increase the runtime
a little. As we gradually decrease the length and increase the runtime, the pressure rises
slightly back to P;. The total increase in log runtime is minus the algorithmic work done on
the ensemble of programs during this step.

The total algorithmic work done on the ensemble per cycle is the difference in log runtimes between
steps 2 and 4.

1.4.3 Further Relations

From the elementary thermodynamic relations in Section 1.4.1, we can derive various others. For
example, the so-called ‘Maxwell relations’ are obtained by computing the second derivatives of
thermodynamic quantities in two different orders and then applying the basic derivative relations,
Equations (1.7-1.9). While trivial to prove, these relations say some things about algorithmic
thermodynamics which may not seem intuitively obvious.

We give just one example here. Since mixed partials commute, we have:

O’E
ovaos

_ OE
XY 1%

|N N

Using Equation (1.7), the left side can be computed as follows:

O’E
ovos

_ 9
y oV

OE
S,N oS

_ar
w0V

S.N

Similarly, we can compute the right side with the help of Equation (1.8):

O’E 0 OF . oP
aSaV|, 8Slyn OVlsy  OSlw’
As a result, we obtain:
oT 0P
OVisy  0Slun’

We can also derive interesting relations involving derivatives of the partition function. These be-
come more manageable if we rewrite the partition function in terms of the conjugate variables of

the observables E, V, and N:
1 P u

Y S 1.11
B T Y=T g T (L.11)

Then we have
7 = Z o PE@—YV(@)-6N @)
xeX
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Simple calculations, standard in statistical mechanics [164], then allow us to compute the mean
values of observables as derivatives of the logarithm of Z with respect to their conjugate variables.
Here let us revert to using overlines to denote mean values:

_ 0
E :;p(x)E(x) :—%mz

_ 0
% :;p(x)V(x) :—Ean

_ 9
N =) pxNw® ===z

xeX

We can go further and compute the variance of these observables using second derivatives:
2

—2 0
(AE) = ;p(x)(g(x)z ~E) =gz

and similarly for V and N. Higher moments of £,V and N can be computed by taking higher
derivatives of In Z.

1.4.4 Convergence

So far we have postponed the crucial question of convergence: for which values of T, P and u does
the partition function Z converge? For this it is most convenient to treat Z as a function of the
variables 3,y and ¢ introduced in Equation (1.11). For which values of 8, ¥ and ¢ does the partition
function converge?

First, when 8 = vy = ¢ = 0, the contribution of each program is 1. Since there are infinitely many
halting programs, Z(0, 0, 0) does not converge.

Second, when 8 = 0,y = In2, and ¢ = 0, the partition function converges to Chaitin’s number

Q=327

xeX

To see that the partition function converges in this case, consider this mapping of strings to seg-
ments of the unit interval:

empty

00 01 10 11
000 ] 001 [010] 011100101 [ 110111
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Each segment consists of all the real numbers whose binary expansion begins with that string; for
example, the set of real numbers whose binary expansion begins 0.101 ...1s [0.101, 0.110) and has
measure 2710 = 273 = 1/8. Since the set of halting programs for our universal machine is prefix-
free, we never count any segment more than once, so the sum of all the segments corresponding to
halting programs is at most 1.

Third, Tadaki has shown [195] that the expression

Z AL

xeX

converges for v > In2 but diverges for y < In2. It follows that Z(B,y, ) converges whenever
y>In2andB,0 > 0.

Fourth, when 8 > 0 and y = 6 = 0, convergence depends on the machine. There are machines
where infinitely many programs halt immediately. For these, Z(8, 0,0) does not converge. How-
ever, there are also machines where program x takes at least V(x) steps to halt; for these ma-
chines Z(8, 0, 0) will converge when 8 > In 2. Other machines take much longer to run. For these,
Z(B,0,0) will converge for even smaller values of 3.

Fifth and finally, when 8 = y = 0 and 6 > 0, Z(8, v, 6) fails to converge, since there are infinitely
many programs that halt and output 0.

1.4.5 Computability

Even when the partition function Z converges, it may not be computable. The theory of computable
real numbers was independently introduced by Church, Post, and Turing, and later blossomed into
the field of computable analysis [161]. We will only need the basic definition: a real number a is
computable if there is a recursive function that maps any natural number n > 0 to an integer f(n)

such that
AP ihay
n n
In other words, for any n > 0, we can compute a rational number that approximates a with an error
of at most 1/n. This definition can be formulated in various other equivalent ways: for example,
the computability of binary digits.

Chaitin [56] proved that the number
Q=2700,In2,0)

is uncomputable. In fact, he showed that for any universal machine, the values of all but finitely
many bits of € are not only uncomputable, but random: knowing the value of some of them tells
you nothing about the rest. They are independent, like separate flips of a fair coin.

