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Abstract

Topological Gauge Theory,

Cartan Geometry,

and Gravity

by

Derek Keith Wise

Doctor of Philosophy in Mathematics

University of California, Riverside

Dr. John C. Baez, Chair

We investigate the geometry of general relativity, and of related topological gauge

theories, using Cartan geometry. Cartan geometry—an ‘infinitesimal’ version of Klein’s

Erlanger Programm—allows us to view physical spacetime as tangentially approximated by

a homogeneous ‘model spacetime’, such as de Sitter or anti de Sitter. This idea leads to

a common geometric foundation for 3d Chern–Simons gravity, as studied by Witten, and

4d MacDowell–Mansouri gravity. We describe certain topological gauge theories, including

BF theory—a natural extension of 3d gravity to arbitrary dimensions—as ‘Cartan gauge

theories’ in which the gauge field is replace by a ‘Cartan connection’ modeled on some

Klein geometry G/H. Cartan-type BF theory has solutions that say spacetime is locally

isometric to the G/H itself; in this case Cartan geometry reduces to the theory of ‘geometric

structures’. This leads to generalizations of 3d gravity based on other 3d Klein geometries,

including those in Thurston’s classification of 3d Riemannian model geometries.

ForBF theory in n-dimensional spacetime, we also describe codimension-2 ‘branes’

as topological defects. These branes—particles in 3d spacetime, strings in 4d, and so on—

are shown to be classified by conjugacy classes in the gauge group G of the theory. They also

exhibit ‘exotic statistics’ which are neither Bose–Einstein nor Fermi–Dirac, but are governed

by representations of generalizations of the braid group known as ‘motion groups’. These

representations come from a natural action of the motion group on the moduli space of

flat G-bundles on space. We study this in particular detail in the case of strings in 4d BF
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theory, where Lin has called the motion group the ‘loop braid group’, LBn. This makes 4d

BF theory with strings into a ‘loop braided quantum field theory’.

We also use ideas from ‘higher gauge theory’ to study particles as topological

defects in 4d BF theory, and find they are classified by adjoint orbits in the Lie algebra of

the gauge group. Including both particles and strings in 4d BF theory leads to interesting

effects, such as exotic particle/string statistics and a duality between Bohm–Aharonov

effects for particles and strings.
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Chapter 1

Introduction

One long standing theme in theoretical work on quantum gravity has been to

exploit relationships between general relativity and gauge theory. The reason is clear: we

know how to quantize the gauge theories of particle physics. But ordinary gauge theories are

very different from gravity in an essential way. A typical gauge theory, such as Yang–Mills

theory, uses the geometry of spacetime, as encoded in the metric, in its definition. Gravity,

on the other hand, is a kind of ‘gauge theory’ that determines the spacetime geometry itself.

Topological gauge theories represent a sort of compromise. On one hand, such

theories are formulated in essentially the same language as, say, Yang–Mills theory, and one

can try quantizing them using similar methods. On the other hand, they are more similar

to gravity in that they do not require any fixed background structure. While being simpler

than general relativity, they thus share with it the many of the conceptual issues related to

quantizing a generally covariant theory.

What makes a gauge theory ‘topological’ is a somewhat subjective matter. One

possibility is that it should be describable using the functorial definition of topological field

theory, or some slight generalization. But this is too strong a requirement to include some

of the most interesting examples. A more practical requirement is that all solutions of a

‘topological gauge theory’ should be locally the same up to gauge transformations. Such

theories are more interesting when the topology of spacetime is more interesting, since

solutions that look completely trivial on a local scale may yet have interesting global prop-

erties. Intuitively, it is natural that topological gauge theories of this sort should be related

to topological invariants. This is indeed true: the interplay between pure topology and

gauge theories has been enormously fruitful, particularly in work on 3-manifold invariants
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and knot theory, but more recently also for 4-manifolds.

But one should not be misled into thinking the difference between topological gauge

theories and general relativity is too much like the difference between topology and geometry.

So called ‘topological’ theories can actually have a rich geometric content. Though they

do not have local degrees of freedom, as general relativity has, certain topological gauge

theories have field equations that determine the geometry of spacetime in much the same

way as in general relativity. The essential idea is to interpret the fiber bundle language of

gauge theory not as describing ‘internal’ degrees of freedom as it does in particle physics, but

as describing degrees of freedom in spacetime geometry. This idea in fact has its roots in the

work of Élie Cartan, who had a more ‘concrete’ view of the role of connections and bundles.

This thesis is partly a story about geometry, and particularly how Cartan’s perspective lets

us see the geometry of topological gauge theories transform into the geometry of general

relativity. The hope is that a deeper understanding of the geometric content of topological

gauge theory will provide insight into the geometry of general relativity itself, and perhaps

ultimately its quantization.

In fact, certain topological gauge theories are more than just analogous to general

relativity. As we shall describe shortly, full-fledged general relativity can be obtained from

certain topological theories either by imposing constraints or by symmetry breaking. But

perhaps the strongest case, at least initially, for trying to relate general relativity to topo-

logical theories is the following fact. In (2 + 1)-dimensional spacetime, general relativity is

a topological gauge theory. In fact, 3d general relativity is a special case of one of the most

important topological gauge theories for our purposes—a theory called ‘BF theory’—so we

begin with a description of that.

3d gravity and BF theory

The essential reason that general relativity is topological in 3 dimensions is simply

that there are not enough dimensions to admit the variety of curvature possible in 4 or more

dimensions. To be precise, in the absense of matter, Einstein’s equations imply that the

Einstein tensor must vanish. But in 3 dimensions the Einstein tensor vanishes if and only

if the full Riemann curvature tensor does, so the field equations imply that 3d spacetime

is flat. This immediately suggests 3d general relativity is ‘topological’ in the sense we

have described, since flat Levi–Civita connections are all locally the same up to gauge
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transformations. In fact, 3d general relativity is a special case of ‘BF theory’, which we

now describe more generally.

In n-dimensional spacetime, BF theory with gauge group G—assuming a trivial

G-bundle for simplicity—involves two fields: a G-connection A, and a g-valued (n−2)-form

E. In the absence of matter, the Lagrangian is simply

L =
1
κ

tr (E ∧ F )

Here κ plays the role of Newton’s constant in the case of 3d gravity, and F = dA+ A ∧ A
is the curvature of A. The resulting equations of motion:

F = 0, dAE = 0,

simply say that the connection A is flat, and E is covariantly constant—its covariant exterior

derivative dAE vanishes. All flat connections are locally the same up to gauge transforma-

tions. In the global setting, covariantly constant E fields are not all related by gauge

transformations of the usual sort. However the BF Lagrangian has an additional gauge

symmetry given locally by

A 7→ A E 7→ E + dAη

for any g-valued (n − 3)-form η, and all E fields are then locally gauge equivalent in the

broader sense. [7]

3d gravity is essentially a BF theory with the 3d Lorentz group SO(2, 1) as gauge

group, since this describes the symmetries of a local coordinate frame. In 4 dimensions,

general relativity is of course not a BF theory: unlike the 3d case, there is no equation in

4d general relativity that says the Riemann curvature of spacetime vanishes. But 4d BF

theory is related to 4d general relativity in important ways. Indeed, the Lagrangian for 4d

general relativity may be written as

L =
1
κ
tr(e ∧ e ∧ F )

where e is a Lie algebra valued 1-form of an appropriate sort. 4d general relativity may

thus be viewed as a BF theory subject to the constraint that E = e ∧ e for some choice of

e.

In general, since BF theory involves a flat connection on a fiber bundle, it is related

to ‘flat’ spacetime geometries—but in a generalized sense where ‘flat’ really means it looks
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just locally just like the fiber of a certain bundle of homogeneous spaces. The intuitive

idea is actually best to understand in the more general context where solutions are not

necessarily ‘flat’—namely general relativity itself.

Gravity and Cartan geometry

The geometry of ordinary general relativity is by now well understood—spacetime

geometry is described by the Levi–Civita connection on the tangent bundle of a Lorentzian

manifold. In the late 1970s, MacDowell and Mansouri introduced a new approach, based on

broken symmetry in a type of gauge theory [65]. This approach has been influential in such a

wide array of gravitational theory that it would be a difficult task to compile a representative

bibliography of such work. The original MacDowell–Mansouri paper continues to be cited

in work ranging from supergravity [45, 46, 74, 94] to background-free quantum gravity

[43, 40, 89].

However, despite their title “Unified geometric theory of gravity and supergravity”,

the geometric meaning of the MacDowell–Mansouri approach is relatively obscure. In the

original paper, and in much of the work based on it, the technique seems like an unmotivated

“trick” that just happens to give the equations of general relativity. One point of the present

paper is to show that MacDowell–Mansouri theory is no trick after all, but rather a theory

with a rich geometric structure, which may offer insights into the geometry of gravity itself.

In fact, the secret to understanding the geometry behind their work had been

around in some form for over 50 years by the time MacDowell and Mansouri introduced

their theory. The geometric foundations had been laid in the 1920s by Élie Cartan, but were

for a long time largely forgotten. The relevant geometry is a generalization of Felix Klein’s

celebrated Erlanger Programm to include inhomogeneous spaces, called ‘Cartan geometries’,

or in Cartan’s own terms, espaces généralisés [27, 28]. The MacDowell–Mansouri gauge field

is a special case of a ‘Cartan connection’, which encodes geometric information relating the

geometry of spacetime to the geometry of a homogeneous ‘model spacetime’ such as de

Sitter space. Cartan connections have been largely replaced in the literature by what is

now the usual notion of ‘connection on a principal bundle’ [30], introduced by Cartan’s

student Charles Ehresmann [33].

The MacDowell–Mansouri formalism has recently seen renewed interest among

researchers in gravitational physics, especially over the past 5 years. Over a slightly longer
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period, there has been a resurgence in the mathematical literature of work related to Cartan

geometry, no doubt due in part to the availability of the first modern introduction to the

subject [86]. Yet it is not clear that there has been much communication between researchers

on the two sides—physical and mathematical—of what is essentially the same topic.

MacDowell–Mansouri gravity

MacDowell–Mansouri gravity is based on symmetry breaking in a topological gauge

theory with gauge group G ⊃ SO(3, 1) depending on the sign of the cosmological constant1:

G =

 SO(4, 1) Λ > 0

SO(3, 2) Λ < 0

To be definite, let us focus on the case of Λ > 0, where G = SO(4, 1). The Lie algebra has

a splitting:

so(4, 1) ∼= so(3, 1)⊕ R3,1, (1.1)

not as Lie algebras but as vector spaces with metric.

If F is the curvature of the SO(4, 1) gauge field A, the Lagrangian is:

SMM =
−3

2GΛ

∫
tr (F ∧ ?F̂ ) (1.2)

Here F̂ denotes the projection of F into the subalgebra so(3, 1), and ? is an internal Hodge

star operator. This projection breaks the SO(4, 1) symmetry, and the resulting equations

of motion are, quite surprisingly, the Einstein equation for ω with cosmological constant Λ,

and the vanishing of the torsion.

The orthogonal splitting (1.1) provides the key to the MacDowell–Mansouri ap-

proach. Extending from the Lorentz Lie algebra so(3, 1) to so(4, 1) lets us view the connec-

tion ω and coframe field e of Palatini-style general relativity as two aspects of the connection

A. The reason this is possible locally is quite simple. In local coordinates, these fields are

both 1-forms, valued respectively in the Lorentz Lie algebra so(3, 1) and Minkowski vector

space R3,1. Using the splitting, we can combine these local fields in an SO(4, 1) connection

1-form A, which has components AIµJ given by2

Aiµj = ωiµj Aiµ4 =
1
`
ei.

1For simplicity, we restrict attention to MacDowell–Mansouri theory for gravity, as opposed to
supergravity.

2Here, we use the Latin alphabet for internal indices, with capital indices running from 0 to 4, and lower
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where ` is a scaling factor with dimensions of length.

This connection form A has a number of nice properties, as MacDowell and Man-

souri realized. The curvature F [A] also breaks up into so(3, 1) and R3,1 parts. The so(3, 1)

part is the curvature R[ω] plus a cosmological constant term, while the R3,1 part is the

torsion dωe:

Fµν
i
j = Rµν

i
j −

Λ
3

(e ∧ e)µνij Fµν
i
4 = (dωe)µν

i

where we choose `2 = 3/Λ. This shows that when the curvature F [A] vanishes, so that

R − Λ
3 e ∧ e = 0 and dωe = 0, we get a torsion free connection for a universe with positive

cosmological constant.

Recently, the basic MacDowell–Mansouri technique has been used with a different

action [43, 87, 89], based on BF theory. This work has in turn been applied already in a

variety of ways, from cosmology [2] to particle physics [64]. The setup for this theory is much

like that of the original MacDowell–Mansouri theory, but in addition to the connection, there

is a 2-form B with values in the Lie algebra g of the gauge group. The action proposed by

Freidel and Starodubtsev has the appearance of a perturbed BF theory3:

S =
∫

tr
(
B ∧ F − GΛ

6
B ∧ ?B̂

)
. (1.3)

We give a treatment of both the original MacDowell–Mansouri action and the

Freidel–Starodubtsev reformulation in Section 11.4, after developing the appropriate geo-

metric setting for such theories, which lies in Cartan geometry.

The idea of a Cartan geometry

What is the geometric meaning of the splitting of an SO(4, 1) connection into

an SO(3, 1) connection and coframe field? For this it is easiest to first consider a lower-

dimensional example, involving SO(3) and SO(2). An oriented 2d Riemannian manifold

is often thought of in terms of an SO(2) connection since, in the tangent bundle, parallel

case indices running from 0 to 3:

I, J,K, . . . ∈ {0, 1, 2, 3, 4}
i, j, k, . . . ∈ {0, 1, 2, 3}.

3For simplicity, we ignore a term in the Freidel–Starodubtsev action proportional to tr (B ∧ B) that
vanishes if we choose the Immirzi parameter γ = 0.
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transport along two different paths from x to y gives results which differ by a rotation of

the tangent vector space at y:

M

x
TxM y TyM

In this context, we can ask the geometric meaning of extending the gauge group from

SO(2) to SO(3). The group SO(3) acts naturally not on the bundle TM of tangent vector

spaces, but on some bundle SM of ‘tangent spheres’. We can construct such a bundle,

for example, by compactifying each fiber of TM . Since SO(3) acts to rotate the sphere,

an SO(3) connection on a Riemannian 2-manifold may be viewed as a rule for ‘parallel

transport’ of tangent spheres, which need not fix the point of contact with the surface:

M

x

SxM
y SyM

An obvious way to get such an SO(3) connection is simply to roll a ball on the surface,

without twisting or slipping. Rolling a ball along two paths from x to y will in general give

different results, but the results differ by an element of SO(3). Such group elements encode

geometric information about the surface itself.

In our example, just as in the extension from the Lorentz group to the de Sitter

group, we have an orthogonal splitting of the Lie algebra

so(3) ∼= so(2)⊕ R2

given in terms of matrix components by[
0 u a
−u 0 b
−a −b 0

]
=

[
0 u
−u 0

0

]
+

[
a
b

−a −b

]
.
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As in the MacDowell–Mansouri case, this allows an SO(3) connection A on an oriented 2d

manifold to be split up into an SO(2) connection ω and a coframe field e. But here it is

easy to see the geometric interpretation of these components: an infinitesimal rotation of the

tangent sphere, as it begins to move along some path, breaks up into a part which rotates

the sphere about its point of tangency and a part which moves the point of tangency:

The so(2) part gives an
infinitesimal rotation
around the axis through the
point of tangency.

The R2 part gives an
infinitesimal translation of
the point of tangency.

The connection thus defines a method of rolling a tangent sphere along a surface.

Extrapolating from this example to the extension SO(3, 1) ⊂ SO(4, 1), we surmise

a geometric interpretation for MacDowell–Mansouri gravity: the SO(4, 1) connection A =

(ω, e) encodes the geometry of spacetime M by “rolling de Sitter spacetime along M”:

tangent de Sitter

spacetime at x ∈M

tangent de Sitter

spacetime at y ∈M

M

This idea is appealing since, for spacetimes of positive cosmological constant, we expect de

Sitter spacetime to be a better infinitesimal approximation than flat Minkowski vector space.

The geometric beauty of MacDowell–Mansouri gravity, and related approaches, is that they

study spacetime using ‘tangent spaces’ that are truer to the mean geometric properties of

the spacetime itself. Exploring the geometry of a surface M by rolling a ball on it may

not seem like a terribly useful thing to do if M is a plane; if M is some slight deformation

of a sphere, however, then exploring its geometry in this way is very sensible! Likewise,

approximating a spacetime by de Sitter space is most interesting when the spacetime has

the same cosmological constant.
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More generally, this idea of studying the geometry of a manifold by “rolling”

another manifold—the ‘model geometry’—on it provides an intuitive picture of ‘Cartan

geometry’. Cartan geometry, roughly speaking, is a generalization of Riemannian geometry

obtained by replacing linear tangent spaces with more general homogeneous spaces. As

Sharpe explains in the preface to his textbook on the subject [86], Cartan geometry is a

common generalization of Riemannian and Klein geometries. The following diagram is an

adaptation of one of Sharpe’s:

Euclidean
Geometry

Klein
Geometry

generalize
symmetry group

��
Cartan

Geometryallow
curvature

//

Riemannian
Geometry

allow
curvature //

generalize tangent
space geometry

��

Like Euclidean geometry, a Klein geometry is homogeneous, meaning that there is a symme-

try of the geometry taking any point to any other point. Cartan geometry provides ‘curved’

versions of arbitrary Klein geometries, in just the same way that Riemannian geometry is

a curved version of Euclidean geometry.

But besides providing a beautiful geometric interpretation, and a global setting for

the MacDowell–Mansouri way of doing gravity, Cartan geomety also helps in understanding

the sense in which MacDowell–Mansouri theory is a deformation of a topological field theory.

Geometric structures and topological gauge theories

We shall describe topological gauge theories as theories involving a Cartan connec-

tion, just as in MacDowell–Mansouri gravity. But when a Cartan connection is ‘flat’ there

is a great simplification. In this case, the ‘rolling’ described above is essentially trivial, since

the spacetime is locally isometric to the Kleinian model spacetime G/H. Cartan geometry

then reduces to the theory of ‘geometric structures’ on manifolds, as studied by Thurston

[93]. The theory of geometric structures is a major tool in modern geometric toplogy and

other areas.

In the body of the thesis, we first describe the theory of geometric structures and

how they are obtained as the solutions of topological field theories. Later, when we describe

Cartan geometry in general, this leads us to see how 4d general relativity with cosmological

constant and 4d BF theory are related in a concrete geometric way.
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For now we turn to a different subject: the inclusion of matter in topological gauge

theory.

Particles in 3d BF theory and exotic statistics

In 3d BF theory, point particles can be included by considering spacetimes with

curves removed: we think of these as the particles’ worldlines. Away from these worldlines

the BF theory equations still hold, while along the worldlines A becomes singular. To

understand the description of matter as topological defects in BF theory, the important

point is that solutions of BF theory give flat connections on space.

The behavior of a collection of identical particles when they are exchanged goes

by the name of ‘statistics’. Traditionally, statistics was described using representations of

the symmetric group. However, it is well known that in 3d spacetime, ‘exotic’ statistics are

possible, in which the process of exchanging identical particles is described by a represen-

tation of the braid group. For example, exchanging two ‘abelian anyons’ multiplies their

wavefunction by a phase, which need not be 1 as it is for bosons, nor −1 as for fermions.

This possibility has been investigated in experiments on the fractional quantum Hall effect

[23]. Now researchers have begun the search for ‘nonabelian anyons’, whose statistics are

described by more complicated representations of the braid group [20]. Plans are already

afoot to use these in quantum computers [37, 58].

Exotic statistics also arise naturally in the context of 3d quantum gravity. As

we ‘turn on gravity’, letting Newton’s gravitational constant κ become nonzero, ordinary

quantum field theory on 3d Minkowski spacetime deforms into a theory where the Poincaré

group goes over to a quantum group called the κ-Poincaré group. Moreover, if we begin with

a field theory of bosons, their statistics become exotic as we turn on gravity. For a thorough

treatment of these fascinating phenomena, see the papers by Freidel and collaborators

[38, 39], the paper by Krasnov [62], and the many references therein.

In fact, the reason for exotic statistics in 3d quantum gravity is very simple. In

3d spacetime, Einstein’s equations say that spacetime is flat except in regions where matter

is present. A point particle at rest bends the nearby space into a cone. This cone is flat

everywhere except at its tip, where there is a deficit angle proportional to the particle’s
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mass. If we parallel transport a vector around the particle, it gets rotated by this angle θ:

θ

θ

More generally, if we have n particles, space will be flat except for conical singu-

larities at n points. If we exchange these particles by moving them around the plane, they

trace out a loop in the space of n-point subsets of the plane. Their energy-momenta will

change in a way that depends on this loop—but only on the homotopy class of this loop,

because they are being parallel transported with respect to a flat connection. A homotopy

class of such loops is just an n-strand braid:

So, the group Bn of n-strand braids acts on the Hilbert space of states for n identical

particles. In fact, this result holds classically as well: we get an action of Bn on the

configuration space for n identical particles.

The holonomy around a loop circling a worldline gives an element of the group G.

A collection of n particles in the plane thus gives rise to an n-tuple of elements of G. For

simplicity, consider the case n = 2. As we exchange two particles by rotating them around

each other counterclockwise, they trace out this braid:

As we recall in Section 6, this operation acts as the following map on G2:

(g1, g2) 7→ (g1g2g
−1
1 , g1). (1.4)
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Applying this map twice does not give the identity, so we do not obtain an action of the

symmetric group on G2, but only an action of the braid group. In other words, the particles

have exotic statistics!

In the case of 3d gravity, the singularity of the connection along a particle’s world-

line reflects the fact that the particle’s mass creates a conical singularity in the metric. The

holonomy around the worldline, an element of G = SO(2, 1), describes the particle’s energy-

momentum. This may seem odd, since we are used to thinking of energy-momentum as a

vector in Minkowski spacetime. However, in 3 dimensions Minkowski spacetime is naturally

isomorphic to the Lie algebra so(2, 1), and we can reinterpret Lie algebra elements as group

elements via the map:
so(2, 1) → SO(2, 1)

p 7→ exp(κp).

So, we can encode the energy-momentum p of a particle in the holonomy g = exp(κp)

resulting from parallel transport around this particle’s worldline.

Thanks to the factor of κ here, the group SO(2, 1) effectively ‘flattens out’ to

so(2, 1) in the κ→ 0 limit. For example, multiplication in the group reduces to addition in

the Lie algebra plus small corrections:

exp(κp1) exp(κp2) = exp(κ(p1 + p2) +
κ2

2
[p1, p2] + · · · ) (1.5)

This implies that in terms of so(2, 1)-valued energy-momenta, the braiding in equation (1.4)

is given by

(p1, p2) 7→ (p2 + κ[p1, p2] + · · · , p1)

So, the exotic statistics reduce to ordinary bosonic statistics in the limit where Newton’s

constant goes to zero. They also reduce to bosonic statistics in the limit where the particles

are at rest relative to each other, since then p1 and p2 become proportional and their

commutator vanishes.

The corrections to the usual law for addition of energy-momenta implicit in equa-

tion (1.5) are interesting in themselves. Like the exotic statistics, these corrections become

negligible in the limit κ → 0. Under the name of ‘doubly special relativity’, modified laws

for adding energy-momentum have already been studied by many authors. The paper by

Freidel, Kowalski-Glikman and Smolin [39] gives a good account of doubly special relativity

in the context of 3d quantum gravity; their paper also explains more of the history of this

subject.
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Quandle field theory

Besides exotic statistics and corrections to the usual rule for adding energy-momenta,

there is yet another surprising consequence of the switch from vector-valued to group-valued

energy-momentum as we turn on gravity in 3d physics. The classification of elementary par-

ticles changes!

In ordinary quantum field theory on Minkowski spacetime, the Lorentz group acts

on the space of possible energy-momenta, and the orbits of this action correspond to different

types of spin-zero particles. When spacetime is 3-dimensional, the space of energy-momenta

is so(2, 1), and the orbits look like this:

positive-energy tardyons

negative-energy tardyons

positive-energy luxons

negative-energy luxons

tachyons

particles of zero
energy-momentum

If we write the energy-momentum as p = (E, px, py) and let p · p = E2 − p2
x − p2

y, we have

six families of orbits, corresponding to six types of spin-zero particles:

1. positive-energy tardyons of mass m > 0: {p · p = m2, E > 0},

2. negative-energy tardyons of mass m > 0: {p · p = m2, E < 0},

3. positive-energy luxons: {p · p = 0, E > 0},

4. negative-energy luxons: {p · p = 0, E < 0},

5. tachyons of mass im for m > 0: {p · p = −m2},

6. particles of vanishing energy-momentum: {p = 0}.

Given any orbit Q ⊆ so(2, 1), the Hilbert space for a single particle of type Q is just L2(Q).

The same philosophy applies when we turn on gravity, but now the space of energy-

momenta is not the Lie algebra so(2, 1) but the Lorentz group itself. This acts on itself
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by conjugation, and the orbits are conjugacy classes. Types of spin-zero particles now

correspond to conjugacy classes in the Lorentz group. Near the identity these conjugacy

classes look just like orbits in the Lie algebra, so the classification of particles reduces to the

above one in the limit of small energy-momenta. However, there are important differences,

which show up for large energy-momenta.

Most notably, under the map

p 7→ exp(κp)

the Lie algebra element p = (E, 0, 0) is mapped to a rotation by the angle κE in the xy

plane. So, the holonomy around a stationary particle of energy E is a rotation by the angle

κE. This rotation does not change when we add 2π/κ to the particle’s energy. Up to factors

of order unity, this quantity 2π/κ is just the Planck energy. If we call it the Planck energy,

then masses in 3d quantum gravity are defined only modulo the Planck mass.

This ‘periodicity of mass’ affects the classification of tardyons—that is, the most

familiar sort of particles, those with timelike energy-momentum. Instead of positive-energy

tardyons of arbitrary mass m > 0 and negative-energy tardyons of arbitrary mass m > 0,

we just have tardyons of arbitrary mass m ∈ R/2π
κ Z.

More generally, for any Lie group G, the various allowed types of spin-zero particles

in 3d BF theory with gauge groupG correspond to conjugacy classesQ ⊆ G. Any conjugacy

class is closed under the operations

g � h = ghg−1, h� g = g−1hg,

and these operations satisfy equations making Q into an algebraic structure called a ‘quan-

dle’ [56], whose definition we recall in Section 6.1. The Hilbert space for a single particle of

type Q is just L2(Q), defined using a measure on Q that is invariant under these operations.

In an easy generalization of 3d BF theory, we can study the exotic statistics of ‘particles

of type Q’ for any quandle Q equipped with an invariant measure. This takes advantage of

the well-known relation between quandles and the braid group [35].

Exotic statistics in 4d BF theory

It would be wonderful to generalize all the above results to 4d gravity, but for

now all we can handle is a simpler theory: 4d BF theory. This may eventually be relevant
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to gravity, since one can describe general relativity in 4 dimensions either as the result

of constraining 4d BF theory with a certain gauge group, or perturbing around 4d BF

theory with some other gauge group. The first approach goes back to Plebanski [80], and it

underlies a great deal of work on spin foam models of quantum gravity [7, 76, 79], especially

the Barrett–Crane model. The second approach goes back to MacDowell and Mansouri [65],

and has recently been explored by Freidel and Starodubtsev [43]. With a view toward these

potential applications, we focus our attention on certain relevant choices of gauge group:

Plebanski gravity: G = SO(3, 1)

MacDowell–Mansouri gravity:

 G = SO(4, 1) Λ > 0

G = SO(3, 2) Λ < 0

Our idea is simply to increase the dimension of everything in the previous section

by 1. Thus, we consider BF theory on a 4-dimensional spacetime with the worldsheets of

several ‘closed strings’ removed. Really these strings are just unknotted, unlinked circles in

space. We call them ‘closed strings’ for short, even though they behave differently from the

closed strings familiar in string theory: the relevant Lagrangian is different. Their dynamics

has been studied in a related paper [14]. One of our purposes is to study the exotic statistics

exhibited by these strings. Mathematically speaking, this will amout to studying certain

representations of a higher-dimensional analogue of the braid group: the ‘loop braid group’.

Just as the braid group describes the topology of points moving in the plane, the loop braid

group describes the topology of circles moving in R3. In Chapter 7 we describe this group

and certain representations of it coming from the moduli space of flat bundles on R3 with

these circles removed.

We focus on the case where the manifold representing space is R3 − Σ, where Σ

is an ‘n-component unlink’: a collection of n unknotted unlinked circles. A flat connection

on R3 −Σ gives us a group element for each circle, namely the holonomy of some standard

loop going around this circle:

So, just as before, we obtain n-tuples of elements of G. Moreover, any way to exchange the

circles in Σ gives a map from Gn to itself.
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It is often said that exotic statistics are only possible when space has dimension 2 or

less. However, this folklore only applies to point particles. As pointed out by Balanchandran

and others [3, 18, 73, 91, 92], exotic statistics are possible for closed strings in 3-dimensional

space, since there are topologically nontrivial ways to exchange unknotted unlinked circles

in R3. The statistics of such theories are governed not by the braid group Bn, but by a

larger group: the ‘loop braid group’ LBn.

Using recent work of Lin [63], we show that this group is isomorphic to the ‘braid

permutation group’ of Fenn, Rimányi and Rourke [34]. This is an apt name, because

LBn has a presentation with generators si that describe two strings trading places without

passing through each other, just as if they were point particles:

=

but also generators σi that describe one string passing through another:

6=

So, this group is a kind of ‘hybrid’ of the symmetric group and the braid group. Indeed,

the elements si generate a copy of the symmetric group Sn in LBn, while the elements σi

generate a copy of the braid group Bn.

In a one-dimensional unitary representation of the loop braid group, the permuta-

tion generators si all act as ±1, while the braid generators σi all act as an arbitrary phase

q ∈ U(1). We could call particles that transform in this way ‘abelian bose-anyons’ and

‘abelian fermi-anyons’, respectively. They act like bosons or fermions when we switch them

using the generators si, but like abelian anyons when we switch them using the generators

σi.

BF theory gives us more interesting unitary representations of the loop braid

group: whenever the group G is unimodular, we obtain a unitary representation of LBn

on L2(Gn). All the groups listed above are unimodular, so we get an interesting variety of

exotic statistics for closed strings in 4d BF theory.

We can also restrict attention to a specific conjugacy class Q ⊆ G and get a unitary

representation of the loop braid group on L2(Qn), as long as Q is equipped with a measure

invariant under conjugation. As already mentioned, in the case of 3d gravity a choice of
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conjugacy class in G = SO(2, 1) essentially amounts to choosing a specific mass for our

point particles, which is a very natural thing to do. In the case of 4d BF theory with

G = SO(3, 1), choosing a conjugacy class essentially amounts to choosing a specific mass

density for our closed strings.

Higher gauge theory and particles in 4d BF theory

4d BF theory is actually a topological ‘higher gauge theory’: it involves not just

an ordinary connection, but a ‘2-connection’, which has a 1-form part A and a 2-form part

E [15]. The equations of BF theory say this 2-connection (A,E) is ‘flat’. So, we get both

particles and strings in 4d BF theory in a purely topological way. ‘Strings’ appear in 4d

BF theory because integrating the 1-form A along a loop enclosing a string-shaped hole

in space gives a ‘Wilson loop’ observable. Similarly, ‘particles’ appear in 4d BF theory

because integrating the 2-form E over a surface enclosing a point puncture in space gives a

‘Wilson surface’ observable:

We shall study these particles and strings, which exhibit interesting collective behavior,

such as a kind of combined particle/string exotic statistics.
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Part I

Geometric Structures and

Topological Gauge Theory
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Chapter 2

Homogeneous spacetimes and

Klein geometry

Klein revolutionized modern geometry with the realization that almost everything

about a homogeneous geometry—with a very broad interpretation of what constitutes a

‘geometry’—is encoded in its groups of symmetries. From the Kleinian perspective, the

objects of study in geometry are ‘homogeneous spaces’. The importance of Klein geometry

for our purposes is that it explains the geometry of the most basic conceptions of spacetime,

including the spacetimes of Galilean and Einsteinian special relativity, but also of impor-

tant generalizations such as de Sitter spacetime. While homogeneous geometry by itself is

inadequate to describe theories with less symmetric geometry, such as general relativity, the

Kleinian perspective is essential to understanding C artan geometry. so we review it here

in some detail.

2.1 Klein geometry

A homogeneous space (G,X) is an abstract space1 X together with a group G

of transformations of X, such that G acts transitively: given any x, y ∈ X there is some

g ∈ G such that gx = y.

The main tools for exploring a homogeneous space (G,X) are subgroups H ⊂ G

1I am deliberately vague here about what sort of ‘space’ a Klein geometry is. In general, X might be
a discrete set, a topological space, a Riemannian manifold, etc. For our immediate purposes, the most
important cases are when X has at least the structure of a smooth manifold.
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which preserve, or ‘stabilze’, interesting ‘features’ of the geometry. What constitutes an

interesting feature of course depends on the geometry. For example, Euclidean geometry,

(Rn, ISO(n)), has points, lines, planes, polyhedra, and so on, and one can study subgroups

of the Euclidean group ISO(n) which preserve any of these. ‘Features’ in other homogeneous

spaces may be thought of as generalizations of these notions. We can also work backwards,

defining a feature of a geometry abstractly as that which is preserved by a given subgroup.

If H is the subgroup preserving a given feature, then the space of all such features of X

may be identified with the coset space G/H:

G/H = {gH : g ∈ G} = the space of “features of type H”.

Let us illustrate why this is true using the most basic of features, the feature of

‘points’. Given a point x ∈ X, the subgroup of all symmetries g ∈ G which fix x is called

the stabilizer, or isotropy group of x, and will be denoted Hx. Fixing x, the transitivity

of the G-action implies we can identify each y ∈ X with the set of all g ∈ G such that

gx = y. If we have two such symmetries:

gx = y g′x = y

then clearly g−1g′ stabilizes x, so g−1g′ ∈ Hx. Conversely, if g−1g′ ∈ Hx and g sends x to y,

then g′x = gg−1g′x = gx = y. Thus, the two symmetries move x to the same point if and

only if gHx = g′Hx. The points of X are thus in one-to-one correspond with cosets of Hx

in G. Better yet, the map f : X → G/Hx induced by this correspondence is G-equivariant:

f(gy) = gf(y) ∀g ∈ G, y ∈ X

so X and G/Hx are isomorphic as H-spaces.

All this depends on the choice of x, but if x′ is another point, the stabilizers are

conjugate subgroups:

Hx = gHx′g
−1

where g ∈ G is any element such that gx′ = x. Since these conjugate subgroups of G are all

isomorphic, it is common to simply speak of “the” point stabilizer H, even though fixing

a particular one of these conjugate subgroups gives implicit significance to the points of X

fixed by H. By the same looseness of vocabulary, the term ‘homogeneous space’ often refers

to the coset space G/H itself.
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To see the power of the Kleinian point of view, an example familiar from special

relativity is (n+1)-dimensional Minkowski spacetime. While this is most obviously thought

of as the ‘space of events’, there are other interesting ‘features’ to Minkowski spacetime,

and the corresponding homogeneous spaces each tell us something about the geometry of

special relativity. The group of symmetries preserving orientation and time orientation is

the connected Poincaré group ISO0(n, 1). The stabilizer of an event is the connected Lorentz

group SO0(n, 1) consisting of boosts and rotations. The stabilizer of an event and a velocity

is the group of spatial rotations around the event, SO(n). The stabilizer of a spacelike

hyperplane is the group of Euclidean transformations of space, ISO(n). This gives us a

piece of the lattice of subgroups of the Poincaré group, with corresponding homogeneous

spaces:
ISO0(n, 1)

SO0(n, 1)

ISO0(n, 1)/SO0(n, 1)
‘event space’ (Minkowski)

>>>>>>>>>>>>>>>>

SO(n)

SO0(n, 1)/SO(n)
‘velocity space’ (hyperbolic)����������������

ISO(n)

ISO(n)/SO(n)
‘position space’ (Euclidean)

>>>>>>>>>>>>>>>>

ISO0(n, 1)/ISO(n)
‘space of spacelike hyperplanes’

����������������

‘Klein geometries’, for the purposes of this paper, will be certain types of homoge-

neous spaces. The geometries we are interested in are all ‘smooth’ geometries, so we require

that the symmetry group G be a Lie group. We also require the subgroup H to be a closed

subgroup of G. This is obviously necessary if we want the quotient G/H to have a topology

where 1-point subsets are closed sets. In fact, the condition that H be closed in G suffices

to guarantee H is a Lie subgroup and G/H is a smooth homogeneous manifold.

