
John Baez <baez@galaxy.ucr.edu> wrote:
>By the way, there are also darn good reasons why people don't talk
>about algebras over noncommutative rings, so you'll find that defining
>an "algebra over the quaternions" is a tricky business. There may be
>some interesting way to do it, but I don't know what it is.
De�ne a C* algebra A over the quaternions H as follows: First, A should be an algebra in the usual sense
over the reals R, and A should be a left and right vector space over H, where the di�erent senses of scalar
multiplication by a real agree. Then extend associativity by h(ab) = (ha)b, (ah)b = a(hb), (ab)h = a(bh),
and (ha)i = h(ai), where (as always here) a, b ∈ A and h, i ∈ H. Let ∗ be an involution on A, with (a+ b)∗

= a∗ + b∗, (ab)∗ = b∗a∗, (ha)∗ = a∗h, and (ah)∗ = ha∗, where h for h ∈ H is the standard conjugation.
Let ‖·‖ be a function from A to the nonnegative reals. Insist ‖a+ b‖ ≤ ‖a‖+ ‖b‖ and the same for multi-
plication. If ‖a‖ = 0 implies a = 0, d(a, b) := ‖a− b‖ is a metric. Insist that this is the case and that the
metric is complete. Require ‖ha‖ = ‖h‖‖a‖, ‖a∗‖ = ‖a‖, and ‖a∗a‖ = ‖a‖2. I don t think this is always in-
cluded in C* algebras, but let s say there is a multiplicative identity 1, with h1 = 1h and ‖1‖ = 1. I think
that s all. Then H itself is a C* algebra over the quaternions.
John Baez <baez@galaxy.ucr.edu> wrote:
>Ah, there's nothing like an elder sternly wagging his finger
>to get a rebellious youth eager to do what was just forbidden.
>Most of the time the youth learns the hard way why the forbidden
>was forbidden, but occasionally one is sufficiently clever to
>do something new and interesting without running into disaster.
I m pretty sure I avoided running into disaster. Whether it s interesting depends on whether there are
nontrivial examples.
>Of course this works far more generally so far. Here's what
>I hear you saying: "If we have a commutative ring K
>and a noncommutative K-algebra R, the
>category of left R-modules over K is not a monoidal category, so it
>makes no sense to define an R-algebra to be a monoid object
>in this category. So let's work instead with the category
>of R-bimodules over K.
(If R is commutative, this generalises the ordinary sort of algebra over R, which is the special case when
R = K.)
>This *is* a monoidal category, so we can
>define an R-algebra to be a monoid object in this monoidal
>category."
>Okay, so: given a quaternionic vector space, do we get a
>quaternionic algebra of operators on this vector space?
>Of course, we get to choose what we mean by "quaternionic
>vector space" - either a left H-module or an H-bimodule.
Let V be an Rbimodule which respects the structure of R as an algebra over K. (What this means is
that scalar multiplication by members of K is commutative.) Then let Ll(V ) be all maps T :V → V (writ-
ten on the left) such that T (x+ y) = Tx+ Ty and T (xh) = (Tx)h. Let (T + U)x be Tx+ Ux, (hT )x :=
h(Tx), (Th)x := T (hx), and (TU)x := T (Ux). (Note that the left vector space structure of V is used to
de�ne both vector space structures of Ll(V ), while the right vector space structure of V is used to de�ne
membership in Ll(V ). Of course, if I wrote the operators on the right, it would be the other way around.)
Then Ll(V ) easily satis�es the requirements of an algebra over R. If you write the operators on the right,
you get a di�erent algebra, so we must distinguish Ll(V ) and Lr(V ). If you de�ne the opposites of an al-
gebra and vector space in the obvious way, remembering to reverse the order of scalar multiplication as
well, then Lr(V ) is the opposite of Ll(V ◦).
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>And: given a quaternionic Hilbert space, do we get a
>quaternionic C*-algebra of operators on this Hilbert
>space?
Well, what s a quaternionic Hilbert space? We see above that it should be a two sided vector space V .
There should be a Zbilinear inner product 〈,〉, where 〈xh, y〉 = h〈x, y〉, 〈hx, y〉 =



x, hy

�, and 〈x, yh〉 =
〈x, y〉h. (If you think of 〈x, y〉 as x∗y, this makes sense.) Also, we want 〈y, x〉 = 〈x, y〉, 〈x, x〉 a nonnega-
tive real for each x ∈ V , and 〈x, x〉 = 0 only if x = 0. Now prove the CBS inequality:

0 ≤ 〈x+ yh, x+ yh〉 = 〈x, x〉+ 〈x, yh〉+ 〈yh, x〉+ 〈yh, yh〉
= 〈x, x〉+ 〈x, y〉h+ h〈y, x〉+ h〈y, y〉h = 〈x, x〉+ 2<〈x, y〉h+ 〈y, y〉hh.