More generally, for any computable number y > In 2, Z(0, y, 0) is ‘partially random’ in the sense of
Tadaki [49, 195]. This deserves a word of explanation. A fixed formal system with finitely many
axioms can only prove finitely many bits of Z(0, y, 0) have the values they do; after that, one has to
add more axioms or rules to the system to make any progress. The number € is completely random
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in the following sense: for each bit of axiom or rule one adds, one can prove at most one more bit
of its binary expansion has the value it does. So, the most efficient way to prove the values of these
bits is simply to add them as axioms! But for Z(0, y, 0) with y > In 2, the ratio of bits of axiom per
bits of sequence is less than than 1. In fact, Tadaki showed that for any computable y > In 2, the
ratio can be reduced to exactly (In2)/vy.

On the other hand, Z(8,v,6) is computable for all computable real numbers 8 > 0, ¥y > In2
and 6 > 0. The reason is that 8 > 0 exponentially suppresses the contribution of machines with
long runtimes, eliminating the problem posed by the undecidability of the halting problem. The
fundamental insight here is due to Levin [139]. His idea was to ‘dovetail’ all programs: on turn
n, run each of the first n programs a single step and look to see which ones have halted. As they
halt, add their contribution to the running estimate of Z. For any k > 0 and turn ¢ > 0, let k; be
the location of the first zero bit after position & in the estimation of Z. Then because —SE(x) is a
monotonically decreasing function of the runtime and decreases faster than k;, there will be a time
step where the total contribution of all the programs that have not halted yet is less than 27%.

1.5 Conclusions

There are many further directions to explore. Here we mention just three. First, as already men-
tioned, the ‘Kolmogorov complexity’ [129] of a number 7 is the number of bits in the shortest
program that produces n as output. However, a very short program that runs for a million years
before giving an answer is not very practical. To address this problem, the Levin complexity [140]
of n is defined using the program’s length plus the logarithm of its runtime, again minimized over
all programs that produce n as output. Unlike the Kolmogorov complexity, the Levin complexity is
computable. But like the Kolmogorov complexity, the Levin complexity can be seen as a relative
entropy—at least, up to some error bounded by a constant. The only difference is that now we com-
pute this entropy relative to a different probability measure: instead of using the Gibbs distribution
at infinite algorithmic temperature, we drop the temperature to In 2. Indeed, the Kolmogorov and
Levin complexities are just two examples from a continuum of options. By adjusting the algorith-
mic pressure and temperature, we get complexities involving other linear combinations of length
and log runtime. The same formalism works for complexities involving other observables: for
example, the maximum amount of memory the program uses while running.

Second, instead of considering Turing machines that output a single natural number, we can con-
sider machines that output a finite list of natural numbers (N, ..., N;); we can treat these as popula-
tions of different “chemical species” and define algorithmic potentials for each of them. Processes
analogous to chemical reactions are paths through this space that preserve certain invariants of the
lists. With chemical reactions we can consider things like internal combustion cycles.

Finally, in ordinary thermodynamics the partition function Z is simply a number after we fix val-
ues of the conjugate variables. The same is true in algorithmic thermodynamics. However, in
algorithmic thermodynamics, it is natural to express this number in binary and inquire about the
algorithmic entropy of the first n bits. For example, we have seen that for suitable values of temper-
ature, pressure and chemical potential, Z is Chaitin’s number €. For each universal machine there

24



exists a constant ¢ such that the first n bits of the number Q have at least n — ¢ bits of algorithmic
entropy with respect to that machine. Tadaki [195] generalized this computation to other cases.

So, in algorithmic thermodynamics, the partition function itself has nontrivial entropy. Tadaki has
shown that the same is true for algorithmic pressure (which in his analogy he calls ‘temperature’).
This reflects the self-referential nature of computation.

The bits of  are uncomputable; we can never be sure that a computed estimate is correct in its
initial digits. However, in the next chapter we show that we can make the probability that we are
wrong an arbitrarily small positive number.
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Chapter 2

Critical time

In the last chapter, we looked at partition functions and how they relate the entropy of physical
systems like a piston of gas to the algorithmic entropy of a particular output of a computer. A
special output of the partition function for a prefix-free universal Turing machine is the machine’s
“Q number,” the probability that it will run to completion and produce an output, as opposed to
failing with a syntax error or going into an infinite loop. Given the first n digits of a machine’s
Q) number, there is a program that will compute whether or not any program up to n bits long
halts or not. However, the bits of the Q number for a prefix-free universal Turing machine are
uncomputable; past a finite initial segment, there is no way to know for certain that the bits are
correct.