We also want Klein geometries to be connected. Leaving this requirement out

is sometimes useful, particularly in describing discrete geometries. However, our purpose

is not Klein geometry per se, but Cartan geometry, where the key idea is comparing a

manifold to a ‘tangent Klein geometry’. Connected components not containing the ‘point

of tangency’ have no bearing on the Cartan geometry, so it is best to simply exclude

disconnected homogeneous spaces from our definition.

Definition 1 A (smooth, connected) Klein geometry (G,H) consists of a Lie group G
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with closed subgroup H, such that the coset space G/H is connected.

As Sharpe emphasizes [86], for the purposes of understanding Cartan geometry it

is useful to view a Klein geometry (G,H) as the principal right H bundle

G

G/H
��

This is a principal bundle since the fibers are simply the left cosets of H by elements of G,

and these cosets are isomorphic to H as right H-sets.

Strictly speaking, a ‘homogeneous space’ clearly should not have a preferred base-

point, whereas the identity coset H ∈ G/H is special. Mathematically speaking, it would

thus be better to define a Klein geometry to be a principal H bundle P → X which is

merely isomorphic to the principal bundle G→ G/H:

P

X

π
��

G/H
∼//

G
∼ //

��

but not canonically so. For our purposes, however, it will actually be good to have an

obvious basepoint in the Klein geometry. Since we are interested in approximating the local

geometry of a manifold by placing a Klein geometry tangent to it, the preferred basepoint

H ∈ G/H will serve naturally as the ‘point of tangency’.

2.2 Metric Klein geometry

For studying the essentially distinct types of Klein geometry, it is enough to

consider the coset spaces G/H. However, for many applications, including MacDowell–

Mansouri, one is interested not just in the symmetry properties of the homogeneous space,

but also in its metrical properties. If we wish to distinguish between spheres of different

sizes, or de Sitter spacetimes of different cosmological constants, for example, then we need

more information than the symmetry groups. For such considerations, we make use of the
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fact that there is a canonical isomorphism of vector bundles [86]

T (G/H) G×H g/h
∼ //

G/H

π

��










p

��444444444

where the bundle on the right is the bundle associated to the principal bundle G → G/H

via the adjoint representation on g/h. The tangent space at any point in the Klein geometry

G/H is thus g/h, up to the adjoint representation, so an Ad(H)-invariant inner product2 on

g/h gives a metric on T (G/H). In physically interesting examples, this metric will generally

be nondegenerate of Riemannian or Lorentzian signature. One way to obtain such a metric

is to use the Killing form on g, which is invariant under Ad(G), hence under Ad(H), and

passes to a metric on g/h. When g is semisimple the Killing form is nondegenerate. But

even when g is not semisimple, it is often possible to find a nondegenerate H-invariant

metric on g/h, hence on T (G/H). This leads us to define:

Definition 2 A metric Klein geometry (G,H, η) is a Klein geometry (G,H) equipped

with a (possibly degenerate) Ad(H)-invariant metric on g/h.

Notice that any Klein geometry can be made into a metric Klein geometry in a

trivial way by setting η = 0. In cases of physical interest, it is generally possible to choose

η to be nondegenerate.

2.3 Survey of homogeneous spacetimes

Let us now describe some of the standard homogeneous models of spacetime, from

the Kleinian perspective. Here we give only a brief description of the relevant symmetry

groups. For a more thorough treatment of many aspects of homogeneous spacetime from the

perspective of symmetry groups, we refer the reader to Penrose and Rindler [78]. For intro-

ductions the de Sitter and anti de Sitter spacetimes (in 3+1 dimensions) see, for example,

Hawking and Ellis [53].
2Unless otherwise indicated, by ‘inner product’ we always mean a possibly indefinite inner product. We

also use the term ‘metric’ on a vector space interchangeably, especially when the innner product in question
is naturally part of a metric on a vector bundle.
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2.3.1 3d spacetimes

Let us first consider 3-dimensional (more properly, (2+1)-dimensional) homoge-

neous spacetimes. Though these are slightly easier to deal with than 4d spacetimes, and

much easier to visualize, 3d geometry is sufficiently rich to provide an accurate view the

features of homogeneous spacetime geometry. Moreover, the most important examples in 4

dimensions are immediate analogs of 3d ones we shall consider.

The three basic Lorentzian models we discuss in this section are listed below, along

with the their symmetry groups G and point stabilizer subgroups H. They correspond

to the maximally symmetric Lorentzian spacetimes with the three possible signs of the

cosmological constant Λ.

G H

1. 3d de Sitter spacetime Λ > 0 SO(3, 1) SO(2, 1)

2. 3d Minkowski spacetime Λ = 0 ISO0(2, 1) SO(2, 1)

3. 3d anti-de Sitter spacetime Λ < 0 SO(2, 2) SO(2, 1)

We begin with the most familiar, Minkowski spacetime.

3d Minkowski spacetime

The symmetries of 3-dimensional Minkowski spacetime are given by the 3d Poincaré

group ISO(2, 1) = SO(2, 1) n R3, whose Lie algebra is

iso(2, 1) =
(

so(2, 1) R3

0 0

)
=




0 −c b x
−c 0 a y
b −a 0 z
0 0 0 0


∣∣∣∣∣∣∣∣ a, b, c, x, y, z ∈ R


It is often convenient to use the fact that the connected 2d Lorentz group SO0(2, 1)

is double covered by SL(2,R). In other words, SL(2,R) is the group of ‘spin transformations’

of (2+1)-dimensional Minkowski vector space. Let us review how this double cover descrip-

tion works. The essential point is that the Lie algebra sl(2,R) is isomorphic to Minkowski

vector space R2,1. To see this, note that sl(2,R) consists of traceless matrices, which can

be written in the form (
x y + t

y − t x

)



25

and the Killing form tr (ad(·)ad(·)) on such matrices is proportional to the Minkowski metric

on the standard coordinates (t, x, y). The Lie bracket amounts to the Minkowskian analog

of the cross product of vectors in R3.

Now the adjoint action of SL(2,R) on its Lie algebra:

Ad: SL(2,R)× sl(2,R)→ sl(2,R)

(g, p) 7→ gpg−1

preserves the Killing form, so acts as symmetries of Minkowski vector space, that is, as

Lorentz transformations. Since SL(2,R) is connected, a Lorentz transformation coming

from an element of SL(2,R) in this way must live in the connected part of the Lorentz

group. We thus get a map:

SL(2,R)→ SO0(2, 1).

by writing any given transformation as a 3 × 3 matrix acting on the coordinates (t, x, y).

Clearly this map is at least two–to–one, since g,−g ∈ SL(2,R) induce the same Lorentz

transformation. In fact, the map is exactly two-to-one and onto. So we get an isomorphism

SO0(2, 1) ∼= PSL(2,R) = SL(2,R)/{±1}

Using the adjoint action of SL(2,R), we can construct the semidirect product

SL(2,R) n sl(2,R), which is the double cover of the connected Poincaré group for (2 + 1)-

dimensional Minkowski spacetime.

The symmetry groups are be summarized in the following diagram:

SL(2,R)

2-1
����

// SL(2,R) n sl(2,R)

2-1
����

SO0(2, 1) // SO0(2, 1) n R3

As a Klein geometry, we may regard 3d Minkowski spacetime either as

R2,1 ∼= (SL(2,R) n sl(2,R))/SL(2,R)

or

R2,1 ∼= (SO0(2, 1) n R2,1)/SO0(2, 1).

The two descriptions give isometric Lorentzian affine spaces, but the but of redundancy in

the symmetry groups in the first description accounts for spin.
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3d de Sitter spacetime

The 3-dimensional analog of de Sitter spacetime with cosmological constant Λ > 0

is the hyperboloid {
(t, x, y, z) ∈ R3,1| − t2 + x2 + y2 + z2 =

1
Λ

}
in (3 + 1)-dimensional Minkowski vector space. The Lorentz group acts on R3,1 preserving

the metric −t2 + x2 + y2 + z2, so the full symmetry group of de Sitter spacetime is simply

SO(3, 1). In physics, we generally restrict to the connected component of this group, G =

SO0(3, 1), which preserves orientation and time orientation. The stabilizer of a point in

de Sitter spacetime is the stabilizer of a spacelike vector in the ambient Minkowski vector

space, namely H = SO0(2, 1).

We often have occasion to use a matrix representation of the Lie algebra, which is

given as follows:

so(3, 1) =




0 x y a
x 0 z b
y −z 0 c
a −b −c 0


∣∣∣∣∣∣∣∣x, y, z, a, b, c ∈ R


We also make frequent use of an alternate description of deSitter spacetime, based

on the double cover of SO0(3, 1), namely SL(2,C). To see how this double cover works, we

first note that (3 + 1)-dimensional Minkowski vector space is isomorphic to the space H of

all 2× 2 Hermitian matrices:

H :=
{(

t+ z x+ iy
x− iy t− z

)
: t, x, y, z ∈ R

}
The Minkowski metric is conveniently given by the determinant:

det

 t+ z x+ iy

x− iy t− z

 = t2 − x2 − y2 − z2

SL(2,C) acts on H by

SL(2,C)×H → H
(g,X) 7→ gXg†

preserving the metric, so just as with SL(2,R) and SO0(2, 1) in the previous section, we get

a map

SL(2,C)→ SO0(3, 1)
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which again is two–to–one and onto. De Sitter spacetime is the det = −1 hypersurface in H,

so SO(3, 1) is the analog of the Poincaré group for 3d deSitter spacetime. The stabilizer of

a point is SO(2, 1), which lifts to a subgroup isomorphic to SL(2,R) in the double cover. As

with the Minkowski case, we can summarize the symmetry groups in the following diagram:

SL(2,R)

2-1
����

// SL(2,C)

2-1
����

SO0(2, 1) // SO0(3, 1)

3d Anti-de Sitter spacetime and SL(2,R) geometry

Finally, we come to the 3d spacetime with cosmological constant Λ < 0. Like

deSitter spacetime, this space can be seen as a hyperboloid in a vector space with an inner

product, this time of signature (−++−):hyperboloid{
(t, x, y, z) ∈ R2,2 | − t2 + x2 + y2 − z2 =

1
Λ

}
Actually, it is standard practice to take 3d anti de Sitter space to be the universal cover of

this hyperboloid, since the hyperboloid itself has closed timelike loops. However, for most

of our work, the important thing is the local geometry of anti de Sitter space, so there is

generally no need to pass to the universal cover. The symmetry group of the hyperboloid is

SO(2, 2), and as with the previous cases we will often consider only the connected component

of the identity, SO0(2, 2).

A convenient matrix representation of the Lie algebra is given by

so(2, 2) =




0 x y a
x 0 z b
y −z 0 c
−a b c 0


∣∣∣∣∣∣∣∣x, y, z, a, b, c ∈ R


We have seen that SL(2,R) is the double cover of the 3d Lorentz group SO0(2, 1),

while SL(2,C) is the double cover of SO0(3, 1). Similarly, the double cover of SO0(2, 2) is

SL(2,R)× SL(2,R). This description is particularly nice, since the 3d anti de Sitter space

can be seen as the group SL(2, R) itself. This is made clear by considering the following

representation of SL(2,R) as a matrix Lie group:

SL(2,R) =
{

1
`

(
t+ x y + z
y − z t− x

)
: t, x, y, z ∈ R, −t2 + x2 + y2 − z2 = −`2

}
.
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where we think of t, x, y, z as having dimensions of length and choose the normalizing length

scale ` such that −`2 = 1/Λ.

SL(2,R) acts on itself by both left and right translation. So we get a right action

of SL(2,R)2 on 3d anti de Sitter spacetime SL(2,R) given by

SL(2,R)2/{±1} × SL(2,R) → SL(2,R)

((g1, g2), h) 7→ g1hg
−1
2

The only elements that act trivially are elements (g, g) with g in the center of SL(2,R),

namely g = ±1. In fact, we get an isomorphism

SO0(2, 2) ∼= (SL(2,R)× SL(2,R)/{±1}

and SL(2,R)2 is the group of spin transformations of 3d anti de Sitter spacetime. The

stabilizer of the identity element is clearly the diagonal subgroup H ∼= SL(2,R) consisting

of all elements of the form (g, g) ∈ SL(2,R)2.

As with the previous two spacetimes, we summarize the groups of symmetries in

a diagram:
SL(2,R)

2-1
����

// SL(2,R)× SL(2,R)

2-1
����

SO0(2, 1) // SO0(2, 2)

2.3.2 Contractions and Wick rotations

In this section we describe two ways of getting new homogeneous spaces from old

ones. These are based on two well-known process for groups: ‘contractions’ and ‘Wick

rotations’. From a physical point of view, ‘contractions’ can be thought of as ‘limits’ of Lie

groups as some parameter approaches a specified value. The easiest example is what might

be called the ‘Columbus contraction’, in which the parameter of interest is the radius of a

spherical Earth. For any value of the radius, the group of symmetries is the rotation group

SO(3), but if radius becomes infinite, the group suddenly becomes the Euclidean group of

the plane, ISO(2).

Wick rotation is also a sort of limiting process, but in a slightly different sense.

The classic example in physics is the Wick rotation from the Lorentz group SO(3, 1) to

the orthogonal group SO(4). The idea is to allow the speed of light c to take complex

values and then rotate in the complex plane from c to ic, so that the Minkowski metric
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−c2t2 + x2 + y2 + z2 switches sign in the time direction. More rigorously, we think of

SO(3, 1) and SO(4) both as sitting inside the complex Lie group SO(4,C) and consider a

1-parameter family of subgroups that interpolates between them.

Starting with the three models of homogeneous spacetime we have already dis-

cussed, and using contractions and Wick rotations, we construct a family of 9 homogeneous

3d models of spacetime. In fact, we could just start with one spacetime, say the 3d de

Sitter model. Anti de Sitter may then be obtained by a Wick rotation, not with respect to

c, but with respect to the cosmological constant Λ. Minkowski spacetime is a limit of both

the de Sitter and anti de Sitter models as Λ → 0. Wick rotations of these three models

give the three 3d Riemannian symmetric spaces, the Hyperbolic, Euclidean, and Spherical

3d geometries. But there is another pair of group contractions that is equally important:

the flat Lorentzian and Riemannian spacetimes have the spacetime of Galilean relativity as

a common limit, the limit as c2 → ∞. We can also consider what happens if we take the

c→∞ limit before the Λ→ 0 limit. These give analogs of Galilean spacetime with positive

and negative spatial curvature. If we include these “Galilean spacetimes with cosmological

constant” we get one type of homogeneous spacetime for each of the nine combinations of

sign choices for Λ and 1/c2. We can describe the relationships between these homogeneous

spacetimes in the following diagram:

3d Anti-de Sitter
SO(2, 2)/SO(2, 1)

1
c2
> 0

Lorentzian

contraction //

contraction

��

tt

Wick rotation

**
3d Minkowski

ISO(2, 1)/SO(2, 1)

contraction

��

3d de Sitter
SO(3, 1)/SO(2, 1)

contractionoo

contraction

��

gg

Wick
rotation

xx

3d hyperbolic Galilean

ISO(2, 1)/ISO(2)
1
c2

= 0
Galilean

contraction// 3d Galilean
(ISO(2) n R3)/ISO(2)

3d spherical Galilean

ISO(3)/ISO(2)
contractionoo

3d hyperbolic

SO(3, 1)/SO(3)
contraction //

contraction

OO

1
c2
< 0

Riemannian

Λ < 0

3d Euclidean
ISO(3)/SO(3)

contraction

OO

Λ = 0

3d spherical

SO(4)/SO(3)
contractionoo

contraction

OO

Λ > 0

In what follows, we describe contractions and Wick rotations in general, but also

the six spacetimes above that we have not yet considered.
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Wick rotation

To understand how the spacetimes in the above diagrams are related by Wick

rotations, we need to complexify the symmetry groups. The complexification of any SO(p, q)

is SO(n,C) where n = p + q. This is the group of linear transformations that preserves a

nondegenerate symmetric bilinear form on Cn.3 SO(n,C) acts on Cn in the obvious way,

and their semidirect product is the complexification of any ISO(p, q) with n = p+ q. This

semidirect product deserves to be called ISO(n,C):

ISO(n,C) := SO(n,C) n Cn

Now, when we complexify all of the groups in diagram of homogeneous spacetimes,

we get only four distinct complex homogeneous spaces:

SO(4,C)/SO(3,C) //

��

ISO(3,C)/SO(3,C)

��

SO(4,C)/SO(3,C)oo

��
ISO(3,C)/ISO(2,C) // (ISO(2,C) n C3)/ISO(2,C) ISO(3,C)/ISO(2,C)oo

SO(4,C)/SO(3,C) //

OO

ISO(3,C)/SO(3,C)

OO

SO(4,C)/SO(3,C)oo

OO

This complexified diagram is symmetric under vertical and horizontal reflections. In par-

ticular, the four corners are the same, as are the left/right and top/bottom pairs. There

is no distinction between Lorentzian and Riemannian, nor between positive and negative

cosmological constant in complex spacetime. There is a distinction between Galilean and

non-Galilean, as between zero and nonzero cosmological constant.

Let us be a bit more explicit about how the Wick rotations work. Since all nonde-

generate symmetric bilinear forms on a complex vector space are equivalent, we can define

SO(n,C) to be the group of isometries of Cn with the standard dot product:

z · w = δijzizj

The real forms of SO(n,C) can all be described as subgroups

SO(n,C)σ := {g ∈ SO(n,C) | gσ = σg}
3Note that this is not a complex inner product on Cn, which would be sesquilinear. Sesquilinear inner

products on Cn come in various signatures, giving groups SU(p, q). All symmetric inner products on Cn are
isomorphic, so there’s just one SO(n,C).
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consisting of all elements commuting with a given conjugate linear involution σ : Cn → Cn.

In particular, if V is a real inner product space of signature ε = (ε1 · · · εn), εi = ±1, then

SO(V ) ∼= SO(n,C)σ

where

σ : Cn → Cn

zk 7→ εkz̄k

To understand Wick rotation from SO(p, q) to SO(p′, q′), where p + q = p′ + q′, it suffices

to consider the simplest example, which contains all of the features of the general case. For

the group SO(2,C), for each φ ∈ [0, π] define a conjugate linear involution of C2 by

σ(φ)

 z1

z2

 =

 eiφz̄1

z̄2

 .

This gives a 1-parameter family of subgroups SO(2,C)σ(φ) ⊆ SO(2,C). When φ = 0, the

subgroup is may be identified with SO(2); when φ = π, it is SO(1, 1). This is Wick rotation.

the 3-sphere

Let us now describe the three Riemannian spacetimes obtained by Wick rotating

the de Sitter, Minkowski and anti de Sitter models. Since these are quite similar to their

Lorentzian cousins, but even simpler, we keep these descriptions terse. The 3-sphere can be

described as a Klein geometry with (G,H) = (SO(4), SO(3)). The Lie algebra has a matrix

representation given by

so(4) =




0 z y a
−z 0 x b
−y −x 0 c
−a −b −c 0


∣∣∣∣∣∣∣∣x, y, z, a, b, c ∈ R


where as in the previous cases the stabilizer subalgebra consists of those matrices in with

a, b, c = 0. The double cover description works in almost exactly the same way as in

the anti-de Sitter case, since S3 ∼= SU(2), and the group of isometries of SU(2) is G =

SU(2)× SU(2)/{±1} acting by left and right multiplication:

G× SU(2)→ SU(2)

(±(h1, h2), g) 7→ h1gh
−1
2
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As in the Lorentzian case, the stabilizer of 1 is the diagonal subgroup.

We thus summarize the effective and spin symmetry groups of S3 as follows:

SU(2)

2-1
����

// SU(2)× SU(2)

2-1
����

SO(3) // SO(4)

Euclidean 3-space

3-dimensional Euclidean geometry is described by (G,H) = (ISO(3), SO(3), where

ISO(3) = SO(3) n R3 is the Eudliean group with Lie algebra

iso(3) =
(

so(3) R3

0 0

)
=




0 x y a
−x 0 z b
−y −z 0 c
0 0 0 0


∣∣∣∣∣∣∣∣x, y, z, a, b, c ∈ R


As in the 3d Minkowski case, we have an SU(2)-equivariant isomorphism R3 ∼= su(2), where

the actions of SU(2) on R3 comes from the obvious action of SO(3) and the covering map

SU(2)→ SO(3), and the action on su(2) is the adjoint action. We thus have the following

description of the symmetry groups and their double covers:

SU(2)

2-1
����

// SU(2) n su(2)

2-1
����

SO(3) // ISO(3)

3d Hyperbolic space

Finally, we come to 3d hyperbolic space. This is the most interesting and important

of the three Riemannian geometries we are considering here. Its symmetries are given by

the Lorentz group SO(3, 1). This is easy to see if we think of hyperbolic space as the

velocity space in special relativity. That is, H3 is the hypersurface of all unit future-pointing

timelike vectors in Minkowski spacetime. The stabilizer of a point is simply the subgroup

SO(3) ⊆ SO(3, 1) consisting of spatial rotations around the corresponding velocity vector.

Though we have seen these groups before, we again write down a matrix representation of

the Lie algebra:

so(3, 1) =




0 w −v x
−w 0 u y
v −u 0 z
x y z 0


∣∣∣∣∣∣∣∣x, y, z, a, b, c ∈ R


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This differs from the description in the section on de Sitter spacetime by a change of basis.

Here we’ve chosen the signature (+++−), so that the stabilizer subalgebra is still the upper

left 3× 3 block matrices with zeros elsewhere.

We have already described the double cover of SO0(3, 1), since it is also the symme-

try group of 3d de Sitter spacetime. We’ve also described the double cover of the stabilizer

SO(3), so we get the following diagram for the symmetry groups and double covers:

SU(2)

2-1
����

// SL(2,C)

2-1
����

SO(3) // SO0(3, 1)

Contractions

Besides Wick rotations, our homogeneous spacetimes are related by ‘contractions’

or ‘limits’ of their symmetry groups. There are actually several possibilities for defining

contractions. We shall use the following definition, adapted from Hermann [54, p. 87]4:

Definition 3 Let G be a Lie group with Lie subgroups H, H ′. Then H ′ is called a contrac-

tion of H within G if there is a sequence g1, g2, . . . ∈ G such that:

1. for every sequence h1, h2, . . . ∈ H such that AD(g1)h1,AD(g2)h2, . . . converges, the

limit is an element of H ′;

2. every element h′ ∈ H ′ can be written as

h′ = lim
k→∞

AD(gk)hk

for some sequence hk.

When H ′ is a contraction of H by the sequence g1, g2, . . . ∈ G, we write

H ′ = lim
k→∞

AD(gk)H

Hermann also offers a Lie algebra version of this definition, which is naturally easier to work

with in most cases:

Definition 4 Let g be the Lie algebra of the Lie group G, and let h, h′ ⊆ g be Lie subalgebras.

Then h′ is called a contraction of h within g if there is a sequence g1, g2, . . . ∈ G such that:
4Hermann actually leaves out the second clause in the definition, though it is obviously needed, since

otherwise any group containing H (or any contraction of it) would be called a contraction of H.
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1. for every sequence h1, h2, . . . ∈ h such that limk→∞Ad(gk)hk exists, the limit is an

element of h′

2. every element h′ ∈ h′ can be written as

lim
k→∞

Ad(gk)hk

for some sequence hk.

When h′ is a contraction of h by the sequence g1, g2, . . . ∈ G, we write

h′ = lim
k→∞

Ad(gk)h

Galilean Spacetimes

Let us describe the Galilean spacetimes in some detail, since they may be the least

familiar from the perspective of symmetry groups. In ordinary Galilean relativity, space is

Euclidean and the only measurements one can make are the distance between simultaneous

events and the time interval between events. After making an initial choice of coordinate

system, a Galilean transformation consists of some combination of a translation T , Galilei

boost B, and rotation R (see, e.g. [4, p. 6]):

Tso,~s(t, ~x) = (t+ s0, ~x+ ~s) B~v(t, ~x) = (t, ~x+ t~v) RΘ(t, ~x) = (t,Θ~x)

where (s0, ~s) is a displacement of the origin, ~v is a velocity, and Θ is a rotation matrix.

Composing these shows that the rotation group acts both on boosts and the spatial parts

of translations via the defining representation of the rotation group, while boosts act on

translations as follows:

[B(~v) ◦ T (so, ~s) ◦B(~v)−1](t, ~x) = (t+ s0, ~x+ ~s+ s~v) = T (s0, ~s+ s0~v)(t, ~x).

This gives the Galilei group the structure of a nested semidirect product:

Gali(n+ 1) = (SO(n) n Rn) n Rn+1

where n denotes the dimension of Galilean ‘space’; for present purposes, n = 2. Since

rotations act on boosts, while both rotations and boosts act on translations, the simplest

factorization of a general Galilean transformation is of the form T ◦B ◦R:

[Tso,~s ◦B~v ◦RΘ](t, ~x) = (t+ s0,Θ~x+ t~v + ~s)
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Rewriting this as a matrix equation:
1 0 s0

~v Θ ~s

0 0 1




t

~x

1

 =


t+ s0

Θ~x+ t~v + ~s

1


suggests the following matrix representation of the Galilei group:

Gali(n+ 1) :=




1 0 s0

~v Θ ~s

0 0 1


∣∣∣∣∣∣∣∣ s0 ∈ R, ~s,~v ∈ Rn,Θ ∈ SO(n)

 ⊆ GL(n+ 2,R)

The subgroup stabilizing the origin is the ISO(n) subgroup generated by boosts and rota-

tions. These are of course the elements in the upper left (n+ 1)× (n+ 1) block.

For the case n = 3, we get the following matrix representation of the Lie algebra

gali(3) =




0 0 0 u
b 0 a v
c −a 0 w
0 0 0 0


∣∣∣∣∣∣∣∣u, v, w, a, b, c ∈ R


analogous to the Lie algebra representations we have written down for the other spacetimes.

We wish to see Galilean spacetime as the Newtonian limit c → ∞ of Minkowski

spacetime. Consider the point stabilizer group for 3d Minkowski spacetime: the Lorentz

group SO0(2, 1). This group by definition preserves the inner product on Rn given by

〈x, y〉c = xT η(c)y

where T denotes the matrix transpose and the matrix of the inner product is

η(c) =

 −c2 0

0 I

 .

For understanding contractions, it is useful to denote the Lorentz group preserving this

inner product by SO(2, 1)c—or more generally by SO(n, 1)c—as a reminder that the group

depends on the value of c. These groups are all isomorphic for 0 < c <∞, but we wish to

see what happens when we let c become infinite.

Following the calculation by Hermann [54], suppose we now adjust the speed of

light from c to some other c′. Then note that

η(c′) = P T η(c)P
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where

P =

 c′/c 0

0 I

 .

If O ∈ SO(n, 1)′c, then

OT η(c′)O = η(c′)

or equivalently,

(POP−1)T η(c)(POP−1) = η(c).

Therefore, O ∈ SO(2, 1)c′ if and only if POP−1 ∈ SO(n, 1)c. In particular, the Lorentz

groups for different values of c are all conjugate subgroups of GL(3,R). This of course

implies that the Lie algebras so(2, 1)c are all conjugate within gl(3,R). If we increment the

value of c successively, we thus get a sequence of elements g1, g2, . . . ∈ GL(3,R) relating the

corresponding Lie algebras, as in Definition 4.

The form of a general element ξ of the Lie algebra so(2, 1)c can be found using the

fact that ξT η(c) + η(c)ξ = 0. One obtains

ξ =

 0 −w v
−c2w 0 u
c2v −u 0


for arbitrary u, v, w. Now we consider u, v, w as functions of the value of the speed of light

c. If the above matrix is to converge as c→∞, then we must have

lim
c→∞

w(c) = 0

lim
c→∞

v(c) = 0

but of course we may arrange for c2w(c) and c2v(c) to have any limit we wish. So, in the

limit as c → ∞, if an so(2, 1)-valued function of c is to converge, it must converge to an

element of the form  0 0 0
−w 0 u
v −u 0


But this is just an element of iso(2), and this is the point stabilizer subalgebra for gali(3).

We say that so(2, 1) contracts to iso(2) as c→ 0.

If we do the above contraction process not just for the Lorenz group, but for the

full Poincareǵroup, we see that iso(2, 1) contracts to gali(3). A typical element of iso(2, 1)
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has the form 
0 −w v x

−w 0 u y
v −u 0 z
0 0 0 0


In the c → 0 limit, any convergent matrix-valued function of the speed of light converges

to an element of the form 
0 −w v x

−w 0 u y
v −u 0 z
0 0 0 0

 ∈ gali(3).

It is clear that there is nothing special here about 3 dimensions, and in fact

lim
c→∞

so(n, 1) = iso(n)

lim
c→∞

iso(n, 1) = gali(n).

We have done the above contractions using the speed of light c as a parameter,

but it is just as easy to use the cosmological constant Λ, or perhaps more appropriate in

the Riemannian cases, the radius. Doing this, we get a precise sense in which the five of

the nine spacetimes in our diagram on p. 29 are limiting cases of others, either as c→∞ or

as Λ→ 0. It is worth rewriting this diagram including the matrices for typical Lie algebra

elements, since it is instructive to see how the matrix entries change when we perform

Wick rotations or contractions. In each case in the diagram below, the stabilizer subalgebra

consists of those matrices that are zero outside of the upper 3× 3 block.
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3d Anti-de Sitter

SO(2, 2)/SO(2, 1)
(−++−)0BBBBB@

0 −w v x
−w 0 u y
v −u 0 z
−x y z 0

1CCCCCA
1
c2
> 0

Lorentzian

c→∞ //

Λ→0

��

ww

Wick rotation

((3d Minkowski

ISO(2, 1)/SO(2, 1)
(−++0)0BBBBB@

0 −w v x
−w 0 u y
v −u 0 z
0 0 0 0

1CCCCCA
Λ→0

��

3d de Sitter

SO(3, 1)/SO(2, 1)
(−+++)0BBBBB@

0 −w v x
−w 0 u y
v −u 0 z
x −y −z 0

1CCCCCA
c→∞oo

Λ→0

��

[[

Wick
rotation

��

3d hyperbolic Galilean

ISO(2, 1)/ISO(2)
(0++−)0BBBBB@

0 0 0 x
−c 0 a y
b −a 0 z
0 y z 0

1CCCCCA
1
c2

= 0
Galilean

c→∞ //

3d Galilean

(ISO(2) n R3)/ISO(2)
(0++0)0BBBBB@

0 0 0 x
−w 0 u y
v −u 0 z
0 0 0 0

1CCCCCA

3d spherical Galilean

ISO(3)/ISO(2)
(0+++)0BBBBB@

0 w −v x
0 0 u y
0 −u 0 z
0 −y −z 0

1CCCCCA
c→∞oo

3d hyperbolic

SO(3, 1)/SO(3)
(+++−)0BBBBB@

0 w −v x
−w 0 u y
v −u 0 z
x y z 0

1CCCCCA
c→∞ //

Λ→0

OO

1
c2
< 0

Riemannian

Λ < 0

3d Euclidean

ISO(3)/SO(3)
(+++0)0BBBBB@

0 w −v x
−w 0 u y
v −u 0 z
0 0 0 0

1CCCCCA

Λ→0

OO

Λ = 0

3d spherical

SO(4)/SO(3)
(++++)0BBBBB@

0 w −v x
−w 0 u y
v −u 0 z
−x −y −z 0

1CCCCCA
c→∞oo

Λ→0

OO

Λ > 0

2.3.3 4d spacetimes

The generalization to 4d spacetimes is immediate, the only real difference being

that in 4 dimensions we do not have all of the same nice descriptions of the double covers of

symmetry groups, since there are fewer coincidences of Lie groups as we move up to higher

dimensions. We still have the same nine types of homogeneous spacetime, which can be
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given descriptions in terms of Klein geometry G/H in an obvious way:

Λ < 0 Λ = 0 Λ > 0

Lorentzian
anti de Sitter

SO(3, 2)/SO(3, 1)

Minkowski

ISO(3, 1)/SO(3, 1)

de Sitter

SO(4, 1)/SO(3, 1)

Galilean
hyperbolic Galilean

ISO(3, 1)/ISO(3)

Galilean

(ISO(3) n R4)/ISO(3)

spherical Galilean

ISO(4)/ISO(3)

Riemannian
hyperbolic

SO(4, 1)/SO(4)

Euclidean

ISO(4)/SO(4)

spherical

SO(5)/SO(4)
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Chapter 3

Geometric structures and flat

bundles

Thanks to Thurston’s famous geometrization conjecture— recently proven by

Perelman —we have a solid understanding of what Riemannian 3-manifolds look like.

Roughly, Thurston’s conjecture states that the interior of any compact 3-manifold can

be chopped up into pieces which look locally like one of eight model Klein geometries, listed

below. The full conjecture says much more about what these pieces can look like, and

in fact implies the Poincaré conjecture: every compact connected and simply connected

3-manifold is a homeomorph of S3. We shall not concern ourselves with the full power of

Thurston’s conjecture, instead referring the reader to [71] for a very readable account, and

to Thurston’s book [93] for much of the background in 3d geometry.

For our purposes, Thurston’s idea of a geometric manifold provides a useful way

of looking at solutions of topological gauge theories, like 3d general relativity. As we will

see in the next chapter, solutions of 3d general relativity look locally like Klein geometries,

but not necessarily globally. Geometric structures on manifolds make this idea precise.

In fact, it has been known for some time that the theory of geometric structures is

related to 3d gravity. This point of view has been beautifully explained by Carlip [24, 25].

But as we will see, geometric structures may be just as important for understanding 4d

gravity. This will become apparent when finally study Cartan geometries, the geometries

that show up in MacDowell-Manouri-like approaches to 4d gravity: Cartan geometries are

just curved versions of geometric structures. But first we must understanding the flat case
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in detail and, in the next chapter, its relation to topological gauge theories.

3.1 Geometric manifolds

There are many variations of the idea of a manifold, generally obtained by mod-

ifying the model space and the properties which a transition function must satisfy. For

example, one defines a manifold with boundary by choosing as the model space, rather

than simply Rn, a closed half-space of Rn, say the region where the first coordinate is non-

negative. Likewise, a Banach manifold has some Banach space as the model space. One

defines versions of manifolds which are topological, smooth, real analytic, and so on, by

demanding that the transition functions are maps preserving the corresponding structure

in the model space.

Geometric manifolds are an example of such generalization which is quite rigid.

The model space is any homogeneous space, while the transition functions are required to

be isometries. In a geometric manifold M modeled on a sphere S2 of radius r, for example,

coordinate maps are continuous functions from open sets of M to the sphere, such that

two different sets of local coordinates around a point agree up to a rotation of the model

sphere:

φi

φj

φi ◦ φ−1
j ∈ SO(3)

Formally, we have the following definition.

Definition 5 Let X = G/H be a Klein Geometry. A (G,X)–manifold M is a (smooth

or analytic) manifold M equipped with an open cover {Ui} and a family of homeomorphic

embeddings φi : Ui → X such that the transition functions φi ◦ φ−1
j live in G.

In the context of this definition, we say M is geometrically modeled on the homogeneous

space G/H. Borrowing the usual terminology for manifolds, we call the maps φi : Ui → X

(coordinate) charts for the geometric manifold.

Though we work globally as often as possible, it will sometimes be convenient to

adopt the following notation for local coordinate charts. Denote intersections of sets in the
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open cover by concatenating their substripts:

Uij := Ui ∩ Uj

Uijk := Ui ∩ Uj ∩ Uj
...

Also, denote the transition functions as follows:

φij := φi ◦ φ−1
j : φj(Uij)→ φi(Uij)

We will also use the customary level of sloppiness about domains and ranges of coordinate

charts and transition functions for manifolds. In particular, we also denote by φij the

transformation of X induced by the transition function.

After defining geometric manifolds, we should define the appropriate sort of maps

between them. We adopt the following definition essentially from Goldman [48].

Definition 6 Given two (G,X)–manifolds M and M ′, a (G,X)–map f : M → M ′ is a

map such that for every every coordinate chart (U, φ) for M and every coordinate chart

(V, ψ) for M ′ with f(U) ∩ V 6= 0, ψ ◦ f ◦ φ−1 extends to a transformation of X in G.

3.2 The flat bundle associated to a geometric structure

Ultimately, our goal is to relate geometric structures to gauge theory. Since gauge

theory is written in the language of connections on fiber bundles, we need a description of

geometric structures in this language.

A naive guess at the relationship between bundles and geometric structures on

manifolds would be that geometric structures correspond to flat fiber bundles with X =

G/H as fiber. This makes sense—moving around in a geometric manifold seems to give

trivial parallel transport in some bundle of Klein geometries—and in fact it is almost correct.