Express 〈x, y〉 as ru, where r ∈ R and u ∈ H with |u| = 1. The above inequality works for any h, includ-
ing h = u−1s for s ∈ R. Then 0 ≤ 〈x, x〉+ 2rs+ 〈y, y〉s2. This is a real quadratic equation in s which has
at most one root, so the discriminant 4r2 − 4〈x, x〉〈y, y〉 ≤ 0. This yields the CBS inequality, |〈x, y〉|2 ≤
〈x, x〉〈y, y〉. Then we have that d(x, y) := ‖x− y‖ :=

È
〈x− y, x− y〉 is a metric. This gives another con-

dition: this metric must be complete. The de�nition of a Hilbert space is then �nished. Note that ‖xh‖ =
‖x‖|h| because 〈xh, xh〉 = h〈x, x〉h = 〈x, x〉hh, and ‖hx‖ = |h|‖x‖ because 〈hx, hx〉 =



hhx, x

�
=


xhh, x

�
= hh〈x, x〉, where I ve used the commutativity of scalar multiplication by the real hh. Note that H is itself
a quaternionic Hilbert space with 〈h, i〉 := hi.

OK, let s prove the equivalence of boundedness and continuity. If T is a linear map V →W (so T (xh)
= (Tx)h), let T be bounded i�, for some r ≥ 0, ‖Tx‖ ≤ r‖x‖ always. Now, if T is continuous, then T
is continuous at 0, so T−1{w ∈W ... ‖w‖ ≤ 1} contains an open ball around 0 ∈ V . That is, for some
δ > 0, ‖x‖ < δ implies ‖Tx‖ ≤ 1. If x ∈ V and ε > 0, then ‖xδ/(‖x‖+ ε)‖ = ‖x‖δ/(‖x‖+ ε) < δ, so 1 ≥
‖T (xδ/(‖x‖+ ε))‖ = ‖Tx‖δ/(‖x‖+ ε), or ‖Tx‖ ≤ (‖x‖+ ε)/δ. As ε→ 0, we see that 1/δ is the r required
for T to be bounded. Conversely, if T is bounded by r, T−1{w ∈W ... ‖w‖ < ζ} contains an open ball around
0 ∈ V of radius ζ/r. This means T is continuous at 0, and continuity can be moved from point to point by
Zlinearity.

We can de�ne ‖T‖ as inf {r ≥ 0 ... ∀ x ∈ V, ‖Tx‖ ≤ r‖x‖} or as sup {‖Tx‖ ... ‖x‖ ≤ 1}, which is the
same as sup {‖Tx‖ ... ‖x‖ = 1}. The proof is the same as usual as long as you remember to use the correct
scalar multiplication in the proof. (Actually, this is unnecessary since the scalars involved are real.)

Let Bl(V ) be the two sided vector space of bounded linear maps V → V . The maps are written on
the left and must respect right scalar multiplication but not left scalar multiplication. We need that T,U
∈ Bl(V ) implies T + U ∈ Bl(V ) and ‖T + U‖ ≤ ‖T‖+ ‖U‖; ‖(T + U)x‖ = ‖Tx+ Ux‖ ≤ ‖Tx‖+ ‖Ux‖ ≤
‖T‖‖x‖+ ‖U‖‖x‖ = (‖T‖+ ‖U‖)‖x‖. We need that T,U ∈ Bl(V ) implies TU in Bl(V ) and ‖TU‖ ≤
‖T‖‖U‖; ‖(TU)x‖ = ‖T (Ux)‖ ≤ ‖T‖‖Ux‖ ≤ ‖T‖‖U‖‖x‖. We need that h ∈ H and T ∈ Bl(V ) imply hT
∈ Bl(V ) and ‖hT‖ = |h|‖T‖; ‖(hT )x‖ = ‖h(Tx)‖ = |h|‖Tx‖ ≤ |h|‖T‖‖x‖, so hT ∈ Bl(V ) and ‖hT‖ ≤
|h|‖T‖; for some x with ‖x‖ = 1, ‖Tx‖ = ‖T‖, so ‖hTx‖ = |h|‖T‖, so ‖hT‖ ≥ |h|‖T‖. (Note that ‖Th‖ =
‖T‖|h| will follow when we do adjoints.)