The aim of this chapter is to provide a probabilistic, but non-quantum, analysis of the halting
problem. Our approach is to have the probability space extend over both space and time and to
consider the probability that a random N-bit program has halted by a random time. We postulate
an a priori computably enumerable probability distribution on all possible runtimes and we prove
that given an integer k > 0, we can effectively compute a time bound 7" such that the probability
that an N-bit program will eventually halt given that it has not halted by T is smaller than 27

We also show that the set of halting programs (which is computably enumerable, but not com-
putable) can be written as a disjoint union of a computable set and a set of effectively vanishing
probability.

Finally, we show that “long” runtimes are effectively rare. More formally, the set of times at which
an N-bit program can stop after the time 2" constant paq effectively zero density.

2.1 Introduction

The Halting Problem for Turing machines is to decide whether an arbitrary Turing machine M
eventually halts on an arbitrary input x. As a Turing machine M can be coded by a finite string—
say, code(M)—one can ask whether there is a Turing machine M, which, given code(M) and
the input x, eventually stops and produces 1 if M(x) stops, and 0 if M(x) does not stop. Turing’s
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famous result states that this problem cannot be solved by any Turing machine, i.e. there is no such
M., Halting computations can be recognised by simply running them; the main difficulty is to
detect non-halting programs. In what follows time is discrete.

Since many real-world problems arising in the fields of compiler optimisation, automatised soft-
ware engineering, formal proof systems, and so forth are equivalent to the Halting Problem, there
is a strong interest—not merely academic!—in understanding the problem better and in providing
alternative solutions.

There are two approaches we can take to calculating the probability that an N-bit program will
halt. The first approach, initiated by Chaitin [56], is to have the probability space range only
over programs; this is the approach taken when computing the Omega number, [45, 43]. In that
case, the probability is Proby = #{p € {0,1}" | p halts}/2". For a prefix-free machine, Proby
goes to zero when N tends to infinity, since it becomes more and more likely that any given N-bit
string is an extension of a shorter halting program. For a universal non-prefix-free Turing machine,
the probability is always nonzero for large enough N: after some point, the universal non-prefix-
free Turing machine will simulate a total Turing machine (one that halts on all inputs), so some
fixed proportion of the space will always contribute. The probability in this case is uncomputable,
machine-dependent; in general, 1 is the best computable upper bound one can find. In this ap-
proach it matters only whether a program halts or not; the time at which a halting program stops is
irrelevant.

Our approach is to have the probability space extend over both space and time, and to consider the
probability that a random N-bit program—which has not stopped by some given time—will halt
by a random later time. In this approach, the stopping time of a halting program is paramount. The
problem is that there is no uniform distribution on the integers, so we must choose some kind of
distribution on times as well. Any distribution we choose must have that most long times are rare,
so in the limit, which distribution we choose does not matter very much.

The new approach was proposed by Calude and Pavlov [48] (see also [7]) where a mathematical
quantum “device” was constructed to probabilistically solve the Halting Problem. The procedure
has two steps: a) based on the length of the program and an a priori admissible error 27, a
finite time 7 is effectively computed, b) a quantum “device”, designed to work on a randomly
chosen test-vector is run for the time T'; if the device produces a click, then the program halts;
otherwise, the program probably does not halt, with probability higher than 1 — 27%. This result
uses an unconventional model of quantum computing, an infinite dimensional Hilbert space. This
quantum proposal has been discussed in Ziegler [206].

It is natural to ask whether the quantum mechanics machinery is essential for obtaining the result.
In this thesis we discuss a method to “de-quantize” the algorithm. We have been motivated by some
recent approximate solutions to the Halting Problem obtained by Kohler, Schindelhauer and M.
Ziegler [127] and experimental work [45, 135].* Different approaches were proposed by Hamkins
and Miasnikov [92], and D’ Abramo [70].

Our working hypothesis, crucial for this approach, is to postulate an a priori computably enu-

*For example, Langdon and Poli [135] suggest that, for a specific universal machine that they describe, about N~!/2

programs of length N halt.

28



merable probability distribution on all possible runtimes. Consequently, the probability space is
the product of the space of programs of fixed length (or of all possible lengths), where programs
are uniformly distributed, and the time space, which is discrete and has an a priori computable
probability distribution. In this context we show that given an integer k > 0, we can effectively
compute a time bound 7T such that the probability on the product space that an N-bit program will
eventually halt given that it not stopped by T is smaller than 27*. This phenomenon is similar to
the one described for proofs in formal axiomatic systems [46].

We also show that for every integer k > 0, the set of halting programs (which is computably
enumerable, but no