The difference between flat (G,X)-bundles and (G,X) structures has to with the idea of

‘symmetry breaking’, which will be a theme for us throughout this thesis.1 We begin to see

this symmetry breaking in the following standard result on reduction of bundles, which we

shall need for our characterization of geometric structures:
1For the relationship between reduction of bundles and symmetry breaking in particle physics, c.f.

Choquet–Bruhat, et. al., vol. 2 [30]
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Proposition 1 Suppose H is a closed subgroup of a Lie group G and that Q → M is a

principal G bundle. Then Q admits a reduction to structure group H if and only if the

associated bundle Q×G G/H admits a global section.

Proof: See, for example, Thurston [93, p. 162], or Choquet–Bruhat et. al. [30, p. 385].

Here we will simply point out that the section s : M → Q×G G/H and the corresponding

principal H bundle P →M reducing Q are related via the pullback:

P //

��

Q

��
M

s // Q×G G/H

where Q is viewed as a principal H-bundle over Q×G G/H. 2

We are now ready to prove the following correspondence between geometric man-

ifolds and bundles with certain extra structure:

Theorem 2 Let X = G/H be an Klein geometry. Then there is a canonical one-to-one

correspondence between the following types of structures that can be put on a manifold M

of the same dimension as X:

(i) a (G,X)-structure on M ;

(ii) a bundle over M with standard fiber X and structure group G, equipped with both

a flat connection and a global section transverse to the connection;

(iii) a principal H-bundle P → M together with a flat connection on the associated

principal G bundle Q = P ×H G, induced by inclusion of H in G, such that the

sub-bundle P is everywhere transverse to the connection.

Proof: Most of the elements of the proof are contained—explicitly or implicitly—in Thurston’s

book [93, §3.6]. It seems worthwhile, though, to assemble these ingredients into a complete

proof, so that the explicit correspondence between these descriptions may be evident. We

proceed by establishing the equivalence of (i) and (ii), then of (ii) and (iii).

(i) =⇒ (ii) Given a (G,X) structure on M with charts φi : Ui → X, we obtain

a flat (G,X)-bundle E with transverse section s as follows. First describe E locally over
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each Ui as a product bundle

Ui ×X

��
Ui

This bundle has its standard flat connection as a trivial bundle, whose parallel transport

is trivial in the second factor. It also has an obvious2 section transverse to the connection,

namely the map

si : Ui → Ui ×X

u 7→ (u, φi(u)).

The product bundles over Ui can be assembled into a bundle E over M with fiber X, using

the φij to identify fibers. Explicitly, E is the disjoint union of the bundles Ui ×X, modulo

identification of (u, x) ∈ Uj×X with (u, φij(x)) ∈ Ui×X. The φij clearly satisfy the cocycle

condition that φijφjkφki is the identity on Uijk, so that we really get a fiber bundle. It is

clear that the standard flat connections agree on overlaps Uij . Moreover, the local sections

si assemble into a global section s : M → E, since if u ∈ Uij then sj(u) = (u, φj(u)) gets

identified with (u, φij(φj(u))) = (u, φi(u)) = si(u) in E. We have thus constructed a flat

bundle E → M with standard fiber X and a section that is everywhere transverse to the

connection.

(ii) =⇒ (i) Now suppose we have a flat (G,X)-bundle p : E →M , equipped with

a section s transverse to the connection. Pick local trivializations ψi : p−1(Ui) → Ui × X
of E, where without loss of generality we may assume each of the open sets Ui ⊆ M is

contractible. Since E is flat, the connection gives a horizontal foliation of E, and since the

Ui are contractible we may choose the local trivializations ψi in such a way that the leaves

of this foliation are locally the horizontal slices Ui × {x}. Define a (G,X) structure on M

2This section is canonical: it is the pullback along φi of the diagonal section ∆: X → X × X of the
product bundle X ×X → X:

Ui ×X
φi×1X //

��

X ×X

��
Ui

φi // X
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using charts φi given by the following composite

Ui

p−1(Ui)
s|Ui

AA�������

Ui ×X
ψi //

X

p2

��:::::::

φi
//

That s is transverse means the differential of ψi ◦ s|Ui has an image complementary to

the tangent space of the horizontal leaf Ui × {x}. Thus nearby points in Ui get mapped

to distinct leaves so that, choosing the Ui small enough, the composite φi = p2 ◦ ψi ◦
s|Ui : Ui → X is injective. The local trivializations ψi give gluing maps γij defined by

ψij(u, x) = (u, γij(x)). Since the bundle has structure group G, the gluing maps live in

G, and hence so do the transition functions φij . Therefore, the collection of charts (Ui, φi)

defines a (G,X)-structure on M .

(ii) =⇒ (iii) Given a flat (G,X)-bundle p : E → M , equipped with a transverse

section s, let Q be the bundle of generalized ‘frames’ f : X → Em. Then Q is a principal

G-bundle. Since E ∼= Q×GX has a section, Q reduces in structure to a principal H-bundle,

say P , by Proposition 1. We then have Q ∼= P ×H G, and we have only to show that the

subbundle P is transverse to the flat connection on Q. P is the a pullback along the section

s:

P
ι //

��

Q

π
��

M
s // Q×G G/H

Locally, say in a trivialization over U ⊆M , the bundle on the right is simply the canonical

projection U × G → U × G/H, where the flat connection on each is simply given by the

horizontal foliation. If we differentiate all of the maps in the above commuting square

and note that the vertical maps are submersions, we see that the images of dι and ds are

simultaneously transverse to the connections on Q and Q×G G/H, respectively.

(iii) =⇒ (ii) Finally, suppose we have a principal H bundle P with a flat con-

nection on Q = P ×H G, such that the image of the inclusion P → Q is a submanifold

transverse to the foliation defined by the flat connection. The bundle E = P ×H G/H
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manifestly has a section, namely

s : M → P ×H G/H

u 7→ [u,H].

We now show that E can be viewed as an associated bundle of Q, so that E inherits the

flat connection from Q. In fact, given the reduction to P , we have a canonical isomorphism

of fiber bundles

P ×H G/H Q×G G/H
∼= //

M
��77777777777

�������������

To see this, note first that the H bundle inclusion map ι : P → Q induces an inclusion of

the associated bundles by

ι′ : P ×H G/H → Q×G G/H

[p, gH] 7→ [ι(p), gH].

This bundle map has an inverse which we construct as follows. An element of Q×GG/H =

P ×H G×G G/H is a an equivalence class [p, g′, gH], with p ∈ P , g′ ∈ G, and gH ∈ G/H.

Any such element can be written as [p, 1, g′gH], so we can define a map that simply drops

this “1” in the middle:

β : Q×G G/H → P ×H G/H

[p, g′, gH] 7→ [p, g′gH].

It is easy to check that this is a well-defined bundle map, and

βι′[p, gH] = β[ι(p), gH] = β[p, 1, gH] = [p, gH]

ι′β[p, g′, gH] = ι′[p, g′gH] = [p, 1, g′gH] = [p, g′, gH]

so ι′ = β−1 is a bundle isomorphism. Thus E inherits the flat connection from Q. 2
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3.3 Moduli space of geometric structures

In light of the previous section, we can describe geometric structures by flat bun-

dles. It follows that we can describe geometric structures up to isomorphism by specifying

the corresponding flat bundles up to gauge transformations. This gets us closer to relating

geometric structures to the gauge theory.

In general, given a fiber bundle E with structure group G, let A(E) denote the

space of connections on P , A0(E) the subspace of flat connections, and G(E) the group of

gauge transformations of the bundle. When the bundle is clear from the context, we write

simply A,A0, or G. Gauge equivalence classes of flat connections on P thus live in A0/G,

the moduli space of flat connections on P .

The space A0/G is a bit difficult to handle. It is often more convenient to start by

fixing a basepoint ∗ ∈ X and working with A0/G0, where

G0 = {g ∈ G : g(∗) = 1}.

This amounts to choosing a frame at ∗—an identification of the fiber over ∗ with the

standard fiber, G itself in the case of a principal bundle. The group G/G0
∼= G acts on

A0/G0 in a natural way. This lets us form A0/G as the quotient of the bigger space A0/G0

by this action of G.

The advantage of the space A0/G0 for a principal G bundle P is that any point

[A] in this space gives a homomorphism

hol([A]) : π1(X)→ G

which sends any homotopy class of loops [γ] to the holonomy of A around γ. This gives a

map

hol : A0/G0 → hom(π1(X), G)

which is known to be one-to-one. Note that G acts on hom(π1(X), G) by conjugation:

(gf)(γ) = gf(γ)g−1

where f : π1(X) → G is any homomorphism. Moreover, the map hol is compatible with

this group action:

hol([gA]) = g hol([A]).
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So far we have fixed a principal G-bundle P . But, in gauge theory it is often

better to treat this bundle as variable—part of the physical field along with the connection

A. For example, path integrals in quantum chromodynamics involve a sum over bundles,

which represent instantons. The mathematical advantage of treating P as variable is that

all points of hom(π1(X), G) are in the image of hol if we allow ourselves to vary P [59]. In

fact, we have the following more general result [93]:

Proposition 3 Let G be a Lie group, M a connected manifold with a basepoint, and X a

G-manifold such that the action of G is effective. Then there is a one-to-one correspondence

between:

1. homomorphisms π1(M)→ G, and

2. gauge-equivalence classes of flat bundles over M with fiber X and structure group G,

equipped with a frame at the basepoint.

A point in this space represents a ‘G-bundle with flat connection over X, mod gauge

transformations that equal the identity at the basepoint’. Modding out by the rest of

the gauge transformations we get a space known as the moduli space of flat bundles,

hom(π1(X), G)/G. In the context of the theory of geometric structures, this same space

has been called the deformation space of geometric structures [49].

3.4 Model geometries and exotic spacetimes

In Chapter 2 we have examined the geometry of several 3d homogeneous space-

times. But there are other interesting 3d geometries as well. In fact, in the Riemannian

case, Thurston has classified the homogeneous spaces which serve as model geometries for

geometric 3-manifolds. He defines a ‘model geometry’ to be a Klein geometry X = G/H

such that [93]:

1. G/H is connected and simply connected;

2. H is compact;

3. G is maximal in the sense that it is not contained in any larger group of diffeomor-

phisms of X with compact point stabilizers;
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4. there exists at least one compact manifold with the local geometry of (G/H), in the

sense of Definition 6.

Some explanation of these criteria is in order. The first requirement, that the

model geometry be connected and simply connected, keeps one from counting geometries

as distinct when they are locally isometric. For example, it would be absurd to consider the

disjoint union of two copies of the plane as a model geometry distinct from a single connected

copy. Similarly, the Klein geometry SO(2, 2)/SO(2, 1) and its universal cover, the 3d anti

de Sitter spacetime, should not be considered separate model geometries. The canonical

choice is to always let the universal cover represent the model geometry. Equivalently, we

could define model geometries as equivalence classes of Klein geometries. Since the main

purpose here is not the classification of geometries but the application to physics, we shall be

somewhat relaxed about such issues, feeling free to refer to geometries as model geometries

even when they do not satisfy this requirement.

The second requirement, that the point stabilizer subgroup be compact, is neces-

sary to guarantee that the model be a Riemannian manifold. In fact, stabilizers of points in

homogeneous Riemannian n-manifolds must be subgroups of O(n), which is compact. This

requirement is of course too restrictive for more general ‘model geometries’ for Lorentzian

physics: the Lorentz groups are noncompact.

The third requirement says we are not allowed to construct new model geome-

tries by crippling the symmetry groups of old geometries. The symmetry groups must be

maximal. The spacetime geometries as described in Chapter 2 also do not meet this re-

quirement. In particular, since SO(p, q) ⊂ O(p, q), we have not considered the maximal

symmetry groups for these spacetimes. Technically, then, the model geometries on which

these spacetimes are based are the unoriented versions, with larger symmetry groups.

The fourth requirement is obviously sensible if we wish to model compact manifolds

on such geometries. For spacetime physics, this requirement is less obviously important,

but it has the advantage of simplifying the classification considerably.
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For two dimensions, there are just 3 model geometries satisfying properties 1-4:

the sphere, the Euclidean plane, and the hyperbolic plane:

G H X = G/H

1. 2-sphere SO(3) SO(2) S2

2. Euclidean plane ISO(2) SO(2) R2

3. hyperbolic plane SO(2, 1) SO(2) H2

In three dimensions, there are eight, including the obvious analogs of the 2d ge-

ometries, products of 2d geometries with the unique 1d geometry, and three more exotic

ones:
G H X = G/H

1. 3-sphere SO(4) SO(3) S3

2. Euclidean 3-space ISO(3) SO(3) R3

3. hyperbolic 3-space SO(3, 1) SO(3) H3

4. spherical cylinder SO(3)× R SO(2) S2 × R

5. hyperbolic cylinder SO(2, 1)× R SO(2) H2 × R

6. ‘nilgeometry’ Nil3 o SO(2) SO(2) Nil3

7. 3d Lorentz group SL(2,R)× SO(2) SO(2) SL(2,R)

8. ‘solvgeometry’ R∗ n R2 1 R∗ n R2

We emphasize that in the above charts, (G,G/H does not necessarily satisfy axioms 1 and

3 in Thurston’s definition of model geometry. In particular, we have ignored orientation-

reversing isometries and not necessarily described the simply connected member of a given

family of locally isometric geometries. We have simply given the simplest way to construct

these homogeneous manifolds as coset spaces with the correct stabilizer dimension.

We might consider these as potential models for Riemannian 3d spacetimes. The

first three are just the totally isotropic Riemannian spacetimes in the bottom row of the

chart on p. 29, which have 3-dimensional point stabilizer groups. Four additional ones have

1-dimensional point stabilizers:

3d spherical cylinder

(SO(3)× R)/SO(2)
3d hyperbolic cylinder

(SO(2, 1)× R)/SO(2)
SL(2,R) geometry

P (SL(2,R)× SO(2))/SO(2)
nilgeometry

(Nil3 o SO(2))/SO(2)

The first two of these, the spherical and hyperbolic cylinders, describe nonrelativis-

tic spacetimes in the strictest sense. They have a notion of ‘absolute space’, as in Newtonian
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gravity.3 The time translation subgroup R gives a canonical way of moving from one slice of

space to a later one. The time translations R form a normal subgroup, and factoring these

out gives the symmetry group of absolute space: SO(3) in the sperical case, or SO(2, 1) in

the hyperbolic. Of course, these spacetimes have a common contraction limit to one with

symmetry group ISO(2)×R and SO(2) as point stabilizer. The reason this is not considered

a separate geometry in Thurston’s classification is that it violates property 3: the resulting

manifold is isometric with the Euclidean model ISO(3)/SO(3), even though it has by con-

vention a reduced group of symmetries. Nonetheless, for purposes of modeling spacetime

we can certainly consider Euclidean space with a preferred time direction, obtaining the

contraction family:

3d hyperbolic cylinder

(SO(2, 1)× R)/SO(2)

Λ < 0

contraction //

tt

Wick rotation

++
3d Euclidean cylinder

ISO(2)× R/SO(2)

Λ = 0

3d spherical cylinder

(SO(3)× R)/SO(2)

Λ > 0

contractionoo

The next two geometries are slightly more exotic, but in involve Lie groups that are

more or less familiar from physics. We have already seen that SL(2,R) is the double cover

of the connected 3d Lorentz group SO0(2, 1), and can also be viewed as 3d anti de Sitter

spacetime. But here we consider SL(2,R) not as Lorentzian, but as a Riemannian manifold.

We explain this shortly. ‘Nilgeometry’ is the geometry of the 3d ‘Heisenberg group’, a Lie

group whose Lie algebra satisfies relations equivalent to the canonical commutation relations

of quantum mechanics.

Finally, there is an even more exotic model geometry in Thurston’s classification,

the so called ‘solvgeometry’. The connected isometry group of this geometry has trivial

point stabilizer, so in a spacetime modeled on this geometry, there are not even isometric

rotations of ‘space’. In the next section we describe these geometries in more detail.

3.4.1 3d model geometries

We have already discussed the three symmetric geometries, and the two cylinder

geometries are need little clarification. In this section we describe the three exotic Reiman-

nian model geometries.
3Rovelli has written a fascinating account, in his book [81], of Newtonian absolute space, as it stands in

relation to more modern conceptions of spacetime.
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geometry of S̃L(2,R)

We have seen that S̃L(2,R) is isomorphic as a Lorentzian manifold to 3d anti

de Sitter spacetime. But S̃L(2,R) also serves as an important homogeneous model for 3d

Riemannian geometry. How is this? Even though S̃L(2,R) is most naturally a Lorentzian

manifold, any Lorentzian manifold M that admits a nonvanishing timelike vector field ∂t

can be turned into a Riemannian manifold as follows. We partially diagonalize the metric

g at each point, writing

g = −dt2 + gS

where gS is the positive definite metric defined pointwise on the orthogonal complements

of ∂t. We define a new positive definite metric on all of M by flipping the sign in the ∂t

direction:

g̃ = dt2 + gS .

Let us apply this procedure to the group SL(2,R), and describe the groups of

symmetries of the resulting homogeneous Riemannian manifold. Recall the following rep-

resentation of the group:

SL(2,R) =
{(

a+ b c+ d
c− d a− b

)
: a, b, c, d ∈ R, a2 − b2 − c2 + d2 = 1

}
The corresponding Lie algebra representation consists of all 2× 2 traceless matrices:

sl(2,R) =
{(

p1 p2 + p0

p2 − p0 −p1

)
: p0, p1, p2 ∈ R

}
Using these matrix representations it is straightforward to compute the stabilizer of a unit

timelike vector field. The obvious timelike vector at the identity, with respect to the Killing

form, is

v1 =
(

0 1
−1 0

)
∈ sl(2,R).

We can push this vector field forward by left translation to get a vector field on all of

SL(2,R),

vh = hv1 ∈ ThSL(2,R).

where we are taking advantage of the embedding of SL(2,R) in Mat2×2(R) ∼= R4 to identify

each tangent space with a vector subspace of R4. Explicitly:

v1 =
(
−c− d a+ b
−a+ b c− d

)
∈ ThSL(2,R) where h =

(
a+ b c+ d
c− d a− b

)
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Recall that the full symmetry group of SL(2,R) as a Lorentzian manifold is

SL(2,R)× SL(2,R)/{±1}, where

(g, g′) ∈ SL(2,R)× SL(2,R)

acts on SL(2,R) by

(g, g′) : SL(2,R) → SL(2,R)

h 7→ ghg′−1

Such a transformation of SL(2,R) preserves the Riemannian metric if and only if it preserves

the vector field v. That is, (g, g′) ∈ SL(2,R) × SL(2,R) is a symmetry of Riemannian

SL(2,R) if and only if

gvhg
′−1 = vghg′−1

or equivalently,

g′v1 = v1g
′.

A direct computation shows that the subgroup of SL(2,R) commuting with the matrix v1

is {(
a d
−d a

)
: a, d ∈ R, a2 + d2 = 1

}
∼= SO(2)

Thus, as a Riemannian homogeneous space, SL(2,R) may be described as

SL(2,R) = G/H

where
G = SL(2,R)× SO(2)

and

H = {(g, h) ∈ SL(2,R)× SO(2) : g = h} ∼= SO(2).

It is worth mentioning another well-known way of getting the Riemannian structure

on S̃L(2,R) (see, for example, Scott [85]). The 3d Lorentz group SO0(2, 1) ∼= PSL(2,R)

is isomorphic to the unit tangent bundle of velocity space, which is just the hyperbolic

plane, H2. Since H2 is a Riemannian manifold, so is its unit tangent bundle PSL(2,R), and

its metric may be pulled back to any covering group, in particular to the universal cover

S̃L(2,R). By taking quotients of the hyperbolic plane by discrete groups, the unit tangent

bundle of any surface of genus at least two has a geometric structure modeled on S̃L(2,R)

[69].
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nilgeometry

Nilgeometry is the geometry, as a Riemannian manifold, of the unique 3d connected

and simply connected Lie group which is nilpotent but not abelian [93, p. 185]:

Nil3 :=


1 a c

0 1 b
0 0 1

 : a, b, c ∈ R


The operations of multiplication and inversion in Nil3 are simple enough to be worth writing

out in general: 1 a c
0 1 b
0 0 1

1 a′ c′

0 1 b′

0 0 1

 =

1 a+ a′ c+ ab′ + c′

0 1 b+ b′

0 0 1


and 1 a c

0 1 b
0 0 1

−1

=

1 −a ab− c
0 1 −b
0 0 1


From the multiplication rule, it is easy to see that the center of the Heisenberg group is the

1-parameter subgroup defined by a = b = 0:

Z(Nil3) =


1 0 c

0 1 0
0 0 1

 : c ∈ R


The group Nil3 is also called the Heisenberg group, since its Lie algebra nil3 can

be presented as a set of generators:

p =

0 1 0
0 0 0
0 0 0

 q =

0 0 0
0 0 1
0 0 0

 h =

0 0 1
0 0 0
0 0 0


satisfying relations which are formally the canonical commutation relations of quantum

mechanics:

[p, q] = h [p, h] = [q, h] = 0

To get a metric on Nil3, we choose an inner product on nil3 and left translate to

each tangent space. In particular, if we choose the inner product such that the matrices

{p, q, h} given above form an orthonormal basis of nil3, and if

g :=

1 a c
0 1 b
0 0 1

 ∈ Nil3,
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then an orthonormal basis for the tangent space TgNil3 is {pg, qg, hg} where

pg := gp =


0 1 0

0 0 0

0 0 0

 = p

qg := gq =


0 0 a

0 0 1

0 0 0

 = q + ah

hg := gh =


0 0 1

0 0 0

0 0 0

 = h

This metric is invariant by construction under left translation by group elements. A direct

calculation shows that the only right translations preserving the metric are translations by

central elements, so these don’t give any new symmetries. In fact the rest of the symmetries

come from a non-obvious circle’s worth of outer automorphisms of Nil3. For any θ ∈ R/2πZ

we get an automorphism described by the transformation [85, p. 468]

a 7→ a cos θ − b sin θ
b 7→ a sin θ + b cos θ
c 7→ c+ 1

2 sin θ[(a2 − b2) cos θ − 2ab sin θ]

where a, b, c are the matrix entries of an arbitrary element

g :=

1 a c
0 1 b
0 0 1

 ∈ Nil3.

This action of SO(2) on Nil preserves the metric, and stabilizes the identity, since it acts as

automorphisms. The only other isometries for the metric come from the automorphism

a 7→ −a
b 7→ −b
c 7→ c

So in fact we have O(2) ∼= SO(2) o Z/2, so the full isometry group of Nil3 is the group

generated by Nil3 itself acting as left translations, together with the O(2) group of auto-

morphisms. We can describe Nil3 as a Klein geometry as:

Nil3 ∼= (Nil3 o O(2))/O(2),

or if we want only the oriented geometry,

Nil3 ∼= (Nil3 o SO(2))/SO(2),



56

solvgeometry

Solvgeometry is the geometry of the connected Poincaré group for 1 + 1 dimen-

sional spacetime, ISO0(1, 1), considered as a Riemannian manifold [69]. Since SO0(1, 1) is

isomorphic to the real line, the 2d Poincaré group is really

ISO0(1, 1) ∼= R n R2,

where a boost of rapidity ρ ∈ R acts on R2 as matrix multiplication by cosh ρ sinh ρ

sinh ρ cosh ρ

 .

Transforming to a lightlike basis diagonalizes this matrix so that the action of R on R2

becomes

(u, v) 7→ (eρu, e−ρv)

where u = (t − x)/
√

2 and v = (t + x)/
√

2 are lightlike coordinates on R2. To get a

Riemannian metric on the group Rn R2, we simply pick one at the origin and left translate

by group elements. This metric is obviously preserved by left translations, but it is not

preserved by any right translations. In fact, the geometry is homogeneous but maximally

anisotropic: the connected component of the isometry group is Nil3 itself, hence has trivial

point stabilizer subgroup. The full isometry group G has eight components, with G/G0
∼=

D4, the dihedral group of the square. [85].

We ignore the discrete isometries and consider nilgeometry as the Klein geometry

Nil3/1. The product in R n R2 is given by the formula

(ρ, u, v)(ρ′, u′, v′) = (ρ+ ρ′, u+ eρu′, v + e−rhov′)

while the inverse of an element ρ, u, v is

(ρ, u, v)−1 = (−ρ,−e−ρu,−eρv).

It is sometimes convenient to use the matrix representation:

R∗ n R2 ∼=


1 0 0
u eρ 0
v 0 e−ρ

∣∣∣(x
y

)
∈ R2, t ∈ R∗


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The Lie Algebra:

g =


 0 0 0
px E 0
py 0 −E

∣∣∣x, y, t ∈ R


Generators:

X =


0 0 0

0 0 0

1 0 0

 Y =


0 0 0

1 0 0

0 0 0

 T =


0 0 0

0 1 0

0 0 −1


[X,Y ] = 0 [Y, T ] = Y [T,X] = X

so [g, g] is the abelian Lie algebra with basis {X,Y }. This implies solvability, since a Lie

algebra is solvable if and only if the Killing form vanishes on [g, g] ⊆ g. The adjoint action

sends

Ad((et, x, y))(E, px, py) = (E, etpx − xE, e−tpy + yE)

It is not hard to check that any Ad-invariant quadratic form on the Lie algebra must be

proportional to E2.

3.4.2 Exotic Lorentzian spacetimes

So far, we have said nothing of exotic 3d Lorentzian spacetimes, though there

are bound to be interesting examples to consider here as well. Let us just mention one

possibility. We saw that the Riemannian geometry of SL(2,R) is obtained by starting with

the 3d anti de Sitter spacetime, picking a timelike vector field, and flipping the sign of the

metric in that direction. We could do exactly the opposite of this procedure using the Wick

rotatated version of SL(2,R), namely SU(2). As a Riemannian manifold SU(2) is just the

3-sphere geometry we have considered. We get a nonvanishing vector field on SU(2) by

differentiating the circle group action preserving a Hopf fibration. If we flip the sign of the

Riemannian metric in the direction of this field, we obtain a 3d Lorentzian spacetime where

every point lies on a closed timelike loop. Unlike anti de Sitter spacetime, however, these

timelike loops cannot be removed by passing to a universal cover, since S3 is already simply

connected. ‘Time’ in this spacetime is a circle; ‘space’ is locally S2 but there is no foliation

into spacelike slices, since the Hopf fibration admits no global section. This rather bizarre

spacetime is reminiscent of Gödel’s famous solutions of 4d general relativity [47].
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The Riemannian SL(2,R) geometry and this Hopf spacetime are evidently related

by a Wick rotation:

SL(2,R) geometry

P (SL(2,R)× SO(2))/SO(2)

tt

Wick rotation

**
‘Hopf spacetime’

P (SU(2)× SO(2))/SO(2)

An interesting question to consider is what the common contraction limit of these two

geometries is. One obvious candidate to try is nilgeometry, since it fibers over E2, while

SL(2,R) and SU(2) fiber respectively over H2 and S2, but we shall not pursue this idea

further here.
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Chapter 4

Topological gauge theories

4.1 From general relativity to BF theory

General relativity in 3d spacetime is drastically simpler than 4d general relativity,

both classically and quantum mechanically [24, 32, 99]. In fact, 3d gravity is a ‘topological

field theory’ in the sense that all solutions of Einstein’s equations in 3 spacetime dimen-

sions are locally the same up to gauge transformations. BF theory may be viewed as an

alternative generalization of 3d general relativity, which retains its topological character in

any dimension.

In arbitrary spacetime dimension n, general relativity may be described in the

so-called ‘Palatini formalism’ as follows. Spacetime is represented by an n-dimensional

oriented smooth manifold M . From the Palatini perspective, M does not come equipped

with a metric, but acquires one by pulling back along a map of vector bundles called the

coframe field e:
TM Te //

M

π

�����������

p

��,
,,,,,,,,

Here T is the fake tangent bundle or internal space—a bundle over spacetime M

which is isomorphic to the tangent bundle TM , but is also equipped with a fixed metric η

of signature (p, q), where p + q = n.1 This idea shifts the focus in general relativity from
1The case of greatest physical interest is of course the case n = 4 of Lorentzian signature (3, 1). However,

there is also much theoretical interest in other dimensions, and in the case of Riemannian signature (n, 0).
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the metric to the coframe field, which now becomes the key dynamical variable. This might

seem artificial at first sight, but this perspective is more suitable for describing gravity as

a gauge theory (see the book by Ashtekar [5] for a discussion). In fact, as explained by

Rovelli [81], from a modern perspective it is the coframe field that deserves to be called the

‘gravitational field’ in general relativity.

Besides the coframe field, the Palatini formalism uses one other physical field: a

connection A on the vector bundle T . There is no a priori assumption that this connection

is compatible with the metric on T . The Palatini Lagrangian for general relativity, without

source terms, is then

tr
(
e ∧ · · · ∧ e︸ ︷︷ ︸

n−2

∧F
)

(4.1)

where F is the curvature of A. Here the wedge product applies both to differential form

parts and to the vector bundles in which the forms take values. That is, the wedge product

is the obvious bilinear map

∧ : Ωk(M,ΛsT )⊗Ω`(M,ΛtT )→ Ωk+`(M,Λs+tT )

given by antisymmetrizing both spacetime and internal indices. Thus, since e is a T -valued

1-form, the (n−2)-fold wedge product e∧· · ·∧e is an (n−2)-form with values in the vector

bundle Λn−2T . The curvature F is a 2-form with values in Λ2T . Hence, the expression

in parentheses in (4.1) is a ΛnT -valued n-form on M , and the ‘trace’ is really a map that

turns such a form into an ordinary real-valued form:

tr : Ω(M,ΛnT )→ Ω(M,R)

by contraction with the volume form on the internal space T , which exists since T has a

metric and orientation.

The classical field equations deriving from the Palatini Lagrangian (4.1) are

e ∧ · · · ∧ e︸ ︷︷ ︸
n−3

∧F = 0 e ∧ · · · ∧ e︸ ︷︷ ︸
n−3

∧dAe = 0

We postpone a detailed discussion of the Palatini action, including why this really is the

action for general relativity, until Chapter 11. Our interest here is simply to make explicit

the relationship between the Palatini Lagrangian and the Lagrangian for the topological

gauge theory ‘BF theory’.
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To pass to BF theory, we begin by recasting our fields e and A in the language of

principal bundles. Let P be the bundle of orthonormal frames Tx → Rp,q. This is a principal

SO(p, q)-bundle over M , which is isomorphic via pullback along e to the frame bundle FM .

Thus T is the bundle associated to P via the defining representation of SO(p, q) on the

vector space Rp,q:

T = P ×SO(p,q) Rp,q.

Now our connection A may be viewed as a connection on P itself rather than on T . In BF

theory, we will simply take A to be a connection on a principal bundle.

To understand what takes the place of the coframe field in BF theory, first define

Ad(P ) to be the vector bundle associated to P via the adjoint action of SO(p, q) on its Lie

algebra.2 We then have the following result.

Lemma 4 Given the framework described above for the Palatini formalism, the (n-2)nd

exterior power of the coframe field

e ∧ · · · ∧ e︸ ︷︷ ︸
n−2

corresponds canonically to an (n− 2)-form on M with values in Ad(P ).

Proof: For the coframe field, note that since e transforms at each point x ∈ M according

to the defining representation of SO(p, q) on Tx ∼= Rp,q, the field

e ∧ · · · ∧ e︸ ︷︷ ︸
n−2

transforms under the induced representation ρ on Λn−2Rp,q. But this induced representation

is equivalent to the adjoint representation of SO(p, q) on its Lie algebra. That is, for each

g ∈ SO(p, q), the diagram:

Λn−2Rp,q
ρ(g) //

α

��

Λn−2Rp,q

α

��
so(p, q)

Ad(g)
// so(p, q)

2In general, if P is a principal G-bundle, Ad(P ) is the vector bundle whose standard fiber is the Lie
algebra g of G, associated to P via the adjoint action:

Ad(P ) = P ×Ad g :=
P × g

(p, v) ∼ (pg−1, Ad(g)v) ∀g ∈ G
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commutes, where the intertwining operator α : Λn−2Rp,q → so(p, q) is actually the composite

of the Hodge star operator (defined using the chosen orientation) on ΛRp,q and the natural

correspondence between bivectors and infinitesimal pseudorotations:

Λp+q−2Rp,q Λ2Rp,q? // so(p, q)∼ //

α

++

2

Using this lemma, we pass from the Palatini Lagrangian (4.1) to the Lagrangian

tr (E ∧ F ) (4.2)

where E is an Ad(P )-valued (n− 2)-form which takes the place of e∧ · · · ∧ e, and the trace

now comes from the Killing form on SO(p, q). This is the Lagrangian for SO(p, q) BF

theory. At first, it may seem like simply the Lagrangian for general relativity written in a

slightly more sophisticated form. However, we now allow E to be an arbitrary (n− 2) form,

not necessarily of the form e∧· · ·∧e. Perhaps more to the point, in deriving the equations of

motion for this new Lagrangian, we minimize the action with respect to arbitrary variations

of E, not just variations coming from the variation of e. General relativity may thus be

viewed as SO(p, q) BF theory subject to the constraint E = e ∧ · · · ∧ e. Notice that this

constraint is no constraint at all when n = p + q = 3: (2+1)-dimensional gravity is an

SO(2, 1) BF theory. It has been shown that this constraint may be imposed in a natural

way to recover general relativity in any dimension from BF theory, by adding a term to

the Lagrangian [42].

From a mathematical perspective, one advantage of the BF Lagrangian over the

Lagrangian for full-fledged general relativity is the way it generalizes to gauge groups other

than SO(p, q). In general we define BF theory as follows [7]. Let G be any Lie group whose

Lie algebra g is equipped with a nondegenerate Ad-invariant bilinear form

〈·, ·〉 : g× g→ R

Let ‘spacetime’ be described by an n-dimensional manifold M and choose a principal G-

bundle P →M . The fields of BF theory are:

A — a connection on P →M

E — an ad(P )-valued (n− 2)-form
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The Lagrangian of BF theory is then

L = tr (E ∧ F )

where the curvature F = dA+ 1
2 [A,A] is an Ad(P )-valued 2-form, and

tr (· ∧ ·) : Ωn−2(M,Ad(P ))× Ω2(M,Ad(P ))→ Ωn(M,R)

denotes the operation that wedges differential form parts and, at each point, applies the

bilinear form 〈·, ·〉 to Lie algebra parts. The notation ‘tr ’ is retained since this bilinear form

is often the Killing form.

The equations of motion are derived by taking the critical points of the action3

S =
∫
M

tr (E ∧ F ) .

Taking the variation of the action gives:

δS =
∫
M

tr (δE ∧ F + E ∧ dAδA)

= (−1)n
∫
∂M

tr (E ∧ δA) +
∫
M

tr (δE ∧ F − (−1)ndAE ∧ δA)

Here we have used the identity4

δF = dAδA (4.3)

and an integration by parts. So, when the boundary term vanishes, the field equations for

BF theory just say

F = 0

dAE = 0

That is, the connection A is flat, and the field E is covariantly constant.

In 3 and 4 dimensions, where the degree of E divides the dimension of spacetime,

it is possible to add a ‘cosmological constant term’ to the BF Lagrangian. In 3 spacetime

dimensions, the BF action with cosmological term takes the form

S =
∫
M

tr
(
E ∧ F +

Λ
3
E ∧ E ∧ E

)
.

3In some sense, the ‘action’ here is a purely formal entity—it is not generally a convergent integral.
However, convergence of S is not what is strictly needed, at least in the classical theory. What we need is
for the variation δS to be a convergent integral for all compactly supported smooth variations δA, δE.

4The proof of this identity is straightforward: δF = δ(dA + 1
2
[A,A]) = dδA + 1

2
[δA,A] + 1

2
[A, δA] =

dδA+ [A, δA] = dAδA, using the superbracket of g-valued forms.



64

Varying this action gives

δS =
∫
M

tr (E ∧ dAδA+ δE ∧ (F + ΛE ∧ E))

= −
∫
∂M

tr (E ∧ δA) +
∫
M

tr (dAE ∧ δA+ δE ∧ (F + ΛE ∧ E))

where we have used the identity δF = dA(δA) and hence, when the boundary term vanishes,

the equations of motion

F + ΛE ∧ E = 0 dAE = 0.

In 4 dimensions, since the E field is a 2-form, we may add to the action a cosmo-

logical term of the form E ∧ E:

S =
∫
M

tr
(
E ∧ F +

α

2
E ∧ E

)
In this case, we get the equations of motion:

F − αE = 0

dAE = 0

but the second equation is implied by the first, provided α 6= 0, by the Bianchi identity

dAF = 0. We thus reduce to a single equation of motion:

F = αE

The connection A may thus be chosen arbitrarily, with E = 1
αF [A] a consequence of the

choice of A. This brings out a sharp contrast between BF theory with nonzero cosmological

constant term and ordinary BF theory. When α = 0 the classical theory involves a flat

connections; for α 6= 0 any connection will do.