It s easier to write it than to read it. You can trust me; it all falls out easily.
OK, next come adjoints. We need the Riesz representation theorem. Let L:V → H be linear, and

let W be kerL. If W = V , then L = 0 and Lx = 〈0, x〉 for all x ∈ V . Otherwise, choose a nonzero v in
W⊥ := {v ∈ V ... ∀ w ∈W, 〈v, w〉 = 0}. Lv 6= 0, so L(v/Lv) = Lv/Lv = 1. So, rename v/Lv just `v'. If
x ∈ V , then L(x− vLx) = Lx− (Lv)Lx = 0, so x− vLx ∈W . v ∈W⊥, so 0 = 〈v, x− vLx〉 = 〈v, x〉 −
〈v, v〉Lx, or 〈v, x〉 = 〈v, v〉Lx. So, let L∗ in V be v/〈v, v〉; then 〈L∗, x〉 = 〈v/〈v, v〉, x〉 = 〈v, v〉−1〈v, x〉 =
Lx. Suppose (no longer assuming W 6= V ; if W = V , let L∗ be 0) that 〈l, x〉 = Lx = 〈L∗, x〉 for all x ∈
V . Then 〈l − L∗, l − L∗〉 = 〈l, l − L∗〉 − 〈L∗, l − L∗〉 = 0, so l = L∗. 〈(L+M)∗, x〉 = (L+M)x = Lx+
Mx = 〈L∗, x〉+ 〈M∗, x〉 = 〈L∗ +M∗, x〉, so (L+M)∗ = L∗ +M∗ by the same reasoning as proved l = L∗

above. 〈(hL)∗, x〉 = hLx = h〈L∗, x〉 =


L∗h, x

�, so (hL)∗ = L∗h. 〈(Lh)∗, x〉 = Lhx = 〈L∗, hx〉 =


hL∗, x

�,
so (Lh)∗ = hL∗. L(L∗/‖L∗‖) = LL∗/‖L∗‖ = 〈L∗, L∗〉/‖L∗‖ = ‖L∗‖, so ‖L‖ ≥ ‖L∗‖. Also, ‖Lx‖ = ‖〈L∗, x〉‖
≤ ‖L∗‖‖x‖, so ‖L‖ ≤ ‖L∗‖. Thus, ‖L‖ = ‖L∗‖. So, ∗ is an antiisomorphism of the quaternionic Banach
spaces Bl(V,H) and V .

I ve de�ned a sort of adjoint of bounded linear functionals; now let me extend this to any bounded
linear operator. Suppose T :V →W is a bounded linear operator. For w ∈W , de�ne w∗T :V → H by
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(w∗T )v = 〈w, Tv〉. ‖(w∗T )v‖ = ‖〈w, Tv〉‖ ≤ ‖w‖‖Tv‖ ≤ ‖w‖‖T‖‖v‖, so w∗T is bounded. De�ne T †:W →
V by T †w := (w∗T )∗. Then 〈T †w, v〉 = (w∗T )v = 〈w, Tv〉 as desired. Note, if v ∈ V , we have v∗T †:W →
H:w 7→ 〈v, T †w〉. 〈v, T †w〉 = 〈T †w, v〉 = 〈w, Tv〉 = 〈Tv,w〉, so (v∗T †)∗ = Tv and T †† = T .

¬
(T + U)†w, v

¶
= 〈w, (T + U)v〉 = 〈w, Tv + Uv〉 = 〈w, Tv〉+ 〈w,Uv〉

=


T †w, v

�
+


U†w, v

�
=


T †w + U†w, v

�
=

�
T † + U†

�
w, v

�,
so (T + U)† = T † + U†. ¬(hT )†w, v

¶
= 〈w, hTv〉 =



hw, Tv

�
=


T †hw, v

�, so (hT )† = T †h. ¬(Th)†w, v
¶

= 〈w, Thv〉 = 〈T †w, hv〉 =


hT †w, v

�, so (Th)† = hT †. ‖Tx‖2 = 〈Tx, Tx〉 = 〈T †Tx, x〉 ≤ ‖T †Tx‖‖x‖ ≤
‖T †T‖‖x‖2, so ‖T‖2 ≤ ‖T †T‖ ≤ ‖T †‖‖T‖, or ‖T‖ ≤ ‖T †‖. But this means ‖T †‖ ≤ ‖T ††‖ = ‖T‖, so
‖T †‖ = ‖T‖. So, † is an antiisomorphism from Bl(V,W ) to Bl(W,V ).