4.2 BF theory and geometric structures

The classical field equations for BF theory are

F = 0 dAE = 0

In light of the relationship between flat bundles and geometric structures (Theorem 2, p. 43),

the equation F = 0 immediately suggests one way solutions of BF theory are related to
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geometric structures. If spacetime is n-dimensional, choose an n-dimensional model Klein

geometry G/H, and consider BF theory with gauge group G, assuming we are working

over a principal bundle that admits a reduction of structure to the subgroup H. Theorem 2

implies a solution of the equation F = 0 from BF theory will then give a geometric structure

on spacetime, modeled on G/H, provided we can choose a reduction to an H-bundle that

is everywhere transverse to the flat connection. Even if we can’t pick a reduction that is

everywhere transverse, we may be able to do it over an open dense subset of spacetime.

We can interpret this as describing a spacetime that is locally isometric to the model Klein

geometry except at certain ‘singularities’.

In fact, this way of getting geometric structures out of BF theory is related to

the MacDowell–Mansouri approach to gravity. As noted in the Introduction, this theory

involves a connection with gauge group G = SO(4, 1). It may be written as a BF theory,

but with an additional term that breaks the symmetry down to H = SO(3, 1). This theory

is not a topological gauge theory: it has local degrees of freedom. Nonetheless, it has

“flat” solutions (in the generalized sense of flatness relative to a Klein model) which are

nothing but geometric structures modeled on de Sitter spacetime SO(4, 1)/SO(3, 1). The

more generic solutions of MacDowell–Mansouri gravity are just “wavy” versions of these

geometric structures, or in other words Cartan geometries. But this subject will have to

wait until Part III.

In 3d spacetime, there is a more well–known way in which solutions of BF theory

correspond to geometric structures. The basic example is 3d general relativity, viewed as

BF theory with gauge group H = SO0(2, 1) [24]. For this application, let us go back to

calling the connection and coframe field by their more standard names in general relativity,

ω and e. If P is our principal SO0(2, 1)-bundle, then we have the fields

ω — a connection on P →M

e — an ad(P )-valued 1-form

The equations of BF theory are then the usual equations of general relativity in 3 dimen-

sions:

R[ω] = 0 dωe = 0 (4.4)

Locally, both of these fields are so(2, 1)-valued 1-forms. The trick is combining

them into a single connection, not for the group SO0(2, 1), but for the Poincaré group
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ISO0(2, 1). This means using the isomorphism

so(2, 1) ∼= R2,1,

which gives

ISO0(2, 1) ∼= SO0(2, 1) n so(2, 1).

This lets us split the Lie algebra into vector subspaces

iso(2, 1) ∼= so(2, 1)⊕ so(2, 1)ab

in an AD(SO0(2, 1))-invariant way. We then think of ω and e as taking values respectively

in these two subspaces.

The curvature F of this connection A = ω + E is given by

F [A] = dA+ 1
2 [A,A]

=
(
dω + 1

2 [ω, ω] + 1
2 [e, e]

)
+ (de+ [ω, e])

= R[ω] + dωe

= 0

where we have used (4.4) and the fact that e takes values in an abelian Lie algebra, R3 or

equivalently the Lie algebra of the additive group so(2, 1). Thus the fields ω and e assemble

to give a flat ISO0(2, 1)-connnection. The local connection 1-forms and curvature 2-forms

can be summarized diagrammatically as follows:

TU iso(2, 1)A //

so(2, 1)
;;xxxx

so(2, 1)
##FFFF

ω //

e //

Λ2(TU) iso(2, 1)F //

so(2, 1)
::ttttt

so(2, 1)
$$JJJJJ

R //

dωe
//

Flat ISO(2, 1) connections A constructed in this way already live on a bundle that

has been reduced to the stabilizer SO(2, 1), since we started with a BF theory with this

gauge group. When A is transverse (perhaps just away from certain singular points), we

get a geometric structure modeled on 3d Minkowski spacetime ISO0(2, 1)/SO0(2, 1). More

generally, using the BF formulation of gravity with cosmological constant term, one can

again subsume the ω and e fields into a connection A, but now giving geometric structures

modeled on 3d de Sitter SO0(3, 1)/SO0(2, 1) or anti de Sitter SO0(2, 2)/SO0(2, 1) models,
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depending on the sign of the cosmological constant. Geometric structures of all of these

kinds have been studied rather extensively as solutions of 3d Einstein gravity; see the book

by Carlip [24] for some nice examples and further references. We will see more about the

Λ 6= 0 cases soon, when we review the Chern–Simons formulation of 3d general relativity,

which is really the most natural setting for these extended connections. For now, we turn

to higher dimensional generalization.

We consider BF theory in n-dimensional spacetime, with gauge group H =

SO(p, q), such that p+ q = n. Let us write the connection as ω, so we have

ω — a connection on a principal SO(p, q) bundle P →M

E — an Ad(P )-valued n− 2-form

satisfying the equations:

R[ω] = 0 dωE = 0 (4.5)

In general, there is no way of combining the fields ω and E as we did in the 3d case, since E

is not a 1-form. However, we can describe an important class of solutions in a related way.

To do this, choose a 1-form e on spacetime with values in the vector bundle associated to

P by the defining representation of SO(p, q):

e ∈ Ω1(M)⊗(P ×SO(p,q) Rp,q)

and assume e is covariantly constant:

dωe = 0.

We then define

E = e ∧ · · · ∧ e︸ ︷︷ ︸
n−2

This is an (n − 2)-form with values in the induced vector bundle whose standard fiber is

Λn−2Rp,q:

E ∈ Ωn−2(M)⊗(P ×SO(p,q) Λn−2Rp,q).

But this vector bundle is equivalent, by Hodge duality, to the associated bundle with stan-

dard fiber Λ2Rp,q ∼= so(p, q), namely the bundle Ad(P ). Since the equation dωE = 0 follows

from dωe = 0, we thus have a solution of BF theory. Now everything goes through as before:
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we can combine ω and e into an iso(p, q) connection A using the the invariant splitting, as

vector spaces,

iso(p, q) ∼= so(p, q)⊕ Rp,q.

Whenever A is transverse to P , we get a geometric structure on spacetime, modeled on the

pseudo-Riemannian space ISO(p, q)/SO(p, q) of signature (p, q).

4.3 Generalized 3d gravities

We have seen that the trick to writing 3d general relativity as a BF theory lies in

the equivalence between the adjoint representation of SO(2, 1) and its obvious representation

on the 3d Minkowski vector space R2,1. Indeed, it is the isomorphism so(2, 1) ∼= R2,1 that

lets us write the coframe field, which is locally R2,1-valued, as an so(2, 1)-valued 1-form.

But this is not strictly what is necessary to define an action like that of 3d general relativity.

What is needed is a pairing

〈e, F 〉

between an appropriate generalization of the coframe field and the curvature of a connection.

From the perspective of Kleinian geometry, the coframe field should take values in the

infinitesimal geometry g/h. This idea leads to a more general theory that includes 3d

gravity but also some interesting related theories, each of which corresponds to a different

kind of geometric structure.

The types of model spacetimes we shall be interested in are Riemannian or Lorentzian

‘symmetric spaces’. In fact, for our purposes, the following infinitesimal version of symmet-

ric spaces will suffice [60]:

Definition 7 A symmetric lie algebra g is a Lie algebra equipped with a spitting (as

vector spaces):

g = h⊕ p

such that

[h, h] ⊆ h

[h, p] ⊆ p

[p, p] ⊆ h

The elements of p are called transvections.
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The conditions on the bracket in this definition say that h is a subalgebra, p is

h-invariant, and the bracket of transvections lives in the subalgebra h. If in this definition

we required further that the Killing form be negative definite on h and positive definite on

p, we would have the definition of a Cartan decomposition of the Lie algebra g, but in the

cases we are most interested in this does not hold. For our purposes, a symmetric space

will simply be a homogeneous space G/H, such that (g, h, p) is a symmetric Lie algebra for

a suitable choice of p.

In fact all of the homogeneous spacetimes in the diagram on p. 29 are symmetric

spaces. One easy way to see this is using the following more general result.

Proposition 5 Given a matrix Lie group G ⊆ GL(n,C), let H ⊆ G be a closed subgroup

such that the Lie algebra h consists of all block-diagonal matrices in g of the form: X 0

0 Y

 ∈ g X ∈ gl(m,C), Y ∈ gl(n−m,C)

for fixed m ≤ n. Then the homogeneous space G/H is a symmetric space.

Proof: The proof is an easy calculation. Define the complement p of h to consist of all

elements of g of the form (
0 A
B 0

)
.

The bracket of two generic elements of g is then:[(
X A
B Y

)
,

(
X ′ A′

B′ Y ′

)]
=
(

[X,X ′] +AB′ −A′B XA′ −X ′B +AY ′ −A′Y
BX ′ −B′X + Y B′ − Y ′B [D,D′] +BA′ −B′A

)
From this formula it is easy to see that [h, h] ⊆ h, [h, p] ⊆ p, and [p, p] ⊆ h. 2

This proposition gives us a wide variety of examples of symmetric spaces, including:

1. the 9 basic homogeneous spacetimes we have discussed in Section 2.3.1:

• anti de Sitter, Minkowski, de Sitter

• hyperbolic Galilean, Galilean, spherical Galilean

• hyperbolic, Euclidean, spherical

2. The hyperbolic and spherical cylinders Sn ×H1 = (SO(n+ 1)× R)/SO(n)
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3. Real and complex projective spaces RPn = SO(n+ 1)/O(n), CPn = SU(n+ 1)/U(n)

These are all symmetric spaces.

For generalizing 3d gravity, the nice feature of using a symmetric model geometry

becomes apparent when we write out the equation of the curvature. Suppose G/H is a

symmetric space, and we have a G-connection A = ω+ e, where ω takes values in h, e in p.

The curvature F of this connection is:

F [A] = dA+ 1
2 [A,A]

=
(
dω + 1

2 [ω, ω] + 1
2 [e, e]

)
+ (de+ [ω, e])

= (R[ω] + 1
2 [e, e]) + dωe

where R[ω] is the curvature of ω. Using the definition of symmetric Lie algebra, we see that

the h-valued part of this curvature is R[ω] + 1
2 [e, e], while the p-valued part is the torsion

dωe.

Now suppose we have a bilinear form

〈·, ·〉 : p⊗h→ R

which is invariant under the adjoint action of H, and satisfies the following cyclic property:

〈x, [y, z]〉 = 〈y, [z, x]〉 ∀x, y, z ∈ p. (4.6)

Note that this property is satisfied if the bilinear form in question is the restriction to p⊗h

of an invariant bilinear form bg defined on g⊗g, since differentiating the invariance equation

bg(Ad(g)x,Ad(g)y) = bg(x, y)

with g : I → G a path with g(0) = 1, g′(0) = z, yields

bg([z, x], y) + bg(x, [z, y]) = 0

which by symmetry of kg and antisymmetry of the bracket is equivalent to

bg(x, [y, z]) = bg(y, [z, x]).

But we wish this equation to hold even if our bilinear form does not extend to all of g.

Given these data, we can write down the action∫
〈e,R+

1
6

[e, e]〉

Before deriving the equations of motion, we prove a lemma:
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Lemma 6 Let 〈·, ·〉 : p⊗h→ R be a bilinear pairing of between the two parts of a symmetric

Lie algebra g = h ⊕ p and assume 〈·, ·〉 satisfies the invariance property (4.6). Then the

induced pairing between p- and h-valued 1-forms X, Y , and Z satisfies

〈X, [Y,Z]〉 = 〈Y, [Z,X]〉.

Proof: We can describe the p-valued 1-forms in local coordinates as

X = Xµ⊗dxµ Y = Yµ⊗dxµ Z = Zµ⊗dxµ.

We then have

〈X, [Y, Z]〉 = 〈Xµ, [Yν , Zσ]〉⊗dxµ ∧ dxν ∧ dxσ

= 〈Yν , [Zσ, Xµ]〉⊗dxν ∧ dxσ ∧ dxµ

= 〈Y, [Z,X]〉,

using the property (4.6) of 〈·, ·〉 and the graded commutativity of the wedge product. 2

Now to derive the equations of motion, we take the variation of the action:

δS =
∫
〈e, δR+

1
3

[δe, e]〉+ 〈δe,R+
1
6

[e, e]〉

=
∫
〈e, dωδω〉+ 〈δe,R+

1
2

[δe, e]〉

=
∫
d〈e, δω〉 − 〈dωe, δω)〉+ 〈δe,R+

1
2

[e, e]〉,

where in the second inequality we have used the above Lemma along with the identity

δR = dωδω, and in the third an integration by parts. When the boundary term vanishes,

we thus get the equations of motion:

R+
1
2

[e, e] = 0

dωe = 0

which are direct analogs of the equations for 3d general relativity.

In the next section, we present the Chern–Simons formulation of 3d general rela-

tivity, which will turn out to be related to this generalization of 3d gravity we have presented

here.
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4.4 Chern-Simons theory and 3d gravity

The relationship between Chern–Simons theory and 3d gravity has been well ex-

plored [24, 99], including aspects of the relationship between Chern–Simons and geometric

structures. In this section, we simply wish to demonstrate one such relationship, in the

particular case where the model is a symmetric space.

Let us first recall a few basic facts about Chern–Simons theory. The Chern-Simons

action is defined by:

SCS(A) =
∫

tr (A ∧ dA+
2
3
A ∧A ∧A)

where A is a connection on some principal G-bundle Q over the 3d spacetime manifold M .

To work out the equations of motion, we take the variation of the action corresponding to

an arbitrary variation of A:

δSCS =
∫
M

tr (δA ∧ dA+A ∧ d(δA) + 2δA ∧A ∧A)

=
∫
M

tr (2δA ∧ dA+ 2δA ∧A ∧A)−
∫
∂M

A ∧ δA.

Recognizing dA+A ∧A as the curvature F of A, we thus have the equation of motion

F = 0,

provided that the boundary term vanishes.

Now suppose that G/H is a symmetric space, with canonical decomposition

g = h⊕ p

and that the structure group of Q can be reduced to H. Then we can write A as the sum

of a connection ω on a principal H-bundle and a 1-form e on P with values in p:

A = ω + e
ω ∈ Ω1(P, h)

e ∈ Ω1(P, p)

The important point for our purposes is that, since g = h⊕ p is a symmetric Lie algebra,

A′ = ω − e

is also a connection, whose curvature is:

F ′ = R+ 1
2 [e, e]− dωe.
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A surprising fact is that if we take Chern–Simons theories for both A and A′, with the

proper normalization, their difference is precisely the generalization of 3d gravity discussed

in the previous section.

Proposition 7

1√
Λ

(
SCS(ω +

√
Λe)− SCS(ω −

√
Λe)
)

= 4
∫

tr
(
e ∧ F +

Λ
3
e ∧ e ∧ e

)
Proof: To reduce notational clutter, set Λ = 1. We then calculate:

SCS(ω + e)− SCS(ω − e)

=
∫

tr
(

(ω + e) ∧ d(ω + e) +
2
3

(ω + e) ∧ (ω + e) ∧ (ω + e)
)

−
∫

tr
(

(ω − e) ∧ d(ω − e) +
2
3

(ω − e) ∧ (ω − e) ∧ (ω − e)
)

=
∫

tr
(

2ω ∧ de+ 2e ∧ dω +
4
3

(ω ∧ ω ∧ e+ ω ∧ e ∧ ω + e ∧ ω ∧ ω + e ∧ e ∧ e)
)

The trace is graded cyclic— tr (µ ∧ ν) = (−1)pqtr (ν ∧ µ) for any p-form µ and q-form ν.

So, since e and ω are each 1-forms, we have

tr ω ∧ ω ∧ e = tr ω ∧ e ∧ ω = tr e ∧ ω ∧ ω.

Also, provided the boundary term vanishes, integration by parts gives us∫
tr ω ∧ de =

∫
tr de ∧ ω =

∫
tr e ∧ dω

So, we get:

SCS(ω + e)− SCS(ω − e) =
∫

tr
(

4e ∧ dω + 4e ∧ ω ∧ ω +
4
3
e ∧ e ∧ e

)
= 4

∫
tr
(
e ∧ dω + e ∧ ω ∧ ω +

1
3
e ∧ e ∧ e

)
= 4

∫
tr
(
e ∧ (dω + ω ∧ ω) +

1
3
e ∧ e ∧ e

)
= 4

∫
tr
(
e ∧ F +

1
3
e ∧ e ∧ e

)
which is four times the action for 3d general relativity with cosmological constant Λ = 1.

Restoring the cosmological constant Λ by a simple change of variables yields the desired

equality. 2
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Hence general relativity in 3 dimensions with nonzero cosmological constant splits

into two noninteracting Chern-Simons theories. But what about 3d general relativity with

Λ = 0?

The Lie algebra iso(2, 1) is not semisimple, as is easily checked by the Cartan

criterion: its Killing form is degenerate. However, as pointed out by Witten [99], thanks to

a coincidence of three dimensions, the Lie algebra iso(2, 1) has a nondegenerate symmetric

bilinear form which is invariant under the adjoint action of ISO(2, 1). This bilinear form

is given as follows. First, an element of so(2, 1) can be thought of as an element of 3d

Minkowski vector space R2,1 by exploiting the sequence of isomorphisms:

so(2, 1) Λ2R2,1// R2,1? //

lower an index Hodge duality

We shall also call the composite map ?. Explicitly, if X ∈ so(2, 1) has matrix components

Xi
j , then ?X has components

?Xk =
1
2!
εijkηi`X

`
j

or, written in terms of matrices: 0 w v
−w 0 u
v −u 0

 η←→

 0 w −v
−w 0 u
v −u 0

 ?←→

 u
v
w


Now define a quadratic form that takes any (X, v) ∈ so(2, 1) n R2,1 = iso(2, 1) to η(?X, v),

where η denotes the metric on R2,1, which is invariant under the action of the Poincaré

group. Polarizing this quadratic form gives a bilinear form

〈(X, v), (X ′, v′)〉 =
1
2
(
η(?X, v′) + η(?X ′, v)

)
which can be used to define the action in ISO(2, 1) gauge theory.

Consider a Chern–Simons theory based on a symmetric space G/H such that

g = h + p, and suppose that h and p are both null subspaces with respect to the inner

product on g. That is, suppose tr (X,Y ) vanishes whenever X and Y are either both in h

or both in p. Then

SCS(ω + e) = SBF+Λ(ω, e).

That is:

1√
Λ

∫
tr
(
A ∧

(
dA+

1
3

[A,A]
))

= 2
∫

tr
(
e ∧
(
dω +

1
2

[ω, ω] +
2Λ
3

[e, e]
))
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SCS(ω + e) =
∫

tr
(

(ω + e) ∧
(
dω + de+

1
3

[ω + e, ω + e]
))

=
∫

tr
(

(ω + e) ∧
(
dω + de+

1
3

[ω, ω] +
2
3

[ω, e] +
1
3

[e, e]
))

=
∫

tr
(
ω ∧

(
de+

2
3

[ω, e]
)

+ e ∧
(
dω +

1
3

[ω, ω] +
1
3

[e, e]
))

where we have used the fact that p and h are null subspaces with respect to the inner

product to eliminate half of the terms. Performing an integration by parts and using the

invariance of the inner product to combine terms, we obtain

1√
Λ
SCS(ω +

√
Λe) = −

∫
tr (d(ω + e)) + 2

∫
tr
(
e ∧
(
dω +

1
2

[ω, ω] +
2Λ
3

[e, e]
))

.

4.5 3d Galilean general relativity and the Newtonian limit

of 3d gravity

What is the limit of (2+1)d general relativity as the speed of light tends to infinity?

Perhaps the most interesting aspect of this question is that the answer is not Newtonian

gravity! To see this, consider that Newtonian gravity admits closed orbits, even in low-

dimensional space. Indeed, when space is n-dimensional, a small mass mass m may orbit a

large one M at fixed distance r in the x1-x2 plane as follows:

x1 = r cos

(√
kM

rn
t

)
x2 = r sin

(√
kM

rn
t

)
xi = 0, i 6= 1, 2.

On the other hand, general relativity in 2d space does not admit circular orbits

around point masses. This is obvious when the total deficit angle around the large mass

is less than π, since in this case no geodesic motion ever passes through the same point in

space twice. But even if the total deficit angle is greater than π, we cannot construct a

closed orbit. To see this, cut space from the mass out to infinity, and lay it flat so that

geodesics are straight lines in the Euclidean plane. A particle in geodesic motion near the

singularity may come back to its starting point provided the deficit angle φ is greater than

π, but its velocity vector will have rotated by φ upon its return.

So, what is the ‘Newtonian limit’ of (2+1) gravity, if not Newtonian gravity? One

sensible way to try answering this question is to think of (2+1) gravity as a gauge theory as

in the previous sections, and try performing an Inönü-Wigner contraction of the Poincaré
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group down to the Galilei group. However, there is one apparent obstacle to doing this: the

Galilei Lie algebra

gali = (so(2) n R2) n R

does not have a nondegenerate invariant inner product. In fact, it does not even have an

inner product invariant under the point stabilizer ISO0(2) consisting of boosts and rota-

tions. Consequently, we cannot write down a nondegenerate Lagrangian patterned after the

Lagrangian for 3d general relativity.

We could simply forget about the Lagrangian, taking the viewpoint that a classical

theory is directly determined by specifying its equations of motion. If we do so, the equation

of motion

F = dA+ 1
2 [A,A] = 0

makes as much sense for a Galilei group connection as for a Poincaré group connection. In

fact, we can still write

A = ω + e

with ω an ISO(2)-connection and e a coframe field. Since Galilean spacetime is a symmetric

space, this gives

F = (R+ 1
2 [e, e]) + dωe

and get geometric structures modeled on 3d Galilean spacetime.

But we can do better than this, at least in the case Λ 6= 0. To see this, recall that

the spherical and hyperbolic versions of Galilean spacetime are specified by the following

symmetry groups:

G = ISO(2, 1) H = ISO(2) hyperbolic

G = ISO(3) H = ISO(2) spherical

We have already used Witten’s observation that ISO(2, 1) has a nondegenerate invariant

inner product, so we can try to describe the c→∞ limit of 3d general relativity with Λ < 0

as an ISO(2, 1) Chern–Simons theory. Similarly, we can describe the c → ∞ limit in the

Λ > 0 case, using ISO(3) Chern–Simons theory with the analogous inner product. In fact,

this inner product has the same interpretation as it does in the flat Lorentzian case. To see
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this, look again at a typical matrix element of iso(3):
0 w −v x

−w 0 u y
v −u 0 z
0 0 0 0


In the Euclidean case, the stabilizer subalgebra is the upper left 3 × 3 block, while in the

‘spherical Galilean’ case, the stabilizer is the lower right 3× 3 block. Thinking in terms of

the Euclidean geometry, the quadratic form on this Lie algebra element simply takes the

dot product of its transvection (or vector) part and its stabilizer (or axial vector) part:
x

y

z

 ·

u

v

w


But this can also be interpreted as a product of the stabilizer and transvection parts in the

spherical Galilean picture: 
x

−v
w

 ·

u

−y
z


4.6 Transforms between Chern–Simons theories

The previous section raises a subtle issue: we have already seen that ISO(2, 1)

Chern–Simons theory is equivalent to (2 + 1) general relativity with vanishing cosmological

constant. Are we suggesting that the Lorentzian Λ = 0 case is somehow equivalent to the

Galilean Λ < 0 case? The answer is, “not quite.” The essential point is whether the bundle is

reducible to the appropriate stabilizer, and whether we get a (generically) transverse section

in the associated bundle with the Klein model as standard fiber. If the bundle is reducible

in both ways, we may be able to ‘transform’ between these two types of Chern–Simons

theories.

In fact, this idea shows up without resorting to these strange non-flat Galilean

models: Looking at the chart on p. 29, we see that an SO(3, 1) Chern–Simons theory

may be interpreted as giving geometric structures that are either hyperbolic or de Sitter,

depending on our choice of stabilizer, SO(3) or SO(2). There is again the possibility of

transforms between these two theories, based on choice bundle reduction.
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Part II

Particles and Strings
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Chapter 5

Statistics and Motion Groups

5.1 The Hamiltonian picture of BF theory

So far we have described BF theory in the Lagrangian formulation. We now

describe the corresponding covariant Hamiltonian picture. This will allow us to discuss

‘matter’ in BF theory, which arises in a purely topological way.

Consider BF theory on a spacetime M diffeomorphic—though not canonically—to

R× S for some (n− 1)-manifold S. Picking a specific diffeomorphism

φ : M → R× S

gives a way of splitting the spacetime M into ‘time’ and ‘space’. More precisely, φ gives a

foliation of M whose leaves are the hypersurfaces

St := φ−1({t} × S) ⊂M t ∈ R

where we think of St as ‘space at time t’. Using this time-parameterized slicing of spacetime

M , we wish to reformulate the equations BF theory as predictive (in fact, also retrodictive)

equations, showing how initial data on S0 evolve as t varies to give solutions of BF theory

on all of M .

To do this, we put the connection A in temporal gauge. The diffeomorphism φ

induces a global time coordinate on M and hence a nonvanishing vector field ∂t in the time

direction. We say that the connection A is in temporal gauge if

A(∂t) = 0
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A standard tool of gauge theory is the fact that any connection is gauge equivalent to one

in temporal gauge. We review the proof here:

Lemma 8 If A is a principal connection on a manifold M ∼= R × S, then there is a

gauge transformation A 7→ A′ such that A′(∂t) = 0. Moreover, A′ is unique up to gauge

transformation on space S.

Proof: Starting with an arbitrary connection A and using the global time coordinate on

M , we can write

A = A0 dt+AS

where A0 = A(∂t) and AS is a t-dependent connection on space S. We wish to find a gauge

transformation so that the time component A0 of the the connection vanishes. A gauge

transformation is a section g : M → P ×Ad G which acts on the connection A by

A 7→ A′ = gAg−1 + gdg−1.

The time component of A′ is:

A′0 = gA0g
−1 + g∂tg

−1

This vanishes if and only if g−1 is a solution of the first-order differential equation

∂tg
−1 = −A0g

−1.

The basic existence theorem for solutions of linear differential equations guarantees such a

g exists and is uniquely determined by initial conditions on g|S0 , that is, a gauge transfor-

mation on space S. 2

Using this lemma, we now assume our connection A has been put in temporal

gauge. The only gauge transformations we can do that keep A in temporal gauge are gauge

transformations on space. Thus A is now effectively a time-dependent connection on the

restricted bundle P |St → St, and the curvature is given by

F = dA+ [A,A]

= dt ∧ ∂tAS + dSAS + [AS , AS ]
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where dS is the differential on space. The momentum canonically conjugate to AS is found

by differentiating the Lagrangian

L = tr (E ∧ (dt ∧ ∂tAS + dSAS + [AS , AS)])

with respect to ∂tAS :
δL

δ(∂tAS)
= tr (E ∧ dt ∧ −) .

The usual practice in quantum field theory is to identify this linear functional with E itself,

so we say the momentum conjugate to the connection AS is E. Indeed there is an obvious

dual pairing, given as follows. First E is an Ad(P )-valued (n − 2)-form. Connections, on

the other hand, form an affine space modeled on the vector space of Ad(P )-valued 1-forms.

Thus a tangent vector δA to the space of connections A is an Ad(P )-valued 1-form. Since

space is (n− 1)-dimensional, we have a dual pairing:

〈E, δA〉 =
∫
S

tr (E ∧ δA)

We should mention that if space S is not compact, there are issues of converge to deal with

here. We ignore this issue for now.

5.2 Canonical quantization and motion group statistics

In this section we recall Dahm’s [31] action of the ‘motion group’ Mo(S,Σ) on the

fundamental group of S − Σ and describe how this gives a unitary representation of the

motion group on a certain Hilbert space of states for BF theory on S−Σ. The general idea

of a ‘motion group’ goes back at least to Dahm’s 1962 thesis [31], which unfortunately was

never published. In the 1970’s and 80’s, some papers by Wattenberg [96] and Goldsmith

[51, 52] clarified and expanded on Dahm’s work.

Quite generally, suppose that S is a smooth oriented manifold and Σ ⊆ S is a

smooth oriented submanifold. Let Diff(S) be the group of orientation-preserving diffeo-

morphisms of S. Let Diff(S,Σ) be the subgroup of Diff(S) maps that restrict to give

orientation-preserving diffeomorphisms of Σ.

We define a motion of Σ in S to be a smooth map f : [0, 1] × S → S, which we

write as ft : S → S (t ∈ [0, 1]), with the following properties:

• for all t, ft lies in Diff(S);
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• for all t sufficiently close to 0, ft is the identity;

• for all t sufficiently close to 1, ft is independent of t and lies in Diff(S,Σ).

Intuitively, a motion is a way of moving Σ through S so that it comes back to itself—not

pointwise, but as a set—at t = 1. This suggests that one can ‘multiply’ motions by doing

one after the other, and indeed this is true. Given motions f and g, one can define a motion

f · g called their product as follows:

(f · g)t =

 f2t for 0 ≤ t ≤ 1
2

g2t−1 ◦ f1 for 1
2 ≤ t ≤ 1

Given a motion f we can also define a motion called its reverse, denoted f̄ , by:

f̄t = f1−t ◦ f−1
1 .

We say two motions f and g are equivalent if f̄ · g is smoothly homotopic, as a path in

Diff(S) with fixed endpoints, to a path that lies entirely in Diff(S,Σ). One can check that

this is indeed an equivalence relation and that the operations of product and reverse make

equivalence classes of motions into a group. This is called the motion group Mo(S,Σ).

Next we turn to examples:

• When Σ ⊂ Rd is a collection of n points and d > 2, Mo(Rd,Σ) is the symmetric group

Sn.

• When Σ ⊂ R2 is a collection of n points, Mo(R2,Σ) is the braid group Bn.

• When Σ ⊂ R3 is a collection of n unknotted and unlinked oriented circles, we call

Mo(R3,Σ) the loop braid group LBn.

In general, the motion group Mo(S,Σ) acts in a natural way on π1(X). The

idea goes back to Dahm’s original work on the motion group [31], and it has been nicely

explained by Goldsmith [51]. The idea is simple: elements of the motion group Mo(S,Σ)

give equivalence classes of diffeomorphisms of X = S−Σ, and these act on homotopy classes

of loops in X. The only problem is that the fundamental group is defined using based loops,

and the diffeomorphisms used in the definition of the motion group need not preserve the

basepoint in X. Luckily, Wattenberg [96] has shown that we can use compactly supported

diffeomorphisms in the definition of the motion group without changing this group. In the
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examples above, we can assume without loss of generality that these diffeomorphisms are

supported in a fixed large ball containing Σ. So, if we choose a basepoint ∗ ∈ S that is

sufficiently far from Σ, we can assume this basepoint is preserved by all the diffeomorphisms

in the definition of the motion group. This makes it easy to check that Mo(S,Σ) acts as

automorphisms of π1(X).

Now let us return to BF theory in n-dimensional spacetime. We take ‘space’ to

be of the form X = S−Σ, where S is an oriented manifold of dimension n−1, and Σ ⊂ S is

an oriented submanifold. We let G be a Lie group and let P → X be a principal G-bundle.

As seen in the previous section, the fields A and E in BF theory are canonically conjugate,

so the ‘naive configuration space’ of BF theory is just A0/G, where A0 is the space of flat

connections on P and G is the group of gauge transformations. By ‘naive’ we mean that

we are ignoring boundary conditions. One could study only examples where there are no

boundary conditions worry about, such as when X is just a compact manifold, but we shall

mainly be interested in two examples that do not fall into this category:

1. X is R2 with a finite set of points removed (describing point particles):

X = S − Σ, S = R2, Σ = {z1, . . . , zn}.

2. X is R3 with a finite set of unlinked unknotted circles removed (describing what one

might call closed strings):

X = S − Σ, S = R3, Σ = `1 ∪ · · · ∪ `n.

A rigorous study of BF theory may require that we impose boundary conditions at Σ. We

ignore this issue now, leaving it for future research.

Recall from Section 3.3 that the union of the spaces A0(P )/G(P ) over principal

bundles P → X is the moduli space of flat bundles

hom(π1(X), G)/G.

This is the naive configuration space for BF theory where we treat the bundle P as variable.

Applying Schrödinger quantization to this configuration space, we obtain the (naive) Hilbert

space for BF theory:

L2(hom(π1(X), G)/G)
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Of course, defining this L2 space requires that we choose a measure on the moduli space of

flat bundles. Alternatively, we can try to form a Hilbert space

L2(hom(π1(X), G))

on which G acts as follows:

(gψ)(f) = ψ(g−1f).

Again, this requires choosing a measure on hom(π1(X), G). Moreover, G will only have a

unitary representation on L2(hom(π1(X), G) if this measure is G-invariant.

In Chapters 6 and 7 we will show that for the two examples above, there is a

‘natural’ choice of G-invariant measure on hom(π1(X), G). In both these examples the

motion group Mo(S,Σ) acts on π1(X) and thus on hom(π1(X), G). By saying a measure

on hom(π1(X), G) is ‘natural’, we simply mean that it is preserved by this action.

Using such a natural measure to define the Hilbert space L2(hom(π1(X), G)), and

using the action of Mo(S,Σ) on π1(X), we obtain a unitary representation of the motion

group on this Hilbert space. This representation describes the statistics of point particles

or closed strings in BF theory. In the first example the motion group is the braid group

Bn, while in the 4d case it is the loop braid group LBn. So, we obtain ‘exotic statistics’ in

both cases.

In the next two chapters, we apply these ideas in some detail to the cases of 3d

and 4d BF theory, particularly with the gauge groups most relevant to 3d and 4d gravity.
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Chapter 6

Point particles in 3d BF theory

Now let us apply the general ideas of the previous chapter to the case of a plane

with n punctures:

X = S − Σ, S = R2, Σ = {z1, . . . , zn}

If we interpret these punctures as ‘particles’, we shall see that a state of 3d BF theory on

this space describes a collection of identical point particles with exotic statistics governed

by the braid group.

The fundamental group of X is the free group on n generators, so we have

hom(π1(X), G) = Gn

The n group elements here are nothing but the holonomies of a flat connection around based

loops going clockwise around the particles:

···
g1

g2 g3 gn

Having described particles as punctures in this theory, let us now consider what sort of

statistics such particles obey. The previous section shows that the interchange of identical

particles is described by an action of the n-strand braid group Bn on Gn, but we would

like to work it out explicitly. For simplicity, consider the case n = 2 and consider what

happens when the two particles switch places. As remarked earlier, there are infinitely

many topologically distinct ways for the particles to move around each other, but they are



86

all powers of the braid group generator σ1:

If the holonomies around the two particles are g1 and g2:

g1 g2

switching them via σ1 induces a diffeomorphism of the plane which deforms the loops around

which the holonomies are taken:

To see how the system changes in this process, compare the final frame in this ‘movie’ to the

first frame. Given that (g1, g2) ∈ G2 describes the holonomies initially, a slight deformation

of the loops in the final frame:

=

g2

g1

g2

g1
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makes it clear that the corresponding holonomies around these loops in the final configura-

tion:
g′1 g′2

are (g′1, g
′
2) = (g1g2g1

−1, g1). Thus the effect of switching the two particles via σ1 is to send

(g1, g2) to (g1g2g1
−1, g1).

We can work out the action of σ−1
1 in the same way, or simply derive it algebraically

from the fact that it must undo the effect of σ1. The easiest way to remember the results

is with this picture:
g1 g2

g1g2g
−1
1

g1

g1 g2

g2 g−1
2 g1g2

More generally, we have a right action of the braid group Bn on Gn given as

follows:

(g1, . . . , gi, gi+1, . . . , gn)σi = (g1, . . . , gigi+1g
−1
i , gi, . . . , gn).

As mentioned in the previous section, we also have a left action of G on Gn via gauge

transformations at the basepoint ∗. This works as follows:

g(g1, . . . , gn) = (gg1g
−1, . . . , ggng

−1).

We would like a measure on Gn that is invariant under both these group actions, so

that the braid group and gauge transformations act as unitary operators on L2(Gn). Such

a measure exists whenever G is unimodular, meaning that its left-invariant Haar measure

is also right-invariant. A Lie group is automatically unimodular if it is compact, or abelian,

or semisimple. In particular, the groups SO(p, q) are all unimodular. Since these groups

act on Minkowski spacetime in a way that preserves its Lebesgue measure, the Poincaré

groups ISO(p, q) are also unimodular. Also, the identity component of a unimodular group

is unimodular, as is any covering space of a unimodular group.

From this we see that the 3d Lorentz group SO(2, 1) is unimodular, as are its iden-

tity component SO0(2, 1) and the double cover of its identity component, namely SL(2,R).