Let s check that this notion of † agrees with the previous usage of ∗ and . If L:V → H, I de�ned L∗
as an element of V and L† as an element of Bl(H, V ). But V and Bl(H, V ) are naturally isomorphic (us-
ing right scalar multiplication). 〈L∗h, x〉 = h〈L∗, x〉 = hLx = 〈h, Lx〉, so L∗ corresponds to L†. Also, for
x ∈ V ∼= Bl(H, V ), 〈〈x, y〉, h〉 = 〈x, y〉h = 〈y, x〉h = 〈y, xh〉, so x† is the functional that maps y to 〈x, y〉,
consistent with the `v∗T ' notation above. Finally, H is a subset of any Bl(V ); 
hx, y� = 〈x, hy〉, so h† = h.
Thus, there is really only one = ∗ = †, even including my 〈x, y〉 = x∗y comment from long ago.

There are only a few requirements left for Bl(V ) to be a C* algebra. ¬(TU)†x, y
¶

= 〈x, TUy〉 =

〈T †x,Uy〉 = 〈U†T †x, y〉, so (TU)† = U†T †. ‖T †T‖ = ‖T‖2 follows from the proof above that ‖T †‖ = ‖T‖.
There is obviously an identity map 1:V → V :x 7→ x, and (1h)x = 1(hx) = hx = h(1x) = (h1)x, so 1h =
h1. Therefore, Bl(V ) is a quaternionic C* algebra.

Of course, Br(V ) is just as valid.
>And - sort of sneaking up on the same questions from the
>other side - do n x n quaternionic matrices form a
>quaternionic C*-algebra in your sense?
So far, the only examples I ve given of quaternionic C* algebras are H itself and B(V ) for V a quaternion-
ic Hilbert space, and the only example I ve given of a quaternionic Hilbert space is H, so the only example
of a quaternionic C* algebra I ve given is H. Hopefully, there are more examples than this! We should at
least consider if Hn is a Hilbert space.

Hn is easily a two sided quaternionic vector space, and multiplication by real scalars commutes. De-
�ne 〈v, w〉 to be Pi viwi. 〈,〉 is Zbilinear. 〈vh,w〉 =

P
vihwi =

P
hviwi = h

P
viwi = h〈v, w〉. 〈hv,w〉 =P

hviwi =
P
vihwi =



v, hw

�. 〈v, wh〉 =
P
viwih = (

P
viwi)h = 〈v, w〉h. 〈w, v〉 =

P
wivi =

P
viwi =P

viwi = 〈v, w〉. 〈v, v〉 =
P
vivi =

P
|vi|2 ≥ 0. If 〈v, v〉 = 0, then 0 =

P
|vi|2, so each |vi|2 = 0, so each

vi = 0, so v = 0. The norm is the usual one on R4n, so completeness follows. Therefore, Hn is indeed a
Hilbert space over H, from which follows that Bl(Hn) is a C*algebra over H.

Of course, this leaves the question: does Bl(Hn) equal Matn (H)? Well, Matn (H) is clearly Ll(Hn),
so is every matrix bounded? Yes, by the square root of the sum of the squares of the magnitudes of its
elements.

Note: Some of the proofs here are adapted from John B. Conway, 1990, A Course in Functional Anal-
ysis, 2nd ed.
John Baez <baez@galaxy.ucr.edu> wrote:
>What I'm about to say is a bit abstract,
>so fasten your seatbelt. There's a very nice bicategory whose
>objects are all the K-algebras in the world. In this bicategory, the
>morphisms X: R -> R' are just the R,R'-bimodules over K. I assume you know,
>or can guess, that an R,R'-bimodule X over K is a K-module that's both a left
>R-module and a right R'-module, satisfying the following compatibility
>condition: (r x) r' = r (x r').
>And in this bicategory, the 2-morphisms from X: R -> R' to
>X': R -> R' are just the R,R'-bimodule morphisms f: X -> X'.
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>You may remember that a
>bicategory with one object is a monoidal category. So suppose
>we take the above bicategory and chop it down until it has just one
>object. In other words: take a single K-algebra R and consider all the
>R,R-bimodules over K and all the bimodule morphisms between these. Then
>we get a monoidal category!
>So you really do have a monoidal category.
>You may think this digression was overkill, and it probably was,
>but sometimes I think what we really need to do eventually is
>consider the real numbers, the complex numbers and the quaternions
>all simultaneously as part of a single package. One way to do this
>is look at a little sub-bicategory of the above one for K = the reals, whose objects
>are just the reals, the complexes, and
>the quaternions. It's an idea worth keeping in mind.
This then generalises the concept of C*algebra over C, because multiplication by arbitrary complex scalars
needn t commute.
>It would be fun to see if Stephen Adler did
>things the same way.
You can tensor an operator on the left (a right module homomorphism) and an operator on the right (a
left module homomorphism) to form a Kmodule homomorphism (just as you tensor a right module and
a left module to form a Kmodule). The space LK(V,W ) of Khomomorphisms is an Rbimodule, indeed
an Ralgebra when V = W . The only hard part in the de�nition is deciding whether to write f ⊗ g on
the left or the right. If on the left, the de�nition is (f ⊗ g)(x⊗ y) := fx⊗ yg; if on the right, the de�ni-
tion is (x⊗ y)(f ⊗ g) := fx⊗ yg. But one really ought to say f(x⊗ y)g := fx⊗ yg. This doesn t violate
any spirit of commutativity and shows that Kmodule homomorphisms are naturally thought of as living
on both the left and right sides of their arguments. But ⊗ is not a map Ll(V )⊗ Lr(V )→ LK(V ), be-
cause fr ⊗ g 6= f ⊗ rg in general. For similar reasons, we can t tensor an operator on the right and an
operator on the left to produce a bimodule homomorphism (even though you tensor a left module and a
right module to form a bimodule) because the de�nition x(f ⊗ g)y := xf ⊗ gy doesn t satisfy xr(f ⊗ g)y =
x(f ⊗ g)ry, even though we would have fr ⊗ g = f ⊗ rg.

John Baez <baez@galaxy.ucr.edu> wrote:
>How does the fact that the quaternions are themselves a *-algebra
>enter into the game of opposites? Being a *-algebra, they are isomorphic to
>*their* opposite algebra, which gives a way to turn any left H-module
>into a right H-module and vice versa. I guess it also lets you
>turn any H-bimodule into a new one with right and left structures
>flipped: NEW h v h' = OLD h'* v h*
>It seems like this should be important.
De�ne V to be V as an Abelian group and hvi in V to be ivh in V . Then V and V are identical as real
vector spaces. If V is a Hilbert space, so is V , and Riesz says V ∼= Bl(V,H). De�ne A to be A◦ as a ring
and A as a vector space. If A is a *algebra, then ∗ is an isomorphism between A and A. One may say the
pair (H, V ) is isomorphic to the pair (H, V ◦), where H is also allowed to undergo an isomorphism, in this
case . Similarly, the pair (H, A) is isomoprhic to the pair (H, A◦).

Of course, you can just as easily say that V ∼= Br(V,H). This gives a natural isomorphism between
Bl(V,H) and Br(V,H). In general, one has an isomorphism between Bl(V,Hn) and Br(V,Hn), where f ∈
Bl(V,Hn) is mapped to v 7→ fv. Here, acts on Hn by conjugating coordinatewise. More generally, any
isomorphism ∗ from W to W induces an isomorphism from Bl(V,W ) to Br(V,W ). If W is a *algebra, we
have such an isomorphism ∗. We can do the same thing with the argument in the �rst position.
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>Now that I think about it, I seem to remember some theory of gadgets like
>Hilbert spaces which are representations of a C*-algebra A but which
>have an "inner product" taking values in A. I'd seen this developed
>over the complex numbers, but if one developed it over the reals, it would
>include what you're doing as a special case - except for the stuff where
>you use the fact that the quaternions are a division algebra. In this
>theory, you certainly have to get everything to fall onto the correct
>side.
John Baez <baez@galaxy.ucr.edu> wrote:
>Is there a nice way to characterize
>L_l in the category of bimodules (e.g. by some nice universal property)?
>If there's any justice in the world, L_l will be a functor:
>L_l: H-Bimod^op x H-Bimod -> H-Bimod.
>There will also be a functor: L_r: H-Bimod^op x H-Bimod -> H-Bimod.
Well, we must de�ne the action of the functors on morphisms. Given bimodule homomorphisms f :V → V ′