All these are reasonable choices of gauge group when treating 3-dimensional—or more prop-

erly, (2+1)-dimensional—Lorentzian gravity as a BF theory.
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Given a unimodular Lie group, Haar measure is typically not the only measure

invariant under conjugation: we can multiply Haar measure by any function that only

depends on the conjugacy class. As an extreme example, we can even try to multiply Haar

measure by a ‘delta function’ supported on one conjugacy class. More precisely, we can

look for a conjugation-invariant measure supported on a single conjugacy class of G. In this

case we might as well be working not with G but with just the conjugacy class. It turns

out that in the case of 3d quantum gravity, this amounts to studying identical particles of

a specified mass. This leads us to our next subject: quandle field theory.

6.1 Quandle field theory

In the previous section we considered BF theory in 3 dimensions, and were led to

a natural action of the braid group Bn on the space Gn for any group G. Notice that we did

not actually need the multiplication in G to define this action; we only needed the operation

of conjugation. This suggests that we can work more generally, replacing the group G by

some algebraic structure that captures the properties of conjugation. Such a thing is called

a ‘quandle’.

More precisely, a quandle is a nonempty set Q equipped with two binary oper-

ations � : Q × Q → Q and � : Q × Q → Q called left and right conjugation, which

satisfy:

(i) left idempotence: x� x = x

(i′) right idempotence: x� x = x

(ii) left inverse law: x� (y � x) = y

(ii′) right inverse law: (x� y) � x = y

(iii) left distributive law: x� (y � z) = (x� y) � (x� z)

(iii′) right distributive law: (x� y) � z = (x� z) � (y � z)

for all x, y, z ∈ Q. In general, the operations of left and right conjugation in a quandle are

neither associative nor commutative.

Quandles were first introduced as a source of knot invariants by David Joyce [56]

in 1982. Many examples of quandles can be found in the work of Fenn and Rourke [35] and
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other authors [21, 56, 57]. For us, the most important examples come from taking a group

G, letting Q be any union of conjugacy classes of G, and making Q into a quandle with

g � h = ghg−1, h� g = g−1hg.

We are especially interested in the case where Q is either the whole group G or a single

conjugacy class.

We can do some of the same things with quandles as with groups. For example, we

can define a topological quandle to be a topological space that is also a quandle in such

a way that the quandle operations � and � are continuous [83]. If G is a Lie group and

Q ⊆ G is a conjugacy class, Q becomes a topological quandle with the induced topology.

Given a topological quandle Q, we define an invariant measure on Q to be a

Borel measure that is invariant under left conjugation by any element of Q—or equivalently,

invariant under right conjugation by any element of Q. This implies that∫
f(x) dµ(x) =

∫
f(q � x) dµ(x)

=
∫
f(x� q) dµ(x)

for any q ∈ Q and any integrable function f on Q. As noted earlier, invariant measures

on quandles are far from unique in general. In particular, we may multiply an invariant

measure on a Lie group by any class function and obtain a new invariant measure.

In the previous section, we saw that the n-strand braid group Bn acts on Gn for

any group G. But, since our argument relied only on properties of conjugation, it works

just as well for a quandle. The idea is that we can braid two elements of a quandle past

each other using left conjugation:
x y

x�y x

The inverse braiding uses right conjugation:
x y

y x�y
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It is well known that with these rules, the braid group relations follow from the quandle

axioms. So, generalizing our result from the previous section, we easily obtain:

Theorem 9. Suppose Q is a topological quandle equipped with an invariant measure. Then

there is a unitary representation ρ of the braid group Bn on L2(Qn) given by

(ρ(σ)ψ)(q1, . . . , qn) = ψ((q1, . . . , qn)σ)

for all σ ∈ Bn, where Bn has a right action on Qn given by:

(q1, . . . , qi, qi+1, . . . , qn)σi = (q1, . . . , qi � qi+1, qi, . . . , qn).

There is also a unitary operator U(q) on L2(Qn) for each element q ∈ Q, given by

(U(q)ψ)(q1, . . . , qn) = ψ(q � q1, . . . , q � qn).

The operators U(q) represent gauge transformations when Q is a group, so we can think

of them as representing some sort of ‘gauge transformation’ even when Q is a quandle. Of

course, if Q is a conjugacy class in a group G, there will be gauge transformations even for

elements of G that do not lie in Q.

It is instructive to work out the details in the case of (2+1)-dimensional quantum

gravity. This theory can be viewed as a BF theory with G being the connected Lorentz

group SO0(2, 1), or perhaps better, its double cover SL(2,R). In either case we shall see

that different conjugacy classes Q describe different types of spinless particles. The Hilbert

space for n particles of this type is L2(Qn), and Theorem 9 describes the exotic statistics

and gauge invariance of this n-particle system.

In quantum field theory without gravity on 3d Minkowski spacetime, we can de-

scribe the energy-momentum of a particle by an element p ∈ sl(2,R):

p =
(

px py + E
py − E −px

)
Note that

det p = E2 − p2
x − p2

y.

The adjoint action of SL(2,R) on its Lie algebra:

SL(2,R)× sl(2,R)→ sl(2,R)

(g, p) 7→ gpg−1
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preserves the determinant of p. So, the adjoint action gives an action of SL(2,R) as Lorentz

transformations on the space of energy-momenta. As explained in the Introduction, an

orbit of this action is just a type of spin-zero particle.

When we turn on gravity, we must describe energy-momenta not by elements of the

Lie algebra sl(2,R) but by elements of the group SL(2,R). Particle types are then described

not by adjoint orbits but by conjugacy classes Q ⊆ SL(2,R). However, this new description

is compatible with the old one, at least for energy-momenta that are small compared to the

Planck energy 2π/κ. The reason is that we can identify group elements near the identity

with Lie algebra elements via the map

sl(2,R) → SL(2,R)

p 7→ exp(κp)

This maps any adjoint orbit of sl(2,R) into a conjugacy class of SL(2,R). Indeed, it gives a

one-to-one correspondence between the set of adjoint orbits close to 0 ∈ sl(2,R) and the set

of conjugacy classes close to 1 ∈ SL(2,R). But, as mentioned in the Introduction, important

differences show up for large energy-momenta.

To understand the conjugacy classes in SL(2,R), it is handy to use the represen-

tation

SL(2,R) =
{(

a+ b c+ d
c− d a− b

)
: a, b, c, d ∈ R, a2 − b2 − c2 + d2 = 1

}
which says SL(2,R) is geometrically a ‘unit hyperboloid’ in a space of signature (+−−+).

Since conjugate matrices have the same eigenvalues, the trace and thus the number a is an

invariant of conjugacy classes. It is not a complete invariant, but it is except for matrices
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with tr g = ±2. Every matrix in SL(2,R) is conjugate to one of these five kinds:

conjugate to. . . trace

rotations 7→
(

cosα − sinα
sinα cosα

)
−2 ≤ tr g ≤ 2

boosts 7→
(
eα 0
0 e−α

)
tr g ≥ 2

antiboosts 7→
(
−eα 0

0 −e−α
)

tr g ≤ −2

shears 7→
(

1 α
0 1

)
tr g = 2

antishears 7→
(
−1 α
0 −1

)
tr g = −2.

Some explanation of this table is in order. Every ‘rotation’ maps to a rotation

in the connected Lorentz group SO0(2, 1): in other words, a transformation that preserves

a timelike vector in 3d Minkowski spacetime. Similarly, every ‘boost’ maps to a transfor-

mation that preserves a spacelike vector, and every ‘shear’ maps to a transformation that

preserves a lightlike vector. Since the two-to-one map from SL(2,R) to SO0(2, 1) maps the

matrix −1 to the identity, ‘antiboosts’ get mapped to the same elements as boosts, and

‘antishears’ get mapped to the same elements as shears. (An ‘antirotation’ would be just

another rotation.)

The above chart counts certain conjugacy classes more than once. First of all,

there is an overlap at tr g = 2, since the identity rotation is also the identity shear and

identity boost. Similarly, there is an overlap at tr g = −2, since a rotation by π is also an

antishear and an antiboost. Finally, all shears (resp. antishears) with α > 0 are conjugate

to each other, and all shears (resp. antishears) with α < 0 are conjugate to each other.

These are all the redundancies.

Knowing this, we can list all the conjugacy classes in SL(2,R) without any re-

dundancies. However, it is less tiresome to list the conjugacy classes in SO0(2, 1), since

the elements ±g ∈ SL(2,R) get identified in SO0(2, 1), so we do not need to worry about
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‘antiboosts’ and ‘antishears’.

Here are all the conjugacy classes in SO0(2, 1), and the corresponding five types

of spin-zero particles:

1. For any 0 < m < 2π/κ there is a conjugacy class containing the image of(
cosκm/2 − sinκm/2
sinκm/2 cosκm/2

)
∈ SL(2,R).

This corresponds to a tardyon of mass m.

2. For any 0 < m <∞ there is a conjugacy class containing the image of(
eκm/2 0

0 e−κm/2

)
∈ SL(2,R).

This corresponds to a tachyon of mass im.

3. There is a conjugacy class containing the image of(
1 1
0 1

)
∈ SL(2,R).

This corresponds to a positive-energy luxon.

4. There is a conjugacy class containing the image of(
1 −1
0 1

)
∈ SL(2,R).

This corresponds to a negative-energy luxon.

5. There is a conjugacy class containing the image of(
1 0
0 1

)
∈ SL(2,R).

This corresponds to a particle of vanishing energy-momentum.

The factors of 1/2 here arise from the double cover SL(2,R)→ SO0(2, 1). As explained in

the Introduction, masses of tardyons really take values in the circle R/2π
κ Z. These conjugacy

classes are also worked out in Goldman’s doctoral thesis, which also features a drawing [48].

Each conjugacy class Q ⊆ SO0(2, 1) admits an invariant measure which is unique

up to an overall scale. So, Theorem 9 applies: we can form a Hilbert space L2(Q) for

particles of type Q, and more generally an n-particle Hilbert space L2(Qn), on which the

braid group and SO0(2, 1) gauge transformations act as unitary transformations.
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We can also consider the corresponding Riemannian case. The procedure goes

through in the same manner, since the double cover of SO(3) is SU(2), which is just a Wick

rotated version of SL(2,R):

SU(2) =
{(

a+ ib c+ id
−c+ id a− ib

)
: a, b, c, d ∈ R, a2 + b2 + c2 + d2 = 1

}
In fact, the classification here turns out to be much simpler since there is no distinction

between timelike and spacelike directions: two rotations are conjugate if and only if they

are rotations by the same angle. Since a rotation by an angle θ is a rotation by angle 2π−θ
around the opposite axis, we need only consider 0 ≤ θ ≤ π. Thus types of spin-0 particles

in Riemannian 3d gravity are simply classified by a mass m ∈ [0, π].

6.2 ISO(2, 1) Chern–Simons gravity and spin

The preceding analysis gave us a classification of the spin-0 particle types in 3d

general relativity, by viewing this theory as a BF theory with G = SO0(2, 1). But this raises

the question of how spin should be incorporated into the classification. The key lies in using

the the trick of combining the connection and coframe field into a single connection for the

Poincaré group ISO0(2, 1). In other words, the trick is viewing 3d general relativity (without

cosmological constant) as a theory whose solutions are geometric structures modeled on

Minkowski spacetime. In Chapter 4, we recalled how this idea works, and how it leads to

the Chern–Simons formulation of 3d gravity.

In fact, using the formulation of 3d general relativity as an ISO(2, 1) Chern–Simons

theory, Philipp de Sousa Gerbert [88] calculates the holonomy of the ISO(2, 1) connection

around a tardyon with mass M and spin S, and finds it is conjugate to
1 0 0 −2πS

0 cos 2πM − sin 2πM 0

0 sin 2πM cos 2πM 0

0 0 0 1

 (6.1)

That is, parallel transport around a tardyon gives a rotation proportional to the mass and a

timelike translation proportional to the spin. Note that for the spin-0 case this is consistent

with our results above: parallel transport simply gives a rotation corresponding to the angle

defecit caused by the mass.
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To fully understand the classification of spinning particles in 3d gravity, one should

of course work out the conjugacy classes in the 3d Poincaré group. These conjugacy classes

should give modified versions of each of the particle types in the previous section, just as

the class of the matrix above is a modification of the spin-0 tardyon type found above. We

do not pursue this further in this context, but instead turn to a somewhat more interesting

problem: the classification of particles with spin in 3d gravity with a positive cosmological

constant.

6.3 SO(3, 1) Chern–Simons gravity

In Section 6.1 we recalled the classification of conjugacy classes in SO0(2, 1) and

its double cover SL(2,R). The classification for SO0(3, 1) and its double cover SL(2,C) is

very similar, but simpler, because every complex number has a square root. It is also more

familiar, since any element of

SL(2,C) =


 a b

c d

 : a, b, c, d ∈ C, ad− bc = 1


gives a fractional linear transformation

z 7→ az + b

cz + d
.

Such transformations are precisely the conformal transformations of the Riemann sphere.

Note that both 1 and −1 in SL(2,C) map to the identity fractional linear transformation,

so the conformal group of the Riemann sphere is

SL(2,C)/{±1} ∼= SO0(3, 1).

Indeed, Lorentz transformations can be thought of as conformal transformations of the

‘celestial sphere’: the set of light rays through an observer at the origin [78]. A list of

conjugacy classes in SO0(3, 1) can thus be read off from the well-known classification of

conformal transformations of the Riemann sphere [72]. But in fact, it is easy enough to

construct this list from first principles.

Every element of SO0(3, 1) is either conjugate to the image of the shear(
1 1
0 1

)
∈ SL(2,C)
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or conjugate to the image of (
λ 0
0 λ−1

)
∈ SL(2,C)

for some λ 6= 0. The conjugacy class of the latter element is unchanged if we make the

replacement λ 7→ 1/λ, and its image in SO0(3, 1) is unchanged if we make the replacement

λ 7→ −λ. These replacements (and their composite) are the only ways we can change λ

without changing the conjugacy class of the corresponding element of SO0(3, 1). Using this,

we can see there are five types of conjugacy classes in SO0(3, 1):

1. For any real m with 0 < m ≤ π/κ there is a conjugacy class containing the image of(
eiκm/2 0

0 e−iκm/2

)
∈ SL(2,C).

An element conjugate to one of this form is called elliptic.

2. For any purely imaginary m with 0 < Im(m) <∞ there is a conjugacy class containing

the image of (
eiκm/2 0

0 e−iκm/2

)
∈ SL(2,C).

An element conjugate to one of this form is called hyperbolic.

3. For any m ∈ C with 0 < Re(m) < 2π/κ and 0 < Im(m) < ∞ there is a conjugacy

class containing the image of(
eiκm/2 0

0 e−iκm/2

)
∈ SL(2,C).

An element conjugate to one of this form is called loxodromic.

4. There is a conjugacy class containing the image of(
1 1
0 1

)
∈ SL(2,C).

An element conjugate to one of this form is called parabolic.

5. There is a conjugacy class containing the image of(
1 0
0 1

)
∈ SL(2,C).

This class contains only the identity element.
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Let us now interpret these conjugacy classes as particle types in 3d gravity with

positive cosmological constant. It will be convenient to work at the level of the double cover

SL(2,C). First, recall how SL(2,C) acts on 4d Minkowski spacetime. Minkowski spacetime

is conveniently represented as the vector space H of all 2× 2 Hermitian matrices:

X =
(

t+ z x+ iy
x− iy t− z

)
where the Minkowski metric is given by the determinant. SL(2,C) acts on H by

SL(2,C)×H → H
(g,X) 7→ gXg†

preserving the metric. De Sitter spacetime is the detX = 1 hypersurface in the space of

2× 2 Hermitian matrices. Suppose we have a single particle in Chern–Simons gravity with

positive cosmological constant, and suppose the holonomy of the connection around the

particle is g ∈ SL(2,C):

1. If g is elliptic, it acts on Minkowski spacetime as a spatial rotation in some reference

frame. Explicitly, picking the reference frame where

g =
(
eiκm/2 0

0 e−iκm/2

)
0 < m ≤ π/κ

one finds that the transformation induced on the coordinates t, x, y, z is given by

t 7→ t
x 7→ x cosκm− y sinκm
y 7→ x sinκm+ y cosκm
z 7→ z

Thinking of this as a transformation of de Sitter spacetime, with x, y as spatial co-

ordinates, we see that parallel translation around the particle gives a spatial rotation

by angle κm. This is consistent with the first type of spin-0 particle found in on page

93, so it is appropriate to call the particle a spin 0 tardyon.



98

2. If g is hyperbolic, it acts on Minkowski spacetime as a boost in some reference frame.

Explicitly, picking the reference frame where(
eiκm/2 0

0 e−iκm/2

)
m imaginary, 0 < Im(m) <∞

we get the transformation

t 7→ t coshκm− z sinhκm
x 7→ x
y 7→ y
z 7→ −t sinhκm+ z coshκm

This is analogous to the timelike translation proportional to spin, as in the holonomy

matrix (6.1) on p. 94. There is no global meaning of ‘translation’ in the curved de Sitter

spacetime, but this boost in the ‘z direction’ in the ambient 4d Minkowski spacetime

appears as a local time translation to an on observer with our chosen frame. Evidently,

such a particle deserves to be called a massless spinning particle. While massless, it

is not a luxon, since the spin-0 case does not reduce to the holonomy around a spinless

luxon, but to the holonomy around a particle with no energy–momentum. We can

say this particle type carries no linear momentum, but only angular momentum.

But there is really a second type of particle corresponding to this conjugacy class.

As far as Minkowski spacetime is concerned, there is nothing special about the ‘z’

direction: the hyperbolic conjugacy class also corresponds to transformations like

t 7→ t coshκm− x sinhκm
x 7→ −t sinhκm+ x coshκm
y 7→ y
z 7→ z

This kind of transformation is conjugate to the previous one within SO0(3, 1), but

it is not conjugate by an element of the stabilizer SO0(2, 1)! The point is that in

the geometric structure picture, there is an assumed reduction of structure to the

stabilizer subgroup, and it is only gauge transformations of the reduced bundle that

leave the geometric structure invariant. In this case, the holonomy around the particle

is a boost in the 3d de Sitter spacetime, so it corresponds to a massive tachyon.

3. If g is loxodromic, it acts on Minkowski spacetime as a combined rotation and boost

about the same axis in some reference frame. Since the elliptic and hyperbolic trans-

formations above are degenerate cases of loxodromic transformations, it comes as no
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surprise that we get the transformation

t 7→ t coshκm2 − z sinhκm2

x 7→ x cosκm1 − y sinκm1

y 7→ x sinκm1 + y cosκm1

z 7→ −t sinhκm2 + z coshκm2

where

m1 = Re(m), m2 = Im(m).

We can still think of m1 and m2 as the mass and spin of tardyon, where 0 < m1 <

2π/κ and 0 < m2 <∞.

4. If g is parabolic, it acts on Minkowski spacetime as a Lorentz transformation fixing a

single null vector and a single spacelike vector. Explicitly, picking the frame where

g =
(

1 1
0 1

)
the transformation we get corresponds to the matrix

3/2 1 0 −1/2
1 1 0 −1
0 0 1 0

1/2 1 0 1/2

 ∈ SO0(3, 1).

This matrix has a unique eigenvalue λ = 1 of algebraic multiplicity 4, with only a

2-dimensional eigenspace, spanned by the eigenvectors
1

0

0

1

 and


0

0

1

0


5. If g is the identity, we can say the particle carries no momentum and no angular

momentum.

6.4 SO(2, 2) Chern–Simons gravity

We have, in fact, already done the hardest part of the work necessary to describe

spinning particles in 3d general relativity with negative cosmological constant. This is

because the double cover of SO0(2, 2) is simply the product SL(2,R)×SL(2,R). A conjugacy
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class in SL(2,R)2 is simply a pair of conjugacy classes in SL(2,R). There are 5 basic types

of conjugacy classes of SL(2,R), so there are 25 types of conjugacy classes to deal with;

the situation is more complicated than in the SO(3, 1) case since there are now two ‘time’

directions. Moreover, these conjugacy classes generally bifurcate to give two distinct particle

types since, as we saw for the SL(2,C) case, it is really conjugacy under the stabilizer

subgroup that counts. This gives ∼ 50 different particle types. We make no attempt here

to describe every particle type here. However it is appropriate to point out at least one of

the most relevant examples.

• When g in SL(2,R)× SL(2,R) is a pair of rotations: cos θ − sin θ

sin θ cos θ

 ,

 cosφ − sinφ

sinφ cosφ


we find that the corresponding transformation of the coordinates (t, x, y, z) is given

by 
cos(θ − φ) 0 0 sin(θ − φ)

0 cos(θ + φ) − sin(θ + φ) 0
0 sin(θ + φ) cos(θ + φ) 0

− sin(θ − φ) 0 0 cos(θ − φ)

 .

In particular, if θ = φ = κm/2, we get a spatial rotation corresponding to the deficit

angle around a tardyon of mass m. On the other hand, if θ = −φ = S/2 we get the

3d anti de Sitter analog of a ‘time translation’ in the Poincaré group, corresponding

to a particle with vanishing mass but with ‘spin parameter’ S. More generally, if we

define

2πM = θ + φ;

−2πS = θ − φ

Then we get 
cos 2πS 0 0 − sin 2πS

0 cos 2πM − sin 2πM 0

0 sin 2πM cos 2πM 0

sin 2π(S) 0 0 cos 2πS


as the analog of the holonomy (6.1) in the Λ = 0 case. Notice that for small angular
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momentum this is approximately
1 0 0 −2πS

0 cos 2πM − sin 2πM 0

0 sin 2πM cos 2πM 0

−2πS 0 0 1


which makes the resemblance to the Poincaré case (6.1) more plain. In the contraction

limit as Λ→ 0, we recover the former case exactly.

Also note that this example shows the two SL(2,R) factors in the gauge group seem

to be related by ‘chirality’: if we switch the angles θ and φ, then the mass M is

unaffected, while the spin S switches sign.

6.5 Particle types and contractions

We might ask what becomes of the (spin-0) particle types in certain limits, particu-

larly, the c→ 0 limit. The important observation is that the definition of contraction for Lie

groups does not use group multiplication directly, but only conjugation. Thus, Definition 3

on p. 33 generalizes immediately to any smooth quandle:

Definition 8 Let U be a smooth quandle with subquandles Q, Q′. Then Q′ is called a

contraction of Q within U if there is a sequence u1, u2, . . . ∈ U such that:

1. for every sequence q1, q2, . . . ∈ Q such that the sequence u1 � q1, u2 � q2, . . . ∈ U

converges, the limit is an element of Q′;

2. every element q′ ∈ Q′ can be written as

q′ = lim
k→∞

uk � hk

for some sequence hk.

When Q′ is a contraction of Q by the sequence g1, g2, . . . ∈ U , we write

Q′ = lim
k→∞

uk �Q.

Notice in particular that when U,Q,Q′ are the underlying quandles of a group and two

subgroups, this definition reduces to the one for contraction of Lie groups. But the slightly

more general case most relevant to our purposes is the one where U is the quandle of a

group, and Q,Q′ are conjugacy classes.
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Lemma 10 Suppose H,H ′ are subgroups of a group G, and suppose H ′ is a contraction of

H in the sense of Definition 3:

H ′ = lim
k→∞

gk �H

for some sequence gk ∈ G. Let Q ⊆ H be a conjugacy class in H, and consider the subset

Q′ ⊆ G′ consisting of all elements of G′ that are limits of elements of Q:

Q′ = lim
k→∞

gk �Q

Then for every q′ ∈ Q′ and every h′ ∈ H ′, we have h′ � q′ ∈ Q′. In other words, Q′ is a

union of conjugacy classes.

Proof: Since q′ ∈ Q′ and h′ ∈ H ′, there exist sequences qk ∈ Q and hk ∈ H such that

q′ = lim
k→∞

gk � qk

h′ = lim
k→∞

gk � hk

Then

lim
k→∞

gk � (hk � qk) = lim
k→∞

((gk � hk) � (gk � qk))

= lim
k→∞

(gk � hk) � lim
k→∞

(gk � qk)

= h′ � q′.

so in particular, h′ � q′ ∈ Q′. 2

A single conjugacy class (or particle type) may split into multiple types in the

contraction limit. For a simple example, consider the contraction of SO(3) to ISO(2). In

SO(3), two rotations are conjugate if and only if they are rotations by the same angle.

But in the ISO(2) limit, some rotations become pure rotations, while other become pure

translations, and these can never be conjugate. The opposite behavior is also possible:

conjugacy classes may get identified during a contraction. An example is the Galilean

limit (c → ∞) of special relativity, where for example the past and future light cones get

identified.
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Chapter 7

Strings in 4d BF Theory

All the work in the previous two sections generalizes nicely from 3 to 4 dimensions,

using the ‘loop braid group’ as a substitute for the braid group. In this chapter we describe

the loop braid group and then study how it governs the exotic statistics of strings in 4d BF

theory.

7.1 The loop braid group

The loop braid group LBn consists of all ways a collection of oriented, unknotted,

unlinked circles can move around in R3 and come back to their original positions, perhaps

trading places. More precisely, it consists of ‘isotopy classes’ of such motions. This group

thus plays the same role in describing the interchange of closed strings in R3 that the

symmetric group Sn plays for point particles in R3, and the braid group plays for point

particles in R2. In the notation of Section 5.2, the Loop braid group is the motion group:

LBn := Mo(R3,Σ)

where Σ ⊂ R3 is a collection of n unknotted and unlinked oriented circles. In this section

we use the work of Lin [63] to obtain two presentations of the loop braid group. McCool

[67] and Rubinsztein [82] have also studied the motion group for unknotted and unlinked

circles in R3. Surya has also given a description of the loop braid group as an iterated

semidirect product [91]. Much of this work considers the motion of unoriented circles. Since

we use oriented circles, we obtain a smaller motion group, which lacks the ‘circle-flipping’

operations that reverse orientations.
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We shall use the work of Lin [63] to give two presentations of LBn. First note that

there is a homomorphism

p : LBn → Sn

which simply forgets the details of the braiding, remembering only how the circles get

permuted in the process. The image of p is all of Sn. We call the kernel of p the pure loop

braid group PLBn.

Suppose, just to be specific, that Σ = `1 ∪ · · · ∪ `n where `1, . . . , `n are disjoint

unit circles in the xy plane, lined up from left to right with their centers on the x axis. Lin

proves that PLBn has a presentation with generators σij for i, j ∈ {1, . . . , n} with i 6= j.

The generator σij describes a motion in which the ith circle floats up and over the jth

circle, shrinks slightly and passes down through the jth circle, expands to its original size,

and then moves straight back to its starting position. We draw this as follows:

σij =

i j

where for purely artistic reasons we let the jth circle move a bit to the left in the process.

Here we are using a drawing style adapted from Carter and Saito’s work on surfaces

in 4 dimensions [29]. Crossings in a braid or knot are usually drawn with an artificial ‘break’

in one of the strands to indicate that it lies under the other:

Similarly, Carter and Saito draw 3d projections of knotted surfaces in 4 dimensions, in-

dicating by a broken surface which one passes ‘under’ the other in the suppressed fourth

dimension. In our context, we take this suppressed dimension to be one of the spatial di-

mensions, in order to make room for time, which we decree to flow downward in all our

diagrams. The broken surfaces in σij indicate whether one circle is above or below the other

in the suppressed spatial dimension, so that the following diagram and ‘movie’ illustrate
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the same process:

The inverse of σij is of course obtained by running the movie backwards, which in diagram-

matic notation becomes:

σij
−1 =

i j

One advantage of this drawing style is that it immediately suggests Reidemeister–like moves

for loop braids, such as this:

= =

We shall study the loop braid group algebraically, relying on such diagrams for our intuition.

Given Lin’s presentation of PLBn, we can obtain a presentation of LBn using the

short exact sequence

1→ PLBn
i−→LBn

p−→Sn → 1.

First, note that there is a homomorphism

j : Sn → LBn

which takes a given permutation to what Lin calls a ‘permutation path’ in the motion group:

a loop braid in which circles trade places without any circle passing through another in a

topologically nontrivial way. For example, we can have them trade places while remaining on

the xy plane. This map j is well-defined since all such permutation paths are homotopic.

Moreover, the composite p ◦ j : Sn → Sn is the identity homomorphism on Sn, so j is a

splitting of the short exact sequence above.

Since j is one-to-one, we may identify elements of Sn with their images in LBn.

Since PLBn is a normal subgroup, elements of Sn act on PLBn via conjugation. This allows
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us to define the semidirect product Sn nPLBn, and thanks to our split exact sequence, we

get an isomorphism

f : LBn → Sn n PLBn

g 7→ (p(g), j(p(g))−1g)

with inverse

f−1 : Sn n PLBn → LBn

(s, σ) 7→ sσ

Writing the loop braid group as a semidirect product in this way, we easily obtain

a presentation for it:

Theorem 11. The loop braid group LBn has a presentation with generators si for 1 ≤ i ≤
n− 1 and σij for 1 ≤ i, j ≤ n with i 6= j, together with the following relations:

(a) the relations for the standard generators si of Sn:

sisj = sjsi for |i− j| > 1 (7.1)

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2 (7.2)

s2
i = 1 for 1 ≤ i ≤ n− 1 (7.3)

(b) Lin’s relations for the generators σij of PLBn:

σijσk` = σk`σij for i, j, k, ` distinct (7.4)

σikσjk = σjkσik for i, j, k distinct (7.5)

σijσkjσik = σikσkjσij for i, j, k distinct (7.6)

(c) relations expressing the action of Sn on PLBn:

siσi(i+1) = σ(i+1)isi for 1 ≤ i ≤ n− 1 (7.7)

skσij = σijsk for i, j, k, k + 1 distinct (7.8)

sjσij = σi(j+1)sj for i, j, j + 1 distinct (7.9)

siσij = σ(i+1)jsi for i, i+ 1, j distinct (7.10)
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Proof: Since the presentation (a) of Sn is well-known, and Lin [63] proved that PLBn has

the presentation (b), to present their semidirect product LBn it suffices to add relations

that express the result of conjugating any of Lin’s generators σij by the symmetric group

generators sk. For 1 ≤ i ≤ n− 1 we have:

siσi(i+1)s
−1
i =

i i+1

=

i i+1

= σ(i+1)i

For i, j, k and k + 1 all distinct, we have:

skσijs
−1
k =

i j k k+1

=

i j k k+1

= σij

For i, j and j + 1 distinct, we have:

sjσijsj
−1 =

i j j+1

= σi(j+1)

and using a similar picture we see that for i, i + 1 and j distinct, siσijsi−1 = σ(i+1)j . The

reader may notice that we have not included all possible conjugations of generators of PLBn
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by generators of Sn—we would naively expect two additional such classes, yielding two more

relations:

sj−1σij = σi(j−1)sj−1 for i, j − 1, j distinct (7.11)

si−1σij = σ(i−1)jsi−1 for i− 1, i, j distinct (7.12)

but these follow, respectively, from (7.9) and (7.10) combined with (7.3). So, we have pre-

cisely the relations in part (c), as desired. 2

From this presentation of the loop braid group we now derive a presentation with

fewer generators. We keep all the generators si, but replace the σij with new generators

defined as follows:

σi = siσi(i+1)

for 1 ≤ i ≤ n− 1. We can draw these as follows:

σi =

i i+1

=

i i+1

where we twist the picture a bit in the second step. To see that the generators si and σi

indeed give a new presentation, note that we can express the old generators σij in terms of

these new ones as follows. First, repeatedly applying (7.9) we obtain:

σij = sj−1sj−2 · · · si+1σi(i+1)si+1si+2 · · · sj−2sj−1 for i < j.

If instead of (7.9) we use its equivalent form (7.11), we obtain:

σij = sjsj+1 · · · si−2σi(i−1)si−2 · · · sj+1sj for i > j.

Rewriting these in terms of the new generators σi, and in the second case using relation

(7.7), we obtain a way to write σij in terms of the new generators:

σij =

 sj−1sj−2 · · · siσisi+1si+2 · · · sj−2sj−1 for i < j

sjsj+1 · · · si−2σi−1si−1si−2 · · · sj+1sj for i > j
(7.13)
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Sometimes it is more convenient to use an alternate formula, obtained by applying (7.10),

its equivalent form (7.12), and (7.7) again:

σij =

 sisi+1 · · · sj−1σj−1sj−2 · · · si+1si for i < j

si−1si−2 · · · sj+1σjsjsj+1 · · · si−2si−1 for i > j.
(7.14)

What these formulas say is that when j 6= i + 1 we can construct the loop braid σij by

permuting either the ith circle or the jth until they are adjacent, braiding one through the

other, and then permuting the circles back to where they started.

The nice thing about using si and σi as generators of the loop braid group is that

si describes how two neighboring circles can trade places by going around each other:

si =

i i+1

while σi describes how two neighboring circles can trade places with the right one passing

over and then down through the left one:

σi =

i i+1

As a result, the generators si generate a subgroup of LBn isomorphic to the symmetric

group Sn, while the σi generate a subgroup isomorphic to the braid group Bn. There are

also ‘mixed relations’ involving generators of both kinds:

Theorem 12. The loop braid group LBn has a presentation with generators si and σi for

1 ≤ i ≤ n− 1 together with the following relations:

(a) relations for the standard generators si of Sn:

sisj = sjsi for |i− j| > 1 (7.15)

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2 (7.16)

s2
i = 1 for 1 ≤ i ≤ n− 1 (7.17)

(b′) relations for the standard generators σi of Bn:

σiσj = σjσi for |i− j| > 1 (7.18)

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2 (7.19)
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(c′) the following mixed relations:

siσj = σjsi for |i− j| > 1 (7.20)

sisi+1σi = σi+1sisi+1 for 1 ≤ i ≤ n− 2 (7.21)

σiσi+1si = si+1σiσi+1 for 1 ≤ i ≤ n− 2 (7.22)

Proof: The proof is somewhat lengthy, so we defer it to the Appendix. It is, however, simple

to convince oneself using pictures that the given relations express topologically allowed

moves for loop braids. Perhaps the least obvious of these is (7.22), for which we supply a

visual proof below:

= = =

2

If we omit relations (7.22) we obtain the ‘virtual braid group’ V Bn of Vershinin

[95]. This plays a role in virtual knot theory analogous to that of the usual braid group in

ordinary knot theory. If we include these relations, which say:

=

then we obtain precisely the ‘braid permutation group’ BPn of Fenn, Rimányi and Rourke

[34]. So, the loop braid group is isomorphic to the braid permutation group.

The isomorphism LBn ∼= BPn yields a simplified diagrammatic way of working

with loop braids, which is in fact the method used by Fenn, Rimányi and Rourke in their
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original paper on BPn. In the theory of ‘welded braids’, the generators σi in BPn correspond

to the kind of crossings found in ordinary braids: , while the si describe ‘welded crossings’,

drawn like this: •. These crossings are called ‘welded’ because one imagines that the two

strands have been ‘welded down’ at the crossing. The point is that elements of the abstract

group presented in Theorem 16 can be represented either as loop braid diagrams or as

welded braid diagrams, as follows:

si = •

i i+1

=

i i+1

σi =

i i+1

=

i i+1

For the pure loop braid group PLBn, the above correspondence implies the following welded

braid pictures of the generators σi(i+1) and their inverses:

σi(i+1)=

i i+1

=
•

σi(i+1)
−1 =

i i+1

=
•

The other generators σij can be obtained from these by conjugation, using (7.13) or (7.14).

For example:

σ(i+1)i =

i i+1

=
•

Diagrammatic calcuations with welded braids—and hence with loop braids—can

be carried out by using the usual Reidemeister moves for real crossings, along with ‘welded

Reidemeister moves’:

= =

= =

which are of course simply graphical restatements of the relations in (a) and (c′). The
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nonexistence of the following move:

•
6=

•

is the rationale for the term ‘welded braid’—we are not allowed to pass a strand under the

weld.

It is easy from the presentation in Theorem 16 to work out the 1-dimensional

unitary representations of the loop braid group. If ρ : LBn → U(1) is such a representation,

we must have

ρ(si) = ±1

and

ρ(σi) = q

for all 1 ≤ i < n, where q ∈ U(1) is a fixed phase. We call the representations with ρ(si) = 1

bose-anyons, and the representations with ρ(si) = −1 fermi-anyons. These have been

studied in physics at least since the work of Balachandran [18], and recently Niemi has

shown how they arise in the dynamics of vortices in a quantum fluid [73].

In Section 7 we describe more interesting unitary representations of the loop braid

group, using the action of the motion group on the moduli space of flat bundles. In related

work, Szabo [92] has obtained a different class of representations using BF theory with

abelian gauge group. Surya [91] has also studied representations of the loop braid group.

7.2 Loop braid statistics and representations

Let space be R3 with n unknotted and unlinked circles removed:

X = S − Σ, S = R3, Σ = `1 ∪ · · · ∪ `n.

The fundamental group of X is the free group on n generators, so for any Lie group G we

have

hom(π1(X), G) = Gn.

As explained in Section 3.3, a point in this space represents a G-bundle with flat connection

over X, mod gauge transformations that equal the identity at a chosen basepoint. The n

elements of G describing this point are just the holonomies around the circles `1, . . . , `n.
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Physically, we think of these circles as string-like ‘topological defects’ where the flat con-

nection on space becomes singular.

We explained quite generally in Section 5.2 how the motion group Mo(S,Σ) acts

on hom(π1(X), G). In the present case the motion group is just the loop braid group LBn,

and its generators act on hom(π1(X), G) = Gn as follows:

(g1, . . . , gi, gi+1, . . . , gn)si = (g1, . . . , gi+1, gi, . . . , gn),

(g1, . . . , gi, gi+1, . . . , gn)σi = (g1, . . . , gigi+1g
−1
i , gi, . . . , gn).

This is easy to see using pictures. For example, the generator σ1 has the following effect:

g1 g2

g2
g1

By an argument like the one we made in Section 6 for the ordinary braid group action in

3d BF theory, it follows that σ1 acts on the holonomies g1, g2 by switching them while left

conjugating g2 by g1:
g1 g2

g1�g2 g1

Similarly, the inverse of σ1 acts to switch the group elements while right conjugating g1 by

g2:
g1 g2

g2 g1�g2

The generator s1 simply switches the holonomies g1 and g2:

g1 g2

g2 g1



114

It is easy to see that if G is unimodular, this action of the loop braid group on Gn gives rise

to a unitary representation of the loop braid group on L2(Gn). And, just as in 3 dimensions,

we can generalize this result to the case of a quandle:

Theorem 13. Suppose Q is a topological quandle equipped with an invariant measure.

Then there is a unitary representation ρ of the loop braid group LBn on L2(Qn) given by

(ρ(σ)ψ)(q1, . . . , qn) = ψ((q1, . . . , qn)σ)

for all σ ∈ LBn, where LBn has a right action on Qn given by:

(q1, . . . , qi, qi+1, . . . , qn)si = (q1, . . . , qi+1, qi, . . . , qn)

(q1, . . . , qi, qi+1, . . . , qn)σi = (q1, . . . , qi � qi+1, qi, . . . , qn)

There is also a unitary operator U(q) on L2(Qn) for each element q ∈ Q, given by

(U(q)ψ)(q1, . . . , qn) = ψ(q � q1, . . . , q � qn).

Proof: While the proof is straightforward, it is worth comparing Theorem 5.1 of Fenn,

Rimányi and Rourke [34]. This says that the braid permutation group BPn is the group of

automorphisms of the free quandle on n generators. Since BPn is isomorphic to the loop

braid group LBn, it follows that LBn acts on Qn for any quandle Q. The action is precisely

as above. 2

Let us illustrate these ideas in the case where the gauge group is the connected

Lorentz group SO0(3, 1) or its double cover SL(2,C). With either of these gauge groups,

BF theory in 4 dimensions is sometimes called ‘topological gravity’. We take space to

be R3 and remove a collection of unknotted unlinked circles `1, . . . , `n. For brevity let

us call these circles ‘closed strings’. A flat connection on space will have some holonomy

gi ∈ SO0(3, 1) around the ith string. We have already listed the conjugacy classes for these

groups, in Section 6.3: they correspond to the various types of Möbius transformations of

the Riemann sphere. Here we can simply reinterpret these conjugacy classes to list possible

‘types’ of strings, just as we used conjugacy classes in SO0(2, 1) to list types of spin-0 point

particles in 3d gravity. This list is the analog for strings of the particle classification on

p. 93
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1. If gi is elliptic, it acts on Minkowski spacetime as a spatial rotation in some reference

frame. In this reference frame, parallel transport around the string `i is a spatial

rotation by some angle 0 < θ ≤ π about some axis. (A rotation by an angle θ > π is

a rotation by θ − π about the opposite axis.) This angle θ is proportional to the real

number m which appears in item 1 of the above list, as follows:

θ = κm.

By analogy to 3d gravity, we could call the string a tardyon in this case, and call the

number m its ‘mass density’. The number m is real and takes values 0 < m ≤ π/κ.

2. If gi is hyperbolic, it acts on Minkowski spacetime as a boost in some reference frame.

In this reference frame, parallel transport around the string `i is a boost with rapidity

0 < ρ <∞ along some axis. The rapidity ρ is proportional to the imaginary number

m which appears in item 2 of the above list, as follows:

ρ = κIm(m).

By analogy to 3d gravity, we could call the string a tachyon in this case, and call the

number m its ‘mass density’. The number m is purely imaginary and takes values in

the upper half of the imaginary axis: 0 < Im(m) <∞.

3. If gi is loxodromic, it acts on Minkowski spacetime as a combined rotation and boost

about the same axis in some reference frame. In this reference frame, parallel transport

around the string `i is a combination of a rotation by an angle 0 < θ < 2π and a

boost with rapidity 0 < ρ <∞ about the same axis, where

θ = κRe(m), ρ = κIm(m).

This case has no analogue in 3d gravity. We can still think of m as some sort of mass

density, but it is complex, with 0 < Re(m) < 2π/κ and 0 < Im(m) <∞.

4. If gi is parabolic, it acts on Minkowski spacetime as a Lorentz transformation fixing a

single null vector. By analogy to 3d gravity, we could call the string a luxon in this

case, and say m = 0.

5. If gi is the identity, we can say the string carries no energy-momentum, and again say

m = 0.
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Each of these conjugacy classes Q ⊆ SO0(3, 1) is a quandle. The question then

arises which of these quandles admits an invariant measure, and whether this measure is

unique up to scale. One can work this out on a case-by-case basis.

One important case is when Q is the conjugacy class containing all rotations by

some fixed angle 0 < θ < π. This conjugacy class corresponds to a ‘tardyonic’ closed string

with a given mass density 0 < m ≤ π/κ. It is easy to see that this conjugacy class Q indeed

admits an invariant measure. To see this, note that to specify a rotation by the angle θ one

must first pick a future-pointing unit timelike vector u ∈ R4, to split Minkowski spacetime

into space and time, and then pick a unit spacelike vector v orthogonal to u, to serve as the

axis of rotation. The allowed choices of u lie in the hyperboloid

H = {(t, x, y, z) : t2 − x2 − y2 − z2 = 1, t > 0}.

This hyperboloid H is a Riemannian submanifold of R4. An allowed choice of u together

with v amounts to a point in SH, the unit sphere bundle of H. So, we have Q ∼= SH.

Since the unit sphere bundle of a Riemannian manifold is itself a Riemannian manifold in a

natural way, we get a well-defined Lebesgue measure on SH and thus Q, which is invariant

under SO0(3, 1), since our construction respected the Lorentz group symmetry.

Given an invariant measure on Q, we obtain a Hilbert space L2(Qn) for n strings of

type Q. Note that we do not try to ‘symmetrize’ the states in this Hilbert space. Instead we

describe the statistics using a representation of the loop braid group, following Theorem 13.

Of course, one should work out the details explicitly, but we leave this for future research.



117

Chapter 8

Higher gauge theory and particles

in 4d BF theory

8.1 The idea of a p-connection

We have seen that particles in 3d BF theory and strings in 4d BF theory have

‘group-valued energy-momentum’ given by the holonomy of the connection. More generally,

we’ve seen the connection assigns group-valued momentum to any ‘brane’ of codimension 2.

The question arises whether codimension-2 branes are the only possibility for generalizing

the inclusion of matter in 3d general relativity to arbitrary BF theories. Can we include

particles?

Of course, we cannot take the holonomy of a flat connection ‘around a particle’

unless spacetime is 3-dimensional, since the fundamental group is oblivious to obstructions

with any codimension but 2. This would kill our hopes of including particles in 4d BF theory

in a purely topological way if the connection A were the only field in the theory. However,

we also have the B field, which in n-dimensional spacetime is a g-valued (n− 2)-form. The

dimension makes B perfect for integrating not over a loop, but over an (n−2)-sphere—just

the right dimension of sphere to enclose a particle, regardless of n! In particular,

πd−1(Rd − {∗}) ∼= πd−1(Sd−1) ∼= Z,

where d = n − 1 is the dimension of space. When d = 3, we can draw a generator of the
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2nd homotopy group:

In any dimension, we have hope of being able to detect particle-like defects using the B

field.

In fact, at least in the case n = 4, one can perform such an integral and get a

group element in a gauge invariant way. This has been shown in the context of ‘higher

gauge theory’ by Baez and Schreiber [16], which is the appropriate mathematical setting

for describing such higher dimensional notions of holonomy. Higher gauge theory is a rich

subject, to which this chapter should by no means be considered an adequate introduction.

As a proper discussion of the relationship between BF theory and higher gauge theory

would present too great a distraction from our purposes, we refer the interested reader to

the references [8, 15, 16, 19]. Here we shall simply describe enough of the ingredients of

higher gauge theory to develop a picture of point particles as topological defects in 4d BF

theory.

Higher gauge theory is a sort of hybrid of ordinary gauge theory and higher cat-

egory theory. In higher gauge theory, all of the familiar gadgets from gauge theory get

generalized to categorical analogs:

• bundles become ‘p-bundles’ (or (p− 1)-gerbes),

• connections become ‘p-connections’,

• gauge groups become ‘gauge p-groups’,

and so on, where p is a positive integer, p = 1 being the base case. In fact, except in

certain ‘abelian’ cases, these types of generalizations have so far mainly been developed

for p = 2. The nontrivial process of generalizing ‘things’ to ‘2-things’ (and beyond) is

known as ‘categorification’ [13], since it involves replacing sets with categories. We will not

describe the general idea categorification further, but we will give one concrete example

that is immediately applicable to our problem of describing particles in 4d BF theory—the

passage from groups to 2-groups.
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8.2 From groups to 2-groups

To describe holonomies along both paths and surfaces, it turns out one should use

not just an ordinary group but a ‘2-group’. In this section we define 2-groups; in the next

we see how certain 2-groups show up naturally in 4d BF theory.

8.2.1 2-groups as 2-categories

Any group G can be thought of as a category with a single object ?, morphisms

labeled by elements of G, and composition defined by multiplication in G:

?
g1 // ?

g2 // ? = ?
g2g1 // ?

In fact, one can define a group to be a category with a single object and all morphisms

invertible. The object ? can be thought of as an object whose symmetry group is G.

In a 2-group, we add an additional layer of structure to this picture, and capture

the idea of symmetries between symmetries. In addition to having a single object ? and its

automorphisms, we have isomorphisms between automorphisms of ?:

?

g

''

g′

77 ?h��

In other words, a 2-group is a ‘2-category’ with one object, all morphisms invertible, and

all 2-morphisms invertible.

To understand 2-groups, it is thus helpful to recall the more general idea of a

2-category. A 2-category consists of

• objects: X,Y, Z, . . .

• morphisms between objects: X
f // Y

• 2-morphisms between morphisms: X

f

&&

f ′

88 Yα��

Morphisms can be composed as in a category, and 2-morphisms can be composed in two
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distinct ways, either vertically:

X

f

!!f ′ //

f ′′

== Y
α��

α′��
= X

f

%%

f ′′

99 Yα′·α
��

or horizontally:

X

f1

&&

f ′1

88 Yα1��

f2

&&

f ′2

88 Zα2�� = X

f2f1

%%

f ′2f
′
1

99 Yα2◦α1

��

There are certain axioms that must hold for this to be a 2-category. The axioms give, for

example, the expected behavior of identity morphisms and 2-morphisms under composition.

We shall not be concerned with listing these axioms here, deferring instead to standard

references on category theory [66]. The critical axiom is that the vertical composition “·”
and horizontal composition “◦”of 2-morphisms satisfy the exchange law:

(β′ · β) ◦ (α′ · α) = (β′ ◦ β) · (α′ ◦ α) (8.1)

so that diagrams of the form

X

f1

!!f ′1 //

f ′′1

== Y
α��

α′��

f2

!!f ′2 //

f ′′2

== Z
β��

β′��

are unambiguous.

When a 2-category has a unique object, and all 1-morphisms and 2-morphisms are

invertible, it is a 2-group.

8.2.2 Constructing 2-groups

We can construct a 2-group from the following data: a pair (G,H) of groups,

equipped with an action � of G as automorphisms of H, i.e

g � (h1h2) = (g � h1)(g � h2) (8.2)

g � 1 = 1 (8.3)
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for all g ∈ G and h1, h2 ∈ H, and a group homomorphism δ : H → G compatible with � in

the following sense:

δ(g � h) = gδ(h)g−1 (8.4)

δ(h) � h′ = hh′h−1. (8.5)

Such a system (G,H,�, δ) is called a crossed module, and in fact it is a theorem that

every 2-group arises from some crossed module in the way we now describe [36].

Given a crossed module (G,H,�, δ), we construct a 2-group with

• object ?

• elements of G as 1-morphisms ?
g // ?

• pairs u = (g, h) ∈ G × H as 2-morphisms, where (g, h) is a 2-morphism from g to

δ(h)g. We draw this as: u = ?

g

&&

g′

88 ?h
��

where g′ = δ(h)g.

The composition of 1-morphisms and vertical composition of 2-morphisms are induced by

multiplication in G and H respectively:

?
g1 // ?

g2 // ? = ?
g2g1 // ?

and

?

g

  g′ //

g′′

>> ?
h��

h′��
= ?

g

$$

g′′

:: ?h′h
��

with g′ = δ(h)g and g′′ = δ(h′)δ(h)g = δ(h′ · h)g. In other words, writing the vertical

composition with a dot ·, we have

u′ · u = (g′, h′) · (g, h) = (g, h′h) (8.6)

defined for 2-morphisms u = (g, h) and u′ = (g′, h′) such that g′ = δ(h)g. The horizontal

composition “◦” of two 2-morphisms

?

g1

''

g′1

77 ?h1��

g2

''

g′2

77 ?h2�� = ?

g2g1

&&

g′2g
′
1

88 ?h2·(g2�h1)��
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promotes the pair (G,H) to a semidirect product GnH with multiplication:

(g2, h2) ◦ (g1, h1) ≡ (g2g1, h2(g2 � h1)). (8.7)

One can check that the exchange law

(u′2 · u2) ◦ (u′1 · u1) = (u′2 ◦ u2) · (u′1 ◦ u1) (8.8)

holds for 2-morphisms ui = (gi, hi) and u′i = (g′i, h
′
i), so that the diagram

?

g1

  g′1 //

g′′1

>> ?
h1��

h′1��

g2

  g′2 //

g′′2

>> ?
h2��

h′2��

is well defined.

Example: 2-groups from semidirect products

Given any semidirect of groups G n H, we can construct a 2-group as above by

letting δ : H → G be the trivial homomorphism. For example, the ‘Poincaré 2-groups’,

come from the ordinary Poincaré groups SO(p, q) n Rp+q in precisely this way.

In this special case where δ is trivial, a 2-morphism u given by the pair (g, h) has

g as its source morphism and δ(h)g = g as its target morphism. Thus, the 2-group has only

2-automorphisms, and each morphism g has precisely one automorphism for each element

of H:

?

g

&&

g

88 ?h��

8.3 2-connections and 2-groups for 4d BF theory

In 4d spacetime BF theory has an interpretation as a ‘higher gauge theory’—a

theory of a ‘2-connection’ [16] on a principal ‘2-bundle’ [19] with some 2-group as its ‘gauge

2-group’. We only give a very naive description of this subject, since anything more would

take us too far afield of our immediate goal: describing particles in 4d BF theory.

Roughly, though, the data for a 2-connection on a trivial 2-bundle with gauge

2-group G = (G,H, t,�) are:

• A g-valued 1-form A, and
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• An h-valued 2-form E.

This is analogous to ordinary connections, which are locally Lie algebra valued 1-forms. In

fact, the pair (A,E) should be thought of as taking values in the ‘Lie 2-algebra’ [11] (g, h),

which amounts to a ‘differential’ version of the gauge 2-group described by (G,H).

The essential point for our purposes is that a 2-connection allows us to assign

elements of H to surfaces, as well as elements of G to paths. Recall first how this works for

ordinary connections. In local coordinates, a G-connection on spacetime M is simply a Lie

algebra valued 1-form:

A : TM → g.

In this description, calculating the holonomy of A around a based loop γ : I →M amounts

to “integrating” the Lie group elements exp(A(γ′(t))) around the loop. Of course, this is an

oversimplification—when G is nonabelian we must really use the path-ordered exponential

[9]

P exp
(
−
∫ 1

0
A(γ′(t))dt

)
=
∞∑
n=0

(−1)n
∫

1≥t1≥···≥tn≥0
A(γ′(t1)) · · ·A(γ′(tn))dtn · · · dt1

to maintain gauge invariance. Similarly, if we want to assign group elements to surfaces

using a 2-connection, we can try integrating the 2-form E over the surface to get an element

of H.

In fact, Baez and Schreiber have shown that one can perform a kind of ‘integral’ of

the E field over a surface. This calculation assigns well-defined gauge-invariant ‘2-holonomy’

to the surface, but only if A and E satisfy an additional compatibility condition called fake

flatness:

F + dt ◦ E = 0 (8.9)

Here F = dA+ 1
2 [A,A] is the curvature of A, and

dt : h→ g

is the differential of the homomorphism t : H → G in the crossed module description of

our 2-group. The computation of 2-holonomies is really the analog of the path ordered

exponential used to calculate the holonomy of a connection, and deserves to be called

the ‘surface-ordered exponential’. It can also be calculated as an ordinary path ordered

exponential in a suitable space of paths in spacetime. [16]
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Now let us turn to 4d BF theory, with trivial principal G bundle P = M × G.

The connection A is a g-valued 1-form, while the E field is a g-valued 2-form, so we seem to

have the right ingredient for a 2-connection, provided the 2-group (G,H) has both g = h.

At first, there might seem to be just one sensible choice. However, we only get well-defined

holonomies over surfaces if we can choose the 2-group in such a way that the field equations

imply the fake flatness condition. These considerations lead to different 2-groups for BF

theory, depending on whether we include a cosmological term in the Lagrangian [8]:

Lagrangian field equations 2-group

tr (E ∧ F ) F = 0 dAE = 0 (G, g,Ad, 0)

tr (E ∧ F + Λ
2E ∧ E) F = ΛE (G,G,AD, 1)

Let us first discuss the case without cosmological term. As explained in the

previous section, we get a 2-group from any semidirect product of groups. The 2-group

(G, g,Ad, 0) comes from the semidirect product Gn g, where G acts on the additive group

of its Lie algebra via the adjoint action. The field equations for the theory,

F = 0 dAE = 0

clearly imply the fake flatness condition F + dt ◦ B = 0, since F = 0 and the target

homomorphism t : g → G is trivial. So with this choice of 2-group we get a 2-connection

with well defined surface holonomies.

The field equations for BF theory put additional constraints on the 2-connection.

The equation F = 0, implies as usual that the holonomy along a path is invariant under

homotopy (preserving the endpoints). This is nothing new, of course: it is what we have

been using all along to describe ordinary flat connections. In particular, this gives us a

homomorphism

hol : π1(M)→ G.

The second equation of BF theory says that the curvature 3-form dAE also vanishes.

This is believed to imply that surface holonomies are also homotopy invariant. In particular,

we get a homomorphism

2hol : π2(M)→ H.
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We have seen that BF theory has a much different character when we include a

cosmological term. In this case the Bianchi identity reduces the equations of motion to a

single equation:

F = ΛE

The 2-group used above for the Λ = 0 therory will not do in this case: the equations of

motion would not imply fake flatness. However, it is easy to guess a 2-group that will work:

(G,G,AD, 1G). This 2-group has G as its group of morphisms, GnG as 2-morphisms, with

the action of G on itself by conjugation.

Since one of our big themes has been the behavior of gauge theories under contrac-

tions of groups, it is interesting to note that the 2-groups for BF theory with and without

cosmological constant seem to be related by a kind of ‘2-group contraction’

(G,G,AD, 1) Λ→0 // (G, g,Ad, 0)

We make no attempt here to describe contractions for Lie 2-groups in any rigorous way,

but we hope the reader can see this is an appealing idea which deserves further attention.

The idea is that the group G ‘flattens out’ to its Lie algebra g when the cosmological term

becomes zero, while the adjoint action of G on itself becomes the adjoint action on g.

8.4 Particles

We now return to 4d BF theory without cosmological constant term, and with

gauge group G. As we have seen, this can be viewed as a higher gauge theory with gauge

2-group (G, g, 1G,AD). When spacetime is of the form M = X × R for some 3-manifold

X representing ‘space’, we can restrict the fields A and E to get a 2-connection on X.

This 2-connection is again flat in the sense that the curvature 2-form F and the curvature

3-form dAE both vanish. We warn the reader that this section is rather less precise than

the analogous cases we have considered using ordinary gauge theory. Our goal is to provide

a sketch, leaving the hard work in this area to future research.

By analogy with what we did for particles in 3d BF theory in Chapter 6, and for

strings in 4d BF theory in Chapter 7, let us consider 4d BF theory where space is R3 with

n punctures:

X = S − Σ, S = R3, Σ = {z1, . . . , zn}
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and interpret these punctures as ‘particles’. In this case the motion group is

Mo(S,Σ) ∼= Sn

so only ordinary bosonic or fermionic statistics are possible.

The fundamental group of X is trivial, so there are no interesting 1-holonomies.

The second homotopy group π2(X) however is the free abelian group on n generators, so

we get 2-holonomies living in

hom(π2(X), g) = gn

Of course, we have only described 2-connections on a trivial principal 2-bundle. In the

case of ordinary connections, we needed to let the bundle be variable in order to get all

homomorphisms π1 → G as holonomies. But let us assume an analogous result holds in

the present case, so that the 2-holonomy can be specified by picking n Lie algebra elements

arbitrarily. Each of these n Lie algebra elements, say ξi ∈ g, represents the holonomy over

a chosen generator of π2, enclosing the ith particle:

ξi∈g

As in the lower-dimensional cases, we expect these holonomies to describe certain

properties of the particle, such as analogs of energy-momentum and spin. After factoring

out gauge transformations, we expect to get

hom(π2(X), g)/G

as the space of 2-holonomies, where g ∈ G acts as gauge transformations by conjugating

the 2-holonomies:

(ξ1, . . . , ξn)→ (Ad(g)ξ1, . . . ,Ad(g)ξn)

This seems to indicate that particles in 4d BF theory are classified not by conjugacy classes

in the gauge group but by adjoint orbits in its Lie algebra.

Actually, saying that adjoint orbits give ‘particle types’ in 4d BF theory is perhaps

too strong of a statement. In the 3d case, we classified a particle type according to the

conjugacy class of the holonomy around it. But the flat connection A corresponds to a

point in the configuration space for the theory; the field E does not—it is the momentum

conjugate to A. So in Schrödinger quantization of the theory, one does not describe time
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evolution of the E field. However, one important point is that BF theory is not ultimately

what we are interested in. As we review in see in the final part of this thesis, BF theory

can be deformed into general relativity, via Freidel and Starodubtsev’s reformulation of

MacDowell–Mansouri theory. In this deformation, the symplectic structure changes, and

we are not yet certain how these ‘particle type’ data contained in the 2-holonomy will

transform in the deformation.

In fact, there are clues that adjoint orbits may relate to types of particles in 4d

quantum gravity. In a paper with Baez, Baratin, Freidel, and Morton [10], we classify

the ‘2-representations’ of the Poincaré 2-groups mentioned in Section 8.2.2. The results

of this paper can be immediately extended to see that irreducible representations of the

tangent 2-group (G, g, 0,Ad) are classified by the adjoint orbits in g. This work is related to

the Baratin–Freidel spin foam model, which essentially reproduces ordinary quantum field

theory in 4d spacetime

In any case, at least at the classical level, the 2-holonomy really is some invariant

thing that we can calculate about a particle. If we do BF theory based on some 4d Kleinian

geometry, such as the deSitter Model SO(4, 1)/SO(3, 1), we expect that this holonomy tells

us how the particle affects the geometry of the space around it, just as the holonomy around

a particle in 3d gravity tells us the angle deficit introduced by its energy-momentum. These

holonomies also represent ‘conserved quantities’, since if two particle with 2-holonomies

ξ1, ξ2 coalesce in an interaction, homotopy invariance implies the 2-holonomy around the

resulting particle must be ξ1 + ξ2.

8.5 Particle/string statistics and Bohm–Aharonov duality

The most interesting possibilities happen when we allow both particles and strings

in 4d BF theory. In fact, even when there are just strings around, one gets holonomies over

both paths and surfaces. For example, suppose we just have a single string, so space is

X = R3 − {unknot}.

Then X has a deformation retraction onto the union of a sphere and a line through its

origin, which shows X has the homotopy type

S1 ∨ S2,
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hence has nontrivial π1 and π2. More generally, space is R3 minus a collection of n strings

and m particles, its homotopy type is

S2 ∨ · · · ∨ S2︸ ︷︷ ︸
n+m

∨S1 ∨ · · · ∨ S1︸ ︷︷ ︸
n

That is, we get a 1-holonomy for each string, a 2-holonomy for each particle and each string.

To the reader who has studied our diagrams for loop braids, the meaning of the

following diagram should be clear:

This represents a particle passing over and then down through a string, and then the two

returning to their original places. The string is labeled by its holonomy g ∈ G, while the

particle is labeled by its 2-holonomy ξ ∈ g:

g

ξ

When we perform the operation depicted above, passing the particle down through the

string, nothing happens to the holonomy around the string, but the 2-holonomy around the

particle gets conjugated:

g

ξ

∼= g

Ad(g)ξ

This ‘conjugation’ of the 2-holonomy by the 1-holonomy just corresponds to the usual

action of π1 on π2. At the level of the 2-groups (G, g,Ad, 0), what is happening here can

be represented by the diagram

?
g−1
// ?

1

��

1

BB?
g // ?ξ

��

which represents ‘conjugation’ of the 2-morphism ξ : 1 → 1 by the morphism g. This sort

of operation is called ‘whiskering’ a 2-morphism, for obvious reasons. To make sense of
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it, we interpret the morphism g as really representing the identity 2-morphism 1g : g → g,

and similarly for g−1. This is of course the same as the trick for getting the action of π1

on π2, we think of a path as a degenerate surface. Noting that the identity morphism 1g

just corresponds to the identity 0 ∈ g, and applying the rule for horizontal composition of

2-morphisms we get

?

g−1

��

g−1

BB?

1

��

1

BB?

g

��

g

BB?ξ
�� 0��0

��
= ?

1

""

1

<< ?Ad(g)ξ
��

That is, the 1-holonomy acts on the 2-holonomy via the adjoint action, just as in the above

illustration.

These ideas lead to a kind of ‘exotic particle/string statistics’. If we allow the

definition of manifold to include the possibility that different connected components have

different dimensions, then the definition of the motion group Mo(S,Σ) in Section 5.2 carries

over immediately to the case where space is R3 with a finite set of unlinked unknotted circles

removed (describing closed strings), and with a finite set of points removed (describing point

particles):

X = S − Σ, S = R3, Σ = `1 ∪ · · · ∪ `n. ∪ {z1, . . . , zm}.

The motion group of n strings and m particles should have a presentation with all the

generators of LBn and Sm, together with generators passing a particle through a string, as

in the above pictures.

There is another interesting way to interpret these effects. We can think of the

points z1, . . . , zm as particles, but think of the circles `1 . . . , `n simply as ‘obstacles’, which

our particles may or may not pass through. At the quantum level, this gives something

like the Bohm–Aharonov effect. But dually, we can think of the points as obstacles, and

the circles as string–like matter that can either pass around the obstacles or not. This

gives something like the the 2-form Bohm–Aharonov effect that shows up in 2-form electro-

magnetism [98]. So, we get a kind of duality between Bohm–Aharonov effects for particles

scattering off of strings on one hand, and strings scattering off of particles on the other.
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8.6 Adjoint orbits

In the previous section we saw that particles in 4d BF theory are classified by

adjoint orbits in the Lie algebra of the gauge group. Let us describe the adjoint orbits in

the Lie algebras

G = so(p, q),

using the results of Burgoyne and Cushman [22].

Burgoyne and Cushman classify adjoint orbits by classifying the Jordan canonical

forms (over C) of their representatives. Let us introduce the notation Jk(ζ) for a k × k
elementary Jordan block with ζ down the diagonal:

Jk(ζ) :=


ζ 1

ζ
. . .
. . . 1

ζ


︸ ︷︷ ︸

k

In particular J1(ζ) denotes a 1× 1 matrix whose entry is ζ. If X ∈ g, then X is conjugate

to a direct sum (i.e. a block diagonal matrix) with blocks of the following types.
type Jordan form n+ n−

(a)


Jk(ζ)

Jk(−ζ)
Jk(ζ̄)

Jk(−ζ̄)

 ζ 6= ±ζ̄ 2k 2k

(b)
(
Jk(ζ) 0

0 Jk(−ζ)

)
ζ 6= 0 real k k

(c)
(
Jk(ζ) 0

0 Jk(−ζ)

)
ζ 6= 0 imaginary

k odd
k ± 1 k ∓ 1

(d)
(
Jk(ζ) 0

0 Jk(−ζ)

)
ζ imaginary or 0

k even
k k

(e) Jk(0) k odd k±1
2

k∓1
2

Let us work out a few examples. The easiest case is G = SO(n). Since there are

no minus signs in the metric, each block must have n− = 0. Inspecting the table, we see

that cases (c) and (e) with k = 1 are the only possibilities. Thus adjoint orbits in so(n) are
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represented by block matrices whose nonzero blocks have Jordan canonical form iξ 0

0 −iξ


for some ξ ∈ R. This matrix is conjugate to 0 ξ

−ξ 0

 ∈ so(2).

The most general adjoint orbit in so(n) thus has a block diagonal representative with bn/2c
blocks of this form.

The case G = SO(n, 1) is more interesting. Cases (a) and (d) are still not possible

here, but case (b) now works, with k = 1. For example, for the de Sitter Lie algebra so(4, 1),

we get the following types of blocks:

type Jordan form so(4, 1) block n+ n−

(b)

 u 0

0 −u

  0 u

u 0

 1 1

(c)

 iu 0

0 −iu

  0 u

−u 0

 2 0

(e) (0) (0) 1 0

0 1


0 1 0

0 0 1

0 0 0




0 1 0

1 0 1

0 −1 0

 2 1

We can assemble a representative of an adjoint orbit by combining the so(4, 1) blocks into

5 × 5 matrices, making sure that the total of the signatures (n+, n−) is (4, 1). Doing this,

we see that any adjoint orbit has an representative that looks like one of the following:
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1.



0 u

u 0

0 v

−u 0

0



2.



0

0 u

−u 0

0 v

−u 0



3.



0 1 0

1 0 1

0 −1 0

0 u

−u 0


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Part III

Cartan Geometry and Gravity
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Chapter 9

Cartan geometry

While the beauty of Klein’s perspective on geometry is widely recognized, the

spacetime we live in is clearly not homogeneous. This does not mean, however, that Kleinian

geometry offers no insight into actual spacetime geometry! Cartan discovered a beautiful

generalization of Klein geometry—a way of modeling inhomogeneous spaces as ‘infinitesi-

mally Kleinian’. The goal of this section is to explain this idea as it relates to spacetime

geometry.

While this section and the next are intended to provide a fairly self-contained

introduction to basic Cartan geometry, we refer the reader to the references for further

details on this very rich subject. In particular, the book by Sharpe [86] and the article by

Alekseevsky and Michor [1] are helpful resourses, and serve as the major references for our

explanation here.

We begin with a review the idea of an ‘Ehresmann connection’. Such a connection

is just the type that shows up in ordinary gauge theories, such as Yang–Mills. Our purpose

in reviewing this definition is merely to easily contrast it with the definition of a ‘Cartan

connection’, to be given in Section 9.2.

9.1 Ehresmann connections

Before giving the definition of Cartan connection we review the more familiar

notion of an Ehresmann connection on a principal bundle. In fact, both Ehresmann and

Cartan connections are related to the Maurer–Cartan form, the canonical 1-form any Lie
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group G has, with values in its Lie algebra g:

ωG ∈ Ω1(G, g).

This 1-form is simply the derivative of left multiplication in G:

ωG : TG→ g

ωG(x) := (Lg−1)∗(x) ∀x ∈ TgG.

Since the fibers of a principal G bundle look just like G, they inherit a Maurer–Cartan form

in a natural way. Explicitly, the action of G on a principal right G bundle P is such that,

if Px is any fiber and y ∈ Px, the map

G→ Px

g 7→ yg

is invertible. The inverse map lets us pull the Maurer–Cartan form back to Px in a unique

way:

TxgP → TgG→ g

Because of this canonical construction, the 1-form thus obtained on P is also called a

Maurer–Cartan form, and denoted ωG.

Ehresmann connections can be defined in a number of equivalent ways [30]. The

definition we shall use is the following one.

Definition 9 An Ehresmann connection on a principal H bundle

P

M

π
��

is an h-valued 1-form ω on P

ω : TP → h

satisfying the following two properties:

1. R∗hω = Ad(h−1)ω for all h ∈ H;

2. ω restricts to the Maurer–Cartan form ωH : TPx → h on fibers of P .
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Here R∗hω is the pullback of ω by the right action

Rh : P → P

p 7→ ph

of h ∈ H on P , and

VpP := ker [dπp : TpP → Tπ(p)M ]

is the vertical component of the tangent space TpP .

The curvature of an Ehresmann connection ω is given by the familiar formula

Ω[ω] = dω +
1
2

[ω, ω]

where the bracket of h-valued forms is defined using the Lie bracket on Lie algebra parts

and the wedge product on form parts.

9.2 Definition of Cartan geometry

We are ready to state the formal definition of Cartan geometry, essentially as given

by Sharpe [86].

Definition 10 A Cartan geometry (π : P →M,A) modeled on the Klein Geometry (G,H)

is a principal right H bundle

P

M

π
��

equipped with a g-valued 1-form A on P

A : TP → g

called the Cartan connection, satisfying three properties:

0. For each p ∈ P , Ap : TpP → g is a linear isomorphism;

1. (Rh)∗A = Ad(h−1)A ∀h ∈ H;

2. A takes values in the subalgebra h ⊆ g on vertical vectors, and in fact restricts to the

Maurer–Cartan form ωH : TPx → h on fibers of P .
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Compare this definition to the definition of Ehresmann connection. The most

obvious difference is that the Cartan connection on P takes values not in the Lie algebra

h of the gauge group of the bundle, but in the larger algebra g. The addition of the

0th requirement in the above definition has important consequences. Most obviously, G

must be chosen to have the same dimension as TpP . In other words, the Klein geometry

G/H must have the same dimension as M . In this way Cartan connections have a more

“concrete” relationship to the base manifold than Ehresmann connections, which have no

such dimensional restrictions. Also, the isomorphisms A : TpP → g may be inverted at each

point to give an injection

XA : g→ Vect(P )

so any element of g gives a vector field on P . The restriction of XA to the subalgebra h

gives vertical vector fields on P , while the restriction of XA to a complement of h gives

vector fields on the base manifold M itself [1].

When the model Klein geometry G/H is a metric Klein geometry, i.e. when it is

equipped with an H-invariant metric on g/h, M inherits this metric via the isomorphism

TxM ∼= g/h, which comes from the isomorphism TpP ∼= g.

The curvature of a Cartan connection is given by the same formula as in the

Ehresmann case:

F [A] = dA+
1
2

[A,A].

This curvature is a 2-form valued in the Lie algebra g. It can be composed with the canonical

projection onto g/h:

Λ2(TP ) F //

T

99
g // g/h

and the composite T is called the torsion for reasons that will become particularly clear

in Section 9.4.

9.3 Geometric interpretation: rolling Klein geometries

In Section 1, we claimed that Cartan geometry is about “rolling the model Klein

geometry on the manifold.” Let us now see why a Cartan geometry on M modeled on G/H

contains just the right data to describe the idea of rolling G/H on M . To understand this,
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we return to the example of the sphere rolling on a surface M embedded in R3. For this

example we have

G = SO(3)

H = SO(2)

and the model space is S2 = SO(3)/SO(2). The Cartan geometry consists of a principal

SO(2) bundle P over M together with a 1-form ω ∈ Ω1(M, so(3)) satisfying the three

properties above.

To understand the geometry, it is helpful to consider the situation from the point

of view of an ‘observer’ situated at the point of tangency between the “real” space and

the homogeneous model. In fact, in the rolling ball example, such an observer is easily

imagined. Imagine the model sphere as a “hamster ball”—a type of transparent plastic ball

designed to put a hamster or other pet rodent in to let it run around the house. But here,

the hamster gets to run around on some more interesting, more lumpy surface than your

living room floor, such as a Riemann surface:

It may sound silly, but in fact this is the easiest way to begin to visualize Cartan connections!