and g:W →W ′, what is Ll(f, g):Ll(V ′,W )→ Ll(V,W ′)? Well, if T ∈ Ll(V ′,W ), then gTf ∈ Ll(V,W ′).
g(T + U)f = gTf + gUf , g(hT )f = h(gTf), and g(Th)f = (gTf)h. Therefore, Ll(f, g):T 7→ gTf is a
morphism. For Lr(f, g), the situation is the same, except that gTf is better called `fTg' since the func-
tions are written on the right. Given f :V → V ′, f ′:V ′ → V ′′, g:W →W ′, and g′:W ′ →W ′′, is Ll(f ′f, g′g)
equal to Ll(f, g′)Ll(f ′, g)? Yes, because (g′g)T (f ′f) = g′(gTf ′)f . Also, Lr(f ′f, g′g) = Lr(f, g′)Lr(f ′, g),
because (ff ′)T (gg′) = f(f ′Tg)g′, which is all in the correct order. Finally, if 1:V → V and 1:W →W are
identity maps, Ll(1, 1):Ll(V,W )→ Ll(V,W ) is the identity map, since 1T1 = T , and Lr(1, 1):Lr(V,W )→
Lr(V,W ) is the identity map, since 1T1 = T .
>I would be very happy if these functors had nice characterizations
>in terms of tensor: H-Bimod x H-Bimod -> H-Bimod.
I claim Ll(V, ·) is the right adjoint of · ⊗ V . This means there s a natural transformation ι from the iden-
tity functor to the functor Ll(V, · ⊗ V ). That is, for every object W , there s a morphism from W to
Ll(V,W ⊗ V ). Obviously, this morphism sends w to f , where fv := w ⊗ v. Check that f ∈ Ll(V,W ⊗ V );
f(vh) = w ⊗ vh = (w ⊗ v)h = (fv)h. Check that the map w 7→ w ⊗ · is a morphism; hw ⊗ v = h(w ⊗ v) =
h(fv) = (hf)v, and wh⊗ v = w ⊗ hv = f(hv) = (fh)v. I also need a natural transformation ε from the
functor Ll(V, ·)⊗ V to the identity functor, that is, for every object W , a morphism from Ll(V,W )⊗ V
to W . Obviously, this morphism sends f ⊗ v to fv for f ∈ Ll(V,W ). Check that the map f ⊗ v 7→ fv is
a morphism; h(f ⊗ v) = hf ⊗ v 7→ (hf)v = h(fv), and (f ⊗ v)h = f ⊗ vh 7→ f(vh) = (fv)h. Check that
the morphism is well de�ned; fh⊗ v 7→ (fh)v = f(hv)←7 f ⊗ hv. Therefore, Ll(V, ·) is the right adjoint of
· ⊗ V .

I also claim Lr(V, ·) is the right adjoint of V ⊗ ·. This means there s a natural transformation ι from
the identity functor to the functor Lr(V, V ⊗ ·). That is, for every object W , there s a morphism from W
to Lr(V, V ⊗W ). Obviously, this morphism sends w to f , where vf = v ⊗ w. Check that f ∈ Lr(V, V ⊗W );
(hv)f = hv ⊗ w = h(v ⊗ w) = h(vf). Check that the map w 7→ · ⊗ w is a morphism; v ⊗ hw = vh⊗ w =
(vh)f = v(hf), and v ⊗ wh = (v ⊗ w)h = (vf)h = v(fh). I also need a natural transformation ε from the
functor V ⊗ Lr(V, ·) to the identity functor, that is, for every object W , a morphism from V ⊗ Lr(V,W )
to W . Obviously, this morphism sends v ⊗ f to vf for f ∈ Lr(V,W ). Check that the map v ⊗ f 7→ vf is
a morphism; h(v ⊗ f) = hv ⊗ f 7→ (hv)f = h(vf), and (v ⊗ f)h = v ⊗ fh 7→ v(fh) = (vf)h. Check that
the morphism is well de�ned; vh⊗ f 7→ (vh)f = v(hf)←7 v ⊗ hf . Therefore, Lr(V, ·) is the right adjoint of
V ⊗ ·.

Note that Zlinearity needs to be checked a lot above, but I never bothered since it s always pretty
obvious. There are also some commutative diagrams to check, but I didn t write them down, since I ve
been writing enough. I checked them.
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