In this context, what is the geometric meaning of the SO(2) bundle P in the definition of

Cartan geometry? Essentially, it is best to think of P as the bundle of “hamster configura-

tions”, where a hamster configuration is specified by the hamster’s position on the surface

M , together with the direction the hamster is facing.

One key point, which is rather surprising on first sight, is that an element of P

tells us nothing about the configuration of the rolling sphere itself. It tells us only where

the hamster is, and which direction he is pointing. Naively, we might try describing the

rolling of a ball on a surface using the space of all configurations of the ball itself, which



139

would be a principal SO(3) bundle over the surface. But in fact, our principal SO(2) bundle

is sufficient to describe rolling without slipping or twisting. This becomes obvious when we

consider that the motion of the hamster completely determines the motion of the ball.

Now a Cartan connection:

A : TP → so(3)

takes ‘infinitesimal changes in hamster configuration’ and gives infinitesimal rotations of the

sphere he is sitting inside of. An ‘infinitesimal change in hamster configuration’ consists of

a tiny rotation together with a ‘transvection’— a pure translation of the point of tangency.

The resulting element of so(3) is the tiny rotation of the sphere, as seen by the hamster.

We now describe in detail the geometric interpretation of conditions 0, 1, and 2 in

the definition of a Cartan connection, in the context of this example.

0. Ap : TpP → so(3) is a linear isomorphism. The hamster can move in such a way as

to produce any tiny rotation of the sphere desired, and he can do this in just one

way. In the case of a tiny rotation that lives in the stabilizer subalgebra so(2), note

that the sphere’s rotation is always viewed relative to the hamster: his corresponding

movement is just a tiny rotation of his body, while fixing the point of tangency to

the surface. In particular, the isomorphism is just the right thing to impose a ‘no

twisting’ constraint. Similarly, since the hamster can produce any transvection in a

unique way, the isomorphism perfectly captures the idea of a ‘no slipping’ constraint.

1. (Rh)∗A = Ad(h−1)A for all h ∈ SO(2). This condition is ‘SO(2)-equivariance’, and

may be interpreted as saying there is no absolute significance to the specific direction

the hamster is pointing in. A hamster rotated by h ∈ SO(2) will get different elements

of so(3) for the same infinitesimal motion, but they will differ from the elements

obtained by the unrotated hamster by the adjoint action of h−1 on so(3).

2. A restricts to the SO(2) Maurer-Cartan form on vertical vectors. A vertical vector

amounts to a slight rotation of the hamster inside the hamster ball, without moving

the point of tangency. Using the orientation, there is a canonical way to think of a

slight rotation of the hamster as an element of so(2), and A assigns to such a motion

precisely this element of so(2).

Using this geometric interpretation, it is easy to see that the model Klein geome-

tries themselves serve as the prototypical examples of flat Cartan geometries. Rolling a
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Klein geometry on itself amounts to simply moving the point of tangency around. Thus,

just as Rn has a canonical way of identifying all of its linear tangent spaces, Sn has a

canonical way of identifying all of its tangent spheres, Hn has a canonical way of identifying

all of its tangent hyperbolic spaces, and so on.

It is perhaps worth mentioning another example—an example that is sort of ‘dual’

to the hamster ball rolling on a flat plane—which I find equally instructive. Rather than

a hamster in a sphere, exploring the geometry of a plane, consider a person (a 15th cen-

tury European, say) standing on a plane tangent to a spherical Earth. The plane rolls as

she steps, the point of tangency staying directly beneath her feet. This rolling gives an

ISO(2)/SO(2) Cartan geometry on the Earth’s surface. She can even use the rolling motion

to try drawing a local map of the Earth on the plane. As long as she doesn’t continue too

far, this map will even be fairly accurate.

In MacDowell–Mansouri gravity, we are in a related geometric situation. The

principal SO(3, 1) bundle describes possible event/velocity pairs for an “observer”. This

observer may try drawing a map of spacetime M by rolling Minkowski spacetime along M ,

giving an ISO(3, 1)/SO(3, 1) Cartan connection. A smarter observer, if M has Λ > 0, might

prefer getting an SO(4, 1)/SO(3, 1) Cartan connection by rolling de Sitter spacetime along

M .

9.4 Reductive Cartan geometry

The most important special case of Cartan geometry for our purposes is the ‘re-

ductive’ case. Since h is a vector subspace of g, we can always write

g ∼= h⊕ g/h

as vector spaces. A Cartan geometry is said to be reductive if this direct sum is Ad(H)-

invariant. A reductive Cartan connection A may thus be written as

A = ω + e
ω ∈ Ω1(P, h)

e ∈ Ω1(P, g/h)
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Diagrammatically:

TP gA //

h??�����

g/h
��?????

ω ..

e //

It is easy to see that the h-valued form ω is simply an Ehresmann connection on P , and we

interpret the g/h-valued form e as a generalized coframe field.

The concept of a reductive Cartan connection provides a geometric foundation

for the MacDowell–Mansouri action. In particular, it gives global meaning to the trick of

combining the local connection and coframe field 1-forms of general relativity into a connec-

tion valued in a larger Lie algebra. Physically, for theories like MacDowell–Mansouri, the

reductive case is most important because gauge transformations of the principal H bundle

act on g-valued forms via the adjoint action. The Ad(H)-invariance of the decomposition

says gauge transformations do not mix up the ‘connection’ parts with the ‘coframe’ parts

of a reductive Cartan connection.

One can of course use the Ad(H)-invariant decomposition of g to split any other

g-valued differential form into h and g/h parts. Most importantly, we can split the curvature

F of the Cartan connection A:

Λ2(TP ) gF //

h??�����

g/h
��?????

bF ..

T //

The g/h part T is the torsion. The h part F̂ is related to the curvature of the Ehresmann

connection ω, but there is an important difference: The ‘curvature’ F̂ is the Ehresmann

curvature modified in such a way that the model Klein geometry becomes the standard for

‘flatness’.

To see that this is true, consider a reductive Klein geometry G/H. The canonical

G/H Cartan connection on the principal bundle G→ G/H is the Maurer–Cartan form ωG,
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and this splits in the reductive case into two parts ωG = ωH + e:

TG g
ωG //

h??�����

g/h
��?????

ωH ..

e //

The well-known ‘structural equation’ for the Maurer–Cartan form,

dωG = −1
2

[ωG, ωG], (9.1)

is interpreted in this context as the statement of vanishing Cartan curvature. In particular,

this means both parts of the curvature vanish.

Let us work out the curvature in the cases most relevant to gravity. The six 4d

Kleinian model spacetimes discussed in Chapter 2—de Sitter, Minkowski, anti de Sitter,

and their Riemannian analogs—are all reductive.

Λ < 0 Λ = 0 Λ > 0

Lorentzian
anti de Sitter

SO(3, 2)/SO(3, 1)

Minkowski

ISO(3, 1)/SO(3, 1)

de Sitter

SO(4, 1)/SO(3, 1)

Riemannian
hyperbolic

SO(4, 1)/SO(4)

Euclidean

ISO(4)/SO(4)

spherical

SO(5)/SO(4)

We can reduce the number of independent cases by noting that, in their funda-

mental representations, the Lie algebras so(4, 1), iso(3, 1), and so(3, 2) consist of matrices

of the form1 
0 u v w a
u 0 x y b
v −x 0 z c
w −y −z 0 d
εa −εb −εc −εd 0


where the value of ε depends on the algebra:

ε =


1 g = so(4, 1)

0 g = iso(3, 1)

−1 g = so(3, 2)

(9.2)

1In each case, the Lie algebra is so(V ) where V is a vector space with metric (−1,+1,+1,+1, ε).
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and similarly for the Lie algebras so(5), iso(4) and so(4, 1) of the corresponding Riemannian

models.

These are all nondegenerate metric Klein geometries. For the cases with ε 6= 0,

the Lie algebra has a natural metric given by2

〈ξ, ζ〉 = −1
2

tr (ξζ).

which is invariant under Ad(G), hence under Ad(H). For the ε = 0 case, we do not have

a G-invariant metric. However, we really only require a metric invariant under SO(3, 1),

not under the full Poincaré group. Such a metric is easily obtained, noting the semidirect

product structure:

iso(3, 1) = so(3, 1) n R3,1

of the Poincaré Lie algebra. Using the trace on so(3, 1) together with the usual Minkowski

metric on R3,1 gives an an nondegenerate SO(3, 1)-invariant metric on the entire Poincaré

Lie algebra. In particular, the metric on the R3,1 part makes ISO(3, 1)/SO(2) into a non-

degenerate metric Klein geometry.

In any of these cases, with respect to this appropriate metric, we have the orthog-

onal direct sum decomposition of g:
0 u v w
u 0 x y
v −x 0 z
w −y −z 0

0

+


a
b
c
d

εa −εb −εc −εd


into so(3, 1) and a complement p ∼= g/h ∼= R3,1, where on the latter subspace the metric

〈·, ·〉 restricts to the Minkowski metric of signature (−+++). To discuss spacetimes of

various cosmological constant, we scale this metric by choosing a fundamental length `

and replacing the components (a, b, c, d) in the above matrices by xi/` where the xi are

dimensionful. Then, on the R3,1 subspace, the metric 〈·, ·〉 becomes

ε

`2
xiyi

The choice of ` (and ε) selects the value of the cosmological constant to be

λ =
3ε
`2

(9.3)

2This metric is nondegenerate and invariant under the adjoint action of SO(4, 1), hence is proportional
to the Killing form, since SO(5), SO(4, 1), and SO(3, 2) are semisimple.



144

This can be seen by comparing, for example, to de Sitter spacetime, which is the 4-

dimensional submanifold of 5d Minkowski vector space given by

MdS =
{

(t, w, x, y, z) ∈ R4,1

∣∣∣∣ −t2 + w2 + x2 + y2 + z2 =
3
λ

}
where λ > 0 is the cosmological constant. But the the relationship between ` and λ will

become clearer in Section 9.4, in the context of Cartan geometry.

Notice that in the Minkowski case, as in de Sitter or anti de Sitter, we are still free

to choose a fundamental length ` by which to scale vectors in R3,1, but now this choice is

not constrained by the value of the cosmological constant. This points out a key difference

beween the λ = 0 and λ 6= 0 cases: Minkowski spacetime has an extra ‘rescaling’ symmetry

that is broken as the cosmological constant becomes nonzero.

For any of these models, the Cartan connection is an g-valued 1-form A on a

principal H bundle, which we take to be the frame bundle FM on spacetime:

A ∈ Ω1(FM, g).

We identify g/h with Minkowski vector space R3,1 (or Euclidean R4 in the Riemannian

cases) by picking a unit of length `.

In index notation, we write the two parts of the connection as

Aij = ωij and Ai4 =
1
`
ei.

This gives

A4
j =
−ε
`
ej ,

where ε is chosen according to the choice of g, by (9.2). We use these components to

calculate the two parts of the curvature

F IJ = dAIJ +AIK ∧AKJ

as follows. For the so(3, 1) part:

F ij = dAij +Aik ∧Akj +Ai4 ∧A4
j

= dωij + ωik ∧ ωkj −
ε

`2
ei ∧ ej

= Rij −
ε

`2
ei ∧ ej
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where R is the curvature of the SO(3, 1) Ehresmann connection ω; for the R3,1 part:

F i4 = dAi4 +Aik ∧Ak4

=
1
`

(
dei + ωik ∧ ek

)
=

1
`
dωe

i.

The same calculations hold formally in the Riemannian analogs as well, the only difference

being that indices are lowered with δij rather than ηij .

This has a remarkable interpretation. The above calculations give the condition

for a Cartan connection A = ω + e based on any of our six models to be flat:

F = 0 ⇐⇒ R− ε

`2
e ∧ e = 0 and dωe = 0

The second condition says ω is torsion-free. The first says says not that ω is flat, but that

it is homogeneous with cosmological constant

Λ =
3ε
`2

In other words, A is flat when ω is the Levi–Civita connection for a universe with only

cosmological curvature, and the cosmological constant matches the internal cosmological

constant—the cosmological constant (9.3) of the model homogeneous spacetime. Indeed,

the Maurer–Cartan form ωG is a Cartan connection for the model spacetime, and the

structural equation (9.1) implies λ = 3ε/`2 is the cosmological constant of the model.

The point here is that one could try describing spacetime with cosmological con-

stant Λ using a model spacetime with λ 6= Λ, but this is not the most natural thing to

do. But in fact, this is what is done all the time when we use semi-Riemannian geometry

(λ = 0) to describe spacetimes with nonzero cosmological constant.

If we agree to use a model spacetime with cosmological constant Λ, the parts of

a reductive connection and its curvature can be summarized diagrammatically in the three

Lorentzian cases as follows:

T (FM) gA //

so(3, 1)
??�����

R3,1
��?????

ω 00

1
`
e

//

Λ2(T (FM)) gF //

so(3, 1)
::tttttt

R3,1
$$JJJJJJJ

R−Λ
3
e∧e //

1
`
dωe

//
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where ` and Λ are related by the equation

`2Λ = 3ε.

As observed earlier, for Λ = ε = 0 the value of `2 is not constrained by the cosmologi-

cal constant, so there is an additional scaling symmetry in Cartan geometry modeled on

Minkowski or Euclidean spacetime.

As a final note on reductive Cartan geometries, in terms of the constituent fields

ω and e, the Bianchi identity

dAF = 0

for a reductive Cartan connection A breaks up into two parts. One can show that these

two parts are the Bianchi identity for ω and another familiar identity:

dωR = 0 d2
ωe = R ∧ e.
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Chapter 10

Cartan-type gauge theory

Part of the case we wish to make is that gravity—particularly in MacDowell–

Mansouri-like formulations—should be seen as based on a type of gauge theory where the

connection is not an Ehresmann connection but a Cartan connection. Unlike gauge fields

in ‘Ehresmann-type’ gauge theories, like Yang-Mills theory, the gravitational field does not

encode purely ‘internal’ degrees of freedom. Cartan connections give a concrete correspon-

dence between spacetime and a Kleinian model, in a way that is ideally suited to a geometric

theory like gravity.

In this section, we discuss issues—such as holonomy and parallel transport—

relevant to doing gauge theory with a Cartan connection as the gauge field. As it turns out,

some of these issues are clarified by considering associated bundles of the Cartan geometry.

10.1 A sequence of bundles

Just as Klein geometry involves a sequence of H-spaces:

H → G→ G/H,
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Cartan geometry can be seen as involving the induced sequence of bundles:

P P ×H G
ι // P ×H G/H//

M

principal

H bundle

��;;;;;;;;;;;;;;;;;;;;;;;

principal

G bundle

��

bundle of tangent

Klein geometries

������������������������

The bundle Q = P ×H G→M is associated to the principal H bundle P via the action of

H by left multiplication on G. This Q is a principal right G bundle, and the map

ι : P → P ×H G

p 7→ [p, 1G]

is a canonical inclusion of H bundles. We call the associated bundle κ : P ×H G/H → M ,

the bundle of tangent Klein geometries. This is an appropriate name, since it describes

a bundle over M whose fibers are copies of the Klein geometry G/H, each with a natural

‘point tangency’. Explicitly, for x ∈M , the Klein geometry tangent to M at x is the

fiber κ−1x, and the point of tangency in this tangent geometry is the equivalence class

[p,H] where p is any point in Px and H is the coset of the identity. This is well defined

since any other ‘point of tangency’ is of the form [ph,H] = [p, hH] = [p,H], where h ∈ H.

There is an interesting correspondence between Cartan connections on P and

Ehresmann connections on Q = P ×H G. To understand this correspondence, we introduce

the notion of a generalized Cartan connection [1], in which we replace the 0th require-

ment in Definition 10, that Ap : TpP → g be an isomorphism, by the weaker requirement

that Tp and g have the same dimension. It is not hard to show that if

Ã : TQ→ g

is an Ehresmann connection on Q then

A := ι∗Ã : TP → g

is a generalized Cartan connection on P . In fact, given a generalized Cartan connection on

P , there is a unique Ehresmann connection Ã on Q such that A = ι∗Ã, so the generalized
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Cartan connections on P are in one-to-one correspondence with Ehresmann connections

on Q [1]. Moreover, the generalized Cartan connection A associated to an Ehresmann

connection Ã on Q is a Cartan connection if and only if kerÃ ∩ ι∗(TP ) = 0 [86].

10.2 Parallel transport in Cartan geometry

How does an observer in a spacetime of positive cosmological constant decide how

much her universe deviates from de Sitter spacetime? From the Cartan perspective, one

way is to do parallel transport in the bundle of tangent de Sitter spacetimes.

There are actually two things we might mean by ‘parallel transport’ in Cartan

geometry. First, if the geometry is reductive, then the h part of the G/H-Cartan connection

is an Ehresmann connection ω. We can use this Ehresmann connection to do parallel

transport in the bundle of tangent Klein geometries in the usual way. Namely, if

γ : [t0, t1]→M

is a path in the base manifold, and [p, gH] is a point in the tangent Klein geometry at γ(t0),

then the translation of [p, gH] along γ is

[γ̃(t), gH]

where γ̃ is the horizontal lift of γ starting at p ∈ P . However, this method, aside from being

particular to the reductive case, is also not the sort of parallel transport that is obtained by

rolling the model geometry, as in our intuitive picture of Cartan geometry. In particular, the

translation of the point of tangency [p,H] of the tangent Klein geometry at x = γ(t0) ∈M
is always just the point of tangency in the tangent Klein geometry at γ(t). This is expected,

since the gauge group H only acts in ways that stabilize the basepoint. We would like to

describe a sort of parallel transport that does not necessarily fix the point of tangency.

The more natural notion of parallel transport in Cartan geometry, does not require

the geometry to be reductive. A Cartan connection cannot be used in the same way as an

Ehresmann connection to do parallel transport, because Cartan connections do not give

‘horizontal lifts’. Horizontal subspaces are given by the kernel of an Ehresmann connection;

Cartan connections have no kernel. To describe the general notion of parallel transport in

a Cartan geometry, we make use of the associated Ehresmann connection.
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To understand the general parallel transport in Cartan geometry it is helpful to

observe that we have a canonical isomorphism of fiber bundles

P ×H G/H Q×G G/H
∼= //

M
��77777777777

�������������

where Q = P ×H G is the principal G bundle associated to P , as in the previous section.

To see this, note first that the H bundle inclusion map ι : P → Q induces an inclusion of

the associated bundles by

ι′ : P ×H G/H → Q×G G/H

[p, gH] 7→ [ι(p), gH].

This bundle map has an inverse which we construct as follows. An element of Q×GG/H =

P ×H G×G G/H is a an equivalence class [p, g′, gH], with p ∈ P , g′ ∈ G, and gH ∈ G/H.

Any such element can be written as [p, 1, g′gH], so we can define a map that simply drops

this “1” in the middle:

β : Q×G G/H → P ×H G/H

[p, g′, gH] 7→ [p, g′gH].

It is easy to check that this is a well-defined bundle map, and

βι′[p, gH] = β[ι(p), gH] = β[p, 1, gH] = [p, gH]

ι′β[p, g′, gH] = ι′[p, g′gH] = [p, 1, g′gH] = [p, g′, gH]

so ι′ = β−1 is a bundle isomorphism. While these are isomorphic as fiber bundles, the

isomorphism is not an isomorphism of associated bundles (in the sense described by Isham

[55]), since it does not come from an isomorphism of the underlying principal bundles. In

fact, while P ×H G/H and Q ×G G/H are isomorphic as fiber bundles, there is a subtle

difference between the two descriptions: the latter bundle does not naively have a natural

‘point of tangency’ in each fiber, except via the isomorphism ι′.

Given the above isomorphism of fiber bundles, and given the associated Ehresmann

connection defined in the previous section, we have a clear prescription for parallel transport.
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Namely, given any [p, gH] in the tangent Klein geometry at x = γ(t0) ∈ M , we think of

this point as a point in Q×G G/H, via the isomorphism ι′, use the Ehresmann connection

on Q to translate along γ, then turn the result back into a point in the bundle of tangent

Klein geometries, P ×H G/H, using β. That is, the parallel transport is

β([γ̂(t), gH])

where

γ̂ : [t0, t1]→ Q

is the horizontal lift of γ : [t0, t1]→M starting at ι(p) ∈ Q, with respect to the Ehresmann

connection associated with the Cartan connection on P . Note that this sort of parallel

transport need not fix the point of tangency.

10.3 Holonomy and development

Just as a Cartan geometry has two notions of parallel translation, it also has two

notions of holonomy, taking values in either G or H. Whenever the geometry is reductive,

we can take the holonomy along a loop using the Ehresmann connection part of the Cartan

connection. This gives a holonomy for each loop with values in H. In fact, without the

assumption of reductiveness, there is a general notion of this H holonomy, which we shall

not describe. In general there is a topological obstruction to defining this type of holonomy

of a Cartan connection: it is not defined for all loops in the base manifold, but only those

loops that are the images of loops in the principal H bundle [86].

The other notion of holonomy, with values in G, can of course can be calculated

by relying on the associated Ehresmann connection on Q = P ×H G.

Besides holonomies around loops, a Cartan connection gives a notion of ‘develop-

ment on the model Klein geometry’. Suppose we have a Cartan connection A on P → M

and a piecewise-smooth path in P ,

γ : [t0, t1]→ P,

lifting a chosen path in M . Given any element g ∈ G, the development of γ on G

starting at g is the unique path

γG : [t0, t1]→ G
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such that γ(t0) = g and γ∗A = γ∗GωG ∈ Ω1([t0, t1], g). To actually calculate the develop-

ment, one can use the path-ordered exponential

γG(t) = Pe
−

R t
t0
ω(γ̃′(s))ds ∈ G.

Composing γG with the quotient map G→ G/H gives a path on the model Klein

geometry:

γG/H : [t0, t1]→ G/H.

called the development of γ on G/H starting at gH. This path is independent of the

lifting γ, depending only on the path in the base manifold M . [86]

In the SO(3)/SO(2) example of Section 9.3, the development is the path traced

out on the ball itself by the point of tangency on the surface, as the ball rolls.

10.4 Cartan-type BF Theory

As an example of a gauge theory with Cartan connection, let us consider using a Cartan

connection in the topological gauge theory known as ‘BF theory’ [7]. Special cases of such

a theory have already been considered by Freidel and Starodubtsev, in connection with

MacDowell–Mansouri gravity [43], but without the explicit Cartan-geometric framework.

In ordinary BF theory with gauge group H, on n-dimensional spacetime, the

fields are an Ehresmann connection A on a principal H bundle P , and an Ad(P )-valued

(n− 2)-form B, where

Ad(P ) = P ×H h

is the vector bundle associated to P via the adjoint representation of H on its Lie algebra.

Denoting the curvature of A by F , the BF theory action

SBF =
∫

tr (B ∧ F )

leads to the equations of motion:

F = 0

dAB = 0.

That is, the connection A is flat, and the field B is covariantly constant.
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We wish to copy this picture as much as possible using a Cartan connection of

type G/H in place of the Ehresmann H-connection. Doing so requires, first of all, picking

a Klein model G/H of the same dimension as M . For the B field, the obvious analog is an

(n− 2)-form with values in the bundle

Adg(P ) := P ×H g

where H acts on g via the restriction of the adjoint representation of G. Formally, we obtain

the same equations of motion

F = 0

dAB = 0.

but these must now be interpreted in the Cartan-geometric context.

In particular, the equation F = 0 says the Cartan connection is flat. In other

words, ‘rolling’ the tangent Klein geometry on spacetime is trivial, giving an isometric

identification between any contractible neighborhood in spacetime and a neighborhood of

the model geometry G/H. Of course, the rolling can still give nontrivial holonomy around

noncontractible loops. This indicates that solutions of Cartan-type BF theory are related

to ‘geometric structures’ [93], which have been used to study a particular low-dimensional

case of BF theory, namely, 3d quantum gravity [25].

Let us work out a more explicit example: Cartan-type BF theory based on one

of the Lorentzian reductive models discussed in Sections 2.3.3 and 9.4. Since the geometry

is reductive, we can decompose our g-valued fields into A, F , and B into so(3, 1) and R3,1

parts. We already know how to do this for A and F . For B, let b = B̂ denote the so(3, 1)

part, and x the R3,1 part, so

Bi
j = bij Bi

4 =
1
`
xi.

Note that this gives

B4
j = −ε

`
xj .

with ε chosen by the sign of the cosmological constant according to (9.2). We need to know

how to write dAB in terms of these component fields. We know that

dAB
IJ : = dBIJ + [A,B]IJ

= dBIJ +AIK ∧BKJ −BI
K ∧AKJ ,
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so for both indices between 0 and 3 we have

dAB
ij : = dBij +Aik ∧Bkj −Bi

k ∧Akj +Ai4 ∧B4j −Bi
4 ∧A4j

= dωb
ij − ε

`
ei ∧ xj +

ε

`
xi ∧ ej

and for an index 4,

dAB
i4 = dAb

i4 = dBi4 +Aik ∧Bk4 −Bi
k ∧Ak4

= dωx
i − 1

`
bik ∧ ek.

The equations for BF theory with Cartan connection based on de Sitter, Minkowski, or

anti de Sitter model geometry are thus

R− ε

`2
e ∧ e = 0

dωe = 0

dωb+
ε

`2
(x ∧ e− e ∧ x) = 0

dωx−
1
`
b ∧ e = 0

In terms of the constituent fields of the reductive geometry, classical Cartan-type BF theory

is thus described by the Levi–Civita connection on a spacetime of purely cosmological

curvature, with constant Λ = 3ε/`2, together with an pair of auxiliary fields b and x,

satisfying two equations. We shall encounter equations very similar to these in the BF

reformulation of MacDowell–Mansouri gravity.
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Chapter 11

From Palatini to

MacDowell–Mansouri

In this chapter we show how thinking of the standard Palatini formulation of

general relativity in terms of Cartan geometry leads in a natural way to the MacDowell–

Mansouri formulation. This in turn leads to generalizations of MacDowell–Mansouri theory

for alternative model geometries, just as we explored generalizations of 3d gravity in terms

of geometric structures. But first, we review the Palatini approach in some detail.

11.1 The Palatini formulation of general relativity

The Palatini formalism de-emphasizes the metric g on spacetime, making it play

a subordinate role to the coframe field e, a vector bundle morphism:

TM Te //

M

π

�����������

p

��,
,,,,,,,,

Here T is the fake tangent bundle or internal space—a bundle over spacetime M which

is isomorphic to the tangent bundle TM , but also equipped with a fixed metric η. The name

coframe field comes from the case where TM is trivializable, and e : TM → T = M × R3,1

is a choice of trivialization. In this case e restricts to a coframe ex : TxM → R3,1 on each

tangent space. In any case, since T is locally trivializable, we can treat e locally as an
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R3,1-valued 1-form.

The tangent bundle acquires a metric by pulling back the metric on T :

g(v, w) := η(ev, ew)

for any two vectors in the same tangent space TxM . In index notation, this becomes

gαβ = eaαe
b
βηab. In the case where the metric g corresponds to a classical solution of general

relativity, e : TM → T is an isomorphism, so that g is nondegenerate. However, the formal-

ism makes sense when e is any bundle morphism, and may thus be viewed as an extension of

general relativity to degenerate metrics. While classical solutions of general relativity do not

have degenerate metrics, imposing a nondegeneracy constraint is particularly troublesome

when we try path-integral quantization.

When e is an isomorphism, we can also pull a connection ω on the vector bundle

T back to a connection on TM as follows. Working in coordinates, the covariant derivative

of a local section s of T is

(Dµs)a = ∂µs
a + ωaµbs

b

where Dµ := D∂µ denotes the covariant derivative in the µth coordinate direction. When

e is an isomorphism, we can use D to differentiate a section w of TM in the obvious way:

use e to turn w into a section of T , differentiate this section, and use e−1 to turn the result

back into a section of TM . This defines a connection on TM by:

∇vw = e−1Dvew

for any vector field v. In particular, if v = ∂µ, ∇µ := ∇∂µ , we get:

(∇µw)α = eαa (Dµeβw
β)a

= eαa

(
∂µ(eaβw

β) +Aaµbe
b
βw

β
)

= eαa

(
eaβ∂µw

β + (∂µeaβ)wβ +Aaµbe
b
βw

β
)

= ∂µw
α + (eαa∂µe

a
β + eαaA

a
µbe

b
β)wβ

Hence,

(∇µw)α = ∂µw
α + Γαµβw

β
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where

Γαµβ : = eαa (δab ∂µ +Aaµb)e
b
β

The curvature of course transforms by a simpler formula:

Rαµνβ = eαaF
a
µνbe

b
β.

as can be shown by a direct, though rather lengthy calculation in the index notation. The

simpler way to see that this formula is true is to compare to the way the curvature in gauge

theory transforms under gauge transformations.

The Palatini action is

SPal(ω, e) =
1

2G

∫
M

tr
(
e ∧ e ∧R+

Λ
6
e ∧ e ∧ e ∧ e

)
. (11.1)

where R is the curvature of ω and the wedge product ∧ denotes antisymmetrization on both

spacetime indices and internal Lorentz indices. Compatibility with the metric η forces the

curvature R to take values in Λ2T . Hence, the expression in parentheses is a Λ4T -valued

4-form on M , and the ‘trace’ is really a map that turns such a form into an ordinary 4-form

using the volume form on the internal space T :

tr : Ω(M,Λ4T )→ Ω(M,R)

For computations, the action is often written leaving internal indices in as:

SPal(ω, e) =
1

2G

∫
M

(
ei ∧ ej ∧Rk` +

Λ
6
ei ∧ ej ∧ ek ∧ e`

)
εijk`.

Taking the variation of the action gives

δS =
∫

tr (2δe ∧ e ∧R+ e ∧ e ∧ δR+
2Λ
3
δe ∧ e ∧ e ∧ e)

=
∫

tr (2δe ∧ (e ∧R+
Λ
3
e ∧ e ∧ e) + e ∧ e ∧ dωδω)

=
∫

tr (2δe ∧ (e ∧R+
Λ
3
e ∧ e ∧ e)± dω(e ∧ e) ∧ δω)

where we used the identity δR = dωδω and performed an integration by parts. The varia-

tions of ω and e give us the respective equations of motion

dω(e ∧ e) = 0 (11.2)

e ∧R+
Λ
3
e ∧ e ∧ e = 0. (11.3)
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In Section 11.2, we review the correspondence between these equations and the

equations of general relativity in the perhaps more familiar tensor notation. Briefly, in the

classical case where e is an isomorphism, the first of these equations is equivalent to

dωe = 0

which says precisely that the induced connection on TM is torsion free, hence that Γαµβ
is the Christoffel symbol for the Levi–Civita connection. The other equation of motion,

rewritten in terms of the metric and Levi–Civita connection, is Einstein’s equation.

11.2 Equivalence of formulations

There are many equivalent ways of writing general relativity. In this section we

provide the reader with a translation between the Palatini formulation and the tensor

formulation that is usually presented first in any general relativity text. We restrict to

the sourceless case.

Proposition 14 At each point where the coframe field is an isomorphism e : TxM
∼→ Tx,

we have the following relationships between the internal (?) and spacetime (∗) Hodge duals

of wedge powers of e:

p! ?(e ∧ · · · ∧ e︸ ︷︷ ︸
p

) = (n− p)! ∗(e ∧ · · · ∧ e︸ ︷︷ ︸
n−p

)

Proof: While the proof of the equation is straightforward to carry out in general, we avoid

much notational clutter by considering a particular example. It is easy to see the same

proof holds in general. Consider the case of 4 dimensions, supposing that e : TxM
∼→ R4 is

an isomorphism, and let us prove that

1! ?e = 3! ∗(e ∧ e ∧ e). (11.4)

First note that at each point x ∈M we have

e ∈ R4⊗T ∗xM and (e ∧ e ∧ e) ∈ Λ3R4⊗Λ3T ∗xM

Applying the internal and spacetime Hodge stars we see that ?e and ∗(e ∧ e ∧ e) both live

in

Λ3R4⊗T ∗xM.
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The two elements in question have components given by (see Appendix ??)

?eijkλ = εijk`e
`
λ

and

∗(e ∧ e ∧ e)ijkλ =
1
3!
εµνρλe

[i
µe
j
νe
k]
ρ

=
1
3!
εµνρλe

i
µe
j
νe
k
ρ

where the second equality follows from antisymmetry of εµνρλ in µ, ν, ρ, and permuting the

order of the factors eaα. The epsilon tensors in these two expressions are related by the

isomorphism e. In particular, indices of εijk` are raised using the metric η, while indices

of εµνρλ are raised using the pullback metric g. Using the definition (??) of g we see that

the components of ?e and 3! ∗(e ∧ e ∧ e) are both equal to the components of the ‘mixed

Levi–Civita tensor’

εijkλ = εijk`e
`
λ = εµνρλe

i
µe
j
νe
k
ρ

so the equality is established. 2

It is worth writing down the general expression for one of the mixed Levi–Civita

tensors coming up in the proof.

εi1···in−pµ1···µp = εi1···in−pj1···jpe
j1
µ1
· · · ejpµp = εν1···νn−p

µ1···µpe
j1
ν1
· · · ejn−pνn−p .

We also have the following:

Proposition 15 Suppose e : V → W is an isomorphism of N -dimensional vector spaces.

Then

e ∧ − : ΛpV ∗⊗ΛqW → Λp+1V ∗⊗Λq+1W

is injective if and only if p+ q ≤ N − 1.

Applying this result to the case where V = TxM , W = Tx, we see that e∧dAe = 0

if and only if dAe = 0, since

dA(e ∧ e) = (dAe) ∧ e− e ∧ (dAe) = 2(dAe) ∧ e

and − ∧ e is injective.
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The equation dAe = 0 says precisely that ∇ is torsion free. To see this, it is easiest

to work locally. We have

0 = (dAe)aµν = (de)aµν + (A ∧ e)aµν

= ∂µe
a
ν − ∂νeaµ +Aaµbe

b
ν −Aaνbebµ

Applying eαa to this we get

eαa∂µe
a
ν + eαaA

a
µbe

b
ν = eαa∂νe

a
µ + eαaA

a
νbe

b
µ

or

Γαµν = Γανµ,

which is the usual index-based way of saying that the connection ∇ with Christoffel symbols

Γ is torsion free. In fact, ∇ is also metric preserving, since D is, so that ∇ is the Levi-Civita

connection on spacetime.

The other equation of motion is Einstein’s equation in disguise. In index notation,

this equation may be written

εijkl(eiλ ∧Rjkµν −
2Λ
3
eiλ ∧ ejµ ∧ ekν) = 0.

Since the curvature tensor is antisymmetric in spacetime indices and internal indices, we

may write it as

Rjkµν = Rjkmne
m
µ ∧ enν

Using this and applying the Hodge star operator on spacetime indices we get

0 = ελµνπεijk`(Rjkmneiλ ∧ emµ ∧ enν −
2Λ
3
eiλ ∧ ejµ ∧ ekν)

= εijk`(Rjkmnεimnp −
2Λ
3
εijkp)epπ

= εijk`(Rjkmnεimnq −
2Λ
3
εijkq)ηpqepπ

= (−3! δm[j δ
n
k δ

q
`]R

jk
mn + 4Λ δq`)ηpqepπ

where in the second equality we have used Proposition 14, and in the fourth we’ve used

standard contraction identities for Levi–Civita symbols (see Appendix ??). The antisym-

metrized δ’s in the first term serve to contract the curvature into the internal version of the
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Einstein tensor, as follows:

3! δm[j δ
n
k δ

q
`]R

jk
mn =δmj δ

n
k δ

q
`R

jk
mn + δmk δ

n
` δ

q
jR

jk
mn + δm` δ

n
j δ

q
kR

jk
mn

− δmk δnj δ
q
`R

jk
mn − δmj δn` δ

q
kR

jk
mn − δm` δnk δ

q
jR

jk
mn

=Rmnmnδ
q
` +Rqmmnδ

n
` +Rnqmnδ

m
`

−Rnmmnδq` −R
mq

mnδ
n
` −Rqnmnδm`

=2Rδq` − 4Rq` = −4Gq`

where the internal Einstein tensor is given by

Gmn = Rmn − 1
2Rηmn.

Using this result we get

Gmn + Ληmn = 0,

or, applying the coframe field to turn internal indices to spacetime indices:

Gµν + Λgµν = 0.

11.3 The coframe field

We now begin our transition from the Palatini approach to the more intrinsically

Cartan–geometric approach of MacDowell and Mansouri. Let us study the precise sense in

which the field

e : TP → g/h

in a reductive Cartan geometry is a generalization of the coframe field

e : TM → T

used in the Palatini formulation of general relativity. The latter is a T -valued 1-form on

spacetime. The former seems superficially rather different: a 1-form not on spacetime M ,

but on some principal bundle P over M , with values not in a vector bundle, but in a mere

vector space g/h.

To understand the relationship between these, we first note that from the Cartan

perspective, there is a natural choice of fake tangent bundle T . To be concrete, Consider the

case of Cartan geometry modeled on de Sitter spacetime, so G = SO(4, 1), H = SO(3, 1).
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The frame bundle FM → M is a principal H bundle, and the Lie algebra g = so(4, 1)

has an Ad(H)-invariant splitting g = h ⊕ g/h, so the geometry is reductive. As we have

seen, we can pick an invariant metric on g/h of signature (−+++) which is invariant under

the adjoint representation of H. This representation gives us an associated bundle of FM ,

which we take as the fake tangent bundle:

T := FM ×H g/h.

This is isomorphic, as a vector bundle, to the tangent bundle TM , but is equipped with a

metric induced by the metric on g/h. As explained below, with this choice of T , the two

versions of the ‘coframe field’ are in fact equivalent ways of describing the same field, given

an Ehresmann connection on the frame bundle. Since the geometry is reductive, the so(3, 1)

part of the Cartan connection is such an Ehresmann connection.

In the more general case, where the principal H bundle P is not necessarily the

frame bundle, we may consider the generalized coframe field either as an H-equivariant

1-form on P , or as a 1-form on M with values in the associated bundle:

e : TP → g/h or e : TM → P ×H g/h.

provided we have an Ehresmann connection on P , such as the h part of a reductive Cartan

connection.

To prove the equivalence of these two perspectives on the coframe field, suppose

we have an Ehresmann connection ω on a principal H bundle p : P →M , and a Lie algebra

g ⊃ h. Given a 1-form e : TM → P ×H g/h valued in the associated bundle, we wish to

construct an H-equivariant 1-form ẽ : TP → g/h. For any v ∈ TyP , taking e(dπ(v)) gives

an element [y′, X] ∈ P ×H g/h. This element is by definition an equivalence class such that

[y′, X] = [y′h,Ad(h−1)X] for all h ∈ H. We thus define ẽ(v) for v ∈ TyP to be the unique

element of g/h such that e(dπ(v)) = [y, ẽ(v)]. This construction makes ẽ equivariant with

respect to the actions of H, since on one hand

e(dπ(v)) = [y, ẽ(v)] = [yh,Ad(h−1)ẽ(v)],

while on the other

e(dπ(v)) = e(dπ(Rh∗v)) = [yh, ẽ(Rh∗v)] = [yh,R∗hẽ(v)],

so that

R∗hẽ(v) = Ad(h−1)ẽ(v).
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Conversely, given the equivariant 1-form ẽ : TP → g/h, define e : TM → P ×H g/h

as follows. If v ∈ TxM , pick any y ∈ p−1(x) and let ṽy ∈ TyP be the unique horizontal

lift of v relative to the connection ω. Then let e(v) = [y, ẽ(ṽy)] ∈ FM ×H g/h. This is

well-defined, since for any other y′ ∈ p−1(x), we have y′ = yh for some h ∈ H, and hence

[y′, ẽ(ṽy′)] = [yh,R∗hẽ(vy)] = [yh,Ad(h−1)ẽ(vy)] = [y, ẽ(vy)]

where the second equality is equivariance and the third follows from the definition of the

associated bundle FM×H g/h. It is straightforward to show that the construction of ẽ from

e and vice-versa are inverse processes, so we are free to regard the coframe field e in either

of these two ways.

As mentioned in the previous section, for applications to quantum gravity it is

often best to allow degenerate coframe fields, which don’t correspond to classical solutions

of general relativity. Here we merely point out that the remarks of this section still hold

for possibly degenerate coframe fields, provided we replace the Cartan connection with a

generalized Cartan connection, as defined in Section 10.1.

11.4 MacDowell–Mansouri gravity

Using results of the previous section, the Palatini action for general relativity

can be viewed in terms of Cartan geometry, simply by thinking of the coframe field and

connection as parts of a Cartan connection A = ω + e. However, in its usual form:

SPal =
1

2G

∫
(ei ∧ ej ∧Rk` − Λ

6
ei ∧ ej ∧ ek ∧ e`)εijk`

the action is not written directly in terms of the Cartan connection. The MacDowell–

Mansouri action can be seen as a rewriting of the Palatini action that makes the underlying

Cartan-geometric structure more apparent.

To obtain the MacDowell–Mansouri action, let us begin by rewriting the Palatini

action (11.1) using the internal Hodge star operator as

SPal =
−1
G

∫
tr
(

(e ∧ e ∧ ?R− Λ
6
e ∧ e ∧ ?(e ∧ e)

)
. (11.5)

Here we are using the isomorphism Λ2R4 ∼= so(3, 1) to think of both R and e∧ e as so(3, 1)-

valued 2-forms, and using Hodge duality in so(3, 1), as described in the Appendix. In each
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of the models discussed in Section 2.3.3, the so(3, 1) or so(4) part of the curvature of the

reductive Cartan connection, with appropriate internal cosmological constant, is given by

F̂ = R− Λ
3
e ∧ e,

When Λ 6= 0, this gives us an expression for e∧ e which can be substituted into the Palatini

action to obtain

S =
−1
G

∫
tr
(

3
Λ

(R− F̂ ) ∧ ?R− 3
2Λ

(R− F̂ ) ∧ ?(R− F̂ )
)

=
−3

2GΛ

∫
tr
(
F̂ ∧ ?F̂ +R ∧ ?R

)
.

The R ∧ ?R term here is a topological invariant, having vanishing variation due to the

Bianchi identity. The classical theory is unaffected if we simply discard this term. If we

also recognize that F̂ ∧ ?F̂ = F ∧ ?F̂ , we obtain the MacDowell–Mansouri action (1.2)

as we presented it in Section 1:

SMM =
−3

2GΛ

∫
tr (F ∧ ?F̂ )

The BF reformulation of MacDowell–Mansouri introduced by Freidel and Staro-

dubtsev is given by the action

S =
∫

tr
(
B ∧ F − α

2
B ∧ ?B̂

)
. (11.6)

where

α =
GΛ
3

Calculating the variation, we get:

δS =
∫

tr (δB ∧ (F − α?B̂) +B ∧ δF )

=
∫

tr (δB ∧ (F − α?B̂) + dAB ∧ δA)

where in the second step we use the identity δF = dAδA and integration by parts. The

equations of motion resulting from the variations of B and A are thus, respectively,

F = α?B̂ (11.7)

dAB = 0 (11.8)
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Why are these the equations of general relativity? Freidel and Starodubtsev ap-

proach this question indirectly, substituting the first equation of motion back into the

Lagrangian to eliminate the B field. If we do this, noting that ?2 = −1, we obtain

S =
∫

tr (− 1
α
?F ∧ F̂ − 1

2α
? F̂ ∧ F )

=
−3

2GΛ

∫
tr (F ∧ ?F̂ )

which is precisely the MacDowell–Mansouri action. However, it is instructive to see Ein-

stein’s equations coming directly from the equations of motion (11.7) and (11.8).

Decomposing the F and B fields into reductive components, we can rewrite the

equations of motion as:

R− ε

`2
e ∧ e = GΛ ?b

dωe = 0

dωb+
ε

`2
(x ∧ e− e ∧ x) = 0

dωx−
1
`
b ∧ e = 0

These are strikingly similar to the equations for Cartan-type BF theory obtained in Sec-

tion 10.4. Indeed, if we take G = 0, they are identical. This is good, because it says turning

off Newton’s gravitational constant turns 4d gravity into 4d Cartan-type BF theory!

But we still have a bit of work to show that these equations of motion are in fact

the equations of general relativity. They can be simplified as follows. Taking the covariant

differential of the first equation shows, by the Bianchi identity dωR = 0 and the second

equation of motion—the vanishing of the torsion dωe—that

dω?b = 0

But this covariant differential passes through the Hodge star operator, as shown in the

Appendix, and hence

dωb = 0.

This reduces the third equation of motion to

ei ∧ xj = ej ∧ xi.
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The matrix part of the form e∧ x is thus a symmetric matrix which lives in Λ2R4, hence is

zero. When the coframe field e is invertible, we therefore get

x = 0

and hence by the fourth equation of motion,

b ∧ e = 0.

Taking the Hodge dual of the first equation of motion and wedging with e we therefore get

precisely the second equation of motion arising from the Palatini action (11.5):

?(R− ε

`2
e ∧ e) ∧ e = 0,

namely, Einstein’s equation.

11.5 Lagrangians for gravity and topological gauge theories

As mentioned in the previous section, beginning with the Freidel–Starodubtsev

Lagrangian 11.6 and substituting the equation of motion 11.8, one obtains the original

MacDowell–Mansouri Lagrangian. In fact, one can do the analogous trick to an ordinary

4d BF theory with cosmological term and obtain the 2nd Chern form [9]. We thus get a

commutative diagram of theories:

tr
(
B ∧ F +

α

2
B ∧B

)topological Lagrangians

� break symmetry //
_

substitute

B = − 1
α
F

��

tr
(
B ∧ F +

α

2
B ∧ ?B̂

)
_

substitute

B = − 1
α
F

��

Lagrangians for general relativity

−1
2α

tr (F ∧ F ) � break symmetry // −1
2α

tr
(
F ∧ ?F̂

)
11.6 Generalized MacDowell–Mansouri theory

Just as we generalized 3d general relativity to geometric structures modeled on

alternative 3d symmetric spaces, so we can generalize the MacDowell–Mansouri theory to

other types of Cartan geometries. For simplicity, let us restrict attention to the original

MacDowell–Mansouri action

S = − 1
2α

∫
tr (F̂ ∧ F̂ )
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The question we wish to answer in this section is precisely what data are necessary to

generalize this action to other Cartan geometries. In the previous sections, we did not

derive the equations of motion directly from this action. We will do so using the more

general setup we now describe.

Since the curvature is a 2-form, the action only makes sense for 4-dimensional

Cartan geometry. So, suppose P → M is a principal H-bundle over a 4-manifold M , and

G/H is a 4-dimensional Klein geometry. Let

A = ω +
1
`
e

be a Cartan connection on P , where ω is the h-valued part, and e is the g/h-valued part.

The curvature of A is then

F = R+
1

2`2
[e, e] +

1
`

(de+ [ω, e])

The similarity to general relativity is clearest when G/H is a symmetric space, so that h

and p = g/h satisfy [h, p] ⊆ p, [p, p] ⊆ h. In this case, we have

F̂ = R+
1

2`2
[e, e]

as the h-valued part of F , and

T =
1
`

(de+ [ω, e])

as the g/h-valued part.

For the action, we still use

S = − 1
2α

∫
tr (F̂ ∧ F̂ ).

where ‘tr ’, as usual, denotes a nondegenerate invariant innner product on the Lie algebra.

Note that this inner product only needs to be H-invariant, not fully G-invariant. Taking

the variation of this action gives

δS = − 1
α

∫
tr (δF̂ ∧ F̂ )

= − 1
α

∫
tr
(

(δR+
1
`2

[δe, e]) ∧ F̂ )
)

= − 1
α

∫
tr
(
dωδω ∧ F̂ +

1
`2

[δe, e] ∧ F̂
)
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The variation of ω, after an integration by parts, gives us

dωF̂ = 0

which, thanks to the Bianchi identity dωR = 0, reduces to

dω[e, e] = 0

or [dωe, e] = 0

which is equivalent to

dωe = 0

when [·, e] is injective.

The second equation of motion is a bit more subtle. It comes from the equation∫
tr
(

[δe, e] ∧ F̂
)

= 0 ∀ δe.

Although we only needed H-invariance of our bilinear form tr (·∧ ·), it is tricky to derive an

equation of motion from the vanishing of this variation unless we also have G-invariance.

When this is the case, differentiating the invariance equation

tr (Ad(g)δe ∧Ad(g)F̂ ) = tr (δe ∧ F̂ )

for a path with g′(0) = e gives

tr ([e, δe] ∧ F̂ + δe ∧ [e, F̂ ]) = 0

or

tr ([δe, e] ∧ F̂ ) = −tr (δe ∧ [e, F̂ ]).

We thus conclude [e, F̂ ] = 0, or

[e,R] +
1

2`2
[e, [e, e]] = 0

When g is a matrix Lie algebra, so we can define the wedge product of g-valued forms using

matrix multiplication, this becomes

e ∧R+
Λ
3
e ∧ e ∧ e = 0.

where we define the ‘cosmological constant’ Λ = 3/`2 by analogy with the physical case

where G = SO(4, 1).
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Appendix A

Presentations of the loop braid

group

Here we present a proof of Theorem 16 on p. 169, which we repeat here for the

reader’s convenience:

Theorem 16. The loop braid group LBn has a presentation with generators si and σi for

1 ≤ i ≤ n− 1 together with the following relations:

(a) relations for the standard generators si of Sn:

sisj = sjsi for |i− j| > 1 (A.1)

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2 (A.2)

s2
i = 1 for 1 ≤ i ≤ n− 1 (A.3)

(b′) relations for the standard generators σi of Bn:

σiσj = σjσi for |i− j| > 1 (A.4)

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2 (A.5)

(c′) the following mixed relations:

siσj = σjsi for |i− j| > 1 (A.6)

sisi+1σi = σi+1sisi+1 for 1 ≤ i ≤ n− 2 (A.7)

σiσi+1si = si+1σiσi+1 for 1 ≤ i ≤ n− 2 (A.8)
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Proof: Recall that we proved in Theorem 11 that the loop braid group LBn has a presen-

tation with generators si for 1 ≤ i ≤ n−1 and σij for 1 ≤ i, j ≤ n with i 6= j, together with

the following relations:

(a) the relations for the standard generators si of Sn:

sisj = sjsi for |i− j| > 1 (A.9)

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2 (A.10)

s2
i = 1 for 1 ≤ i ≤ n− 1 (A.11)

(b) Lin’s relations for the generators σij of PLBn:

σijσk` = σk`σij for i, j, k, ` distinct (A.12)

σikσjk = σjkσik for i, j, k distinct (A.13)

σijσkjσik = σikσkjσij for i, j, k distinct (A.14)

(c) relations expressing the action of Sn on PLBn:

siσi(i+1) = σ(i+1)isi for 1 ≤ i ≤ n− 1 (A.15)

skσij = σijsk for i, j, k, k + 1 distinct (A.16)

sjσij = σi(j+1)sj for i, j, j + 1 distinct (A.17)

siσij = σ(i+1)jsi for i, i+ 1, j distinct (A.18)

We begin by demonstrating that the relations in the statement of Theorem 16 follow from

those given in Theorem 11. It clearly suffices to show that the relations in (b′) and (c′)

follow from the relations in (a), (b) and (c).

In what follows, we make frequent use of the correspondence between generators

σij of PLBn and generators σi of LBn as given in (7.13) and (7.14). In fact, since these

follow from different relations in the presentation of Theorem 11, it suffices for our purposes

to take one expression from each of these, say

σij =

 sisi+1 · · · sj−1σj−1sj−2 · · · si+1si for i < j

sjsj+1 · · · si−2σi−1si−1 · · · sj+1sj for i > j
(A.19)

These representations of σij follow directly from the definition of σi along with the relations

(A.15), (A.17), and (A.18).
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• Relation (A.6): We wish to show that sjσi = σisj for |i− j| > 1. To check this,

we begin with relation (A.16) in the form:

sjσi(i+1) = σi(i+1)sj ,

where |i− j| > 1. Using (A.19) above, this becomes:

sjsiσi = siσisj .

Applying relation (A.9) of to the left-hand side and then cancelling si from each side gives

sjσi = σisj when |i− j| > 1, which is (A.6).

• Relation (A.7): We wish to show that sisi+1σi = σi+1sisi+1 for 1 ≤ i ≤ n − 2.

Beginning with relation (A.17) with j = i+ 1, we obtain:

si+1σi(i+1) = σi(i+2)si+1.

By (A.19) this gives:

si+1siσi = sisi+1σi+1sisi+1.

Multiplying on the right by si+1si and on the left by sisi+1, we have:

σisi+1si = sisi+1sisi+1σi+1

= sisisi+1siσi+1 by (A.10)

= si+1siσi+1 by (A.11)

This can be rewritten as sisi+1σi = σi+1sisi+1, which is (A.7).

• Relation (A.8): We wish to show that σiσi+1si = si+1σiσi+1 for 1 ≤ i ≤ n − 2.

To verify this we use relation (A.13) with i, i+ 1 and i+ 2, which gives:

σi(i+2)σ(i+1)(i+2) = σ(i+1)(i+2)σi(i+2).

By (A.19) this becomes:

(sisi+1σi+1si)(si+1σi+1) = (si+1σi+1)(sisi+1σi+1si).

Applying relation (A.7) on the left hand side gives:

sisi+1sisi+1σiσi+1 = (si+1σi+1)(sisi+1σi+1si).
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Multiplying by sisi+1si on the left produces:

si+1σiσi+1 = sisi+1sisi+1σi+1sisi+1σi+1si

= si+1siσi+1sisi+1σi+1si by (A.2)

= σiσi+1si by (A.7)

which is (A.8).

• Relation (A.4): We wish to show that σiσj = σjσi for |i− j| > 1. To do so, we

use relation (A.12) with i, i + 1, j, j + 1, which are clearly all distinct for |i − j| > 1. We

therefore have:

σi(i+1)σj(j+1) = σj(j+1)σi(i+1),

which, by (A.19), becomes:

siσisjσj = sjσjsiσi.

Applying (A.6) to both sides of this equation, followed by relation (A.9), we obtain:

σiσj = σjσi

with |i− j| > 1, which is (A.4).

• Relation (A.5): We wish to show that σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2.

To check this we start with relation (A.14) with i, i + 1, and i + 2, which are clearly all

distinct. Thus, we have:

σi(i+1)σ(i+2)(i+1)σi(i+2) = σi(i+2)σ(i+2)(i+1)σi(i+1).

Using the correspondence given in (A.19) and cancelling si from both sides, we obtain:

si+1σi+1siσi+1si+1siσi = σiσi+1si+1sisi+1σi+1si

= σiσi+1sisi+1siσi+1si by (A.10)

= σiσi+1siσisi+1 by (A.7), (A.11)

= si+1σiσi+1si+1 by (A.8).

Cancelling si+1 on the left and multiplying by si+1 on the right produces:

σiσi+1σi = σi+1siσi+1si+1siσisi+1

= σi+1σiσi+1
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where in the last step we used (A.13) in the form siσiσi+1si+1 = σi+1si+1siσi. This is (A.5).

The loop braid group thus has generators that satisfy all of the relations of the

braid permutation group. It remains to show that these relations are sufficient, which we do

by demonstrating that the relations in the statement of Theorem 11 follow from those given

in Theorem 16. In this direction of the proof it is convenient to use both of the equivalent

expressions (7.13) and (7.14) as the correspondence between generators σi and σij .

• Relation (A.15): This relation simply says siσi(i+1) = σ(i+1)isi, which is imme-

diate from (A.19) since both sides are equal to σi.

• Relation (A.16): We wish to show skσij = σijsk, whenever i, j, k, k + 1 are

distinct. When either k + 1 < i < j or i < j < k, sk commutes with each of the factors in

the expansion

σij = sisi+1 · · · sj−1σj−1sj−2 · · · si+1si

by (A.1) and (A.6). Similarly, when k + 1 < j < i or j < i < k, sk commutes with each

factor in

σij = sjsj+1 · · · si−2σi−1si−1 · · · sj+1sj .

When i < k < k + 1 < j we also need two applications of (A.2):

skσij = sksi · · · sj−1σj−1sj−2 · · · si

= si · · · sk−2sksk−1sksk+1 · · · sj−1σj−1sj−2 · · · si by (A.1)

= si · · · sk−2sk−1sksk−1sk+1 · · · sj−1σj−1sj−2 · · · si by (A.2)

= si · · · sk−2sk−1sksk+1 · · · sk−1sj−1σj−1sj−2 · · · si by (A.1)

= si · · · sj−1σj−1sj−2 · · · sk+1sk−1sksk−1sk−2 · · · si by (A.1), (A.6)

= si · · · sj−1σj−1sj−2 · · · sk+1sksk−1sksk−2 · · · si by (A.2)

= σijsk by (A.1)

The only remaining case is j < k < k + 1 < i, which is handled similarly.
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• Relation (A.17): We wish to show that sjσij = σi(j+1)sj whenever i 6= j + 1.

When i < j we have:

sjσij = sisi+1 · · · sjsj−1σj−1sj−2 · · · si+1si by (A.1)

= sisi+1 · · · sj−1sjsj−1sjσj−1sj−2 · · · si+1si by (A.2)

= sisi+1 · · · sj−1sjσjsj−1sjsj−2 · · · si+1si by (A.6)

= σi(j+1)sj by (A.1), (A.19)

and the case i > j + 1 is similar.

• Relation (A.18): The proof that siσij = σ(i+1)jsi is essentially the same as the

proof of (A.17) above.

• Relation (A.12): We wish to show σijσk` = σk`σij , whenever i, j, k, and ` are

distinct. Naively there are 4! orderings of i, j, k, ` to consider, but symmetry of the relation

implies only 8 are independent. All cases are proved similarly; we demonstrate only the

case i < j < k < `:

σijσk` = (si · · · sj−1σj−1sj−2 · · · si)(sk · · · s`−1σ`−1s`−2 · · · sk)

= sk · · · s`−1(si · · · sj−1σj−1sj−2 · · · si)(σ`−1s`−2 · · · sk) by (A.1), (A.6)

= sk · · · s`−1σ`−1(si · · · sj−1σj−1sj−2 · · · si)(s`−2 · · · sk) by (A.6), (A.4)

= (sk · · · s`−1σ`−1s`−2 · · · sk)(si · · · sj−1σj−1sj−2 · · · si) by (A.1), (A.6)

= σk`σij .

• Relation (A.13): We wish to show that σikσjk = σjkσik when i, j, k are distinct.

We have three independent cases: i < j < k, i < k < j, and k < i < j. In the case

i < j < k, we first note that if j 6= i+ 1, then by (A.16) and (A.17) we have:

σikσjk = sj−1(σikσ(j−1)k)sj−1

and σjkσik = sj−1(σ(j−1)kσik)sj−1.

By repeated application of these facts, it suffices to consider the subcase where j = i + 1.

Similarly, if k 6= j + 1, we can use (A.16) and (A.18) to reduce to the case where k = j + 1.
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Thus it suffices to consider only the cases where i, j, k are consecutive:

σi(i+2)σ(i+1)(i+2) = (sisi+1σi+1si)(si+1σi+1)

= sisi+1sisi+1σiσi+1 by (A.7)

= si+1siσiσi+1 by (A.2)

= si+1sisi+1σiσi+1si by (A.8)

= si+1σi+1sisi+1σi+1si by (A.7)

= σ(i+1)(i+2)σi(i+2).

This proves the case i < j < k. The remaining two cases are similar.

• Relation (A.14): We wish to show that σijσkjσik = σikσkjσij when i, j, k are

distinct. In light of (A.13) this equation is symmetric under the interchange of i and k, and

this symmetry reduces the number of independent cases to 3: i < j < k, i < k < j, and

j < i < k. In the case i < j < k, we first note that if j 6= i+ 1, then by (A.16) and (A.17)

we have

σijσkjσik = sj−1(σi(j−1)σk(j−1)σik)sj−1

and σikσkjσij = sj−1(σikσk(j−1)σi(j−1))sj−1

By repeated application of these facts, it suffices to consider the subcase where j = i + 1.

Similarly, if k 6= j + 1, we can use (A.16) and (A.18) to reduce to the case where k = j + 1.

Thus it suffices to consider only the cases where i, j, k are consecutive:

σi(i+1)σ(i+2)(i+1)σi(i+2) = (siσi)(σi+1si+1)(sisi+1σi+1si)

= siσiσi+1sisi+1siσi+1si by (A.2)

= siσiσi+1siσisi+1 by (A.7)

= sisi+1σiσi+1σisi+1 by (A.8)

= sisi+1σi+1σiσi+1si+1 by (A.5)

= σi(i+2)σi(i+1)σ(i+2)(i+1)

= σi(i+2)σ(i+2)(i+1)σi(i+1) by (A.13)

This proves the case of i < j < k. The other two independent cases are similar.
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Thus, the relations of Theorem 16 imply those of Theorem 11. 2

As pointed out by Blake Winter, one can also prove Theorem 16 as follows. Fenn,

Rimányi, and Rourke [34] show that the braid permutation group BPn is isomorphic to

the subgroup of Aut(Fn) generated by all permutations of basis elements, together with

all operations of conjugating one basis element by another. Let X be R3 with unlinked

unknotted circles `1, . . . , `n removed. As we have seen, π1(X) = Fn, the free group on n

generators, so by the work of Dahm, the loop braid group acts as automorphisms of Fn. Let

D : LBn → Aut(Fn) be the resulting homomorphism. Goldsmith [51] shows that the image

of D is precisely the above subgroup of Aut(Fn) and that, moreover, D is one-to-one. It

follows that LBn and BPn are isomorphic. Since Fenn, Rimányi and Rourke prove that BPn

has the presentation given in Theorem 16, it follows that LBn also has this presentation.
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Appendix B

The Lie algebras so(p, q) and iso(p, q)

We use the convention that O(p, q) denotes the group of transformations of Rp+q

preserving the generalized Minkowski metric of signature p− q:

η =
[
−Iq 0

0 Ip

]
Equivalently, as matrices, g ∈ O(p, q) satisfies g† = g−1 where the adjoint is the transpose

conjugated by the metric: g† = η−1gT η. Write an element X ∈ so(p, q) as X = γ′(0) where

γ : (−ε, ε)→ SO(p, q) is a path in the group with γ(0) = 1. In matrix form, the metric may

be written as

〈v, w〉 = vT ηw

where the superscript T denotes the transpose. Differentiating the equation

〈γ(t)v, γ(t)w〉 = 〈v, w〉

at t = 0 gives

vT (XT η + ηX)w = 0.

Since this must be true for any v, w ∈ Rp+q, we conclude

XT = −ηXη−1

(Note this actually makes sense for any SO(V ) with symmetric matrix η as the matrix for

a metric in a given basis.) A matrix in so(p, q) may therefore be written[
A1 A2

A3 A4

]
with A1

T = −A1, A2
T = A3, A4

T = −A4
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Appendix C

Hodge duality in Lie algebras

C.1 Hodge duality for inner product spaces.

We first recall some basic facts about the Hodge dual in ΛV , for an n-dimensional

vector space V with inner product η of signature (n− s, s) [9, p. 91]. If {ξi | i = 1, . . . , n}
is an ordered basis for V (defining an orientation), and

ω =
1
p!
ωi1···ipξ

i1 ∧ · · · ∧ ξip

is an element of ΛpV , then the Hodge dual of ω is the element of Λn−pV given by

?ω =
1

(n− p)!
? ωj1···jn−pξ

j1 ∧ · · · ∧ ξjn−p

with the components given by

?ωj1···jn−p =
1
p!
εi1···ipj1···jn−pωi1···ip

The Hodge star operator satisfies

?2 = (−1)p(n−p)+s.

C.2 so(4), so(3, 1), and so(2, 2)

The 6-dimensional Lie algebras so(4), so(3, 1), and so(2, 2) inherit a notion of

Hodge duality by the fact that they are isomorphic as vector spaces to Λ2R4. In the so(3, 1)

case:
so(3, 1) Λ2R4// Λ2R4? // so(3, 1)//

lower an index Hodge duality raise an index
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Explicitly, this Hodge dual permutes so(3, 1) matrix entries as follows:

?


0 a b c
a 0 d e
b −d 0 f
c −e −f 0

 =


0 −f e −d
−f 0 c −b
e −c 0 a
−d b −a 0


It is straightforward to verify the following properties of ?:

• ? ? X = −X

• ?[X,X ′] = [X, ?X ′]

For MacDowell–Mansouri gravity and its BF reformulation, the essential application of the

second property is that if ω is an SO(3, 1) connection, the covariant differential dω commutes

with the internal Hodge star operator:

dω(?X) = d(?X) + [ω, ?X] = ?(dX + [ω,X]) = ?dωX.

Also note that ? gives an isomorphism of Lie algebras

? : so(3, 1)→ ?so(3, 1)

X 7→ ?X

where we define ?so(3, 1) to be the Lie algebra obtained from so(3, 1) by changing the

bracket [·, ·] to [·, ·]? := −?[·, ·]. It is easy to check that the Jacobi identity holds for [·, ·]?,
and

[?X, ?X ′]? = − ? [?X, ?X ′] = − ? (?)2[X,X ′] = ?[X,X ′]

shows ? is a Lie algebra homomorphism, hence an isomorphism since it is bijective.
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Appendix D

Identities for forms and tensors

D.1 Permutation symbols

The Levi–Civita tensor εi1···in corresponding to a given metric of signature (s, n−s)
satisfies the contraction relations [97, p. 433]:

εi1···ipip+1···inε
i1···ipjp+1···jn = (−1)sp!(n− p)!δip+1

[jp+1
· · · δinjn]

for p = 0, 1, . . . n. It is worth writing out these relations explicitly in the most physical

example: 4d Lorentzian spacetime of signature (−+++):

εijklε
mnpq = −0!4! δm[i δ

n
j δ

p
kδ
q
`]

εijk`ε
imnp = −1!3! δm[j δ

n
k δ

p
`]

εijk`ε
ijmn = −2!2! δm[k δ

n
`]

εijk`ε
ijkm = −3!1! δm`

εijk`ε
ijk` = −4!0!

Here we use the convention for antisymmetrization over indices which includes the factor

(1/p!):

X[i1i2···ip] :=
1
p!

∑
σ∈Sp

sgn(σ)Xiσ(1)iσ(2)···iσ(p)

D.2 Lie algebra-valued differential forms

(See AMP for most of this stuff) A differential form on M with values in the Lie

algebra g is an element of

Ωp(M, g) := Ωp(M)⊗g.
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The differential

d : Ωp(M, g)→ Ωp+1(M, g)

just acts on the form parts via the ordinary differential, letting the Lie algebra parts go

along along for the ride:

d(ω) = d(ωα⊗vα) := dωα⊗vα

where {vα} is a basis of g.

We define the bracket of g-valued forms by using the wedge product on form parts

and the Lie bracket on Lie algebra parts:

[ω, µ] := (ωα ∧ µβ)⊗[vα, vβ].

If ω is a p-form, µ a q-form, then switching ω and µ produces a factor (−1)pq from the graded

commutativity of the wedge product, and an additional (−1) from the anticommutativity

of the Lie bracket. Hence

[ω, µ] = (−1)pq+1[µ, ω] (D.1)

It is easy to see that the differential d on g-valued forms is a graded derivation with respect

to the bracket:

d[ω, µ] = d(ωα ∧ µβ)⊗[vα, vβ]

= (dωα ∧ µ+ (−1)pωα ∧ dµβ

= [dω, µ] + (−1)p[ω, dµ]

In local coordinates, a connection on a principal bundle is itself a Lie algebra-

valued 1-form, and the exterior covariant derivative is given by:

dAω = dω + [A,ω]

The facts that the differential d of is a graded derivation on Ω(M), and the Lie bracket is
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a derivation on g (the Jacobi identity), imply that dA is a graded derivation on Ω(M, g):

dA[ω, µ] = d[ω, µ] + [A, [ω, µ]]

= (dωα ∧ µβ + (−1)pωα ∧ dµβ)⊗[vα, vβ] +Aγ ∧ ωα ∧ µβ⊗[vγ , [vα, vβ]]

= (dωα ∧ µβ + (−1)pωα ∧ dµβ)⊗[vα, vβ] +Aγ ∧ ωα ∧ µβ⊗([[vγ , vα], vβ] + [vα, [vγ , vβ]])

= (dωα ∧ µβ + (−1)pωα ∧ dµβ)⊗[vα, vβ]

+Aγ ∧ ωα ∧ µβ⊗[[vγ , vα], vβ] + (−1)pωα ∧Aγ ∧ µβ⊗[vα, [vγ , vβ]]

= [dω, µ] + [[A,ω], µ] + (−1)p([ω, dµ] + [ω, [A,µ]]

= [dAω, µ] + (−1)p[ω, dAµ]

When g is a matrix Lie algebra, we can use the matrix product vαvβ to define a

wedge product of g-valued differential forms. If ω is a p-form, µ a q-form, we let

ω ∧ µ := (ωα ∧ µβ)⊗vαvβ

In this case, we can write

[ω, µ] = (ωα ∧ µβ)⊗(vαvβ − vβvα)

= (ωα ∧ µβ − (−1)pqµα ∧ ωβ)⊗vαvβ

= ω ∧ µ− (−1)pqµ ∧ ω

and view the bracket as the graded commutator for the wedge product of g-valued forms.

In this special case where we can multiply the elements of g we also have dA acting as a

graded derivation over the wedge product:

dA(ω ∧ µ) = dAω ∧ µ+ (−1)pω ∧ dAµ
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3-manifolds, Bulletin (New Series) of the A.M.S. 42, 1, 5778

http://www.ams.org/bull/2005-42-01/S0273-0979-04-01045-6/home.html

[72] T. Needham, Visual Complex Analysis, Clarendon Press, Oxford, 1997.

[73] A. Niemi, The exotic statistics of leapfrogging smoke rings, Phys. Rev. Lett. 94 (2005),

124502. Also available as cond-mat/0410212.

[74] J. A. Nieto, Superfield Description of a Self-Dual Supergravity a la MacDowell-

Mansouri, Class. Quantum Grav. 23 (2006) 4387-4398. Also available as

hep-th/0509169.



189

[75] K. Noui and A. Perez, Three dimensional loop quantum gravity: coupling to point

particles, Class. Quant. Grav. 22 (2005), 4489–4514

[76] D. Oriti, Spin Foam Models of Quantum Spacetime, Ph.D. thesis, University of Cam-

bridge. Also available as gr-qc/0311066.

[77] P. Pedlan, Actions for gravity, with generalizations, Class. Quantum Grav. 11 (1994)

1087-1132.

[78] Roger Penrose and Wolfgang Rindler, Spinors and Space-Time, Vol. 1, Cambridge U.

Press, Cambridge, 1985.

[79] A. Perez, Spin foam models for quantum gravity, Class. Quant. Grav. 20 (2003), R43–

R104.

[80] J. Plebanski, On the separation of Einsteinian substructures, Jour. Math. Phys. 18

(1977) 2511-2520.

[81] Carlo Rovelli, Quantum Gravity, Cambridge, UK ; New York, Cambridge University

Press, 2004.

[82] R. L. Rubinsztein, On the group of motions of oriented, unlinked and unknotted circles

in R3, I. Preprint, Uppsala University, 2002.

[83] R. L. Rubinsztein, Topological quandles and invariants of links, available as

math.GT/0508536.

[84] E. Ruh, Cartan connections, Proc. Sympos. Pure Math. 54, part 3, A.M.S., Providence,

RI, 1993.

[85] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.

[86] R. W. Sharpe, Differential Geometry: Cartan’s Generalization of Klein’s Erlangen

Program, Springer, New York, 1997.

[87] L. Smolin and A. Starodubtsev, General relativity with a topological phase: an action

principle, available as hep-th/0311163.

[88] P. de Sousa Gerbert, On spin and (quantum) gravity in 2 + 1 dimensions, Nucl. Phys.

B346 (1990) 440-472.



190

[89] A. Starodubtsev, Topological methods in quantum gravity, Ph.D. Thesis, University

of Waterloo, 2005.

[90] D. Sullivan and W. Thurston, Manifolds with canonical coordinate charts: some ex-

amples, Enseign. Math. 29 (1983) 15–25.

[91] S. Surya, Cyclic statistics in three dimensions, J. Math. Phys. 45 (2004), 2515–2525.

Also available as hep-th/0308011.

[92] R. J. Szabo, Topological field theory and quantum holonomy representations of motion

groups, Ann. Phys. 280 (2000), 163–208. Also available as hep-th/9908051.

[93] W. P. Thurston Three-Dimensional Geometry and Topology, Vol. 1, Princeton Univer-

sity Press, Princeton, 1997. also: http://msri.org/publications/books/gt3m

[94] R. S. Tung, Gravitation as a super SL(2,C) gauge theory, Proceedings of the 9th Marcel

Grossmann Meeting, Rome, 2-8 July, 2000. Also available as gr-qc/0101034

[95] V. V. Vershinin, On homology of virtual braids and Burau representation, available as

math.GT/9904089.

[96] F. Wattenberg, Differentiable motions of unknotted, unlinked circles in 3-space, Math.

Scand. 30 (1972), 107–135.

[97] R. Wald, General Relativity, Chicago, University of Chicago Press, 1984.

[98] D. K. Wise, p-form electromagnetism on discrete spacetimes, Class. Quantum Grav.

23 (2006) 5129–5176.

[99] E. Witten, (2+1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311

(1988) 46-78.

[100] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys.

121 (1989) 351–399.


